1
|
Lantschner V, Gomez DF, Vilardo G, Stazione L, Ramos S, Eskiviski E, Fachinetti R, Schiappacassi M, Vallejos N, Germano M, Villacide J, Grilli MP, Martinez G, Ahumada R, Estay SA, Dumois I, Corley J. Distribution, Invasion History, and Ecology of Non-native Pine Bark Beetles (Coleoptera: Curculionidae: Scolytinae) in Southern South America. NEOTROPICAL ENTOMOLOGY 2024; 53:351-363. [PMID: 38236322 DOI: 10.1007/s13744-023-01125-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/21/2023] [Indexed: 01/19/2024]
Abstract
The growth of international trade, coupled with an expansion of large-scale pine plantations in South America during the second half of the twentieth century, has significantly increased the opportunities for the invasion of forest insects. Bark beetles (Coleoptera: Curculionidae, Scolytinae) are a large and diverse group of insects, commonly recognized as one of the most important tree mortality agents in coniferous forests worldwide and an important group among invasive forest species. In this study, we combined data from field sampling with published records of established non-native pine bark beetles, to describe their distribution and invasion history in pine plantations across southern South America, reviewing the available information on their phenology and host range. We obtained records of established populations of six Eurasian species distributed in two major regions: the southwest region comprises plantations in Chile and the Argentine Patagonia, with four bark beetle species: Hylastes ater, Hylastes linearis, Hylurgus ligniperda, and Orthotomicus laricis; the northeastern zone includes northeastern Argentina, Uruguay, and southern Brazil, and includes three bark beetle species: Cyrtogenius luteus, H. ligniperda, and O. erosus. The establishment of non-native populations across the study area began in the 1950s, and from the 1980s onwards, there has been an exponential increase in introductions. We predict that several of these species will continue spreading across South America and that new species will continue arriving. We highlight the importance of international collaboration for early detection and management of non-native pine bark beetles.
Collapse
Affiliation(s)
- Victoria Lantschner
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA Bariloche - CONICET, Bariloche, Río Negro, Argentina.
| | | | - Gimena Vilardo
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA Bariloche - CONICET, Bariloche, Río Negro, Argentina
| | - Leonel Stazione
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA Bariloche - CONICET, Bariloche, Río Negro, Argentina
| | - Sergio Ramos
- Estación Experimental Agropecuaria Concordia, Instituto Nacional de Tecnología Agropecuaria (INTA), Concordia, Entre Ríos, Argentina
| | - Edgar Eskiviski
- Estación Experimental Agropecuaria Montecarlo, Instituto Nacional de Tecnología Agropecuaria (INTA), Montecarlo, Misiones, Argentina
| | - Romina Fachinetti
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (IMBIV), CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Monica Germano
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA Bariloche - CONICET, Campo Forestal General San Martín, Lago Puelo, Chubut, Argentina
| | - José Villacide
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA Bariloche - CONICET, Bariloche, Río Negro, Argentina
| | - Mariano P Grilli
- Centro de Relevamiento y Evaluación de Recursos Agrícolas y Naturales (IMBIV), CONICET - Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gonzalo Martinez
- Instituto Nacional de Investigación Agropecuaria (INIA), Tacuarembó, Uruguay
| | - Rodrigo Ahumada
- Bioforest - Arauco, Silviculture and Forest Health Division, Concepción, Chile
| | - Sergio A Estay
- Universidad Austral de Chile, Instituto de Ciencias Ambientales y Evolutivas, Valdivia, Chile
- Center of Applied Ecology and Sustainability (CAPES), Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Ignacio Dumois
- Departamento de Entomología, Laboratorio Vegetal, SENASA, Buenos Aires, Argentina
| | - Juan Corley
- Grupo de Ecología de Poblaciones de Insectos, Instituto de Investigaciones Forestales y Agropecuarias Bariloche, INTA EEA Bariloche - CONICET, Bariloche, Río Negro, Argentina
- Departamento de Ecología, CRUB, Universidad Nacional del Comahue, Bariloche, Argentina
| |
Collapse
|
2
|
Sellamuthu G, Naseer A, Hradecký J, Chakraborty A, Synek J, Modlinger R, Roy A. Gene expression plasticity facilitates different host feeding in Ips sexdentatus (Coleoptera: Curculionidae: Scolytinae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 165:104061. [PMID: 38151136 DOI: 10.1016/j.ibmb.2023.104061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 12/29/2023]
Abstract
Host shift is ecologically advantageous and a crucial driver for herbivore insect speciation. Insects on the non-native host obtain enemy-free space and confront reduced competition, but they must adapt to survive. Such signatures of adaptations can often be detected at the gene expression level. It is astonishing how bark beetles cope with distinct chemical environments while feeding on various conifers. Hence, we aim to disentangle the six-toothed bark beetle (Ips sexdentatus) response against two different conifer defences upon host shift (Scots pine to Norway spruce). We conducted bioassay and metabolomic analysis followed by RNA-seq experiments to comprehend the beetle's ability to surpass two different terpene-based conifer defence systems. Beetle growth rate and fecundity were increased when reared exclusively on spruce logs (alternative host) compared to pine logs (native host). Comparative gene expression analysis identified differentially expressed genes (DEGs) related to digestion, detoxification, transporter activity, growth, signalling, and stress response in the spruce-feeding beetle gut. Transporter genes were highly abundant during spruce feeding, suggesting they could play a role in pumping a wide variety of endogenous and xenobiotic compounds or allelochemicals out. Trehalose transporter (TRET) is also up-regulated in the spruce-fed beetle gut to maintain homeostasis and stress tolerance. RT-qPCR and enzymatic assays further corroborated some of our findings. Taken together, the transcriptional plasticity of key physiological genes plays a crucial role after the host shift and provides vital clues for the adaptive potential of bark beetles on different conifer hosts.
Collapse
Affiliation(s)
- Gothandapani Sellamuthu
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Aisha Naseer
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jaromír Hradecký
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amrita Chakraborty
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Jiří Synek
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Roman Modlinger
- Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic
| | - Amit Roy
- Czech University of Life Sciences Prague, Forest Molecular Entomology Lab, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Excellent Team for Mitigation (ETM), Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic; Czech University of Life Sciences Prague, Forest Microbiome Team, Faculty of Forestry & Wood Sciences, Kamýcká 129, Prague, 16500, Czech Republic.
| |
Collapse
|
3
|
Ansari L, Asgari B, Zare R, Zamanizadeh HR. Penicillium rhizophilum, a novel species in the section Exilicaulis isolated from the rhizosphere of sugarcane in Southwest Iran. Int J Syst Evol Microbiol 2023; 73. [PMID: 37676702 DOI: 10.1099/ijsem.0.006028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023] Open
Abstract
During a survey of species diversity of Penicillium and Talaromyces in sugarcane (Saccharum officinarum) rhizosphere in the Khuzestan province of Iran [1], 195 strains were examined, from which 187 belonged to Penicillium (11 species) and eight to Talaromyces (one species). In the present study, three strains of Penicillium belonging to section Exilicaulis series Restricta, identified as P. restrictum by Ansari et al. [1], were subjected to a phylogenetic study. The multilocus phylogeny of partial β-tubulin, calmodulin and RNA polymerase II second largest subunit genes enabled the recognition of one new phylogenetic species that is here formally described as Penicillium rhizophilum sp. nov. This species is phylogenetically distinct in series Restricta, but it does not show significant morphological differences from other species previously classified in the series. Therefore, we here placed bias on the phylogenetic species concept. The holotype of Penicillium rhizophilum sp. nov. is IRAN 18169F and the ex-type culture is LA30T (=IRAN 4042CT=CBS 149737T).
Collapse
Affiliation(s)
- Laleh Ansari
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Bita Asgari
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Rasoul Zare
- Department of Botany, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| | - Hamid Reza Zamanizadeh
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Convergent evolution unites the population genetics of Protea-associated ophiostomatoid fungi. FUNGAL ECOL 2023. [DOI: 10.1016/j.funeco.2023.101242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
5
|
Santamaria B, Verbeken A, Haelewaters D. Mycophagy: A Global Review of Interactions between Invertebrates and Fungi. J Fungi (Basel) 2023; 9:163. [PMID: 36836278 PMCID: PMC9968043 DOI: 10.3390/jof9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Fungi are diverse organisms that occupy important niches in natural settings and agricultural settings, acting as decomposers, mutualists, and parasites and pathogens. Interactions between fungi and other organisms, specifically invertebrates, are understudied. Their numbers are also severely underestimated. Invertebrates exist in many of the same spaces as fungi and are known to engage in fungal feeding or mycophagy. This review aims to provide a comprehensive, global view of mycophagy in invertebrates to bring attention to areas that need more research, by prospecting the existing literature. Separate searches on the Web of Science were performed using the terms "mycophagy" and "fungivore". Invertebrate species and corresponding fungal species were extracted from the articles retrieved, whether the research was field- or laboratory-based, and the location of the observation if field-based. Articles were excluded if they did not list at least a genus identification for both the fungi and invertebrates. The search yielded 209 papers covering seven fungal phyla and 19 invertebrate orders. Ascomycota and Basidiomycota are the most represented fungal phyla whereas Coleoptera and Diptera make up most of the invertebrate observations. Most field-based observations originated from North America and Europe. Research on invertebrate mycophagy is lacking in some important fungal phyla, invertebrate orders, and geographic regions.
Collapse
Affiliation(s)
- Brianna Santamaria
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Annemieke Verbeken
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000 Ghent, Belgium
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Centro de Investigaciones Micológicas (CIMi), Universidad Autónoma de Chiriquí, David 0427, Panama
| |
Collapse
|
6
|
Atkinson CT, Roy K. Environmental monitoring for invasive fungal pathogens of ʽŌhiʽa (Metrosideros polymorpha) on the Island of Hawaiʽi. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThe invasive rust Austropuccina psidii was detected in the Hawaiian Islands in 2005 and has become widely established throughout the archipelago in both native and introduced species of Myrtaceae. Initial predictions about the impacts of the fungus on native ʽōhiʽa lehua (Metrosideros polymorpha), a keystone native tree, have not materialized, but there is ongoing concern that introductions of new genotypes of the fungus could lead to widespread mortality with catastrophic effects on native ecosystems. By contrast, two recently emergent Ascomycete pathogens, Ceratocystis lukuohia (Ceratocystis wilt of ‘ōhi‘a) and C. huliohia (Ceratocystis canker of ‘ōhi‘a), collectively known to cause Rapid ʽŌhiʽa Death (ROD), are causing significant mortality in native forests on Hawaiʻi and Kauaʻi Islands, but pathways of spread are still incompletely understood. We used a network of passive environmental samplers for collecting windblown urediniospores of Austropuccina to evaluate the effectiveness of environmental monitoring to detect seasonal and landscape-scale differences in airborne propagules of this rust on Hawai`i Island. The samplers were also used to determine if windborn ambrosia beetle frass or spores of Ceratocystis can spread long distances. We found frequent detections and regional and seasonal differences in numbers of samplers that were positive for urediniospores of Austropuccinia, but little evidence of long-distance airborne dispersal of the ROD-causing fungi. The simple, inexpensive platform for sampling airborne fungal spores that we used may have value as a monitoring tool for detecting spread of airborne fungal pathogens, evaluating habitats for suitability for restoration efforts, and for detecting new pathogen introductions, particularly new Austropuccinia genotypes both in Hawaiʻi and other parts of the world.
Collapse
|
7
|
Oak Decline Caused by Biotic and Abiotic Factors in Central Europe: A Case Study from the Czech Republic. FORESTS 2022. [DOI: 10.3390/f13081223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oak decline presenting symptoms of tracheomycosis have been observed globally over long periods of time. Since the 1990s, oak decline has been considered to be a multifactorial process where abiotic predisposing factors play a significant role. Nevertheless, biotic factors, such as subcortical insects and fungal pathogens, may influence the decline process, as some insect species transmit spores of tracheomycotic pathogens. We investigated biotic agents (subcortical insects, Ophiostoma spp. and Phytophthora spp.) in six declining oak stands located within mesophytic and thermophytic zones in the Czech Republic, where five dry years occurred from 2015 to 2019. The spectrum of insect pests of oak stands was investigated using two methods: reared from logs from each stand and window traps. The presence of Ophiostoma fungi was assessed from cultivated woodblocks; Phytophthora pathogens were isolated from soil samples. In total, 2931 subcortical insect individuals were captured during the 2021 vegetation period. The most species-rich group of the subcortical insect complex involved in oak decline consisted of the families Cerambycidae: Xylotrechus antilope; Curculionidae: Scolytus intricatus, Xyleborus monographus; and Buprestidae: Agrilus biguttatus, A. sulcicollis. The presence of Ophiostoma was detected in all stands with different intensities between tree parts. Several important oak pests were positively correlated with the occurrence of Ophiostoma. On the contrary, from all soil samples, Phytophthora plurivora was found at only one studied oak stand. Based on the results, a new modified model of biotic and abiotic factors involved in the oak decline is proposed.
Collapse
|
8
|
Kovač M, Rigling D, Pernek M. Ophiostomatales Associated with Mediterranean Pine Engraver, Orthotomicus erosus (Coleoptera, Curculionidae) in Dalmatia, Croatia. J Fungi (Basel) 2022; 8:jof8080788. [PMID: 36012778 PMCID: PMC9410398 DOI: 10.3390/jof8080788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Mediterranean pine engraver, Orthotomicus erosus was never considered as a significant pest in Croatia and did not appear in high population densities until 2017, when it reached outbreak level in Aleppo pine stands. The beetle was first detected in Marjan Forest Park, Split, and was soon recorded in other parts of the Dalmatian coast. Soon after the outbreak occurred, we observed that all of the attacked trees exhibit severe blue staining in the sapwood which indicated fungal infection caused by the Ophiostomatales group of fungi. This raised the need to investigate their relationship with O. erosus and the pine decline, and the main aim of this study was to isolate and identify them. Isolates were obtained from adult O. erosus beetles, their galleries, and blue-stained sapwood, and identified according to the morphological characteristics and DNA sequencing. A total of six Ophiostomatales (Ophiostoma ips, O. piceae, Graphilbum cf. rectangulosporium, O. floccosum, Sporothrix pseudoabietina and Ceratocystiopsis cf. minuta) were identified in the study. This is the first record of Ophiostomatales as organisms associated with the pest O. erosus and pine species in Croatia.
Collapse
Affiliation(s)
- Marta Kovač
- Croatian Forest Research Institute, Division for Forest Protection and Game Management, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia;
- Correspondence:
| | - Daniel Rigling
- Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland;
| | - Milan Pernek
- Croatian Forest Research Institute, Division for Forest Protection and Game Management, Cvjetno Naselje 41, 10450 Jastrebarsko, Croatia;
| |
Collapse
|
9
|
Barcoto MO, Rodrigues A. Lessons From Insect Fungiculture: From Microbial Ecology to Plastics Degradation. Front Microbiol 2022; 13:812143. [PMID: 35685924 PMCID: PMC9171207 DOI: 10.3389/fmicb.2022.812143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Anthropogenic activities have extensively transformed the biosphere by extracting and disposing of resources, crossing boundaries of planetary threat while causing a global crisis of waste overload. Despite fundamental differences regarding structure and recalcitrance, lignocellulose and plastic polymers share physical-chemical properties to some extent, that include carbon skeletons with similar chemical bonds, hydrophobic properties, amorphous and crystalline regions. Microbial strategies for metabolizing recalcitrant polymers have been selected and optimized through evolution, thus understanding natural processes for lignocellulose modification could aid the challenge of dealing with the recalcitrant human-made polymers spread worldwide. We propose to look for inspiration in the charismatic fungal-growing insects to understand multipartite degradation of plant polymers. Independently evolved in diverse insect lineages, fungiculture embraces passive or active fungal cultivation for food, protection, and structural purposes. We consider there is much to learn from these symbioses, in special from the community-level degradation of recalcitrant biomass and defensive metabolites. Microbial plant-degrading systems at the core of insect fungicultures could be promising candidates for degrading synthetic plastics. Here, we first compare the degradation of lignocellulose and plastic polymers, with emphasis in the overlapping microbial players and enzymatic activities between these processes. Second, we review the literature on diverse insect fungiculture systems, focusing on features that, while supporting insects' ecology and evolution, could also be applied in biotechnological processes. Third, taking lessons from these microbial communities, we suggest multidisciplinary strategies to identify microbial degraders, degrading enzymes and pathways, as well as microbial interactions and interdependencies. Spanning from multiomics to spectroscopy, microscopy, stable isotopes probing, enrichment microcosmos, and synthetic communities, these strategies would allow for a systemic understanding of the fungiculture ecology, driving to application possibilities. Detailing how the metabolic landscape is entangled to achieve ecological success could inspire sustainable efforts for mitigating the current environmental crisis.
Collapse
Affiliation(s)
- Mariana O. Barcoto
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| | - Andre Rodrigues
- Center for the Study of Social Insects, São Paulo State University (UNESP), Rio Claro, Brazil
- Department of General and Applied Biology, São Paulo State University (UNESP), Rio Claro, Brazil
| |
Collapse
|
10
|
Inácio ML, Marcelino J, Lima A, Sousa E, Nóbrega F. Ceratocystiopsis quercina sp. nov. Associated with Platypus cylindrus on Declining Quercus suber in Portugal. BIOLOGY 2022; 11:750. [PMID: 35625478 PMCID: PMC9139077 DOI: 10.3390/biology11050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Platypus cylindrus is the most common ambrosia beetle in stands of Quercus suber in Portugal. This insect farms specialized fungi in sapwood galleries, using its mycangia to carry and store these organisms. Some ectosymbiotic fungi carried by P. cylindrus are phytopathogenic and cause extensive tree mortality and severe economic losses. To understand the role of P. cylindrus fungal symbionts in stands of Q. suber we examined beetle galleries present in declining and/or dying cork oak trees during field surveys. Logs with active galleries were obtained in situ and from captured emerging beetles. Insects were aseptically dissected, and their mycangia and intestine were retrieved. Morphological and molecular profiles of fungal isolates obtained from cultured insect parts were carried out to accurately characterize and identify isolated fungi. Molecular characterizations were performed with DNA sequence data from four loci, i.e., LSU, SSU, 5.8S-ITS2-28S, and TUB. Morphological results consistently showed a collection of Ophiostoma-like fungal axenic isolates, while phylogenies inferred that this collection constitutes an undescribed taxon reported herein for the first time in association with P. cylindrus in Portuguese cork oak stands. The novel species was erected as Ceratocystiopsis quercina sp. nov. and constitutes a new phytopathogenic fungal species associated with symptoms of vegetative cork oak decline.
Collapse
Affiliation(s)
- Maria L. Inácio
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal; (E.S.); (F.N.)
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQN NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - José Marcelino
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32608, USA;
| | - Arlindo Lima
- LEAF—Linking Environment Agriculture and Food, Instituto Superior de Agronomia (ISA), University of Lisbon, Tapada de Ajuda, 1349-017 Lisbon, Portugal;
- LPVVA—Laboratório de Patologia Vegetal “Veríssimo de Almeida”, Instituto Superior de Agronomia (ISA), University of Lisbon, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Edmundo Sousa
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal; (E.S.); (F.N.)
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQN NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Filomena Nóbrega
- Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, 2780-159 Oeiras, Portugal; (E.S.); (F.N.)
| |
Collapse
|
11
|
Draft Genome Sequences for Three Ophiostoma Species Acquired during Revisions of Australian Plant Pathogen Reference Collections. Microbiol Resour Announc 2022; 11:e0017522. [PMID: 35546116 PMCID: PMC9202410 DOI: 10.1128/mra.00175-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fungal genus Ophiostoma contains numerous species that share close associations with wood-boring insects, a relationship with important consequences for global biosecurity. Here, we provide draft genomes for three Ophiostoma species within the well-known Ophiostoma ulmi complex. These resources are valuable for future research efforts related to Ophiostoma and the establishment of biosecurity-focused databases.
Collapse
|
12
|
Morphological and Phylogenetic Analyses Reveal a New Species of Ceratocystiopsis (Ophiostomataceae, Ophiostomatales) Associated with Ips subelongatus in Inner Mongolia (China) with Weak Host Pathogenicity. FORESTS 2021. [DOI: 10.3390/f12121795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ophiostomatoid fungi are known for their associations with bark beetles, and some species are important sources of tree diseases. Ceratocystiopsis is a genus of the ophiostomatoid fungi in order Ophiostomatales. The shortage of DNA barcodes for many species in this genus has resulted in the presence of many unnamed cryptic species. In this study, Ceratocystiopsis subelongati sp. nov. associated with Ips subelongatus infesting Pinus sylvestris var. mongolica in Inner Mongolia, China, was identified and described based on phylogenetic inference of multi-gene DNA sequences and morphological characteristics. The species is characterized by a hyalorhinocladiella- to sporothrix-like asexual state and an optimal growth temperature of 30 °C. Artificial inoculation tests in the field showed that it is mildly pathogenic to five-year-old larch trees, the main host of I. subelongatus. It is also the first described Ceratocystiopsis species associated with I. subelongatus in China. This discovery should provide new avenues for studying the symbiosis between bark beetles and ophiostomatoid fungi.
Collapse
|
13
|
Wang Z, Zhou Q, Zheng G, Fang J, Han F, Zhang X, Lu Q. Abundance and Diversity of Ophiostomatoid Fungi Associated With the Great Spruce Bark Beetle ( Dendroctonus micans) in the Northeastern Qinghai-Tibet Plateau. Front Microbiol 2021; 12:721395. [PMID: 34733243 PMCID: PMC8558629 DOI: 10.3389/fmicb.2021.721395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/22/2021] [Indexed: 11/25/2022] Open
Abstract
The role of several virulent tree pathogens in host death has been overlooked because of the aggressiveness of their associated bark beetles. The great spruce bark beetle (Dendroctonus micans) is a widely distributed beetle that infests coniferous plants in Eurasia; however, its associated fungi have been poorly studied. Therefore, in this study, we elucidated the diversity of ophiostomatoid fungi associated with D. micans in the northeastern Qinghai-Tibet Plateau through field investigation, laboratory isolation, and culture analyses. A total of 220 strains of ophiostomatoid fungi were isolated from adults and tunnel galleries of D. micans infesting Picea crassifolia. We identified that the isolated strains belonged to eight ophiostomatoid species, including five new species (Ophiostoma huangnanense sp. nov., Ophiostoma maixiuense sp. nov., Ophiostoma sanum sp. nov., Leptographium sanjiangyuanense sp. nov., and Leptographium zekuense sp. nov.), one undefined species (Ophiostoma sp. 1), and two known species (Ophiostoma bicolor and Endoconidiophora laricicola), using phylogenetic analysis of multigene DNA sequences and morphological characteristics. This is the first time that E. laricicola, a pioneer invader and virulent pathogen, has been reported in China. We found that E. laricicola was the dominant species, accounting for 40.91% of the total number of ophiostomatoid communities. This study enriched the knowledge of the fungal associates of D. micans and elucidated that it carried the virulent pathogen E. laricicola at a surprisingly high frequency. Our findings show increased species association between D. micans and ophiostomatoid fungi and provide a basis for understanding the occurrence of forest diseases and pests.
Collapse
Affiliation(s)
- Zheng Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Qinzheng Zhou
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Guiheng Zheng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jiaxing Fang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | | | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Quan Lu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
14
|
Trollip C, Carnegie AJ, Dinh Q, Kaur J, Smith D, Mann R, Rodoni B, Edwards J. Ophiostomatoid fungi associated with pine bark beetles and infested pines in south-eastern Australia, including Graphilbum ipis-grandicollis sp. nov. IMA Fungus 2021; 12:24. [PMID: 34465398 PMCID: PMC8408996 DOI: 10.1186/s43008-021-00076-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/31/2021] [Indexed: 11/28/2022] Open
Abstract
The ophiostomatoid fungi are an assemblage of ascomycetes which are arguably best-known for their associations with bark and ambrosia beetles (Curculonidae) and blue stain (sap stain) of many economically important tree species. These fungi are considered a significant threat to coniferous forests, which has resulted in numerous studies characterising the diversity of bark beetles and their ophiostomatoid associates globally. The diversity of ophiostomatoid fungi present in Australian pine plantations, however, remains largely undetermined. The aims of this study were therefore to reconsider the diversity of ophiostomatoid fungi associated with Pinus in Australia, and to establish the baseline of expected taxa found within these plantation ecosystems. To achieve this, we reviewed Australian plant pathogen reference collections, and analysed samples collected during forest health surveillance programs from the major pine growing regions in south-eastern Australia. In total, 135 ophiostomatoid isolates (15 from reference collections and 120 collected during the current study) were assessed using morphological identification and ITS screening which putatively distinguished 15 taxonomic groups. Whole genome sequencing (WGS) of representative isolates from each taxon was performed to obtain high-quality sequence data for multi-locus phylogenetic analysis. Our results revealed a greater than expected diversity, expanding the status of ophiostomatoid fungi associated with Pinus in Australia to include 14 species from six genera in the Ophiostomatales and a single species residing in the Microascales. While most of these were already known to science, our study includes seven first records for Australia and the description of one new species, Graphilbum ipis-grandicollis sp. nov.. This study also provides an early example of whole genome sequencing (WGS) approaches replacing traditional PCR-based methods for taxonomic surveys. This not only allowed for robust multi-locus sequence extraction during taxonomic assessment, but also permitted the rapid establishment of a curated genomic database for ophiostomatoid fungi which will continue to aid in the development of improved diagnostic resources and capabilities for Australian biosecurity.
Collapse
Affiliation(s)
- Conrad Trollip
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC 3083 Australia
| | - Angus J. Carnegie
- Forest Science, NSW Department of Primary Industries – Forestry, Parramatta, NSW 2150 Australia
| | - Quang Dinh
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC 3083 Australia
| | - Jatinder Kaur
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC 3083 Australia
| | - David Smith
- Department of Jobs, Precincts and Regions, Biosecurity and Agricultural Services, Agriculture Victoria, Cranbourne, VIC 3977 Australia
| | - Ross Mann
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC 3083 Australia
| | - Brendan Rodoni
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC 3083 Australia
| | - Jacqueline Edwards
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3083 Australia
- Department of Jobs, Precincts and Regions, Agriculture Victoria Research, AgriBio Centre, Bundoora, VIC 3083 Australia
| |
Collapse
|
15
|
Tanin SM, Kandasamy D, Krokene P. Fungal Interactions and Host Tree Preferences in the Spruce Bark Beetle Ips typographus. Front Microbiol 2021; 12:695167. [PMID: 34177876 PMCID: PMC8220818 DOI: 10.3389/fmicb.2021.695167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
The spruce bark beetle Ips typographus is the most damaging pest in European spruce forests and has caused great ecological and economic disturbances in recent years. Although native to Eurasia, I. typographus has been intercepted more than 200 times in North America and could establish there as an exotic pest if it can find suitable host trees. Using in vitro bioassays, we compared the preference of I. typographus for its coevolved historical host Norway spruce (Picea abies) and two non-coevolved (naïve) North American hosts: black spruce (Picea mariana) and white spruce (Picea glauca). Additionally, we tested how I. typographus responded to its own fungal associates (conspecific fungi) and to fungi vectored by the North American spruce beetle Dendroctonus rufipennis (allospecific fungi). All tested fungi were grown on both historical and naïve host bark media. In a four-choice Petri dish bioassay, I. typographus readily tunneled into bark medium from each of the three spruce species and showed no preference for the historical host over the naïve hosts. Additionally, the beetles showed a clear preference for bark media colonized by fungi and made longer tunnels in fungus-colonized media compared to fungus-free media. The preference for fungus-colonized media did not depend on whether the medium was colonized by conspecific or allospecific fungi. Furthermore, olfactometer bioassays demonstrated that beetles were strongly attracted toward volatiles emitted by both con- and allospecific fungi. Collectively, these results suggest that I. typographus could thrive in evolutionary naïve spruce hosts if it becomes established in North America. Also, I. typographus could probably form and maintain new associations with local allospecific fungi that might increase beetle fitness in naïve host trees.
Collapse
Affiliation(s)
- Sifat Munim Tanin
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
- Chair of Forest Entomology and Protection, University of Freiburg, Freiburg, Germany
| | - Dineshkumar Kandasamy
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Paal Krokene
- Division of Biotechnology and Plant Health, Norwegian Institute of Bioeconomy Research, Ås, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
16
|
Demidko DA, Demidko NN, Mikhaylov PV, Sultson SM. Biological Strategies of Invasive Bark Beetles and Borers Species. INSECTS 2021; 12:insects12040367. [PMID: 33924117 PMCID: PMC8074309 DOI: 10.3390/insects12040367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/06/2021] [Accepted: 04/17/2021] [Indexed: 11/25/2022]
Abstract
Simple Summary Biological invasions are one of the most critical problems today. Invaders have been damaging tree- and shrub-dominated ecosystems. Among these harmful species, a notable role belongs to bark beetles and borers. Extensive phytosanitary measures are needed to prevent their penetration into new regions. However, the lists of quarantine pests should be reasonably brief for more effective prevention of invasion of potentially harmful insects. Our goal is to reveal the set of biological traits of invasive bark beetles and borers that are currently known. We identified four invasion strategies. Inbred, the first one is characterized by inbreeding, parthenogenesis, polyvoltinism, xylomycetophagy, flightless males, polyphagy, to less extent by association with pathogenic fungi. For the second, polyphagous, typical traits are polyphagy, feeding on wood, high fecundity, distance sex pheromones presence, development for one year or more. The third strategy, intermediate, possesses such features as mono- or olygophagy, feeding on inner-bark, short (one year or less) life cycle. Aggressive, the last one includes monophagous species using aggregation pheromones, associated pathogens, short life cycle, and consuming inner-bark. The main traits contributing to significant damage are high fecundity, polyvoltinism, symbiotic plant pathogens, long-range or aggregation pheromones. Abstract The present study attempts to identify the biological characteristics of invasive (high-impact in the secondary area) bark beetles and borers species, contributing to their success in an invaded area. We selected 42 species based on the CABI website data on invasive species and information on the most studied regional faunas. Four groups of species with different invasion strategies were identified based on the cluster and factor analysis. The first one (inbred strategy) is characterized by flightless males, xylomycetophagy, low fecundity (~50 eggs), inbreeding, polyvoltinism, and polyphagy. Species with an aggressive strategy are poly- or monovoltine, feeds on a limited number of hosts, larval feeding on the inner bark, are often associated with phytopathogens, and produce aggregation pheromones. Representatives of the polyphagous strategy have a wide range of hosts, high fecundity (~150 eggs), larval feeding on wood, and their life cycle is at least a year long. For the intermediate strategy, the typical life cycle is from a year or less, medium fecundity, feed on inner bark tissues, mono- or oligophagy. Comparison with low-impact alien species showed that the most significant traits from the viewpoint of the potential danger of native plant species are high fecundity, polyvoltinism, presence of symbiotic plant pathogens, long-range or aggregation pheromones.
Collapse
Affiliation(s)
- Denis A. Demidko
- Sukachev Institute of Forest, Siberian Branch, Russian Academy of Science, 50, bil. 28, Akademgorodok, 660036 Krasnoyarsk, Russia
- Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, Krasnoyarskii Rabochii Prospekt. 31, 660037 Krasnoyarsk, Russia;
- Correspondence: (D.A.D.); (P.V.M.)
| | - Natalia N. Demidko
- Department of Medical and Biological Basics of Physical Education and Health Technologies, School of Physical Education, Sport and Tourism, Siberian Federal University, Svobodny ave. 79, 660041 Krasnoyarsk, Russia;
| | - Pavel V. Mikhaylov
- Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, Krasnoyarskii Rabochii Prospekt. 31, 660037 Krasnoyarsk, Russia;
- Correspondence: (D.A.D.); (P.V.M.)
| | - Svetlana M. Sultson
- Scientific Laboratory of Forest Health, Reshetnev Siberian State University of Science and Technology, Krasnoyarskii Rabochii Prospekt. 31, 660037 Krasnoyarsk, Russia;
| |
Collapse
|
17
|
Electrophysiological and Behavioral Responses of an Ambrosia Beetle to Volatiles of its Nutritional Fungal Symbiont. J Chem Ecol 2021; 47:463-475. [PMID: 33761047 PMCID: PMC8116273 DOI: 10.1007/s10886-021-01263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/03/2022]
Abstract
Ambrosia beetles (Coleoptera: Scolytinae) cultivate their fungal symbiont within host substrates as the sole source of nutrition on which the larvae and adults must feed. To investigate a possible role for semiochemicals in this interaction, we characterized electrophysiological and behavioral responses of Xylosandrus germanus to volatiles associated with its fungal symbiont Ambrosiella grosmanniae. During still-air walking bioassays, X. germanus exhibited an arrestment response to volatiles of A. grosmanniae, but not antagonistic fungi Beauveria bassiana, Metarhizium brunneum, Trichoderma harzianum, the plant pathogen Fusarium proliferatum, or malt extract agar. Solid phase microextraction-gas chromatography-mass spectrometry identified 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate and 3-methyl-1-butanol in emissions from A. grosmanniae; the latter two compounds were also detected in emissions from B. bassiana. Concentration-responses using electroantennography documented weak depolarizations to A. grosmanniae fungal volatiles, unlike the comparatively strong response to ethanol. When tested singly in walking bioassays, volatiles identified from A. grosmanniae elicited relatively weak arrestment responses, unlike the responses to ethanol. Xylosandrus germanus also exhibited weak or no long-range attraction to the fungal volatiles when tested singly during field trials in 2016-2018. None of the fungal volatiles enhanced attraction of X. germanus to ethanol when tested singly; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. Volatiles emitted by A. grosmanniae may represent short-range olfactory cues that could aid in distinguishing their nutritional fungal symbiont from other fungi, but these compounds are not likely to be useful as long-range attractants for improving detection or mass trapping tactics.
Collapse
|
18
|
Zubaer A, Wai A, Patel N, Perillo J, Hausner G. The Mitogenomes of Ophiostoma minus and Ophiostoma piliferum and Comparisons With Other Members of the Ophiostomatales. Front Microbiol 2021; 12:618649. [PMID: 33643245 PMCID: PMC7902536 DOI: 10.3389/fmicb.2021.618649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/04/2021] [Indexed: 12/23/2022] Open
Abstract
Fungi assigned to the Ophiostomatales are of economic concern as many are blue-stain fungi and some are plant pathogens. The mitogenomes of two blue-stain fungi, Ophiostoma minus and Ophiostoma piliferum, were sequenced and compared with currently available mitogenomes for other members of the Ophiostomatales. Species representing various genera within the Ophiostomatales have been examined for gene content, gene order, phylogenetic relationships, and the distribution of mobile elements. Gene synteny is conserved among the Ophiostomatales but some members were missing the atp9 gene. A genome wide intron landscape has been prepared to demonstrate the distribution of the mobile genetic elements (group I and II introns and homing endonucleases) and to provide insight into the evolutionary dynamics of introns among members of this group of fungi. Examples of complex introns or nested introns composed of two or three intron modules have been observed in some species. The size variation among the mitogenomes (from 23.7 kb to about 150 kb) is mostly due to the presence and absence of introns. Members of the genus Sporothrix sensu stricto appear to have the smallest mitogenomes due to loss of introns. The taxonomy of the Ophiostomatales has recently undergone considerable revisions; however, some lineages remain unresolved. The data showed that genera such as Raffaelea appear to be polyphyletic and the separation of Sporothrix sensu stricto from Ophiostoma is justified.
Collapse
Affiliation(s)
- Abdullah Zubaer
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Nikita Patel
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Jordan Perillo
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Li Y, Skelton J, Adams S, Hattori Y, Smith ME, Hulcr J. The Ambrosia Beetle Sueus niisimai (Scolytinae: Hyorrhynchini) is Associated with the Canker Disease Fungus Diatrypella japonica (Xylariales). PLANT DISEASE 2020; 104:3143-3150. [PMID: 33136520 DOI: 10.1094/pdis-03-20-0482-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ambrosia beetles in the subtribe Hyorrhynchini are one example of an entire ambrosia beetle lineage whose fungi have never been studied. Here, we identify one dominant fungus associated with a widespread Asian hyorrhynchine beetle Sueus niisimai. This fungus was consistently isolated from beetle galleries from multiple collections. Phylogenetic analyses of combined ITS rDNA and β-tubulin sequences identified the primary fungal symbiont as Diatrypella japonica Higuchi, Nikaido & Hattori (Diatrypaceae, Xylariales, Sordariomycetes), which was recently described as a pathogen of sycamore (Platanus spp.) in Japan. To assess the invasion potential of this beetle-fungus interaction into the U.S., we have investigated the pathogenicity of two D. japonica strains on four species of healthy landscape trees native to the southeastern United States. Only Shumard oak (Quercus shumardii) responded with lesions significantly greater than the control inoculations, but there was no observable dieback or tree mortality. Although disease symptoms were not as prominent as in previous studies of the same fungus in Japan, routine reisolation from the inoculation point suggests that this species is capable of colonizing healthy sapwood of several tree species. Our study shows that the geographical area of its distribution is broader in Asia and potentially includes many hosts of its polyphagous vector. We conclude that the Sueus-Diatrypella symbiosis has high invasion potential but low damage potential, at least on young trees during the growing season.
Collapse
Affiliation(s)
- You Li
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - James Skelton
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Sawyer Adams
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| | - Yukako Hattori
- Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32603, U.S.A
| | - Jiri Hulcr
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, U.S.A
| |
Collapse
|
20
|
Zhou Y, Lu D, Joseph R, Li T, Keyhani NO. High efficiency transformation and mutant screening of the laurel wilt pathogen, Raffaelea lauricola. Appl Microbiol Biotechnol 2020; 104:7331-7343. [PMID: 32656617 DOI: 10.1007/s00253-020-10762-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 01/27/2023]
Abstract
The fungal pathogen, Raffaelea lauricola, is the causative agent of laurel wilt, a devastating disease affecting the Lauraceae family. The fungus is vectored by ambrosia beetles that carry the fungus in specialized structures (mycangia), with the fungus acting as a symbiont and food source for beetle larvae growing in tree galleries. In order to probe the molecular basis for plant pathogenicity and insect symbiosis of the laurel wilt fungus, molecular tools including establishment of efficient transformation protocols are required. Resistance marker profiling revealed susceptibility of R. lauricola to phosphinothricin, chlorimuron ethyl, hygromycin, and benomyl. Agrobacterium-mediated transformation using either the bar or sur marker resulted in 1-200 transformants/105 spores. A second protocol using lithium acetate-polyethylene glycol (LiAc-PEG) treatment of fungal blastospores yielded 5-60 transformants/μg DNA/108 cells. Transformants were mitotically stable (at least 5 generations), and > 95% of transformants showed a single integration event. R. lauricola strains expressing green and red fluorescent proteins (EGFP and RFP), as well as glucuronidase (GUS), were constructed. Using the Agrobacterium-mediated method, a random T-DNA insertion library was constructed, and genetic screens led to the isolation of developmental mutants as well as mutants displaying enhanced resistance to sodium dodecyl sulfate (SDS) or fluconazole, and those showing decreased susceptibility to biphenol. These results establish simple and reliable genetic tools for transformation of R. lauricola needed for genetic dissection of the symbiotic and virulent lifestyles exhibited by this fungus and establish a library of insertion mutants that can be used in various genetic screens to dissect molecular pathways. KEY POINTS: • Vectors and transformation protocols were developed for Raffaelea lauricola. • Method was used for construction of a random insertion mutant library. • Mutant library was validated by phenotypic screens for resistance and susceptibility to various agents.
Collapse
Affiliation(s)
- Yonghong Zhou
- Research Center for Qinghai-Tibet Plateau Ecology, College of Science, Tibet University, Lhasa, 850000, Tibet, People's Republic of China.,Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL, 32611, USA
| | - Dingding Lu
- Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL, 32611, USA
| | - Ross Joseph
- Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL, 32611, USA
| | - Tian Li
- Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL, 32611, USA
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Bldg. 981, Museum Rd., Gainesville, FL, 32611, USA.
| |
Collapse
|
21
|
Strzałka B, Jankowiak R, Bilański P, Patel N, Hausner G, Linnakoski R, Solheim H. Two new species of Ophiostomatales (Sordariomycetes) associated with the bark beetle Dryocoetes alni from Poland. MycoKeys 2020; 68:23-48. [PMID: 32607057 PMCID: PMC7314864 DOI: 10.3897/mycokeys.68.50035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/26/2020] [Indexed: 11/12/2022] Open
Abstract
Bark beetles belonging to the genus Dryocoetes (Coleoptera, Curculionidae, Scolytinae) are known vectors of fungi, such as the pathogenic species Grosmannia dryocoetidis involved in alpine fir (Abies lasiocarpa) mortality. Associations between hardwood-infesting Dryocoetes species and fungi in Europe have received very little research attention. Ectosymbiotic fungi residing in Ceratocystiopsis and Leptographium (Ophiostomatales, Sordariomycetes, Ascomycota) were commonly detected in previous surveys of the Dryocoetes alni-associated mycobiome in Poland. The aim of this study was to accurately identify these isolates and to provide descriptions of the new species. The identification was conducted based on morphology and DNA sequence data for six loci (ITS1-5.8S, ITS2-28S, ACT, CAL, TUB2, and TEF1-α). This revealed two new species, described here as Ceratocystiopsis synnemata sp. nov. and Leptographium alneum sp. nov. The host trees for the new species included Alnus incana and Populus tremula. Ceratocystiopsis synnemata can be distinguished from its closely related species, C. pallidobrunnea, based on conidia morphology and conidiophores that aggregate in loosely arranged synnemata. Leptographium alneum is closely related to Grosmannia crassivaginata and differs from this species in having a larger ascomatal neck, and the presence of larger club-shaped cells.
Collapse
Affiliation(s)
- Beata Strzałka
- Department of Forest Ecosystems Protection; University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Krakow, Poland University of Agriculture Kraków Poland
| | - Robert Jankowiak
- Department of Forest Ecosystems Protection; University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Krakow, Poland University of Agriculture Kraków Poland
| | - Piotr Bilański
- Department of Forest Ecosystems Protection; University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Krakow, Poland University of Agriculture Kraków Poland
| | - Nikita Patel
- Department of Microbiology, Buller Building 213, University of Manitoba, Winnipeg, R3T 2N2, Canada University of Manitoba Winnipeg Canada
| | - Georg Hausner
- Department of Microbiology, Buller Building 213, University of Manitoba, Winnipeg, R3T 2N2, Canada University of Manitoba Winnipeg Canada
| | - Riikka Linnakoski
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland Natural Resources Institute Finland Helsinki Finland
| | - Halvor Solheim
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway Norwegian Institute of Bioeconomy Research Ås Norway
| |
Collapse
|
22
|
Six DL. Niche construction theory can link bark beetle-fungus symbiosis type and colonization behavior to large scale causal chain-effects. CURRENT OPINION IN INSECT SCIENCE 2020; 39:27-34. [PMID: 32114295 DOI: 10.1016/j.cois.2019.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
Bark beetles form a variety of symbioses with fungi. Recent studies reveal how the fungi influence beetle nutrition and detoxify tree defenses and provide insight into why these symbioses vary so greatly in their outcomes, not only for host and symbiont, but also for the forest ecosystems within which they exist. Here, I review recent advances in our knowledge of these systems. I then introduce how niche construction theory can provide a framework to use this knowledge to better understand how different symbiosis types result in a gradient of ecosystem effects ranging from massive and durable to those of little ecological consequence.
Collapse
Affiliation(s)
- Diana L Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT 59804, USA.
| |
Collapse
|
23
|
Rivera MJ, Martini X, Conover D, Mafra-Neto A, Carrillo D, Stelinski LL. Evaluation of semiochemical based push-pull strategy for population suppression of ambrosia beetle vectors of laurel wilt disease in avocado. Sci Rep 2020; 10:2670. [PMID: 32060382 PMCID: PMC7021720 DOI: 10.1038/s41598-020-59569-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/29/2020] [Indexed: 11/25/2022] Open
Abstract
Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae and Platypodinae) bore into tree xylem to complete their life cycle, feeding on symbiotic fungi. Ambrosia beetles are a threat to avocado where they have been found to vector a symbiotic fungus, Raffaelea lauricola, the causal agent of the laurel wilt disease. We assessed the repellency of methyl salicylate and verbenone to two putative laurel wilt vectors in avocado, Xyleborus volvulus (Fabricius) and Xyleborus bispinatus (Eichhoff), under laboratory conditions. Then, we tested the same two chemicals released from SPLAT flowable matrix with and without low-dose ethanol dispensers for manipulation of ambrosia beetle populations occurring in commercial avocado. The potential active space of repellents was assessed by quantifying beetle catch on traps placed ‘close’ (~5–10 cm) and ‘far’ (~1–1.5 m) away from repellent dispensers. Ambrosia beetles collected on traps associated with all in-field treatments were identified to species to assess beetle diversity and community variation. Xyleborus volvulus was not repelled by methyl salicylate (MeSA) or verbenone in laboratory assays, while X. bispinatus was repelled by MeSA but not verbenone. Ambrosia beetle trap catches were reduced in the field more when plots were treated with verbenone dispensers (SPLAT) co-deployed with low-dose ethanol dispensers than when treated with verbenone alone. Beetle diversity was highest on traps deployed with low-dose ethanol lures. The repellent treatments and ethanol lures significantly altered the species composition of beetles captured in experiment plots. Our results indicate that verbenone co-deployed with ethanol lures holds potential for manipulating ambrosia beetle vectors via push-pull management in avocado. This tactic could discourage immigration and/or population establishment of ambrosia beetles in commercial avocado and function as an additional tool for management programs of laurel wilt.
Collapse
Affiliation(s)
- Monique J Rivera
- Department of Entomology, University of California Riverside, Riverside, CA, USA.
| | - Xavier Martini
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | - Derrick Conover
- Department of Entomology and Nematology, North Florida Research and Education Center, University of Florida, Quincy, FL, USA
| | | | - Daniel Carrillo
- Department of Entomology, Tropical Research & Education Center, University of Florida, Homestead, FL, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
24
|
Rassati D, Marini L, Malacrinò A. Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ 2019; 7:e8103. [PMID: 31763076 PMCID: PMC6870512 DOI: 10.7717/peerj.8103] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/25/2019] [Indexed: 01/05/2023] Open
Abstract
Microbial symbionts can play critical roles when their host attempts to colonize a new habitat. The lack of symbiont adaptation can in fact hinder the invasion process of their host. This scenario could change if the exotic species are able to acquire microorganisms from the invaded environment. Understanding the ecological factors that influence the take-up of new microorganisms is thus essential to clarify the mechanisms behind biological invasions. In this study, we tested whether different forest habitats influence the structure of the fungal communities associated with ambrosia beetles. We collected individuals of the most widespread exotic (Xylosandrus germanus) and native (Xyleborinus saxesenii) ambrosia beetle species in Europe in several old-growth and restored forests. We characterized the fungal communities associated with both species via metabarcoding. We showed that forest habitat shaped the community of fungi associated with both species, but the effect was stronger for the exotic X. germanus. Our results support the hypothesis that the direct contact with the mycobiome of the invaded environment might lead an exotic species to acquire native fungi. This process is likely favored by the occurrence of a bottleneck effect at the mycobiome level and/or the disruption of the mechanisms sustaining co-evolved insect-fungi symbiosis. Our study contributes to the understanding of the factors affecting insect-microbes interactions, helping to clarify the mechanisms behind biological invasions.
Collapse
Affiliation(s)
- Davide Rassati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Antonino Malacrinò
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH, United States of America
| |
Collapse
|
25
|
Jankowiak R, Bilański P, Strzałka B, Linnakoski R, Bosak A, Hausner G. Four new Ophiostoma species associated with conifer- and hardwood-infesting bark and ambrosia beetles from the Czech Republic and Poland. Antonie Van Leeuwenhoek 2019; 112:1501-1521. [PMID: 31140027 PMCID: PMC6748885 DOI: 10.1007/s10482-019-01277-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/14/2019] [Indexed: 12/24/2022]
Abstract
Fungi under the order Ophiostomatales (Ascomycota) are known to associate with various species of bark beetles (Coleoptera: Curculionidae: Scolytinae). In addition this group of fungi contains many taxa that can impart blue-stain on sapwood and some are important tree pathogens. A recent survey that focussed on the diversity of the Ophiostomatales in the forest ecosystems of the Czech Republic and Poland uncovered four putative new species. Phylogenetic analyses of four gene regions (ITS1-5.8S-ITS2 region, ß-tubulin, calmodulin, and translation elongation factor 1-α) indicated that these four species are members of the genus Ophiostoma. All four newly described species can be distinguished from each other and from closely related species based on DNA sequence comparisons, morphological characters, growth rates, and their insect associations. Based on this study four new taxa can be circumscribed and the following names are provided: Ophiostoma pityokteinis sp. nov., Ophiostoma rufum sp. nov., Ophiostoma solheimii sp. nov., and Ophiostoma taphrorychi sp. nov. O. rufum sp. nov. is a member of the Ophiostoma piceae species complex, while O. pityokteinis sp. nov. resides in a discrete lineage within Ophiostoma s. stricto. O. taphrorychi sp. nov. together with O. distortum formed a well-supported clade in Ophiostoma s. stricto close to O. pityokteinis sp. nov. O. solheimii sp. nov. groups within a currently undefined lineage A, which also includes Ophiostoma grandicarpum and Ophiostoma microsporum. This study highlights the need for more intensive surveys that should include additional countries of Central Europe, insect vectors and host tree species in order to elucidate Ophiostoma species diversity in this region.
Collapse
Affiliation(s)
- Robert Jankowiak
- Department of Forest Pathology, Mycology and Tree Physiology, Institute of Forest Ecosystem Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Kraków, Poland.
| | - Piotr Bilański
- Department of Forest Protection, Entomology and Forest Climatology, Institute of Forest Ecosystem Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Kraków, Poland
| | - Beata Strzałka
- Department of Forest Pathology, Mycology and Tree Physiology, Institute of Forest Ecosystem Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Kraków, Poland
| | - Riikka Linnakoski
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790, Helsinki, Finland
| | - Agnieszka Bosak
- Department of Forest Pathology, Mycology and Tree Physiology, Institute of Forest Ecosystem Protection, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425, Kraków, Poland
| | - Georg Hausner
- Department of Microbiology, Buller Building 213, University of Manitoba, Winnipeg, R3T 2N2, Canada
| |
Collapse
|
26
|
Min Wang H, Wang Z, Liu F, Xu Wu C, Fang Zhang S, Kong XB, Decock C, Lu Q, Zhang Z. Differential patterns of ophiostomatoid fungal communities associated with three sympatric Tomicus species infesting pines in south-western China, with a description of four new species. MycoKeys 2019; 50:93-133. [PMID: 31043857 PMCID: PMC6477840 DOI: 10.3897/mycokeys.50.32653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/09/2019] [Indexed: 12/03/2022] Open
Abstract
Bark beetles and their associated fungi, which cause forest decline and sometimes high mortality in large areas around the world, are of increasing concern in terms of forest health. Three Tomicus spp. (T.brevipilosus, T.minor and T.yunnanensis) infect branches and trunks of Pinusyunnanensis and P.kesiya in Yunnan Province, in south-western China. Tomicus spp. are well known as vectors of ophiostomatoid fungi and their co-occurrence could result in serious ecological and economic impact on local forest ecosystems. Nonetheless, knowledge about their diversity, ecology, including pathogenicity and potential economic importance is still quite rudimentary. Therefore, an extensive survey of ophiostomatoid fungi associated with these Tomicus species infesting P.yunnanensis and P.kesiya was carried out in Yunnan. Seven hundred and seventy-two strains of ophiostomatoid fungi were isolated from the adult beetles and their galleries. The strains were identified based on comparisons of multiple DNA sequences, including the nuclear ribosomal large subunit (LSU) region, the internal transcribed spacer regions 1 and 2, together with the intervening 5.8S gene (ITS) and the partial genes of β-tubulin (TUB2), elongation factor 1α (TEF1-α) and calmodulin (CAL). Phylogenetic analyses were performed using maximum parsimony (MP) as well as maximum likelihood (ML). Combinations of culture features, morphological characters and temperature-dependent growth rates were also employed for species identification. Eleven species belonging to five genera were identified. These included six known species, Esteyavermicola, Leptographiumyunnanense, Ophiostomabrevipilosi, O.canum, O.minus and O.tingens and four novel taxa, described as Graphilbumanningense, O.aggregatum, Sporothrixpseudoabietina and S.macroconidia. A residual strain was left unidentified as Ophiostoma sp. 1. The overall ophiostomatoid community was by far dominated by three species, representing 87.3% of the total isolates; in decreasing order, these were O.canum, O.brevipilosi and O.minus. Furthermore, the ophiostomatoid community of each beetle, although harbouring a diversity of ophiostomatoid species, was differentially dominated by a single fungal species; Ophiostomacanum was preferentially associated with and dominated the ophiostomatoid community of T.minor, whereas O.brevipilosi and O.minus were exclusively associated with and dominated the ophiostomatoid communities of T.brevipilosus and T.yunnanensis, respectively. Eight additional species, representing the remaining 12.7% of the total isolates, were marginal or sporadic. These results suggested that sympatric Tomicus populations are dominated by distinct species showing some level of specificity or even exclusivity.
Collapse
Affiliation(s)
- Hui Min Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Zheng Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Fu Liu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Cheng Xu Wu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Su Fang Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Xiang Bo Kong
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Cony Decock
- Mycothèque de l'Université Catholique de Louvain (BCCM/MUCL), Earth and Life Institute, Microbiology, B-1348 Louvain-la-Neuve, Belgium Mycothèque de l'Université Catholique de Louvain Louvain-la-Neuve Belgium
| | - Quan Lu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| | - Zhen Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration; Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing 100091, China Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry Beijing China
| |
Collapse
|
27
|
Liu F, Li G, Roux J, Barnes I, Wilson AM, Wingfield MJ, Chen S. Nine novel species of Huntiella from southern China with three distinct mating strategies and variable levels of pathogenicity. Mycologia 2018; 110:1145-1171. [DOI: 10.1080/00275514.2018.1515450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- FeiFei Liu
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - GuoQing Li
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang 524022, Guangdong Province, China
| | - Jolanda Roux
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Andrea M. Wilson
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Michael J. Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria 0028, South Africa
| | - ShuaiFei Chen
- China Eucalypt Research Centre, Chinese Academy of Forestry, Zhanjiang 524022, Guangdong Province, China
| |
Collapse
|
28
|
Abstract
Ambrosia beetles are among the true fungus-farming insects and cultivate fungal gardens on which the larvae and adults feed. After invading new habitats, some species destructively attack living or weakened trees growing in managed and unmanaged settings. Ambrosia beetles adapted to weakened trees tunnel into stem tissues containing ethanol to farm their symbiotic fungi, even though ethanol is a potent antimicrobial agent that inhibits the growth of various fungi, yeasts, and bacteria. Here we demonstrate that ambrosia beetles rely on ethanol for host tree colonization because it promotes the growth of their fungal gardens while inhibiting the growth of “weedy” fungal competitors. We propose that ambrosia beetles use ethanol to optimize their food production. Animal–microbe mutualisms are typically maintained by vertical symbiont transmission or partner choice. A third mechanism, screening of high-quality symbionts, has been predicted in theory, but empirical examples are rare. Here we demonstrate that ambrosia beetles rely on ethanol within host trees for promoting gardens of their fungal symbiont and producing offspring. Ethanol has long been known as the main attractant for many of these fungus-farming beetles as they select host trees in which they excavate tunnels and cultivate fungal gardens. More than 300 attacks by Xylosandrus germanus and other species were triggered by baiting trees with ethanol lures, but none of the foundresses established fungal gardens or produced broods unless tree tissues contained in vivo ethanol resulting from irrigation with ethanol solutions. More X. germanus brood were also produced in a rearing substrate containing ethanol. These benefits are a result of increased food supply via the positive effects of ethanol on food-fungus biomass. Selected Ambrosiella and Raffaelea fungal isolates from ethanol-responsive ambrosia beetles profited directly and indirectly by (i) a higher biomass on medium containing ethanol, (ii) strong alcohol dehydrogenase enzymatic activity, and (iii) a competitive advantage over weedy fungal garden competitors (Aspergillus, Penicillium) that are inhibited by ethanol. As ambrosia fungi both detoxify and produce ethanol, they may maintain the selectivity of their alcohol-rich habitat for their own purpose and that of other ethanol-resistant/producing microbes. This resembles biological screening of beneficial symbionts and a potentially widespread, unstudied benefit of alcohol-producing symbionts (e.g., yeasts) in other microbial symbioses.
Collapse
|
29
|
Pepori AL, Bettini PP, Comparini C, Sarrocco S, Bonini A, Frascella A, Ghelardini L, Scala A, Vannacci G, Santini A. Geosmithia-Ophiostoma: a New Fungus-Fungus Association. MICROBIAL ECOLOGY 2018; 75:632-646. [PMID: 28875260 PMCID: PMC5856884 DOI: 10.1007/s00248-017-1062-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
In Europe as in North America, elms are devastated by Dutch elm disease (DED), caused by the alien ascomycete Ophiostoma novo-ulmi. Pathogen dispersal and transmission are ensured by local species of bark beetles, which established a novel association with the fungus. Elm bark beetles also transport the Geosmithia fungi genus that is found in scolytids' galleries colonized by O. novo-ulmi. Widespread horizontal gene transfer between O. novo-ulmi and Geosmithia was recently observed. In order to define the relation between these two fungi in the DED pathosystem, O. novo-ulmi and Geosmithia species from elm, including a GFP-tagged strain, were grown in dual culture and mycelial interactions were observed by light and fluorescence microscopy. Growth and sporulation of O. novo-ulmi in the absence or presence of Geosmithia were compared. The impact of Geosmithia on DED severity was tested in vivo by co-inoculating Geosmithia and O. novo-ulmi in elms. A close and stable relation was observed between the two fungi, which may be classified as mycoparasitism by Geosmithia on O. novo-ulmi. These results prove the existence of a new component in the complex of organisms involved in DED, which might be capable of reducing the disease impact.
Collapse
Affiliation(s)
- Alessia L Pepori
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
| | - Priscilla P Bettini
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Cecilia Comparini
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Sabrina Sarrocco
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Anna Bonini
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Arcangela Frascella
- Department of Biology, University of Florence, via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Luisa Ghelardini
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Aniello Scala
- Department of Agri-Food Production and Environmental Science (DiSPAA), University of Florence, Piazzale delle Cascine 28, 50144, Florence, Italy
| | - Giovanni Vannacci
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, via del Borghetto 80, 56124, Pisa, Italy
| | - Alberto Santini
- Institute for Sustainable Plant Protection (IPSP-CNR), via Madonna del Piano 10, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
30
|
Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, MacLeod A, Navajas Navarro M, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Boberg J, Gonthier P, Pautasso M. Pest categorisation of Bretziella fagacearum. EFSA J 2018; 16:e05185. [PMID: 32625818 PMCID: PMC7009401 DOI: 10.2903/j.efsa.2018.5185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Following a request from the European Commission, the EFSA Plant Health (PLH) Panel performed a pest categorisation of Bretziella fagacearum, a well-defined and distinguishable fungal species of the family Ceratocystidaceae. The species was moved from the genus Ceratocystis to a new genus Bretziella following phylogenetic analysis of the species and its close relatives. The former species name Ceratocystis fagacearum is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IAI as a harmful organism whose introduction into the EU is banned. B. fagacearum is only reported from the USA, where it causes a wilt disease on Quercus spp. Other hosts are reported based on inoculation trials, although Chinese chestnut (Castanea mollissima) is reported to be naturally infected. No North American oak species has been found to be immune to the disease. The European oak species Quercus robur, Quercus petraea and Quercus pubescens were found to be susceptible in inoculation experiments. The pest could enter the EU via wood (with and without bark, including wood packaging material), plants for planting and cut branches. Hosts and favourable climatic conditions are common in the EU, thus facilitating establishment. The pest would be able to spread following establishment by means of root grafts, insect vectors and movement of wood, plants for planting and other means. The pest introduction would have impacts in woodland and plantations, as oak wilt disease is often lethal in a short period of time. Wood treatment (debarking, kiln drying, fumigation), prompt removal of affected trees and creating root-free zones between affected and healthy stands are available control measures. The main knowledge gaps concern (i) the survival of the fungus in wood during transport and the association with propagation material, (ii) the presence of suitable vectors in Europe and (iii) the relative susceptibility of the oak species native to Europe under natural conditions. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.
Collapse
|
31
|
Chang R, Duong TA, Taerum SJ, Wingfield MJ, Zhou X, de Beer ZW. Ophiostomatoid fungi associated with conifer-infesting beetles and their phoretic mites in Yunnan, China. MycoKeys 2017; 28:19-64. [PMID: 29559821 PMCID: PMC5804140 DOI: 10.3897/mycokeys.28.21758] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 12/04/2017] [Indexed: 11/30/2022] Open
Abstract
The Ophiostomatales is an Ascomycete order of fungi that accommodates several tree pathogens and many species that degrade wood. These fungi are commonly vectored by Scolytine bark and ambrosia beetles. In recent years it has also been shown that hyperphoretic mites on these beetles can vector some Ophiostomatales. Little is known regarding the Ophiostomatales in China and we have consequently explored the diversity of these fungi associated with conifer-infesting beetles and mites in Yunnan province. Galleries and beetles were collected for 17 beetle species, while 13 mite species were obtained from six of these beetle species. Collectively, 340 fungal isolates were obtained, 45 from beetles, 184 from mites, 56 from galleries and 55 isolates where the specific niche was not clear. DNA sequences for five gene regions (ITS, LSU, BT, EF, and CAL) were determined for fungal isolates representing different morphological groups. Phylogenetic analyses confirmed the presence of 19 fungal taxa, including five novel species described here as Ophiostoma acarorumsp. nov., Ophiostoma brevipilosisp. nov., Graphilbum kesiyaesp. nov., Graphilbum puerensesp. nov., and Leptographium ningerensesp. nov.Ophiostoma ips was the most frequently isolated species, representing approximately 31% of all isolates. Six of 19 taxa were present on mites, beetles and in the galleries of the beetles, while three species were found on mites and galleries. Two species were found only on mites and one species only on a beetle. Although the numbers of beetles and mites were insufficient to provide statistical inferences, this study confirmed that mites are important vectors of the Ophiostomatales in China. We hypothesize that these mites are most likely responsible for horizontal transfer of fungal species between galleries of different beetle species. The fact that half of the fungal species found were new to science, suggests that the forests of east Asia include many undescribed Ophiostomatales yet to be discovered.
Collapse
Affiliation(s)
- Runlei Chang
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Tuan A. Duong
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Stephen J. Taerum
- Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Michael J. Wingfield
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Xudong Zhou
- FuturaGene Biotechnology (Shanghai) Co., Ltd., Xuhui, Shanghai 200235, China
| | - Z. Wilhelm de Beer
- Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
32
|
Liebhold AM, Brockerhoff EG, Kalisz S, Nuñez MA, Wardle DA, Wingfield MJ. Biological invasions in forest ecosystems. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1458-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
|
34
|
|
35
|
|