1
|
Lv F, Zhan Y, Feng H, Sun W, Yin C, Han Y, Shao Y, Xue W, Jiang S, Ma Y, Hu H, Wei J, Yan Y, Lin M. Integrated Hfq-interacting RNAome and transcriptomic analysis reveals complex regulatory networks of nitrogen fixation in root-associated Pseudomonas stutzeri A1501. mSphere 2024; 9:e0076223. [PMID: 38747590 PMCID: PMC11332353 DOI: 10.1128/msphere.00762-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/10/2024] [Indexed: 06/26/2024] Open
Abstract
The RNA chaperone Hfq acts as a global regulator of numerous biological processes, such as carbon/nitrogen metabolism and environmental adaptation in plant-associated diazotrophs; however, its target RNAs and the mechanisms underlying nitrogen fixation remain largely unknown. Here, we used enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing to identify hundreds of Hfq-binding RNAs probably involved in nitrogen fixation, carbon substrate utilization, biofilm formation, and other functions. Collectively, these processes endow strain A1501 with the requisite capabilities to thrive in the highly competitive rhizosphere. Our findings revealed a previously uncharted landscape of Hfq target genes. Notable among these is nifM, encoding an isomerase necessary for nitrogenase reductase solubility; amtB, encoding an ammonium transporter; oprB, encoding a carbohydrate porin; and cheZ, encoding a chemotaxis protein. Furthermore, we identified more than 100 genes of unknown function, which expands the potential direct regulatory targets of Hfq in diazotrophs. Our data showed that Hfq directly interacts with the mRNA of regulatory proteins (RsmA, AlgU, and NifA), regulatory ncRNA RsmY, and other potential targets, thus revealing the mechanistic links in nitrogen fixation and other metabolic pathways. IMPORTANCE Numerous experimental approaches often face challenges in distinguishing between direct and indirect effects of Hfq-mediated regulation. New technologies based on high-throughput sequencing are increasingly providing insight into the global regulation of Hfq in gene expression. Here, enhanced UV cross-linking immunoprecipitation coupled with high-throughput sequencing was employed to identify the Hfq-binding sites and potential targets in the root-associated Pseudomonas stutzeri A1501 and identify hundreds of novel Hfq-binding RNAs that are predicted to be involved in metabolism, environmental adaptation, and nitrogen fixation. In particular, we have shown Hfq interactions with various regulatory proteins' mRNA and their potential targets at the posttranscriptional level. This study not only enhances our understanding of Hfq regulation but, importantly, also provides a framework for addressing integrated regulatory network underlying root-associated nitrogen fixation.
Collapse
Affiliation(s)
- Fanyang Lv
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhua Zhan
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haichao Feng
- College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Wenyue Sun
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changyan Yin
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yueyue Han
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yahui Shao
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Xue
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shanshan Jiang
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yiyuan Ma
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haonan Hu
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinfeng Wei
- College of Agriculture, Henan University, Kaifeng, Henan, China
| | - Yongliang Yan
- Biotechnology Research Institute/National Key Laboratory of Agricultural Microbiology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Lin
- College of Agriculture, Henan University, Kaifeng, Henan, China
| |
Collapse
|
2
|
Rolland C, Burzan N, Leupin OX, Boylan AA, Frutschi M, Wang S, Jacquemin N, Bernier-Latmani R. Microbial hydrogen sinks in the sand-bentonite backfill material for the deep geological disposal of radioactive waste. Front Microbiol 2024; 15:1359677. [PMID: 38690357 PMCID: PMC11060177 DOI: 10.3389/fmicb.2024.1359677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
The activity of subsurface microorganisms can be harnessed for engineering projects. For instance, the Swiss radioactive waste repository design can take advantage of indigenous microorganisms to tackle the issue of a hydrogen gas (H2) phase pressure build-up. After repository closure, it is expected that anoxic steel corrosion of waste canisters will lead to an H2 accumulation. This occurrence should be avoided to preclude damage to the structural integrity of the host rock. In the Swiss design, the repository access galleries will be back-filled, and the choice of this material provides an opportunity to select conditions for the microbially-mediated removal of excess gas. Here, we investigate the microbial sinks for H2. Four reactors containing an 80/20 (w/w) mixture of quartz sand and Wyoming bentonite were supplied with natural sulfate-rich Opalinus Clay rock porewater and with pure H2 gas for up to 108 days. Within 14 days, a decrease in the sulfate concentration was observed, indicating the activity of the sulfate-reducing bacteria detected in the reactor, e.g., from Desulfocurvibacter genus. Additionally, starting at day 28, methane was detected in the gas phase, suggesting the activity of methanogens present in the solid phase, such as the Methanosarcina genus. This work evidences the development, under in-situ relevant conditions, of a backfill microbiome capable of consuming H2 and demonstrates its potential to contribute positively to the long-term safety of a radioactive waste repository.
Collapse
Affiliation(s)
- Camille Rolland
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Niels Burzan
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Olivier X. Leupin
- National Cooperative for the Disposal of Radioactive Waste, Wettingen, Switzerland
| | - Aislinn A. Boylan
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Manon Frutschi
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simiao Wang
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquemin
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Manck LE, Coale TH, Stephens BM, Forsch KO, Aluwihare LI, Dupont CL, Allen AE, Barbeau KA. Iron limitation of heterotrophic bacteria in the California Current System tracks relative availability of organic carbon and iron. THE ISME JOURNAL 2024; 18:wrae061. [PMID: 38624181 PMCID: PMC11069385 DOI: 10.1093/ismejo/wrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected insitu. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.
Collapse
Affiliation(s)
- Lauren E Manck
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Flathead Lake Biological Station, University of Montana, Polson, MT 59860, United States
| | - Tyler H Coale
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, CA 95064, United States
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Brandon M Stephens
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Institute of Oceanography, National Taiwan University, Taipei, 106, Taiwan
| | - Kiefer O Forsch
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| | - Lihini I Aluwihare
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| | - Christopher L Dupont
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Human Health, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Synthetic Biology, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Andrew E Allen
- Integrative Oceanography Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
- Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, CA 92037, United States
| | - Katherine A Barbeau
- Geosciences Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
4
|
Enriquez KT, Plummer WD, Neufer PD, Chazin WJ, Dupont WD, Skaar EP. Temporal modelling of the biofilm lifecycle (TMBL) establishes kinetic analysis of plate-based bacterial biofilm dynamics. J Microbiol Methods 2023; 212:106808. [PMID: 37595876 PMCID: PMC10528067 DOI: 10.1016/j.mimet.2023.106808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023]
Abstract
Bacterial biofilms are critical to pathogenesis and infection. They are associated with rising rates of antimicrobial resistance. Biofilms are correlated with worse clinical outcomes, making them important to infectious diseases research. There is a gap in knowledge surrounding biofilm kinetics and dynamics which makes biofilm research difficult to translate from bench to bedside. To address this gap, this work employs a well-characterized crystal violet biomass accrual and planktonic cell density assay across a clinically relevant time course and expands statistical analysis to include kinetic information in a protocol termed the TMBL (Temporal Mapping of the Biofilm Lifecycle) assay. TMBL's statistical framework quantitatively compares biofilm communities across time, species, and media conditions in a 96-well format. Measurements from TMBL can reliably be condensed into response features that inform the time-dependent behavior of adherent biomass and planktonic cell populations. Staphylococcus aureus and Pseudomonas aeruginosa biofilms were grown in conditions of metal starvation in nutrient-variable media to demonstrate the rigor and translational potential of this strategy. Significant differences in single-species biofilm formation are seen in metal-deplete conditions as compared to their controls which is consistent with the consensus literature on nutritional immunity that metal availability drives transcriptomic and metabolomic changes in numerous pathogens. Taken together, these results suggest that kinetic analysis of biofilm by TMBL represents a statistically and biologically rigorous approach to studying the biofilm lifecycle as a time-dependent process. In addition to current methods to study the impact of microbe and environmental factors on the biofilm lifecycle, this kinetic assay can inform biological discovery in biofilm formation and maintenance.
Collapse
Affiliation(s)
- Kyle T Enriquez
- Vanderbilt University Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, United States of America; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - W Dale Plummer
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States of America
| | - Preston D Neufer
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - Walter J Chazin
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America; Department of Chemistry, Vanderbilt University, Nashville, TN, United States of America; Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States of America
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States of America; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States of America.
| |
Collapse
|
5
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
6
|
Ambreetha S, Singh V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37276014 DOI: 10.1099/mic.0.001335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosa
is a well-studied Gram-negative opportunistic bacterium that thrives in markedly varied environments. It is a nutritionally versatile microbe that can colonize a host as well as exist in the environment. Unicellular, planktonic cells of
P. aeruginosa
can come together to perform a coordinated swarming movement or turn into a sessile, surface-adhered population called biofilm. These collective behaviours produce strikingly different outcomes. While swarming motility rapidly disseminates the bacterial population, biofilm collectively protects the population from environmental stresses such as heat, drought, toxic chemicals, grazing by predators, and attack by host immune cells and antibiotics. The ubiquitous nature of
P. aeruginosa
is likely to be supported by the timely transition between planktonic, swarming and biofilm lifestyles. The social behaviours of this bacteria viz biofilm and swarm modes are controlled by signals from quorum-sensing networks, LasI-LasR, RhlI-RhlR and PQS-MvfR, and several other sensory kinases and response regulators. A combination of environmental and genetic cues regulates the transition of the
P. aeruginosa
population to specific states. The current review is aimed at discussing key factors that promote physiologically distinct transitioning of the
P. aeruginosa
population.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| |
Collapse
|
7
|
Zeng S, Shi Q, Liu Y, Li M, Lin D, Zhang S, Li Q, Pu J, Shen C, Huang B, Chen C, Zeng J. The small RNA PrrH of Pseudomonas aeruginosa regulates hemolysis and oxidative resistance in bloodstream infection. Microb Pathog 2023; 180:106124. [PMID: 37105322 DOI: 10.1016/j.micpath.2023.106124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Small regulatory RNAs (sRNAs) regulate multiple physiological functions in bacteria, and sRNA PrrH can regulate iron homeostasis and virulence. However, the function of PrrH in Pseudomonas aeruginosa (P. aeruginosa) bloodstream infection (BSI) is largely unknown. The aim of this study was to investigate the role of PrrH in P. aeruginosa BSI model. First, P. aeruginosa PAO1 was co-cultured with peripheral blood cells for 6 h qRT-PCR results showed a transient up-regulation of PrrH expression at 1 h. Simultaneously, the expression of iron uptake genes fpvA, pvdS and phuR was upregulated. In addition, the use of iron chelator 2,2'-dipyridyl to create low-iron conditions caused up-regulation of PrrH expression, a result similar to the BSI model. Furthermore, the addition of FeCl3 was found to decrease PrrH expression. These results support the hypothesis that the expression of PrrH is regulated by iron in BSI model. Then, to clarify the effect of PrrH on major cells in the blood, we used PrrH mutant, overexpressing and wild-type strains to act separately on erythrocytes and neutrophils. On one hand, the hemolysis assay revealed that PrrH contributes to the hemolytic activity of PAO1, and its effect was dependent on the T3SS system master regulator gene exsA, yet had no association with the hemolytic phospholipase C (plcH), pldA, and lasB elastase genes. On the other hand, PrrH mutant enhanced the oxidative resistance of PAO1 in the neutrophils co-culture assay, H2O2-treated growth curve and conventional plate spotting assays. Furthermore, the katA was predicted to be a target gene of PrrH by bioinformatics software, and then verified by qPCR and GFP reporter system. In summary, dynamic changes in the expression of prrH are iron-regulated during PAO1 bloodstream infection. In addition, PrrH promotes the hemolytic activity of P. aeruginosa in an exsA-dependent manner and negatively regulates katA to reduce the oxidative tolerance of P. aeruginosa.
Collapse
Affiliation(s)
- Shenghe Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Qixuan Shi
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - YinZhen Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Mo Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Dongling Lin
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Shebin Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Qiwei Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Jieying Pu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Cong Shen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China
| | - Bin Huang
- Department of Laboratory Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, China.
| | - Cha Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China.
| | - Jianming Zeng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510000, China.
| |
Collapse
|
8
|
Song Y, Zhang S, Ye Z, Song Y, Chen L, Tong A, He Y, Bao R. The novel type II toxin-antitoxin PacTA modulates Pseudomonas aeruginosa iron homeostasis by obstructing the DNA-binding activity of Fur. Nucleic Acids Res 2022; 50:10586-10600. [PMID: 36200834 PMCID: PMC9561280 DOI: 10.1093/nar/gkac867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/21/2022] Open
Abstract
Type II toxin–antitoxin (TA) systems are widely distributed in bacterial and archaeal genomes and are involved in diverse critical cellular functions such as defense against phages, biofilm formation, persistence, and virulence. GCN5-related N-acetyltransferase (GNAT) toxin, with an acetyltransferase activity-dependent mechanism of translation inhibition, represents a relatively new and expanding family of type II TA toxins. We here describe a group of GNAT-Xre TA modules widely distributed among Pseudomonas species. We investigated PacTA (one of its members encoded by PA3270/PA3269) from Pseudomonas aeruginosa and demonstrated that the PacT toxin positively regulates iron acquisition in P. aeruginosa. Notably, other than arresting translation through acetylating aminoacyl-tRNAs, PacT can directly bind to Fur, a key ferric uptake regulator, to attenuate its DNA-binding affinity and thus permit the expression of downstream iron-acquisition-related genes. We further showed that the expression of the pacTA locus is upregulated in response to iron starvation and the absence of PacT causes biofilm formation defect, thereby attenuating pathogenesis. Overall, these findings reveal a novel regulatory mechanism of GNAT toxin that controls iron-uptake-related genes and contributes to bacterial virulence.
Collapse
Affiliation(s)
- Yingjie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China.,Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Siping Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zirui Ye
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yongyan Song
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Lin Chen
- Central Laboratory, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu 610081, China
| | - Aiping Tong
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| | - Yongxing He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610093, China
| |
Collapse
|
9
|
Normant V, Kuhn L, Munier M, Hammann P, Mislin GLA, Schalk IJ. How the Presence of Hemin Affects the Expression of the Different Iron Uptake Pathways in Pseudomonas aeruginosa Cells. ACS Infect Dis 2022; 8:183-196. [PMID: 34878758 DOI: 10.1021/acsinfecdis.1c00525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. Pseudomonas aeruginosa, a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, P. aeruginosa uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that P. aeruginosa expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Collapse
Affiliation(s)
- Vincent Normant
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Lauriane Kuhn
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Mathilde Munier
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Philippe Hammann
- Plateforme Proteomique Strasbourg - Esplanade, Institut de Biologie Moléculaire et Cellulaire, CNRS, FR1589, 15 rue Descartes, F-67084 Strasbourg Cedex, France
| | - Gaëtan L. A. Mislin
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| | - Isabelle J. Schalk
- CNRS/Université de Strasbourg, UMR7242, ESBS, Bld Sébastien Brant, Illkirch, F-67412 Strasbourg, France
| |
Collapse
|
10
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
11
|
Zhang Y, Pan X, Wang L, Chen L. Iron metabolism in Pseudomonas aeruginosa biofilm and the involved iron-targeted anti-biofilm strategies. J Drug Target 2020; 29:249-258. [PMID: 32969723 DOI: 10.1080/1061186x.2020.1824235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Pseudomonas aeruginosa is a gram-negative bacterium that exists in various ecosystems, causing severe infections in patients with AIDS or cystic fibrosis. P. aeruginosa can form biofilm on a variety of surfaces, whereby the bacteria produce defensive substances and enhance antibiotic-resistance, making themselves more adaptable to hostile environments. P. aeruginosa resistance represents one of the main causes of infection-related morbidity and mortality at a global level. Iron is required for the growth of P. aeruginosa biofilm. This review summarises how the iron metabolism contributes to develop biofilm, and more importantly, it may provide some references for the clinic to achieve novel anti-biofilm therapeutics by targeting iron activities.
Collapse
Affiliation(s)
- Yapeng Zhang
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xuanhe Pan
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Linqian Wang
- Department of Clinical Laboratory, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Liyu Chen
- Department of Medical Microbiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
12
|
Janssen KH, Corley JM, Djapgne L, Cribbs JT, Voelker D, Slusher Z, Nordell R, Regulski EE, Kazmierczak BI, McMackin EW, Yahr TL. Hfq and sRNA 179 Inhibit Expression of the Pseudomonas aeruginosa cAMP-Vfr and Type III Secretion Regulons. mBio 2020; 11:e00363-20. [PMID: 32546612 PMCID: PMC7298702 DOI: 10.1128/mbio.00363-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen causing skin and soft tissue, respiratory, and bloodstream infections. The type III secretion system (T3SS) is one important virulence factor. Production of the T3SS is controlled by ExsA, a transcription factor that activates expression of the entire T3SS regulon. Global regulators including Vfr, RsmA, and Hfq also contribute to regulation of the T3SS. Vfr is a cAMP-responsive transcription factor that activates exsA transcription. RsmA, an RNA-binding protein, inversely controls expression of the T3SS and the type VI secretion system (T6SS). Hfq is an RNA chaperone that functions by stabilizing small noncoding RNAs (sRNAs) and/or facilitating base pairing between sRNAs and mRNA targets. A previous study identified sRNA 1061, which directly targets the exsA mRNA and likely inhibits ExsA synthesis. In this study, we screened an sRNA expression library and identified sRNA 179 as an Hfq-dependent inhibitor of T3SS gene expression. Further characterization revealed that sRNA 179 inhibits the synthesis of both ExsA and Vfr. The previous finding that RsmA stimulates ExsA and Vfr synthesis suggested that sRNA 179 impacts the Gac/Rsm system. Consistent with that idea, the inhibitory activity of sRNA 179 is suppressed in a mutant lacking rsmY and rsmZ, and sRNA 179 expression stimulates rsmY transcription. RsmY and RsmZ are small noncoding RNAs that sequester RsmA from target mRNAs. Our combined findings show that Hfq and sRNA 179 indirectly regulate ExsA and Vfr synthesis by reducing the available pool of RsmA, leading to reduced expression of the T3SS and cAMP-Vfr regulons.IMPORTANCE Control of gene expression by small noncoding RNA (sRNA) is well documented but underappreciated. Deep sequencing of mRNA preparations from Pseudomonas aeruginosa suggests that >500 sRNAs are generated. Few of those sRNAs have defined roles in gene expression. To address that knowledge gap, we constructed an sRNA expression library and identified sRNA 179 as a regulator of the type III secretion system (T3SS) and the cAMP-Vfr regulons. The T3SS- and cAMP-Vfr-controlled genes are critical virulence factors. Increased understanding of the signals and regulatory mechanisms that control these important factors will enhance our understanding of disease progression and reveal potential approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Kayley H Janssen
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Jodi M Corley
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Louise Djapgne
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - J T Cribbs
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Deven Voelker
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Zachary Slusher
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Robert Nordell
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth E Regulski
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Barbara I Kazmierczak
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Timothy L Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
13
|
The development of a new parameter for tracking post-transcriptional regulation allows the detailed map of the Pseudomonas aeruginosa Crc regulon. Sci Rep 2018; 8:16793. [PMID: 30429516 PMCID: PMC6235884 DOI: 10.1038/s41598-018-34741-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/25/2018] [Indexed: 11/08/2022] Open
Abstract
Bacterial physiology is regulated at different levels, from mRNA synthesis to translational regulation and protein modification. Herein, we propose a parameter, dubbed post-transcriptional variation (PTV), that allows extracting information on post-transcriptional regulation from the combined analysis of transcriptomic and proteomic data. We have applied this parameter for getting a deeper insight in the regulon of the Pseudomonas aeruginosa post-transcriptional regulator Crc. P. aeruginosa is a free-living microorganism, and part of its ecological success relies on its capability of using a large number of carbon sources. The hierarchical assimilation of these sources when present in combination is regulated by Crc that, together with Hfq (the RNA-binding chaperon in the complex), impedes their translation when catabolite repression is triggered. Most studies on Crc regulation are based either in transcriptomics or in proteomics data, which cannot provide information on post-transcriptional regulation when analysed independently. Using the PTV parameter, we present a comprehensive map of the Crc post-transcriptional regulon. In addition of controlling the use of primary and secondary carbon sources, Crc regulates as well cell respiration, c-di-GMP mediated signalling, and iron utilization. Thus, besides controlling the hyerarchical assimilation of carbon sources, Crc is an important element for keeping bacterial homeostasis and, consequently, metabolic robustness.
Collapse
|
14
|
Pseudomonas aeruginosa nfuA: Gene regulation and its physiological roles in sustaining growth under stress and anaerobic conditions and maintaining bacterial virulence. PLoS One 2018; 13:e0202151. [PMID: 30092083 PMCID: PMC6084964 DOI: 10.1371/journal.pone.0202151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/27/2018] [Indexed: 11/19/2022] Open
Abstract
The role of the nfuA gene encoding an iron-sulfur ([Fe-S]) cluster-delivery protein in the pathogenic bacterium Pseudomonas aeruginosa was investigated. The analysis of nfuA expression under various stress conditions showed that superoxide generators, a thiol-depleting agent and CuCl2 highly induced nfuA expression. The expression of nfuA was regulated by a global [2Fe-2S] cluster containing the transcription regulator IscR. Increased expression of nfuA in the ΔiscR mutant under uninduced conditions suggests that IscR acts as a transcriptional repressor. In vitro experiments revealed that IscR directly bound to a sequence homologous to the Escherichia coli Type-I IscR-binding motifs on a putative nfuA promoter that overlapped the -35 element. Binding of IscR prevented RNA polymerase from binding to the nfuA promoter, leading to repression of the nfuA transcription. Physiologically, deletion of nfuA reduced the bacterial ability to cope with oxidative stress, iron deprivation conditions and attenuated virulence in the Caenorhabditis elegans infection model. Site-directed mutagenesis analysis revealed that the conserved CXXC motif of the Nfu-type scaffold protein domain at the N-terminus was required for the NfuA functions in conferring the stress resistance phenotype. Furthermore, anaerobic growth of the ΔnfuA mutant in the presence of nitrate was drastically retarded. This phenotype was associated with a reduction in the [Fe-S] cluster containing nitrate reductase enzyme activity. However, NfuA was not required for the maturation of [Fe-S]-containing proteins such as aconitase, succinate dehydrogenase, SoxR and IscR. Taken together, our results indicate that NfuA functions in [Fe-S] cluster delivery to selected target proteins that link to many physiological processes such as anaerobic growth, bacterial virulence and stress responses in P. aeruginosa.
Collapse
|
15
|
Visca P, Imperi F. An essential transcriptional regulator: the case of Pseudomonas aeruginosa Fur. Future Microbiol 2018; 13:853-856. [PMID: 29877110 DOI: 10.2217/fmb-2018-0081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Paolo Visca
- Department of Science, University "Roma Tre", Rome, Italy
| | - Francesco Imperi
- Department of Biology & Biotechnology Charles Darwin, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
16
|
Ha S, Shin B, Park W. Lack of glyoxylate shunt dysregulates iron homeostasis in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:587-599. [PMID: 29465342 DOI: 10.1099/mic.0.000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aceA and glcB genes, encoding isocitrate lyase (ICL) and malate synthase, respectively, are not in an operon in many bacteria, including Pseudomonas aeruginosa, unlike in Escherichia coli. Here, we show that expression of aceA in P. aeruginosa is specifically upregulated under H2O2-induced oxidative stress and under iron-limiting conditions. In contrast, the addition of exogenous redox active compounds or antibiotics increases the expression of glcB. The transcriptional start sites of aceA under iron-limiting conditions and in the presence of iron were found to be identical by 5' RACE. Interestingly, the enzymatic activities of ICL and isocitrate dehydrogenase had opposite responses under different iron conditions, suggesting that the glyoxylate shunt (GS) might be important under iron-limiting conditions. Remarkably, the intracellular iron concentration was lower while the iron demand was higher in the GS-activated cells growing on acetate compared to cells growing on glucose. Absence of GS dysregulated iron homeostasis led to changes in the cellular iron pool, with higher intracellular chelatable iron levels. In addition, GS mutants were found to have higher cytochrome c oxidase activity on iron-supplemented agar plates of minimal media, which promoted the growth of the GS mutants. However, deletion of the GS genes resulted in higher sensitivity to a high concentration of H2O2, presumably due to iron-mediated killing. In conclusion, the GS system appears to be tightly linked to iron homeostasis in the promotion of P. aeruginosa survival under oxidative stress.
Collapse
Affiliation(s)
- Sunhee Ha
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Ferric Uptake Regulator Fur Is Conditionally Essential in Pseudomonas aeruginosa. J Bacteriol 2017; 199:JB.00472-17. [PMID: 28847923 DOI: 10.1128/jb.00472-17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
In Pseudomonas aeruginosa, the ferric uptake regulator (Fur) protein controls both metabolism and virulence in response to iron availability. Differently from other bacteria, attempts to obtain fur deletion mutants of P. aeruginosa failed, leading to the assumption that Fur is an essential protein in this bacterium. By investigating a P. aeruginosa conditional fur mutant, we demonstrate that Fur is not essential for P. aeruginosa growth in liquid media, biofilm formation, and pathogenicity in an insect model of infection. Conversely, Fur is essential for growth on solid media since Fur-depleted cells are severely impaired in colony formation. Transposon-mediated random mutagenesis experiments identified pyochelin siderophore biosynthesis as a major cause of the colony growth defect of the conditional fur mutant, and deletion mutagenesis confirmed this evidence. Impaired colony growth of pyochelin-proficient Fur-depleted cells does not depend on oxidative stress, since Fur-depleted cells do not accumulate higher levels of reactive oxygen species (ROS) and are not rescued by antioxidant agents or overexpression of ROS-detoxifying enzymes. Ectopic expression of pch genes revealed that pyochelin production has no inhibitory effects on a fur deletion mutant of Pseudomonas syringae pv. tabaci, suggesting that the toxicity of the pch locus in Fur-depleted cells involves a P. aeruginosa-specific pathway(s).IMPORTANCE Members of the ferric uptake regulator (Fur) protein family are bacterial transcriptional repressors that control iron uptake and storage in response to iron availability, thereby playing a crucial role in the maintenance of iron homeostasis. While fur null mutants of many bacteria have been obtained, Fur appears to be essential in Pseudomonas aeruginosa for still unknown reasons. We obtained Fur-depleted P. aeruginosa cells by conditional mutagenesis and showed that Fur is dispensable for planktonic growth, while it is required for colony formation. This is because Fur protects P. aeruginosa colonies from toxicity exerted by the pyochelin siderophore. This work provides a functional basis to the essentiality of Fur in P. aeruginosa and highlights unique properties of the Fur regulon in this species.
Collapse
|
18
|
Identification of a Pseudomonas aeruginosa PAO1 DNA Methyltransferase, Its Targets, and Physiological Roles. mBio 2017; 8:mBio.02312-16. [PMID: 28223461 PMCID: PMC5358918 DOI: 10.1128/mbio.02312-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
DNA methylation is widespread among prokaryotes, and most DNA methylation reactions are catalyzed by adenine DNA methyltransferases, which are part of restriction-modification (R-M) systems. R-M systems are known for their role in the defense against foreign DNA; however, DNA methyltransferases also play functional roles in gene regulation. In this study, we used single-molecule real-time (SMRT) sequencing to uncover the genome-wide DNA methylation pattern in the opportunistic pathogen Pseudomonas aeruginosa PAO1. We identified a conserved sequence motif targeted by an adenine methyltransferase of a type I R-M system and quantified the presence of N6-methyladenine using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in the PAO1 methylation status were dependent on growth conditions and affected P. aeruginosa pathogenicity in a Galleria mellonella infection model. Furthermore, we found that methylated motifs in promoter regions led to shifts in sense and antisense gene expression, emphasizing the role of enzymatic DNA methylation as an epigenetic control of phenotypic traits in P. aeruginosa. Since the DNA methylation enzymes are not encoded in the core genome, our findings illustrate how the acquisition of accessory genes can shape the global P. aeruginosa transcriptome and thus may facilitate adaptation to new and challenging habitats. With the introduction of advanced technologies, epigenetic regulation by DNA methyltransferases in bacteria has become a subject of intense studies. Here we identified an adenosine DNA methyltransferase in the opportunistic pathogen Pseudomonas aeruginosa PAO1, which is responsible for DNA methylation of a conserved sequence motif. The methylation level of all target sequences throughout the PAO1 genome was approximated to be in the range of 65 to 85% and was dependent on growth conditions. Inactivation of the methyltransferase revealed an attenuated-virulence phenotype in the Galleria mellonella infection model. Furthermore, differential expression of more than 90 genes was detected, including the small regulatory RNA prrF1, which contributes to a global iron-sparing response via the repression of a set of gene targets. Our finding of a methylation-dependent repression of the antisense transcript of the prrF1 small regulatory RNA significantly expands our understanding of the regulatory mechanisms underlying active DNA methylation in bacteria.
Collapse
|
19
|
Reinhart AA, Oglesby-Sherrouse AG. Regulation of Pseudomonas aeruginosa Virulence by Distinct Iron Sources. Genes (Basel) 2016; 7:genes7120126. [PMID: 27983658 PMCID: PMC5192502 DOI: 10.3390/genes7120126] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous environmental bacterium and versatile opportunistic pathogen. Like most other organisms, P. aeruginosa requires iron for survival, yet iron rapidly reacts with oxygen and water to form stable ferric (FeIII) oxides and hydroxides, limiting its availability to living organisms. During infection, iron is also sequestered by the host innate immune system, further limiting its availability. P. aeruginosa’s capacity to cause disease in diverse host environments is due to its ability to scavenge iron from a variety of host iron sources. Work over the past two decades has further shown that different iron sources can affect the expression of distinct virulence traits. This review discusses how the individual components of P. aeruginosa’s iron regulatory network allow this opportunist to adapt to a multitude of host environments during infection.
Collapse
Affiliation(s)
- Alexandria A Reinhart
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, and Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
A High-Content, Phenotypic Screen Identifies Fluorouridine as an Inhibitor of Pyoverdine Biosynthesis and Pseudomonas aeruginosa Virulence. mSphere 2016; 1:mSphere00217-16. [PMID: 27579370 PMCID: PMC4999921 DOI: 10.1128/msphere.00217-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/11/2022] Open
Abstract
Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent. Pseudomonas aeruginosa is an opportunistic pathogen that causes severe health problems. Despite intensive investigation, many aspects of microbial virulence remain poorly understood. We used a high-throughput, high-content, whole-organism, phenotypic screen to identify small molecules that inhibit P. aeruginosa virulence in Caenorhabditis elegans. Approximately half of the hits were known antimicrobials. A large number of hits were nonantimicrobial bioactive compounds, including the cancer chemotherapeutic 5-fluorouracil. We determined that 5-fluorouracil both transiently inhibits bacterial growth and reduces pyoverdine biosynthesis. Pyoverdine is a siderophore that regulates the expression of several virulence determinants and is critical for pathogenesis in mammals. We show that 5-fluorouridine, a downstream metabolite of 5-fluorouracil, is responsible for inhibiting pyoverdine biosynthesis. We also show that 5-fluorouridine, in contrast to 5-fluorouracil, is a genuine antivirulence compound, with no bacteriostatic or bactericidal activity. To our knowledge, this is the first report utilizing a whole-organism screen to identify novel compounds with antivirulent properties effective against P. aeruginosa. IMPORTANCE Despite intense research effort from scientists and the advent of the molecular age of biomedical research, many of the mechanisms that underlie pathogenesis are still understood poorly, if at all. The opportunistic human pathogen Pseudomonas aeruginosa causes a variety of soft tissue infections and is responsible for over 50,000 hospital-acquired infections per year. In addition, P. aeruginosa exhibits a striking degree of innate and acquired antimicrobial resistance, complicating treatment. It is increasingly important to understand P. aeruginosa virulence. In an effort to gain this information in an unbiased fashion, we used a high-throughput phenotypic screen to identify small molecules that disrupted bacterial pathogenesis and increased host survival using the model nematode Caenorhabditis elegans. This method led to the unexpected discovery that addition of a modified nucleotide, 5-fluorouridine, disrupted bacterial RNA metabolism and inhibited synthesis of pyoverdine, a critical toxin. Our results demonstrate that this compound specifically functions as an antivirulent.
Collapse
|
21
|
Salehi S, Howe K, Brooks J, Lawrence ML, Bailey RH, Karsi A. Identification of Salmonella enterica serovar Kentucky genes involved in attachment to chicken skin. BMC Microbiol 2016; 16:168. [PMID: 27473153 PMCID: PMC4966735 DOI: 10.1186/s12866-016-0781-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/15/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Regardless of sanitation practices implemented to reduce Salmonella prevalence in poultry processing plants, the problem continues to be an issue. To gain an understanding of the attachment mechanism of Salmonella to broiler skin, a bioluminescent-based mutant screening assay was used. A random mutant library of a field-isolated bioluminescent strain of Salmonella enterica serovar Kentucky was constructed. Mutants' attachment to chicken skin was assessed in 96-well plates containing uniform 6 mm diameter pieces of circular chicken skin. After washing steps, mutants with reduced attachment were selected based on reduced bioluminescence, and transposon insertion sites were identified. RESULTS Attachment attenuation was detected in transposon mutants with insertion in genes encoding flagella biosynthesis, lipopolysaccharide core biosynthesis protein, tryptophan biosynthesis, amino acid catabolism pathway, shikimate pathway, tricarboxylic acid (TCA) cycle, conjugative transfer system, multidrug resistant protein, and ATP-binding cassette (ABC) transporter system. In particular, mutations in S. Kentucky flagellar biosynthesis genes (flgA, flgC, flgK, flhB, and flgJ) led to the poorest attachment of the bacterium to skin. CONCLUSIONS The current study indicates that attachment of Salmonella to broiler skin is a multifactorial process, in which flagella play an important role.
Collapse
Affiliation(s)
- Sanaz Salehi
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Kevin Howe
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - John Brooks
- USDA-ARS, Genetics and Precision Agriculture Unit, Mississippi State, Mississippi, USA
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - R. Hartford Bailey
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
22
|
Vfr Directly Activates exsA Transcription To Regulate Expression of the Pseudomonas aeruginosa Type III Secretion System. J Bacteriol 2016; 198:1442-50. [PMID: 26929300 DOI: 10.1128/jb.00049-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/21/2016] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED The Pseudomonas aeruginosa cyclic AMP (cAMP)-Vfr system (CVS) is a global regulator of virulence gene expression. Regulatory targets include type IV pili, secreted proteases, and the type III secretion system (T3SS). The mechanism by which CVS regulates T3SS gene expression remains undefined. Single-cell expression studies previously found that only a portion of the cells within a population express the T3SS under inducing conditions, a property known as bistability. We now report that bistability is altered in avfr mutant, wherein a substantially smaller fraction of the cells express the T3SS relative to the parental strain. Since bistability usually involves positive-feedback loops, we tested the hypothesis that virulence factor regulator (Vfr) regulates the expression of exsA ExsA is the central regulator of T3SS gene expression and autoregulates its own expression. Although exsA is the last gene of the exsCEBA polycistronic mRNA, we demonstrate that Vfr directly activates exsA transcription from a second promoter (PexsA) located immediately upstream of exsA PexsA promoter activity is entirely Vfr dependent. Direct binding of Vfr to a PexsA promoter probe was demonstrated by electrophoretic mobility shift assays, and DNase I footprinting revealed an area of protection that coincides with a putative Vfr consensus-binding site. Mutagenesis of that site disrupted Vfr binding and PexsA promoter activity. We conclude that Vfr contributes to T3SS gene expression through activation of the PexsA promoter, which is internal to the previously characterized exsCEBA operon. IMPORTANCE Vfr is a cAMP-dependent DNA-binding protein that functions as a global regulator of virulence gene expression in Pseudomonas aeruginosa Regulation by Vfr allows for the coordinate production of related virulence functions, such as type IV pili and type III secretion, required for adherence to and intoxication of host cells, respectively. Although the molecular mechanism of Vfr regulation has been defined for many target genes, a direct link between Vfr and T3SS gene expression had not been established. In the present study, we report that Vfr directly controls exsA transcription, the master regulator of T3SS gene expression, from a newly identified promoter located immediately upstream of exsA.
Collapse
|
23
|
Tribelli PM, Solar Venero EC, Ricardi MM, Gómez-Lozano M, Raiger Iustman LJ, Molin S, López NI. Novel Essential Role of Ethanol Oxidation Genes at Low Temperature Revealed by Transcriptome Analysis in the Antarctic Bacterium Pseudomonas extremaustralis. PLoS One 2015; 10:e0145353. [PMID: 26671564 PMCID: PMC4686015 DOI: 10.1371/journal.pone.0145353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Temperature is one of the most important factors for bacterial growth and development. Cold environments are widely distributed on earth, and psychrotolerant and psychrophilic microorganisms have developed different adaptation strategies to cope with the stress derived from low temperatures. Pseudomonas extremaustralis is an Antarctic bacterium able to grow under low temperatures and to produce high amounts of polyhydroxyalkanoates (PHAs). In this work, we analyzed the genome-wide transcriptome by RNA deep-sequencing technology of early exponential cultures of P. extremaustralis growing in LB (Luria Broth) supplemented with sodium octanoate to favor PHA accumulation at 8°C and 30°C. We found that genes involved in primary metabolism, including tricarboxylic acid cycle (TCA) related genes, as well as cytochromes and amino acid metabolism coding genes, were repressed at low temperature. Among up-regulated genes, those coding for transcriptional regulatory and signal transduction proteins were over-represented at cold conditions. Remarkably, we found that genes involved in ethanol oxidation, exaA, exaB and exaC, encoding a pyrroloquinoline quinone (PQQ)-dependent ethanol dehydrogenase, the cytochrome c550 and an aldehyde dehydrogenase respectively, were up-regulated. Along with RNA-seq experiments, analysis of mutant strains for pqqB (PQQ biosynthesis protein B) and exaA were carried out. We found that the exaA and pqqB genes are essential for growth under low temperature in LB supplemented with sodium octanoate. Additionally, p-rosaniline assay measurements showed the presence of alcohol dehydrogenase activity at both 8°C and 30°C, while the activity was abolished in a pqqB mutant strain. These results together with the detection of ethanol by gas chromatography in P. extremaustralis cultures grown at 8°C support the conclusion that this pathway is important under cold conditions. The obtained results have led to the identification of novel components involved in cold adaptation mechanisms in this bacterium, suggesting for the first time a role of the ethanol oxidation pathway for bacterial growth at low temperatures.
Collapse
Affiliation(s)
- Paula M. Tribelli
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | | | - Martiniano M. Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Maria Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Laura J. Raiger Iustman
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nancy I. López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Guiraldes 2160, C1428EGA Buenos Aires, Argentina
- IQUIBICEN, CONICET, Buenos Aires, Argentina
| |
Collapse
|
24
|
A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci Rep 2015; 5:14644. [PMID: 26446565 PMCID: PMC4597187 DOI: 10.1038/srep14644] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/02/2015] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas aeruginosa establishes airway infections in Cystic Fibrosis patients. Here, we investigate the molecular interactions between P. aeruginosa and airway mucus secretions (AMS) derived from the primary cultures of normal human tracheal epithelial (NHTE) cells. PAO1, a prototype strain of P. aeruginosa, was capable of proliferating during incubation with AMS, while all other tested bacterial species perished. A PAO1 mutant lacking PA4834 gene became susceptible to AMS treatment. The ΔPA4834 mutant was grown in AMS supplemented with 100 μM ferric iron, suggesting that the PA4834 gene product is involved in iron metabolism. Consistently, intracellular iron content was decreased in the mutant, but not in PAO1 after the AMS treatment. Importantly, a PAO1 mutant unable to produce both pyoverdine and pyochelin remained viable, suggesting that these two major siderophore molecules are dispensable for maintaining viability during incubation with AMS. The ΔPA4834 mutant was regrown in AMS amended with 100 μM nicotianamine, a phytosiderophore whose production is predicted to be mediated by the PA4836 gene. Infectivity of the ΔPA4834 mutant was also significantly compromised in vivo. Together, our results identify a genetic element encoding a novel iron acquisition system that plays a previously undiscovered role in P. aeruginosa airway infection.
Collapse
|
25
|
Wang Y, Yao H, Cheng Y, Lovell S, Battaile KP, Midaugh CR, Rivera M. Characterization of the Bacterioferritin/Bacterioferritin Associated Ferredoxin Protein-Protein Interaction in Solution and Determination of Binding Energy Hot Spots. Biochemistry 2015; 54:6162-75. [PMID: 26368531 PMCID: PMC4708090 DOI: 10.1021/acs.biochem.5b00937] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Mobilization
of iron stored in the interior cavity of BfrB requires
electron transfer from the [2Fe–2S] cluster in Bfd to the core
iron in BfrB. A crystal structure of the Pseudomonas
aeruginosa BfrB:Bfd complex revealed that BfrB can
bind up to 12 Bfd molecules at 12 structurally identical binding sites,
placing the [2Fe–2S] cluster of each Bfd immediately above
a heme group in BfrB [Yao, H., et al. (2012) J. Am. Chem.
Soc., 134, 13470–13481]. We report
here a study aimed at characterizing the strength of the P. aeruginosa BfrB:Bfd association using surface
plasmon resonance and isothermal titration calorimetry as well as
determining the binding energy hot spots at the protein–protein
interaction interface. The results show that the 12 Bfd-binding sites
on BfrB are equivalent and independent and that the protein–protein
association at each of these sites is driven entropically and is characterized
by a dissociation constant (Kd) of approximately
3 μM. Determination of the binding energy hot spots was carried
out by replacing certain residues that comprise the protein–protein
interface with alanine and by evaluating the effect of the mutation
on Kd and on the efficiency of core iron
mobilization from BfrB. The results identified hot spot residues in
both proteins [LB68, EA81, and
EA85 in BfrB
(superscript for residue number and subscript for chain) and Y2 and L5 in Bfd] that network at the interface to
produce a highly complementary hot region for the interaction. The
hot spot residues are conserved in the amino acid sequences of Bfr
and Bfd proteins from a number of Gram-negative pathogens, indicating
that the BfrB:Bfd interaction is of widespread significance in bacterial
iron metabolism.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemistry, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Room 220E, Lawrence, Kansas 66047, United States
| | - Huili Yao
- Department of Chemistry, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Room 220E, Lawrence, Kansas 66047, United States
| | - Yuan Cheng
- Department of Pharmaceutical Chemistry, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Room 320G, Lawrence, Kansas 66047, United States
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas , 2034 Becker Drive, Lawrence, Kansas 66047, United States
| | - Kevin P Battaile
- IMCA-CAT, Hauptman Woodward Medical Research Institute , 9700 South Cass Avenue, Building 435A, Argonne, Illinois 60439, United States
| | - C Russell Midaugh
- Department of Pharmaceutical Chemistry, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Room 320G, Lawrence, Kansas 66047, United States
| | - Mario Rivera
- Department of Chemistry, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Room 220E, Lawrence, Kansas 66047, United States
| |
Collapse
|
26
|
Sasnow SS, Wei H, Aristilde L. Bypasses in intracellular glucose metabolism in iron-limited Pseudomonas putida. Microbiologyopen 2015; 5:3-20. [PMID: 26377487 PMCID: PMC4767421 DOI: 10.1002/mbo3.287] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/07/2015] [Indexed: 12/30/2022] Open
Abstract
Decreased biomass growth in iron (Fe)-limited Pseudomonas is generally attributed to downregulated expression of Fe-requiring proteins accompanied by an increase in siderophore biosynthesis. Here, we applied a stable isotope-assisted metabolomics approach to explore the underlying carbon metabolism in glucose-grown Pseudomonas putida KT2440. Compared to Fe-replete cells, Fe-limited cells exhibited a sixfold reduction in growth rate but the glucose uptake rate was only halved, implying an imbalance between glucose uptake and biomass growth. This imbalance could not be explained by carbon loss via siderophore production, which accounted for only 10% of the carbon-equivalent glucose uptake. In lieu of the classic glycolytic pathway, the Entner-Doudoroff (ED) pathway in Pseudomonas is the principal route for glucose catabolism following glucose oxidation to gluconate. Remarkably, gluconate secretion represented 44% of the glucose uptake in Fe-limited cells but only 2% in Fe-replete cells. Metabolic (13) C flux analysis and intracellular metabolite levels under Fe limitation indicated a decrease in carbon fluxes through the ED pathway and through Fe-containing metabolic enzymes. The secreted siderophore was found to promote dissolution of Fe-bearing minerals to a greater extent than the high extracellular gluconate. In sum, bypasses in the Fe-limited glucose metabolism were achieved to promote Fe availability via siderophore secretion and to reroute excess carbon influx via enhanced gluconate secretion.
Collapse
Affiliation(s)
- Samantha S Sasnow
- Department of Biological and Environmental Engineering, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, 14853
| | - Hua Wei
- Department of Biological and Environmental Engineering, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, 14853
| | - Ludmilla Aristilde
- Department of Biological and Environmental Engineering, College of Agricultural and Life Sciences, Cornell University, Ithaca, New York, 14853
| |
Collapse
|
27
|
Dumpala PR, Peterson BC, Lawrence ML, Karsi A. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction. PLoS One 2015; 10:e0132504. [PMID: 26168192 PMCID: PMC4500449 DOI: 10.1371/journal.pone.0132504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022] Open
Abstract
Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE) for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS) for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05) difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri.
Collapse
Affiliation(s)
- Pradeep R. Dumpala
- The Rogosin Institute, Xenia Division, Xenia, Ohio, United States of America
| | - Brian C. Peterson
- USDA ARS Warmwater Aquaculture Research Unit, Thad Cochran National Warmwater Aquaculture Center, Stoneville, Mississippi, United States of America
| | - Mark L. Lawrence
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
28
|
Liu L, Chi H, Sun L. Pseudomonas fluorescens: identification of Fur-regulated proteins and evaluation of their contribution to pathogenesis. DISEASES OF AQUATIC ORGANISMS 2015; 115:67-80. [PMID: 26119301 DOI: 10.3354/dao02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas fluorescens is a Gram-negative bacterium and a common pathogen to a wide range of farmed fish. In a previous study, we found that the ferric uptake regulator gene (fur) is essential to the infectivity of a pathogenic fish isolate of P. fluorescens (wild-type strain TSS). In the present work, we conducted comparative proteomic analysis to examine the global protein profiles of TSS and the P. fluorescens fur knockout mutant TFM. Twenty-eight differentially produced proteins were identified, which belong to different functional categories. Four of these proteins, viz. TssP (a type VI secretion protein), PspA (a serine protease), OprF (an outer membrane porin), and ClpP (the proteolytic subunit of an ATP-dependent Clp protease), were assessed for virulence participation in a model of turbot Scophthalmus maximus. The results showed that the oprF and clpP knockouts exhibited significantly reduced capacities in (1) resistance against the bactericidal effect of host serum, (2) dissemination into and colonization of host tissues, and (3) inducing host mortality. In contrast, mutation of tssP and pspA had no apparent effect on the pathogenicity of TSS. Purified recombinant OprF, when used as a subunit vaccine, induced production of specific serum antibodies in immunized fish and elicited significant protection against lethal TSS challenge. Antibody blocking of the OprF in TSS significantly impaired the ability of the bacteria to invade host tissues. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, Fur regulates the expression of diverse proteins, some of which are required for optimal infection.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
29
|
Yao H, Rui H, Kumar R, Eshelman K, Lovell S, Battaile KP, Im W, Rivera M. Concerted motions networking pores and distant ferroxidase centers enable bacterioferritin function and iron traffic. Biochemistry 2015; 54:1611-27. [PMID: 25640193 DOI: 10.1021/bi501255r] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
X-ray crystallography, molecular dynamics (MD) simulations, and biochemistry were utilized to investigate the effect of introducing hydrophobic interactions in the 4-fold (N148L and Q151L) and B-pores (D34F) of Pseudomonas aeruginosa bacterioferritin B (BfrB) on BfrB function. The structures show only local structural perturbations and confirm the anticipated hydrophobic interactions. Surprisingly, structures obtained after soaking crystals in Fe2+-containing crystallization solution revealed that although iron loads into the ferroxidase centers of the mutants, the side chains of ferroxidase ligands E51 and H130 do not reorganize to bind the iron ions, as is seen in the wt BfrB structures. Similar experiments with a double mutant (C89S/K96C) prepared to introduce changes outside the pores show competent ferroxidase centers that function akin to those in wt BfrB. MD simulations comparing wt BfrB with the D34F and N148L mutants show that the mutants exhibit significantly reduced flexibility and reveal a network of concerted motions linking ferroxidase centers and 4-fold and B-pores, which are important for imparting ferroxidase centers in BfrB with the required flexibility to function efficiently. In agreement, the efficiency of Fe2+ oxidation and uptake of the 4-fold and B-pore mutants in solution is significantly compromised relative to wt or C89S/K96C BfrB. Finally, our structures show a large number of previously unknown iron binding sites in the interior cavity and B-pores of BfrB, which reveal in unprecedented detail conduits followed by iron and phosphate ions across the BfrB shell, as well as paths in the interior cavity that may facilitate nucleation of the iron phosphate mineral.
Collapse
Affiliation(s)
- Huili Yao
- Department of Chemistry, ‡Del Shankel Structural Biology Center, and §Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas , Multidisciplinary Research Building, 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Becerra G, Merchán F, Blasco R, Igeño MI. Characterization of a ferric uptake regulator (Fur)-mutant of the cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344. J Biotechnol 2014; 190:2-10. [DOI: 10.1016/j.jbiotec.2014.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/17/2014] [Accepted: 03/25/2014] [Indexed: 11/25/2022]
|
31
|
Ferrara S, Carloni S, Fulco R, Falcone M, Macchi R, Bertoni G. Post-transcriptional regulation of the virulence-associated enzyme AlgC by the σ(22) -dependent small RNA ErsA of Pseudomonas aeruginosa. Environ Microbiol 2014; 17:199-214. [PMID: 25186153 DOI: 10.1111/1462-2920.12590] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/29/2014] [Indexed: 11/30/2022]
Abstract
The small RNA ErsA of Pseudomonas aeruginosa, transcribed from the same genomic context of the well-known Escherichia coli Spot 42, has been characterized. We show that, different from Spot 42, ErsA is under the transcriptional control of the envelope stress response, which is known to impact the pathogenesis of P. aeruginosa through the activity of the alternative sigma factor σ(22) . The transcriptional responsiveness of ErsA RNA also spans infection-relevant cues that P. aeruginosa can experience in mammalian hosts, such as limited iron availability, temperature shifts from environmental to body temperature and reduced oxygen conditions. Another difference between Spot 42 and ErsA is that ErsA does not seem to be involved in the regulation of carbon source catabolism. Instead, our results suggest that ErsA is linked to anabolic functions for the synthesis of exoproducts from sugar precursors. We show that ErsA directly operates in the negative post-transcriptional regulation of the algC gene that encodes the virulence-associated enzyme AlgC, which provides sugar precursors for the synthesis of several P. aeruginosa polysaccharides. Like ErsA, the activation of algC expression is also dependent on σ(22) . Altogether, our results suggest that ErsA and σ(22) combine in an incoherent feed-forward loop to fine-tune AlgC enzyme expression.
Collapse
Affiliation(s)
- Silvia Ferrara
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. mBio 2014; 5:e01010-13. [PMID: 24496793 PMCID: PMC3950519 DOI: 10.1128/mbio.01010-13] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Pseudomonas aeruginosa strains of non-cystic fibrosis (non-CF) origin do not produce significant amounts of extracellular alginate and are nonmucoid. In CF, such isolates can become mucoid through mutation of one of the genes (mucA, mucB, mucC, or mucD) that produce regulatory factors that sequester AlgU, required for increased expression of alginate genes. Mutation of the muc genes in the nonmucoid PAO1, PA14, PAKS-1, and Ps388 strains led to increased levels of extracellular alginate and an obvious mucoid phenotype, but only under iron-limiting growth conditions (≤5 µM), not under iron-replete conditions (≥10 µM). In contrast, >50% of P. aeruginosa isolates from chronic CF pulmonary infections expressed increased levels of alginate and mucoidy both under iron-limiting and iron-replete conditions (i.e., iron-constitutive phenotype). No single iron regulatory factor (e.g., Fur, PvdS) was associated with this loss of iron-regulated alginate expression and mucoidy in these CF isolates. However, the loss of only pyoverdine production, or its uptake, abrogated the ability of P. aeruginosa to produce a robust biofilm that represents the Psl-type of biofilm. In contrast, we show that mutation of the pyoverdine and pyochelin biosynthesis genes and the pyoverdine receptor (FpvA) lead to iron-constitutive expression of the key alginate biosynthesis gene, algD, and an explicitly mucoid phenotype in both iron-limiting and iron-replete conditions. These data indicate that alginate production and mucoidy, in contrast to other types of biofilms produced by P. aeruginosa, are substantially enhanced under iron limitation. These results also have compelling implications in relation to the use of iron chelators in the treatment of P. aeruginosa CF infections. IMPORTANCE Pseudomonas aeruginosa is a leading model for the investigation of biofilms. While data have been generated about the role of iron in alginate-independent (Psl/Pel) biofilm development, there is a paucity of data regarding the role of iron in alginate production and its associated mucoid phenotype. We demonstrate that biologically relevant levels of iron that exist in the airway mucus of cystic fibrosis (CF) patients have a substantial influence on production of alginate and the overt mucoid phenotype, pathognomonic of P. aeruginosa infections in CF. Mucoid mutants of non-CF P. aeruginosa isolates are mucoid only under iron limitation and do not express increased levels of alginate under iron-replete growth conditions. However, a significant number of long-term CF isolates lost their iron-regulated expression of increased alginate production and mucoidy and became iron constitutive for these properties. In contrast to the formation of Psl-type biofilms, increasing iron limitation ultimately leads to an iron-constitutive expression of alginate and mucoidy.
Collapse
|
33
|
Abstract
Iron is an important element for almost all forms of life. In order to get access to this essential nutriment, Pseudomonads produce two major siderophores, pyoverdine PVD and pyochelin (PCH). Uptake of iron in bacterial cells can be monitored accurately using (55)Fe. Bacteria cells are incubated in the presence of either PVD or PCH loaded with (55)Fe. After incubation, extracellular iron ions are separated from those accumulated in the bacteria cells by either centrifugation or filtration on glass microfiber filters, for the PCH and PVD assays, respectively. (55)Fe contained in the harvested cells on the filter or in the cell pellet is counted in scintillation cocktail. The number of moles of (55)Fe transported can be determined using the specific activity of the radionuclide.
Collapse
Affiliation(s)
- Françoise Hoegy
- UMR 7242, Université de Strasbourg-CNRS, ESBS, Blvd Sébastien Brant, Illkirch, Strasbourg, F-67413, France
| | | |
Collapse
|
34
|
Balasubramanian D, Kumari H, Jaric M, Fernandez M, Turner KH, Dove SL, Narasimhan G, Lory S, Mathee K. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response. Nucleic Acids Res 2013; 42:979-98. [PMID: 24157832 PMCID: PMC3902932 DOI: 10.1093/nar/gkt942] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Pathogenicity of Pseudomonas aeruginosa, a major cause of many acute and chronic human infections, is determined by tightly regulated expression of multiple virulence factors. Quorum sensing (QS) controls expression of many of these pathogenic determinants. Previous microarray studies have shown that the AmpC β-lactamase regulator AmpR, a member of the LysR family of transcription factors, also controls non-β-lactam resistance and multiple virulence mechanisms. Using RNA-Seq and complementary assays, this study further expands the AmpR regulon to include diverse processes such as oxidative stress, heat shock and iron uptake. Importantly, AmpR affects many of these phenotypes, in part, by regulating expression of non-coding RNAs such as rgP32, asRgsA, asPrrF1 and rgRsmZ. AmpR positively regulates expression of the major QS regulators LasR, RhlR and MvfR, and genes of the Pseudomonas quinolone system. Chromatin immunoprecipitation (ChIP)-Seq and ChIP–quantitative real-time polymerase chain reaction studies show that AmpR binds to the ampC promoter both in the absence and presence of β-lactams. In addition, AmpR directly binds the lasR promoter, encoding the QS master regulator. Comparison of the AmpR-binding sequences from the transcriptome and ChIP-Seq analyses identified an AT-rich consensus-binding motif. This study further attests to the role of AmpR in regulating virulence and physiological processes in P. aeruginosa.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA, Department of Molecular Microbiology and Infectious Diseases, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA, BioRG, School of Computing and Information Science, College of Engineering and Computing, Florida International University, Miami, FL 33199, USA, Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA and Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
O’Neill MJ, Wilks A. The P. aeruginosa heme binding protein PhuS is a heme oxygenase titratable regulator of heme uptake. ACS Chem Biol 2013; 8:1794-802. [PMID: 23947366 DOI: 10.1021/cb400165b] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Pseudomonas aeruginosa heme utilization (Phu) system encodes several proteins involved in the acquisition of heme as an iron source. Once internalized, heme is degraded by the iron-regulated heme oxygenase, HemO to biliverdin (BV) IXδ and β. In vitro studies have shown holo-PhuS transfers heme to the iron-regulated HemO. This protein-protein interaction is specific for HemO as PhuS does not interact with the α-regioselective heme oxygenase, BphO. Bacterial genetics and isotopic labeling ((13)C-heme) studies confirmed extracellular heme is converted to (13)C-BVIX δ and β through the catalytic action of HemO. In an effort to further understand the role of PhuS, similar studies were performed on the P. aeruginosa PAO1 ΔphuS and ΔphuS/ΔhemO strains. In contrast to wild-type strain, the absence of PhuS results in extracellular heme uptake and degradation via the catalytic action of HemO and BphO. At low heme concentrations, loss of PhuS leads to inefficient extracellular heme uptake supported by the fact the mRNA levels of PhuR, HemO, and BphO remain elevated when compared to the wild-type PAO1. On increasing extracellular heme concentrations, the elevated levels of PhuR, HemO, and BphO allow "leaky uptake" and degradation of heme via HemO and BphO. Similarly, in the ΔphuS/ΔhemO strain, the higher heme concentrations combined with elevated levels of PhuR and BphO leads to nonspecific heme uptake and degradation by BphO. Thus we propose heme flux into the cell is driven by the catalytic action of HemO with PhuS acting as a "control valve" to regulate extracellular heme flux.
Collapse
Affiliation(s)
- Maura J. O’Neill
- The Department of Pharmaceutical
Sciences, School of
Pharmacy, University of Maryland, HSF II,
20 Penn Street, Baltimore, Maryland 21201-1140, United States
| | - Angela Wilks
- The Department of Pharmaceutical
Sciences, School of
Pharmacy, University of Maryland, HSF II,
20 Penn Street, Baltimore, Maryland 21201-1140, United States
| |
Collapse
|
36
|
Tielen P, Rosin N, Meyer AK, Dohnt K, Haddad I, Jänsch L, Klein J, Narten M, Pommerenke C, Scheer M, Schobert M, Schomburg D, Thielen B, Jahn D. Regulatory and metabolic networks for the adaptation of Pseudomonas aeruginosa biofilms to urinary tract-like conditions. PLoS One 2013; 8:e71845. [PMID: 23967252 PMCID: PMC3742457 DOI: 10.1371/journal.pone.0071845] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 07/04/2013] [Indexed: 11/19/2022] Open
Abstract
Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.
Collapse
Affiliation(s)
- Petra Tielen
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Fones H, Preston GM. The impact of transition metals on bacterial plant disease. FEMS Microbiol Rev 2013; 37:495-519. [DOI: 10.1111/1574-6976.12004] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 09/05/2012] [Accepted: 09/14/2012] [Indexed: 12/24/2022] Open
|
38
|
Arvizu-Gómez JL, Hernández-Morales A, Aguilar JRP, Álvarez-Morales A. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: physiology of phytopathogenic bacteria. BMC Microbiol 2013; 13:81. [PMID: 23587016 PMCID: PMC3639832 DOI: 10.1186/1471-2180-13-81] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/08/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. RESULTS A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. CONCLUSIONS From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development.
Collapse
Affiliation(s)
| | - Alejandro Hernández-Morales
- Unidad Académica Multidisciplinaria Zona Huasteca, Universidad Autónoma de San Luis Potosí, Romualdo del Campo 501, Fraccionamiento Rafael Curiel, Cd. Valles, San Luis Potosí, CP 79060, Mexico
| | - Juan Ramiro Pacheco Aguilar
- Laboratorio de Plantas y Biotecnología Agrícola. Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las campanas S/N, CU. Col. Las Campanas, Querétaro Qro, CP 76010, Mexico
| | - Ariel Álvarez-Morales
- Departamento de Ingeniería Genética, CINVESTAV-IPN Unidad Irapuato, Apdo Postal 629, Irapuato, Gto, CP 36821, Mexico
| |
Collapse
|
39
|
Harrison A, Santana EA, Szelestey BR, Newsom DE, White P, Mason KM. Ferric uptake regulator and its role in the pathogenesis of nontypeable Haemophilus influenzae. Infect Immun 2013; 81:1221-33. [PMID: 23381990 PMCID: PMC3639608 DOI: 10.1128/iai.01227-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the human nasopharynx, and yet is also an opportunistic pathogen of the upper and lower respiratory tracts. Host microenvironments influence gene expression patterns, likely critical for NTHi persistence. The host sequesters iron as a mechanism to control microbial growth, and yet iron limitation influences gene expression and subsequent production of proteins involved in iron homeostasis. Careful regulation of iron uptake, via the ferric uptake regulator Fur, is essential in multiple bacteria, including NTHi. We hypothesized therefore that Fur contributes to iron homeostasis in NTHi, is critical for bacterial persistence, and likely regulates expression of virulence factors. Toward this end, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP, and we assessed gene expression regulated by Fur. As expected, expression of the majority of genes that encode proteins with predicted roles in iron utilization was repressed by Fur. However, 14 Fur-regulated genes encode proteins with no known function, and yet may contribute to iron utilization or other biological functions. In a mammalian model of human otitis media, we determined that Fur was critical for bacterial persistence, indicating an important role for Fur-mediated iron homeostasis in disease progression. These data provide a profile of genes regulated by Fur in NTHi and likely identify additional regulatory pathways involved in iron utilization. Identification of such pathways will increase our understanding of how this pathogen can persist within host microenvironments, as a common commensal and, importantly, as a pathogen with significant clinical impact.
Collapse
Affiliation(s)
- Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Center for Microbial Interface Biology, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Zappa S, Bauer CE. Iron homeostasis in the Rhodobacter genus. ADVANCES IN BOTANICAL RESEARCH 2013; 66:10.1016/B978-0-12-397923-0.00010-2. [PMID: 24382933 PMCID: PMC3875232 DOI: 10.1016/b978-0-12-397923-0.00010-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Metals are utilized for a variety of critical cellular functions and are essential for survival. However cells are faced with the conundrum of needing metals coupled with e fact that some metals, iron in particular are toxic if present in excess. Maintaining metal homeostasis is therefore of critical importance to cells. In this review we have systematically analyzed sequenced genomes of three members of the Rhodobacter genus, R. capsulatus SB1003, R. sphaeroides 2.4.1 and R. ferroxidans SW2 to determine how these species undertake iron homeostasis. We focused our analysis on elemental ferrous and ferric iron uptake genes as well as genes involved in the utilization of iron from heme. We also discuss how Rhodobacter species manage iron toxicity through export and sequestration of iron. Finally we discuss the various putative strategies set up by these Rhodobacter species to regulate iron homeostasis and the potential novel means of regulation. Overall, this genomic analysis highlights surprisingly diverse features involved in iron homeostasis in the Rhodobacter genus.
Collapse
Affiliation(s)
- Sébastien Zappa
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| | - Carl E. Bauer
- Department of Molecular and Cellular Biochemistry, Indiana University, Simon Hall, 212 S Hawthorne Dr, Bloomington, IN 47405, U. S. A
| |
Collapse
|
41
|
Balasubramanian D, Schneper L, Kumari H, Mathee K. A dynamic and intricate regulatory network determines Pseudomonas aeruginosa virulence. Nucleic Acids Res 2012; 41:1-20. [PMID: 23143271 PMCID: PMC3592444 DOI: 10.1093/nar/gks1039] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile bacterium that is found in a wide range of biotic and abiotic habitats. It is a major human opportunistic pathogen causing numerous acute and chronic infections. The critical traits contributing to the pathogenic potential of P. aeruginosa are the production of a myriad of virulence factors, formation of biofilms and antibiotic resistance. Expression of these traits is under stringent regulation, and it responds to largely unidentified environmental signals. This review is focused on providing a global picture of virulence gene regulation in P. aeruginosa. In addition to key regulatory pathways that control the transition from acute to chronic infection phenotypes, some regulators have been identified that modulate multiple virulence mechanisms. Despite of a propensity for chaotic behaviour, no chaotic motifs were readily observed in the P. aeruginosa virulence regulatory network. Having a ‘birds-eye’ view of the regulatory cascades provides the forum opportunities to pose questions, formulate hypotheses and evaluate theories in elucidating P. aeruginosa pathogenesis. Understanding the mechanisms involved in making P. aeruginosa a successful pathogen is essential in helping devise control strategies.
Collapse
Affiliation(s)
- Deepak Balasubramanian
- Department of Biological Sciences, College of Arts and Science, Florida International University, Miami, FL 33199, USA
| | | | | | | |
Collapse
|
42
|
Influence of siderophore pyoverdine synthesis and iron-uptake on abiotic and biotic surface colonization of Pseudomonas putida S11. Biometals 2012; 25:1113-28. [DOI: 10.1007/s10534-012-9574-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/12/2012] [Indexed: 10/28/2022]
|
43
|
Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. J Basic Microbiol 2012; 53:303-17. [PMID: 22733623 DOI: 10.1002/jobm.201100552] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/20/2012] [Indexed: 01/22/2023]
Abstract
Iron is one of the major limiting factors and essential nutrients of microbial life. Since in nature it is not readily available in the preferred form, microorganisms produce small high affinity chelating molecules called siderophores for its acquisition. Microorganisms produce a wide variety of siderophores controlled at the molecular level by different genes to accumulate, mobilize and transport iron for metabolism. Siderophores also play a critical role in the expression of virulence and development of biofilms by different microbes. Apart from maintaining microbial life, siderophores can be harnessed for the sustainability of human, animals and plants. With the advent of modern molecular tools, a major breakthrough is taking place in the understanding of the multifaceted role of siderophores in nature. This mini review is intended to provide a general overview on siderophore along with its role and applications.
Collapse
Affiliation(s)
- Ratul Saha
- Department of Microbiology and Molecular Biology, NSF International, Ann Arbor, MI, USA.
| | | | | | | |
Collapse
|
44
|
Lim CK, Hassan KA, Tetu SG, Loper JE, Paulsen IT. The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS One 2012; 7:e39139. [PMID: 22723948 PMCID: PMC3377617 DOI: 10.1371/journal.pone.0039139] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/18/2012] [Indexed: 11/18/2022] Open
Abstract
One of the most important micronutrients for bacterial growth is iron, whose bioavailability in soil is limited. Consequently, rhizospheric bacteria such as Pseudomonas fluorescens employ a range of mechanisms to acquire or compete for iron. We investigated the transcriptomic and proteomic effects of iron limitation on P. fluorescens Pf-5 by employing microarray and iTRAQ techniques, respectively. Analysis of this data revealed that genes encoding functions related to iron homeostasis, including pyoverdine and enantio-pyochelin biosynthesis, a number of TonB-dependent receptor systems, as well as some inner-membrane transporters, were significantly up-regulated in response to iron limitation. Transcription of a ribosomal protein L36-encoding gene was also highly up-regulated during iron limitation. Certain genes or proteins involved in biosynthesis of secondary metabolites such as 2,4-diacetylphloroglucinol (DAPG), orfamide A and pyrrolnitrin, as well as a chitinase, were over-expressed under iron-limited conditions. In contrast, we observed that expression of genes involved in hydrogen cyanide production and flagellar biosynthesis were down-regulated in an iron-depleted culture medium. Phenotypic tests revealed that Pf-5 had reduced swarming motility on semi-solid agar in response to iron limitation. Comparison of the transcriptomic data with the proteomic data suggested that iron acquisition is regulated at both the transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Chee Kent Lim
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Sasha G. Tetu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| | - Joyce E. Loper
- USDA-ARS Horticultural Crops Research Laboratory and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
- * E-mail:
| |
Collapse
|
45
|
Klitgaard K, Friis C, Jensen TK, Angen Ø, Boye M. Transcriptional portrait of Actinobacillus pleuropneumoniae during acute disease--potential strategies for survival and persistence in the host. PLoS One 2012; 7:e35549. [PMID: 22530048 PMCID: PMC3328466 DOI: 10.1371/journal.pone.0035549] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 03/21/2012] [Indexed: 11/24/2022] Open
Abstract
Background Gene expression profiles of bacteria in their natural hosts can provide novel insight into the host-pathogen interactions and molecular determinants of bacterial infections. In the present study, the transcriptional profile of the porcine lung pathogen Actinobacillus pleuropneumoniae was monitored during the acute phase of infection in its natural host. Methodology/Principal Findings Bacterial expression profiles of A. pleuropneumoniae isolated from lung lesions of 25 infected pigs were compared in samples taken 6, 12, 24 and 48 hours post experimental challenge. Within 6 hours, focal, fibrino hemorrhagic lesions could be observed in the pig lungs, indicating that A. pleuropneumoniae had managed to establish itself successfully in the host. We identified 237 differentially regulated genes likely to encode functions required by the bacteria for colonization and survival in the host. This group was dominated by genes involved in various aspects of energy metabolism, especially anaerobic respiration and carbohydrate metabolism. Remodeling of the bacterial envelope and modifications of posttranslational processing of proteins also appeared to be of importance during early infection. The results suggested that A. pleuropneumoniae is using various strategies to increase its fitness, such as applying Na+ pumps as an alternative way of gaining energy. Furthermore, the transcriptional data provided potential clues as to how A. pleuropneumoniae is able to circumvent host immune factors and survive within the hostile environment of host macrophages. This persistence within macrophages may be related to urease activity, mobilization of various stress responses and active evasion of the host defenses by cell surface sialylation. Conclusions/Significance The data presented here highlight the importance of metabolic adjustments to host conditions as virulence factors of infecting microorganisms and help to provide insight into the mechanisms behind the efficient colonization and persistence of A. pleuropneumoniae during acute disease.
Collapse
Affiliation(s)
- Kirstine Klitgaard
- National Veterinary Institute, Technical University of Denmark, Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Sonnleitner E, Romeo A, Bläsi U. Small regulatory RNAs in Pseudomonas aeruginosa. RNA Biol 2012; 9:364-71. [PMID: 22336763 DOI: 10.4161/rna.19231] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The opportunistic human pathogen Pseudomonas aeruginosa is frequently associated with nosocomial infections, and can be life threatening in immunosuppressed, cancer and cystic fibrosis patients. Virulence in P. aeruginosa is combinatorial, and results from the activation of several genetic programs that regulate motility, attachment to the host epithelium as well as the synthesis of exotoxins. The pathogen has a high survival capacity in the host owing to its metabolic versatility, nutrient scavenging and resistance against both, antibiotics and immune defenses. Adaptive responses to various environmental stresses and stimuli are often regulated by small regulatory RNAs (sRNA). In this review, we summarize the current knowledge on the regulation and function of P. aeruginosa sRNAs that titrate regulatory proteins, base-pair with target mRNAs, and which are derived from CRISPR elements.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
47
|
Porras-Gómez M, Vega-Baudrit J, Núñez-Corrales S. Overview of Multidrug-Resistant <i>Pseudomonas aeruginosa</i> and Novel Therapeutic Approaches. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jbnb.2012.324053] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
48
|
Chakraborty S, Sivaraman J, Leung KY, Mok YK. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda. J Biol Chem 2011; 286:39417-30. [PMID: 21953460 DOI: 10.1074/jbc.m111.295188] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inorganic phosphate (P(i)) and iron are essential nutrients that are depleted by vertebrates as a protective mechanism against bacterial infection. This depletion, however, is sensed by some pathogens as a signal to turn on the expression of virulence genes. Here, we show that the PhoB-PhoR two-component system senses changes in P(i) concentration, whereas the ferric uptake regulator (Fur) senses changes in iron concentration in Edwardsiella tarda PPD130/91 to regulate the expression of type III and VI secretion systems (T3SS and T6SS) through an E. tarda secretion regulator, EsrC. In sensing low P(i) concentration, PhoB-PhoR autoregulates and activates the phosphate-specific transport operon, pstSCAB-phoU, by binding directly to the Pho box in the promoters of phoB and pstS. PhoB also binds with EsrC simultaneously on the promoter of an E. tarda virulence protein, evpA, to regulate directly the transcription of genes from T6SS. In addition, PhoB requires and interacts with PhoU to activate esrC and suppress fur indirectly through unidentified regulators. Fur, on the other hand, senses high iron concentration and binds directly to the Fur box in the promoter of evpP to inhibit EsrC binding to the same region. In addition, Fur suppresses transcription of phoB, pstSCAB-phoU, and esrC indirectly via unidentified regulators, suggesting negative cross-talk with the Pho regulon. Physical interactions exist between Fur and PhoU and between Fur and EsrC. Our findings suggest that T3SS and T6SS may carry out distinct roles in the pathogenicity of E. tarda by responding to different environmental factors.
Collapse
Affiliation(s)
- Smarajit Chakraborty
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
49
|
The antibacterial activity of Ga3+ is influenced by ligand complexation as well as the bacterial carbon source. Antimicrob Agents Chemother 2011; 55:5568-80. [PMID: 21947396 DOI: 10.1128/aac.00386-11] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gallium ions have previously been shown to exhibit antibacterial and antibiofilm properties. In this study, we report differential bactericidal activities of two gallium complexes, gallium desferrioxamine B (Ga-DFOB) and gallium citrate (Ga-Cit). Modeling of gallium speciation in growth medium showed that DFOB and citrate both can prevent precipitation of Ga(OH)(3), but some precipitation can occur above pH 7 with citrate. Despite this, Ga-Cit 90% inhibitory concentrations (IC(90)) were lower than those of Ga-DFOB for clinical isolates of Pseudomonas aeruginosa and several reference strains of other bacterial species. Treatment with Ga compounds mitigated damage inflicted on murine J774 macrophage-like cells infected with P. aeruginosa PAO1. Again, Ga-Cit showed more potent mitigation than did Ga-DFOB. Ga was also taken up more efficiently by P. aeruginosa in the form of Ga-Cit than in the form of Ga-DFOB. Neither Ga-Cit nor Ga-DFOB was toxic to several human cell lines tested, and no proinflammatory activity was detected in human lung epithelial cells after exposure in vitro. Metabolomic analysis was used to delineate the effects of Ga-Cit on the bacterial cell. Exposure to Ga resulted in lower concentrations of glutamate, a key metabolite for P. aeruginosa, and of many amino acids, indicating that Ga affects various biosynthesis pathways. An altered protein expression profile in the presence of Ga-Cit suggested that some compensatory mechanisms were activated in the bacterium. Furthermore, the antibacterial effect of Ga was shown to vary depending on the carbon source, which has importance in the context of medical applications of gallium.
Collapse
|
50
|
The lipase LipA (PA2862) but not LipC (PA4813) from Pseudomonas aeruginosa influences regulation of pyoverdine production and expression of the sigma factor PvdS. J Bacteriol 2011; 193:5858-60. [PMID: 21840975 DOI: 10.1128/jb.05765-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A key element in iron-dependent regulation of iron metabolism and virulence-related functions for Pseudomonas aeruginosa is the sigma factor PvdS. PvdS expression itself is also influenced by iron-independent stimuli. We show that pyoverdine production and pvdS expression depend on one of the two lipases of P. aeruginosa.
Collapse
|