1
|
Farkas B, Vojtková H, Farkas Z, Pangallo D, Kasak P, Lupini A, Kim H, Urík M, Matúš P. Involvement of Bacterial and Fungal Extracellular Products in Transformation of Manganese-Bearing Minerals and Its Environmental Impact. Int J Mol Sci 2023; 24:ijms24119215. [PMID: 37298163 DOI: 10.3390/ijms24119215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Manganese oxides are considered an essential component of natural geochemical barriers due to their redox and sorptive reactivity towards essential and potentially toxic trace elements. Despite the perception that they are in a relatively stable phase, microorganisms can actively alter the prevailing conditions in their microenvironment and initiate the dissolution of minerals, a process that is governed by various direct (enzymatic) or indirect mechanisms. Microorganisms are also capable of precipitating the bioavailable manganese ions via redox transformations into biogenic minerals, including manganese oxides (e.g., low-crystalline birnessite) or oxalates. Microbially mediated transformation influences the (bio)geochemistry of manganese and also the environmental chemistry of elements intimately associated with its oxides. Therefore, the biodeterioration of manganese-bearing phases and the subsequent biologically induced precipitation of new biogenic minerals may inevitably and severely impact the environment. This review highlights and discusses the role of microbially induced or catalyzed processes that affect the transformation of manganese oxides in the environment as relevant to the function of geochemical barriers.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB-Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic
| | - Zuzana Farkas
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 84551 Bratislava, Slovakia
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Antonio Lupini
- Department of Agraria, Mediterranea University of Reggio Calabria, Feo di Vito snc, 89124 Reggio Calabria, Italy
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
2
|
Bañuelos JL, Borguet E, Brown GE, Cygan RT, DeYoreo JJ, Dove PM, Gaigeot MP, Geiger FM, Gibbs JM, Grassian VH, Ilgen AG, Jun YS, Kabengi N, Katz L, Kubicki JD, Lützenkirchen J, Putnis CV, Remsing RC, Rosso KM, Rother G, Sulpizi M, Villalobos M, Zhang H. Oxide- and Silicate-Water Interfaces and Their Roles in Technology and the Environment. Chem Rev 2023; 123:6413-6544. [PMID: 37186959 DOI: 10.1021/acs.chemrev.2c00130] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.
Collapse
Affiliation(s)
- José Leobardo Bañuelos
- Department of Physics, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Eric Borguet
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Gordon E Brown
- Department of Earth and Planetary Sciences, The Stanford Doerr School of Sustainability, Stanford University, Stanford, California 94305, United States
| | - Randall T Cygan
- Department of Soil and Crop Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - James J DeYoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Patricia M Dove
- Department of Geosciences, Department of Chemistry, Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Univ Evry, CNRS, LAMBE UMR8587, 91025 Evry-Courcouronnes, France
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Julianne M Gibbs
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2Canada
| | - Vicki H Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Anastasia G Ilgen
- Geochemistry Department, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nadine Kabengi
- Department of Geosciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - Lynn Katz
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - James D Kubicki
- Department of Earth, Environmental & Resource Sciences, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Johannes Lützenkirchen
- Karlsruher Institut für Technologie (KIT), Institut für Nukleare Entsorgung─INE, Eggenstein-Leopoldshafen 76344, Germany
| | - Christine V Putnis
- Institute for Mineralogy, University of Münster, Münster D-48149, Germany
| | - Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Kevin M Rosso
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Gernot Rother
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Marialore Sulpizi
- Department of Physics, Ruhr Universität Bochum, NB6, 65, 44780, Bochum, Germany
| | - Mario Villalobos
- Departamento de Ciencias Ambientales y del Suelo, LANGEM, Instituto De Geología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
3
|
Guan C, Guo Q, Wang Z, Wei X, Han B, Luo X, Pan H, Jiang J. Bisulfite activated permanganate for oxidative water decontamination. WATER RESEARCH 2022; 216:118331. [PMID: 35358879 DOI: 10.1016/j.watres.2022.118331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
Recently, bisulfite-activated permanganate (MnO4-; Mn(VII)) process has attracted considerable attention as a novel class of advanced oxidation technology for destruction of organic contaminants in water. However, disputes over the underlying activation mechanism as well as reactive species generated in the Mn(VII)/bisulfite system remain for a long period due to the fairly complex chemistry involved in this system. This article aims to present a critical review on scientific development of the Mn(VII)/bisulfite system, with particular focus on the generation and contribution of various reactive intermediates. Both reactive manganese species (RMnS) (i.e., soluble Mn(III), Mn(V), and Mn(VI)) and radical species (primarily SO4•-) are identified as the oxidizing components responsible for enhanced degradation of organic contaminants by the Mn(VII)/bisulfite system. Bisulfite plays a dual role of being an activating agent for reactive intermediates generation and acting as a complexing agent to stabilize RMnS. Solution chemistry (e.g., the [Mn(VII)]/[bisulfite] molar ratio, solution pH, the type of contaminants, ligands, and water matrix components) greatly impacts the generation and consumption of RMnS and radicals, thus influencing the degradation kinetics and pathways of organics. Particularly, dissolved oxygen (DO) is a vital factor for driving the oxidation of organics since the absence of DO can block the generation of SO4•- and meantime causes the consumption of RMnS by excess SO3•- as a strong reductant. Interestingly, ferrate (FeO42-, Fe(VI)) and hexavalent chromium (CrO42-/HCrO4-, Cr(VI)) that are high-valent metal oxyanions analogous to Mn(VII) can be activated by bisulfite via a similar pathway (i.e. both high-valent metal-oxo intermediates and reactive radicals are involved). Furthermore, key knowledge gaps are identified and future research needs are proposed to address the potential challenges encountered in practical application of the Mn(VII)/bisulfite oxidation technology.
Collapse
Affiliation(s)
- Chaoting Guan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Qin Guo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhen Wang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xipeng Wei
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Xiaonan Luo
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Hanping Pan
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jin Jiang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
4
|
Wala M, Kołodziejek J, Wilk T. Acidity and availability of aluminum, iron and manganese as factors affecting germination in European acidic dry and alkaline xerothermic grasslands. PeerJ 2022; 10:e13255. [PMID: 35505676 PMCID: PMC9057293 DOI: 10.7717/peerj.13255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/22/2022] [Indexed: 01/13/2023] Open
Abstract
Germination ecology of 10 species from acidic dry grasslands and 10 species from alkaline xerothermic grasslands was studied. The seeds were subjected to different pH, iron (Fe), manganese (Mn) and aluminum (Al) treatments under controlled conditions. Effects of ionic (chlorides) and chelated forms (HBED chelates) of Fe and Mn were also compared. Final germination percentage (FGP) and index of germination velocity (IGV) were calculated. The results indicate that pH and extremely high availability of Al are the major edaphic filters regulating germination-based revegetation, while availability of Fe and Mn is of the secondary importance. Both chelates and ionic forms of Fe and Mn exerted similar effects on the ability of seeds to complete germination. It suggests that both chelates are not hazardous for early ontogenetic stages of plants. Neither group has group-specific adaptations pertaining to germination characteristics in the context of the studied chemical stimuli, which indicates a diversity of germination strategies and individual species-specific reactions to the tested factors.
Collapse
Affiliation(s)
- Mateusz Wala
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Łódź Voivodeship, Poland
| | - Jeremi Kołodziejek
- Department of Geobotany and Plant Ecology, Faculty of Biology and Environmental Protection, University of Lodz, Łódź, Łódź Voivodeship, Poland
| | - Tomasz Wilk
- Przedsiębiorstwo Produkcyjno-Consultingowe ADOB Sp. z o.o. Sp. jawna, Poznań, Greater Poland Voivodeship, Poland,Faculty of Chemistry, Adam Mickiewicz University in Poznań, Poznań, Greater Poland Voivodeship, Poland
| |
Collapse
|
5
|
Wang W, Lu T, Liu L, Yang X, Sun X, Qiu G, Hua D, Zhou D. Zeolite-supported manganese oxides decrease the Cd uptake of wheat plants in Cd-contaminated weakly alkaline arable soils. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126464. [PMID: 34323733 DOI: 10.1016/j.jhazmat.2021.126464] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cd pollution in arable soils has posed serious threats to food safety and human health. Mn oxides and Mn oxide-based materials have been widely applied to the removal of heavy metals for their high adsorption capacity, especially in water treatment. However, the performance and stability of Mn oxide-based materials and the underlying mechanism of Cd immobilization in upland soils remain unclear. Here, zeolite-supported Mn oxides were used as amendment to investigate their impact on the availability of soil Cd in wheat pot experiments. The decrease in soil available Cd content (by 44.3%) and increase in soil available Mn content (by 61.9%) significantly inhibited Cd accumulation in wheat plant tissues under the application of zeolite-supported Mn oxides. The exchangeable Cd was transformed to more stable fractionation of Fe-Mn oxide bound Cd, and the maximum decrease of Cd content in wheat grains, straw and roots reached 65.0%, 11.7% and 55.3%, respectively. Besides, zeolite-supported Mn oxides exhibited high chemical stability and stable Cd immobilization performance in two successive years of wheat pot experiments. These findings improve our understanding of Mn oxide-based materials for soil remediation and indicate that zeolite-supported Mn oxides have great potential for the remediation of Cd-contaminated alkaline upland soils.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei Province, China.
| | - Dangling Hua
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, Henan Province, China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
6
|
Nandre V, Kumbhar N, Battu S, Kale Y, Bagade A, Haram S, Kodam K. Siderophore mediated mineralization of struvite: A novel greener route of sustainable phosphate management. WATER RESEARCH 2021; 203:117511. [PMID: 34375932 DOI: 10.1016/j.watres.2021.117511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Efficient and sustainable removal of phosphate ions from an aqueous solution is of great challenge. Herein we demonstrated a greener route for phosphate recovery through struvite formation by using bacterial siderophore. This method was efficient for removal of phosphate as low as 1.3 mM with 99% recovery efficiency. The siderophore produced by Pseudomonas taiwanensis R-12-2 act as template for the nucleation of struvite crystals and was found sustainable for recycling the phosphorous efficiently after twenty cycles. The formation of struvite crystals is driven by surrounding pH (9.0) and presence of Mg2+ and NH4+ ions along with PO43- and siderophore which was further validated by computational studies. The morphology of struvite was characterized by scanning electron microscopy, followed by elemental analysis. Furthermore, our results revealed that the siderophore plays an important role in struvite biomineralization. We have successfully demonstrated the phosphate sequestration by using industrial waste samples, as possible application for environmental sustainability and phosphate conservation. For the first time electrochemical super-capacitance performance of the struvite was studied. The specific capacitance value for the struvite was found to be 320 F g-1 at 1.87 A g-1 and retained 92 % capacitance after 250 cycles. The study revealed the potential implications of siderophore for the phosphate recycling and the new mechanism for biomineralization by sequestering into struvite.
Collapse
Affiliation(s)
- Vinod Nandre
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Navanath Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Shateesh Battu
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Yuvraj Kale
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Aditi Bagade
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Santosh Haram
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India
| | - Kisan Kodam
- Department of Chemistry, Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
7
|
Golovanov IS, Malykhin RS, Lesnikov VK, Nelyubina YV, Novikov VV, Frolov KV, Stadnichenko AI, Tretyakov EV, Ioffe SL, Sukhorukov AY. Revealing the Structure of Transition Metal Complexes of Formaldoxime. Inorg Chem 2021; 60:5523-5537. [PMID: 33826845 DOI: 10.1021/acs.inorgchem.0c03362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aerobic reactions of iron(III), nickel(II), and manganese(II) chlorides with formaldoxime cyclotrimer (tfoH3) and 1,4,7-triazacyclononane (tacn) produce indefinitely stable complexes of general formula [M(tacn)(tfo)]Cl. Although the formation of formaldoxime complexes has been known since the end of 19th century and applied in spectrophotometric determination of d-metals (formaldoxime method), the structure of these coordination compounds remained elusive until now. According to the X-ray analysis, [M(tacn)(tfo)]+ cation has a distorted adamantane-like structure with the metal ion being coordinated by three oxygen atoms of deprotonated tfoH3 ligand. The metal has a formal +4 oxidation state, which is atypical for organic complexes of iron and nickel. Electronic structure of [M(tacn)(tfo)]+ cations was studied by XPS, NMR, cyclic (CV) and differential pulse (DPV) voltammetries, Mössbauer spectroscopy, and DFT calculations. Unusual stabilization of high-valent metal ion by tfo3- ligand was explained by the donation of electron density from the nitrogen atom to the antibonding orbital of the metal-oxygen bond via hyperconjugation as confirmed by the NBO analysis. All complexes [M(tacn)(tfo)]Cl exhibited high catalytic activity in the aerobic dehydrogenative dimerization of p-thiocresol under ambient conditions.
Collapse
Affiliation(s)
- Ivan S Golovanov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, Russia, 119991
| | - Roman S Malykhin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, Russia, 119991
| | - Vladislav K Lesnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, Russia, 119991
| | - Yulia V Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, Russia, 119991
| | - Valentin V Novikov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov str. 28, Moscow, Russia, 119991
| | - Kirill V Frolov
- Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics," Russian Academy of Sciences, Leninsky prospect, 59, Moscow, Russia, 119991
| | - Andrey I Stadnichenko
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, 5 Ac. Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Evgeny V Tretyakov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, Russia, 119991
| | - Sema L Ioffe
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, Russia, 119991
| | - Alexey Yu Sukhorukov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect, 47, Moscow, Russia, 119991.,Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow, Russia, 117997
| |
Collapse
|
8
|
Queiroz HM, Ying SC, Abernathy M, Barcellos D, Gabriel FA, Otero XL, Nóbrega GN, Bernardino AF, Ferreira TO. Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. ENVIRONMENT INTERNATIONAL 2021; 146:106284. [PMID: 33264733 PMCID: PMC8382573 DOI: 10.1016/j.envint.2020.106284] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
Manganese (Mn) is an abundant element in terrestrial and coastal ecosystems and an essential micronutrient in the metabolic processes of plants and animals. Mn is generally not considered a potentially toxic element due to its low content in both soil and water. However, in coastal ecosystems, the Mn dynamic (commonly associated with the Fe cycle) is mostly controlled by redox processes. Here, we assessed the potential contamination of the Rio Doce estuary (SE Brazil) by Mn after the world's largest mine tailings dam collapse, potentially resulting in chronic exposure to local wildlife and humans. Estuarine soils, water, and fish were collected and analyzed seven days after the arrival of the tailings in 2015 and again two years after the dam collapse in 2017. Using a suite of solid-phase analyses including X-ray absorption spectroscopy and sequential extractions, our results indicated that a large quantity of MnII arrived in the estuary in 2015 bound to Fe oxyhydroxides. Over time, dissolved Mn and Fe were released from soils when FeIII oxyhydroxides underwent reductive dissolution. Due to seasonal redox oscillations, both Fe and Mn were then re-oxidized to FeIII, MnIII, and MnIV and re-precipitated as poorly crystalline Fe oxyhydroxides and poorly crystalline Mn oxides. In 2017, redox conditions (Eh: -47 ± 83 mV; pH: 6.7 ± 0.5) favorable to both Fe and Mn reduction led to an increase (~880%) of dissolved Mn (average for 2015: 66 ± 130 µg L-1; 2017: 582 ± 626 µg L-1) in water and a decrease (~75%, 2015: 547 ± 498 mg kg-1; 2017: 135 ± 80 mg kg-1) in the total Mn content in soils. The crystalline Fe oxyhydroxides content significantly decreased while the fraction of poorly ordered Fe oxides increased in the soils limiting the role of Fe in Mn retention. The high concentration of dissolved Mn found within the estuary two years after the arrival of mine tailings indicates a possible chronic contamination scenario, which is supported by the high levels of Mn in two species of fish living in the estuary. Our work suggests a high risk to estuarine biota and human health due to the rapid Fe and Mn biogeochemical dynamic within the impacted estuary.
Collapse
Affiliation(s)
- Hermano M Queiroz
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Samantha C Ying
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States; Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Macon Abernathy
- Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521, United States
| | - Diego Barcellos
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil
| | - Fabricio A Gabriel
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Xosé L Otero
- Department of Edaphology and Agricultural Chemistry - CRETUS, Faculty of Biology, Universidade de Santiago de Compostela, Campus Sur, 15782, Santiago de Compostela, Spain
| | - Gabriel N Nóbrega
- Graduate Program in Earth Sciences (Geochemistry), Department of Geochemistry, Federal Fluminense University, Niterói, Brazil
| | - Angelo F Bernardino
- Grupo de Ecologia Bentônica, Departamento de Oceanografia, Universidade Federal do Espírito Santo, Vitória, Espírito Santo 29075-910, Brazil
| | - Tiago O Ferreira
- Luiz de Queiroz College of Agriculture, University of São Paulo (ESALQ-USP), Av. Pádua Dias 11, CEP 13418-900, Piracicaba, São Paulo, Brazil.
| |
Collapse
|
9
|
Application of Siderophore in Crop Productivity and Remediation of Heavy Metal-Contaminated Soil. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
David SR, Fritsch S, Forster A, Ihiawakrim D, Geoffroy VA. Flocking asbestos waste, an iron and magnesium source for Pseudomonas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:135936. [PMID: 31887510 DOI: 10.1016/j.scitotenv.2019.135936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Iron and magnesium are essential nutrients for most microorganisms. In the environment, the availability of iron is low relative to that of magnesium. Microorganisms have developed various iron acquisition systems, which have been well studied, whereas few studies have examined magnesium acquisition. The production of siderophores is one of the efficient strategies widely used to sustain iron nutritional requirements. Many studies have shown that minerals, such as clays, iron oxides, and silicates, can serve as nutrient sources for bacteria. Asbestos, a natural fibrous silicate present in soil contains iron and/or magnesium, depending on the species of asbestos. Our aim was to study the acquisition of iron and magnesium from flocking asbestos waste by Pseudomonas aeruginosa and the involvement of the siderophores, pyoverdine and pyochelin. Flocking asbestos waste promoted growth under iron- and magnesium-limited conditions, together with a decrease in pyoverdine production, correlating with the dissolution of iron from the waste. In long-term experiments, flocking asbestos waste provided these two essential elements for bacterial growth and resulted in a decrease of iron in asbestos fibers. Among the enzymes required for pyochelin and pyoverdine synthesis, PchA and PvdJ were tagged with the fluorescent protein mCherry to analyze the expression patterns of proteins involved in siderophore production. Both enzymes were produced in the presence of flocking asbestos waste, suggesting a role of the pyoverdine and pyochelin pathway in asbestos dissolution. We investigated the involvement of each siderophore in iron and magnesium removal using mutants in one or both siderophore pathways. We observed a significant increase in iron extraction in the presence of siderophores and the absence of one of the two siderophores could be compensated by the other. Flocking asbestos waste represents an iron and magnesium source for P. aeruginosa, with iron removal linked to a siderophore-driven mechanism.
Collapse
Affiliation(s)
- Sébastien R David
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Blvd Sébastien Brant, 67413 Illkirch, Strasbourg, France; Agence de l'Environnement et de la Maîtrise de l'Energie, 20 avenue du Grésillé, BP 90406, 49004 Angers Cedex 01, France
| | - Sarah Fritsch
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Blvd Sébastien Brant, 67413 Illkirch, Strasbourg, France
| | - Anne Forster
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Blvd Sébastien Brant, 67413 Illkirch, Strasbourg, France
| | - Dris Ihiawakrim
- Université de Strasbourg, CNRS-UMR7504, IPCM, 23 rue du Loess, BP 43, 67034 Strasbourg, France
| | - Valérie A Geoffroy
- Université de Strasbourg, CNRS-UMR7242, BSC, ESBS, 300 Blvd Sébastien Brant, 67413 Illkirch, Strasbourg, France.
| |
Collapse
|
11
|
Gallo AD, Zierden MR, Profitt LA, Jones KE, Bonafide CP, Valentine AM. TiO 2 exposure alters transition metal ion quota in Rhodococcus ruber GIN-1. Metallomics 2020; 12:8-11. [PMID: 31913381 DOI: 10.1039/c9mt00305c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
After exposure to micron-sized TiO2 particles, anatase and/or rutile, Rhodococcus ruber GIN-1 accumulates an increased concentration (2.2 ± 0.2 mg kg-1) of mobilized Ti into its biomass with concomitant decreases in cellular biometals Fe, Zn, and possibly Mn, while levels of Cu and Al are unaffected.
Collapse
|
12
|
Hofmann M, Retamal-Morales G, Tischler D. Metal binding ability of microbial natural metal chelators and potential applications. Nat Prod Rep 2020; 37:1262-1283. [DOI: 10.1039/c9np00058e] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metallophores can chelate many different metal and metalloid ions next to iron, make them valuable for many applications.
Collapse
Affiliation(s)
- Marika Hofmann
- Institute of Biosciences
- Chemistry and Physics Faculty
- TU Bergakademie Freiberg
- 09599 Freiberg
- Germany
| | - Gerardo Retamal-Morales
- Laboratorio de Microbiología Básica y Aplicada
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - Dirk Tischler
- Microbial Biotechnology
- Ruhr-Universität Bochum
- 44780 Bochum
- Germany
| |
Collapse
|
13
|
Field HR, Whitaker AH, Henson JA, Duckworth OW. Sorption of copper and phosphate to diverse biogenic iron (oxyhydr)oxide deposits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134111. [PMID: 31487593 DOI: 10.1016/j.scitotenv.2019.134111] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Iron (Fe) transformations partially control the biogeochemical cycling of biologically and environmentally important elements, such as carbon (C), nitrogen (N), phosphorus (P), and trace metals. In marine and freshwater environments, iron oxidizing bacteria commonly promote the oxidation of ferrous iron (Fe(II)) at circumneutral oxic-anoxic interfaces, resulting in the formation of mineral-organic composites known as biogenic Fe(III) (oxyhydr)oxides (BIOS). Previous studies have examined the microbial ecology, composition, morphology, and sorption reactivity of BIOS. However, a broad survey of BIOS properties and sorption reactivity is lacking. To further explore these relationships, this study utilized X-ray absorption spectroscopy (XAS) to characterize the Fe mineral species, acid digestions and elemental analysis to determine composition, Brunauer-Emmett-Teller (BET) analysis to measure specific surface area, and copper (Cu) and phosphorus (P) adsorption experiments at concentrations designed to measure maximum sorption to evaluate reactivity of BIOS samples collected in lakes and streams of the North Carolina Piedmont. Sample composition varied widely, with Fe and C content ranging from 6.3 to 34% and 3.4-13%, respectively. XAS spectra were best fit with 42-100% poorly crystalline Fe (oxyhydr)oxides, with the remainder composed of crystalline Fe minerals and organic complexes. On a sorbent mass basis, Cu and P sorption varied by a factor of two and 15, respectively. Regression analyses reveal interrelationships between physicochemical properties, and suggest that differences in P binding are driven by sorption to Fe(III) (oxyhydr)oxide surfaces. In total, results suggest that the physical and chemical characteristics of organic and Fe(III) (oxyhydr)oxide phases in BIOS interplay to control the sorption of solutes, and thus influence nutrient and contaminant cycling in soil and natural waters.
Collapse
Affiliation(s)
- Hannah R Field
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620, USA; Department of Geological and Environmental Sciences at Appalachian State University, Boone, NC 28608-2067, USA
| | - Andrew H Whitaker
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620, USA
| | - Joshua A Henson
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620, USA
| | - Owen W Duckworth
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695-7620, USA.
| |
Collapse
|
14
|
Luo X, Guo R, Xu X, Li X, Yao L, Wang X, Lu H. Mass spectrometry and associated technologies delineate the advantageously biomedical capacity of siderophores in different pathogenic contexts. MASS SPECTROMETRY REVIEWS 2019; 38:239-252. [PMID: 30035815 DOI: 10.1002/mas.21577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Siderophores are chemically diverse small molecules produced by microorganisms for chelation of irons to maintain their survival and govern some important biological functions, especially those cause that infections in hosts. Still, siderophores can offer new insight into a better understanding of the diagnosis and treatments of infectious diseases from the siderophore biosynthesis and regulation perspective. Thus, this review aims to summarize the biomedical value and applicability of siderophores in pathogenic contexts by briefly reviewing mass spectrometry (MS)-based chemical biology and translational applications that involve diagnosis, pathogenesis, and therapeutic discovery for a variety of infectious conditions caused by different pathogens. We highlight the advantages and disadvantages of siderophore discovery and applications in pathogenic contexts. Finally, we propose a panel of new and promising strategy as precision-modification metabolomics method, to rapidly advance the discovery of and translational innovations pertaining to these value compounds in broad biomedical niches. © 2018 Wiley Periodicals, Inc. Mass Spec Rev XX:XX-XX, 2018.
Collapse
Affiliation(s)
- Xialin Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Rui Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Pharmacognosy, Center of Excellence for Chinmedomics, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Xian Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li Yao
- Department of Medicinal Chemistry and Natural Medicine Chemistry, Department of Pharmacognosy, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xijun Wang
- Department of Pharmacognosy, Center of Excellence for Chinmedomics, Heilongjiang University of Chinese Medicine, Harbin, 150040, China
| | - Haitao Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Abstract
Abandoned mine lands continue to serve as non-point sources of acid and metal contamination to water bodies long after mining operations have ended. Although soils formed from abandoned mine spoil can support forest vegetation, as observed throughout the Appalachian coal basin, the effects of vegetation on metal cycling in these regions remain poorly characterized. Iron (Fe) and manganese (Mn) biogeochemistry were examined at a former coal mine where deciduous trees grow on mine spoil deposited nearly a century ago. Forest vegetation growing on mine spoil effectively removed dissolved Mn from pore water; however, mineral weathering at a reaction front below the rooting zone resulted in high quantities of leached Mn. Iron was taken up in relatively low quantities by vegetation but was more readily mobilized by dissolved organic carbon produced in the surface soil. Dissolved Fe was low below the reaction front, suggesting that iron oxyhydroxide precipitation retains Fe within the system. These results indicate that mine spoil continues to produce Mn contamination, but vegetation can accumulate Mn and mitigate its leaching from shallow soils, potentially also decreasing Mn leaching from deeper soils by reducing infiltration. Vegetation had less impact on Fe mobility, which was retained as Fe oxides following oxidative weathering.
Collapse
|
16
|
Malov AI. Transformation of the chemical composition of surface waters in the area of the exploited Lomonosov diamond deposit (NW Russia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33620-33636. [PMID: 30276682 DOI: 10.1007/s11356-018-3308-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The specific objective of this study was to investigate the changes in the chemical composition of river waters during the exploitation of the Lomonosov diamond deposit and the danger of these changes for the ichthyofauna. It was found that the Ca-HCO3 composition of river water both upstream and downstream from the quarry was almost identical before discharge of the drainage waters into the river. In subsequent years, the water downstream from the quarry acquired a Na-HCO3 composition, and then a Na-HCO3-Cl composition and TDS increased by 2.5 times. With respect to Fe, Mn, and Mo, concentrations that are above the maximum permissible concentrations (MPCs) for fishery rivers are apparent. At the same time, elevated Fe and Mn concentrations are associated with the natural composition of river water. The negative influence of drainage waters is manifested only with respect to the high concentrations of Mo. An important role in increasing Mo concentrations in drainage waters is played by the processes of hydrolysis of sodium aluminosilicates and mixing of fresh water with salt water. The concentrations of Sr, B, Ba, V, and Cr in drainage waters are higher than those in surface waters. However, they generally do not exceed the concentrations of the current MPCs. The source of Cr, Ba, Ni, and V in the drainage waters can be the products of the kimberlite magmatism. The possible impacts of metals effects on fish are presented.
Collapse
Affiliation(s)
- Alexander I Malov
- Federal Center for Integrated Arctic Research of Russian Academy of Sciences, 23 Severnoy Dviny Emb., Arkhangelsk, 163061, Russia.
| |
Collapse
|
17
|
Gao Y, Jiang J, Zhou Y, Pang SY, Jiang C, Guo Q, Duan JB. Does Soluble Mn(III) Oxidant Formed in Situ Account for Enhanced Transformation of Triclosan by Mn(VII) in the Presence of Ligands? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4785-4793. [PMID: 29584950 DOI: 10.1021/acs.est.8b00120] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In previous studies, we interestingly found that several ligands (e.g., pyrophosphate, nitrilotriacetate, and humic acid) could significantly accelerate the oxidation rates of triclosan (TCS; the most widely used antimicrobial) by aqueous permanganate (Mn(VII)) especially at acid pH, which was ascribed to the contribution of ligand-stabilized Mn(III) (defined Mn(III)L) formed in situ as a potent oxidant. In this work, it was found that the oxidation of TCS by Mn(III)L resulted in the formation of dimers, as well as hydroxylated and quinone-like products, where TCS phenoxy radical was likely involved. This transformation pathway distinctly differed from that involved in Mn(VII) oxidation of TCS, where 2,4-dichlorophenol (DCP) was the major product with a high yield of ∼80%. Surprisingly, we found that the presence of various complexing ligands including pyrophosphate, nitrilotriacetate, and humic acid, as well as bisulfite slightly affected the yields of DCP, although they greatly enhanced the oxidation kinetics of TCS by Mn(VII). This result could not be reasonably explained by taking the contribution of Mn(III)L into account. Comparatively, the degradation of TCS by manganese dioxide (MnO2) was also greatly enhanced in the presence of these ligands with negligible formation of DCP, which could be rationalized by the contribution of Mn(III)L. In addition, it was demonstrated that DCP could not be generated from Mn(VII) oxidation of unstable phenoxy radical intermediates and stable oxidation products formed from TCS by Mn(III)L. These findings indicate that manganese intermediates other than Mn(III) are likely involved in the Mn(VII)/TCS/ligand systems responsible for the high yields of DCP product.
Collapse
Affiliation(s)
- Yuan Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Jin Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Yang Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Environment , Harbin Institute of Technology , Harbin 150090 , China
| | - Su-Yan Pang
- School of Municipal and Environmental Engineering , Jilin Jianzhu University , Changchun 130118 , China
| | - Chengchun Jiang
- School of Civil and Environmental Engineering , Shenzhen Polytechnic , Shenzhen 518055 , China
| | - Qin Guo
- College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| | - Jie-Bin Duan
- College of Chemical and Environmental Engineering , Harbin University of Science and Technology , Harbin 150040 , China
| |
Collapse
|
18
|
Hu E, Zhang Y, Wu S, Wu J, Liang L, He F. Role of dissolved Mn(III) in transformation of organic contaminants: Non-oxidative versus oxidative mechanisms. WATER RESEARCH 2017; 111:234-243. [PMID: 28088720 DOI: 10.1016/j.watres.2017.01.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 12/14/2016] [Accepted: 01/05/2017] [Indexed: 05/25/2023]
Abstract
Mn(III) is a strong oxidant for one electron transfer, which may be important in the transformation of organic contaminants during water/wastewater treatment and biogeochemical redox processes. This study explored the reaction mechanisms of dissolved Mn(III) with organics. The role of dissolved Mn(III) either as a catalyst or an oxidant in reactions with organics was recognized. Aquo and/or hydroxo (or free) Mn(III), generated from the bisulfite activated permanganate process, facilitated efficient N-dealkylation of atrazine via a β-elimination mechanism, resulting no net redox reaction. In contrast, free Mn(III) degraded 4-chlorophenol via intramolecular redox processes, the same as hydroxyl radical (OH), resulting in dechlorination,OH substitution, ring-opening and mineralization. Mn(III)-pyrophosphate compounds did not react with atrazine because complexation by pyrophosphate rendered Mn(III) unable to bond with atrazine, thus the electron and proton transfers between the reactants couldn't occur. However, it degraded 4-chlorophenol at a slower rate compared to free Mn(III), due to its reduced oxidation potential. These results showed two distinct mechanisms on the degradation of organic contaminants and the insights may be applied in natural manganese-rich environments and water treatment processes with manganese compounds.
Collapse
Affiliation(s)
- Erdan Hu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Ya Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Shuyan Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Jun Wu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Liyuan Liang
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | - Feng He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
19
|
|
20
|
Magnetic susceptibility of Mn(III) complexes of hydroxamate siderophores. J Inorg Biochem 2015; 148:22-6. [PMID: 25978931 DOI: 10.1016/j.jinorgbio.2015.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/23/2022]
Abstract
The hydroxamate siderophores putrebactin, desferrioxamine B, and desferrioxamine E bind Mn(II) and promote the air oxidation of Mn(II) to Mn(III) at pH>7.1. The magnetic susceptibility of the manganese complexes were determined by the Evans method and the stoichiometry was probed with electrospray ionization mass spectrometry (ESIMS). The room temperature magnetic moments (μeff) for the manganese complexes of desferrioxamines B and E were 4.85 BM and 4.84 BM, respectively, consistent with a high spin, d(4), Mn(III) electronic configuration. The manganese complex of putrebactin had a magnetic moment of 4.98 BM, consistent with incomplete oxidation of Mn(II), as confirmed by X band EPR spectroscopy. Mass spectra of the Mn(III) desferrioxamine B and E complexes showed complexes at m/z 613.26 and 653.26, respectively, consistent with 1:1 complexation. Mass spectral peaks for manganese putrebactin at m/z 797.31 and 1221.41 corresponds to 1:2 and 2:3 Mn:putrebactin complexation. This study directly confirms the Mn(III) oxidation state in hydroxamate siderophore complexes.
Collapse
|
21
|
Guo S, Li X, He P, Ho H, Wu Y, He Y. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol 2015; 42:925-37. [PMID: 25860123 DOI: 10.1007/s10295-015-1612-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 03/25/2015] [Indexed: 03/14/2023]
Abstract
Bacillus subtilis XF-1 is a gram-positive, plant-associated bacterium that stimulates plant growth and produces secondary metabolites that suppress soil-borne plant pathogens. In particular, it is especially highly efficient at controlling the clubroot disease of cruciferous crops. Its 4,061,186-bp genome contains an estimated 3853 protein-coding sequences and the 1155 genes of XF-1 are present in most genome-sequenced Bacillus strains: 3757 genes in B. subtilis 168, and 1164 in B. amyloliquefaciens FZB42. Analysis using the Cluster of Orthologous Groups database of proteins shows that 60 genes control bacterial mobility, 221 genes are related to cell wall and membrane biosynthesis, and more than 112 are genes associated with secondary metabolites. In addition, the genes contributed to the strain's plant colonization, bio-control and stimulation of plant growth. Sequencing of the genome is a fundamental step for developing a desired strain to serve as an efficient biological control agent and plant growth stimulator. Similar to other members of the taxon, XF-1 has a genome that contains giant gene clusters for the non-ribosomal synthesis of antifungal lipopeptides (surfactin and fengycin), the polyketides (macrolactin and bacillaene), the siderophore bacillibactin, and the dipeptide bacilysin. There are two synthesis pathways for volatile growth-promoting compounds. The expression of biosynthesized antibiotic peptides in XF-1 was revealed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry.
Collapse
Affiliation(s)
- Shengye Guo
- Faculty of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, China
| | | | | | | | | | | |
Collapse
|
22
|
Yuan L, Sun L, Fortin D, Wang Y, Yin X. Microscale characterization and trace element distribution in bacteriogenic ferromanganese coatings on sand grains from an intertidal zone of the East China Sea. PLoS One 2015; 10:e0119080. [PMID: 25786213 PMCID: PMC4365015 DOI: 10.1371/journal.pone.0119080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 01/28/2015] [Indexed: 11/18/2022] Open
Abstract
An ancient wood layer dated at about 5600 yr BP by accelerator mass spectrometry (AMS) 14C was discovered in an intertidal zone of the East China Sea. Extensive and horizontally stratified sediments with black color on the top and yellowish-red at the bottom, and some nodule-cemented concretions with brown surface and black inclusions occurred in this intertidal zone. Microscale analysis methods were employed to study the microscale characterization and trace element distribution in the stratified sediments and concretions. Light microscopy, scanning electron microscopy (SEM) and backscattered electron imaging (BSE) revealed the presence of different coatings on the sand grains. The main mineral compositions of the coatings were ferrihydrite and goethite in the yellowish-red parts, and birnessite in the black parts using X-ray powder diffraction (XRD). SEM observations showed that bacteriogenic products and bacterial remnants extensively occurred in the coatings, indicating that bacteria likely played an important role in the formation of ferromanganese coatings. Post-Archean Australian Shale (PAAS)-normalized middle rare earth element (MREE) enrichment patterns of the coatings indicated that they were caused by two sub-sequential processes: (1) preferentially release of Fe-Mn from the beach rocks by fermentation of ancient woods and colloidal flocculation in the mixing water zone and (2) preferential adsorption of MREE by Fe-Mn oxyhydroxides from the seawater. The chemical results indicated that the coatings were enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Ba, especially with respect to Co, Ni. The findings of the present study provide an insight in the microscale features of ferromanganese coatings and the Fe-Mn biogeochemical cycling during the degradation of buried organic matter in intertidal zones or shallow coasts.
Collapse
Affiliation(s)
- Linxi Yuan
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- Jiangsu Bio-Engineering Research Centre on Selenium, Suzhou 215123, China
- Advanced Lab for Selenium and Human Health, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
- * E-mail: (LXY); (LGS)
| | - Liguang Sun
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- * E-mail: (LXY); (LGS)
| | - Danielle Fortin
- Department of Earth Sciences, University of Ottawa, Ontario, K1N 6N5, Canada
| | - Yuhong Wang
- National Institute of Health, Bethesda, Maryland 20892, United States of America
| | - Xuebin Yin
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
- Jiangsu Bio-Engineering Research Centre on Selenium, Suzhou 215123, China
- Advanced Lab for Selenium and Human Health, Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, China
| |
Collapse
|
23
|
Harrington JM, Duckworth OW, Haselwandter K. The fate of siderophores: antagonistic environmental interactions in exudate-mediated micronutrient uptake. Biometals 2015; 28:461-72. [DOI: 10.1007/s10534-015-9821-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/07/2015] [Indexed: 11/25/2022]
|
24
|
Wang Z, Giammar DE. Metal Contaminant Oxidation Mediated by Manganese Redox Cycling in Subsurface Environment. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1197.ch002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zimeng Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E. Giammar
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
25
|
Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. MINERALS 2014. [DOI: 10.3390/min5010001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Mn(II)/Mn(III) and Fe(III) binding capability of two Aspergillus fumigatus siderophores, desferricrocin and N', N″, N‴-triacetylfusarinine C. J Inorg Biochem 2014; 139:30-7. [PMID: 24959697 DOI: 10.1016/j.jinorgbio.2014.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/30/2023]
Abstract
Manganese(II) and manganese(III) complexes of the exocyclic desferricrocin (H3DFCR) and endocyclic triacetylfusarinine C (H3TAF) in solution have been studied by using pH-potentiometry, UV-Vis spectrophotometry, relaxometry and cyclic voltammetry. A comparison between the present results and the corresponding ones for the open-chain analogues, desferrioxamine B (DFB) and desferricoprogen (DFC), shows (i) The dissociation processes of H3DFCR occur in the expected pH-range (pH7-10.5), but hydrogen bonding is assumed to be responsible for a quite low proton dissociation constant (pK=4.18) of H3TAF and also an unusually high one (10.59). (ii) Moderate stability complexes with 1:1 Mn(II) to ligand ratio are formed with all four siderophores. (iii) The coordination of the three hydroxamates of a siderophore takes place in stepwise processes, except the case of desferricrocin, with which, large-extent overlapping of the processes occurs. (iv) Out of the four tris-chelated [ML] type complexes, the complex of DFCR is the most compact, as it is indicated by the relaxivity values. (v) Following the stoichiometric oxidation of the Mn(II)-siderophore complexes at pH≥9, tris-chelated Mn(III) complexes are formed. To make a comparison between the stability of the Mn(III) and the corresponding Fe(III) complexes of DFCR and TAF, the determination of the stability of the Fe(III) complexes under our condition has also been performed, by using UV-Vis spectrophotometry. Comparable stability of the corresponding complexes was found. (vi) Correlation study of the stability constants resulted in estimation of the constant of the Mn(III) monohydroxo complex, for which there was no data in the literature under our conditions.
Collapse
|
27
|
Duckworth OW, Akafia MM, Andrews MY, Bargar JR. Siderophore-promoted dissolution of chromium from hydroxide minerals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:1348-1359. [PMID: 24683601 DOI: 10.1039/c3em00717k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Biomolecules have significant impacts on the fate and transport of contaminant metals in soils and natural waters. Siderophores, Fe(iii)-binding agents that are exuded by microbes and plants, may form strong complexes with and promote the dissolution of contaminant metal ions, such as Co(iii), U(iv), or Pu(iv). Although aqueous Cr(iii)-siderophore complexes have been recognized in the laboratory setting for almost 40 years, few studies have explored interactions of siderophores with Cr-bearing minerals or considered their impacts on environmental chemistry. To better understand the possible effects of siderophores on chromium mobility, we conducted a series of dissolution experiments to quantify the dissolution rates of Cr(iii)(OH)3 in the presence of hydroxamate, catecholate, and α-hydroxycarboxylate siderophores over a range of environmentally relevant pH values. At pH = 5, dissolution rates in the presence of siderophores are similar to control experiments, suggesting a predominantly proton-promoted dissolution mechanism. At pH = 8, the sorption of the siderophores desferrioxamine B and rhizoferrin can be modeled by using Langmuir isotherms. The dissolution rates for these siderophores are proportional to the surface concentrations of sorbed siderophore, and extended X-ray absorption fine structure spectra of dissolution products indicates the formation of Cr(iii)HDFOB(+) and Cr(iii)rhizoferrin(3-) complexes, suggesting a ligand-promoted dissolution mechanism at alkaline pH. Because siderophores promote Cr(iii)(OH)3 dissolution at rates similar in magnitude to those of iron hydroxides and the resulting Cr(iii)-siderophore complexes may be persistent in solution, siderophores could potentially contribute to the mobilization of Cr in soils and sediments where it is abundant due to geological or anthropogenic sources.
Collapse
Affiliation(s)
- Owen W Duckworth
- Department of Soil Science, North Carolina State University, Raleigh, NC 27695-7619, USA.
| | | | | | | |
Collapse
|
28
|
Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration. Proc Natl Acad Sci U S A 2014; 111:6209-14. [PMID: 24733903 DOI: 10.1073/pnas.1320014111] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings.
Collapse
|
29
|
Dighton J. Introduction: Soils and Their Promotion of Plant Growth. INTERACTIONS IN SOIL: PROMOTING PLANT GROWTH 2014. [DOI: 10.1007/978-94-017-8890-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
30
|
Wang Z, Xiong W, Tebo BM, Giammar DE. Oxidative UO2 dissolution induced by soluble Mn(III). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:289-298. [PMID: 24286164 DOI: 10.1021/es4037308] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The stability of UO2 is critical to the success of reductive bioremediation of uranium. When reducing conditions are no longer maintained, Mn redox cycling may catalytically mediate the oxidation of UO2 and remobilization of uranium. Ligand-stabilized soluble Mn(III) was recently recognized as an important redox-active intermediate in Mn biogeochemical cycling. This study evaluated the kinetics of oxidative UO2 dissolution by soluble Mn(III) stabilized by pyrophosphate (PP) and desferrioxamine B (DFOB). The Mn(III)-PP complex was a potent oxidant that induced rapid UO2 dissolution at a rate higher than that by a comparable concentration of dissolved O2. However, the Mn(III)-DFOB complex was not able to induce oxidative dissolution of UO2. The ability of Mn(III) complexes to oxidize UO2 was probably determined by whether the coordination of Mn(III) with ligands allowed the attachment of the complexes to the UO2 surface to facilitate electron transfer. Systematic investigation into the kinetics of UO2 oxidative dissolution by the Mn(III)-PP complex suggested that Mn(III) could directly oxidize UO2 without involving particulate Mn species (e.g., MnO2). The expected 2:1 reaction stoichiometry between Mn(III) and UO2 was observed. The reactivity of soluble Mn(III) in oxidizing UO2 was higher at lower ratios of pyrophosphate to Mn(III) and lower pH, which is probably related to differences in the ligand-to-metal ratio and/or protonation states of the Mn(III)-pyrophosphate complexes. Disproportionation of Mn(III)-PP occurred at pH 9.0, and the oxidation of UO2 was then driven by both MnO2 and soluble Mn(III). Kinetic models were derived that provided excellent fits of the experimental results.
Collapse
Affiliation(s)
- Zimeng Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
31
|
Kruft BI, Harrington JM, Duckworth OW, Jarzęcki AA. Quantum mechanical investigation of aqueous desferrioxamine B metal complexes: Trends in structure, binding, and infrared spectroscopy. J Inorg Biochem 2013; 129:150-61. [DOI: 10.1016/j.jinorgbio.2013.08.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 08/23/2013] [Accepted: 08/26/2013] [Indexed: 10/26/2022]
|
32
|
Gaonkar T, Bhosle S. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils. CHEMOSPHERE 2013; 93:1835-1843. [PMID: 23838040 DOI: 10.1016/j.chemosphere.2013.06.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 05/26/2013] [Accepted: 06/07/2013] [Indexed: 05/28/2023]
Abstract
A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.
Collapse
Affiliation(s)
- Teja Gaonkar
- Department of Microbiology, Goa University, Taleigao Plateau, Goa 403 206, India
| | | |
Collapse
|
33
|
Abstract
Micro-organisms capable of oxidizing the redox-active transition metal manganese play an important role in the biogeochemical cycle of manganese. In the present mini-review, we focus specifically on Mn(II)-oxidizing bacteria. The mechanisms by which bacteria oxidize Mn(II) include a two-electron oxidation reaction catalysed by a novel multicopper oxidase that produces Mn(IV) oxides as the primary product. Bacteria also produce organic ligands, such as siderophores, that bind to and stabilize Mn(III). The realization that this stabilized Mn(III) is present in many environments and can affect the redox cycles of other elements such as sulfur has made it clear that manganese and the bacteria that oxidize it profoundly affect the Earth's biogeochemistry.
Collapse
|
34
|
Szabó O, Farkas E. Characterization of Mn(II) and Mn(III) binding capability of natural siderophores desferrioxamine B and desferricoprogen as well as model hydroxamic acids. Inorganica Chim Acta 2011. [DOI: 10.1016/j.ica.2011.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
35
|
Hansard SP, Easter HD, Voelker BM. Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2811-7. [PMID: 21375329 DOI: 10.1021/es104014s] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Superoxide radical (O2-) has been proposed to be an important participant in oxidation-reduction reactions of metal ions in natural waters. Here, we studied the reaction of nanomolar Mn(II) with O2- in seawater and simulated freshwater, using chemiluminescence detection of O2- to quantify the effect of Mn(II) on the decay kinetics of O2-. With 3-24 nM added [Mn(II)] and <0.7 nM [O2-], we observed effective second-order rate constants for the reaction of Mn(II) with O2- of 6×10(6) to 1×10(7) M(-1)·s(-1) in various seawater samples. In simulated freshwater (pH 8.6), the effective rate constant of Mn(II) reaction with O2- was somewhat lower, 1.6×10(6) M(-1)·s(-1). With higher initial [O2-], in excess of added [Mn(II)], catalytic decay of O2- by Mn was observed, implying that a Mn(II/III) redox cycle occurred. Our results show that reactions with nanomolar Mn(II) could be an important sink of O2- in natural waters. In addition, reaction of Mn(II) with superoxide could maintain a significant fraction of dissolved Mn in the +III oxidation state.
Collapse
Affiliation(s)
- S Paul Hansard
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States.
| | | | | |
Collapse
|
36
|
|
37
|
|
38
|
Roles of siderophores, oxalate, and ascorbate in mobilization of iron from hematite by the aerobic bacterium Pseudomonas mendocina. Appl Environ Microbiol 2010; 76:2041-8. [PMID: 20118367 DOI: 10.1128/aem.02349-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In aerobic, circumneutral environments, the essential element Fe occurs primarily in scarcely soluble mineral forms. We examined the independent and combined effects of a siderophore, a reductant (ascorbate), and a low-molecular-weight carboxylic acid (oxalate) on acquisition of Fe from the mineral hematite (alpha-Fe(2)O(3)) by the obligate aerobe Pseudomonas mendocina ymp. A site-directed DeltapmhA mutant that was not capable of producing functional siderophores (i.e., siderophore(-) phenotype) did not grow on hematite as the only Fe source. The concentration of an added exogenous siderophore (1 microM desferrioxamine B [DFO-B]) needed to restore wild-type (WT)-like growth kinetics to the siderophore(-) strain was approximately 50-fold less than the concentration of the siderophore secreted by the WT organism grown under the same conditions. The roles of a reductant (ascorbate) and a simple carboxylic acid (oxalate) in the Fe acquisition process were examined in the presence and absence of the siderophore. Addition of ascorbate (50 microM) alone restored the growth of the siderophore(-) culture to the WT levels. A higher concentration of oxalate (100 microM) had little effect on the growth of a siderophore(-) culture; however, addition of 0.1 muM DFO-B and 100 muM oxalate restored the growth of the mutant to WT levels when the oxalate was prereacted with the hematite, demonstrating that a metabolizing culture benefits from a synergistic effect of DFO-B and oxalate.
Collapse
|