1
|
Jomova K, Alomar SY, Nepovimova E, Kuca K, Valko M. Heavy metals: toxicity and human health effects. Arch Toxicol 2024:10.1007/s00204-024-03903-2. [PMID: 39567405 DOI: 10.1007/s00204-024-03903-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, 949 74, Nitra, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
| | - Kamil Kuca
- Center of Advanced Innovation Technologies, VSB-Technical University of Ostrava, 708 00, Ostrava-Poruba, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
2
|
Serquiz AC, Barros Gomes JDADC, Farias NBDS, Mafra D, Pereira de Lima PM, de Oliveira Coutinho D, Ribeiro FPB, Rocha HADO, de Brito Alves JL. Protective Effects of Annona Atemoya Extracts on Inflammation, Oxidative Stress, and Renal Function in Cadmium-Induced Nephrotoxicity in Wistar Rats. Pharmaceuticals (Basel) 2024; 17:1393. [PMID: 39459032 PMCID: PMC11510283 DOI: 10.3390/ph17101393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cadmium (Cd), a highly toxic heavy metal from agricultural activities, and its exposure can lead to impaired renal function by increasing reactive oxygen species. The atemoya fruit is known for its high phenolic and antioxidant compounds. This study aimed to evaluate the effects of atemoya extracts on renal function, oxidative stress parameters, and inflammatory biomarkers in a cadmium-induced nephrotoxicity model. METHODS Three aqueous extracts were prepared from different parts of the atemoya fruit: seeds, peel, and pulp. Twenty-five male Wistar rats were allocated into four groups: control, seed, peel, and pulp extracts at 2 g/kg for 25 days. All treatment groups administered intraperitoneal injections of cadmium chloride (CdCl2) (2 mg/kg) to induce renal damage. RESULTS The cadmium-treated groups showed decreased creatinine clearance, SOD, CAT, and GPx activities (p < 0.05) and increased serum levels of TNF-α and IL-6 compared to the control group (p < 0.05). The treatment with seed, peel, and pulp extracts increased creatinine clearance (p < 0.05), increased SOD, CAT, and GPx activities (p < 0.05), and reduced serum levels of TNF-α and IL-6 compared to the Cd group (p < 0.05). CONCLUSIONS This study supports the use of atemoya as a promising candidate for mitigating nephrotoxicity and highlights the importance of its antioxidant and anti-inflammatory properties in renal health.
Collapse
Affiliation(s)
- Alexandre Coelho Serquiz
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Joana de Angelis da Costa Barros Gomes
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - Naisandra Bezerra da Silva Farias
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - Denise Mafra
- Graduate Program in Biological Sciences—Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil;
| | - Pietra Maria Pereira de Lima
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Daniella de Oliveira Coutinho
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Fernanda Priscila Barbosa Ribeiro
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| | - Hugo Alexandre de Oliveira Rocha
- Laboratory of Biotechnology of Natural Polymers (BIOPOL), Graduate Program of Biochemistry and Molecular Biology, Bioscience Center, Federal University of Rio Grande do Norte—UFRN, Natal 59078-970, RN, Brazil; (J.d.A.d.C.B.G.); (N.B.d.S.F.); (H.A.d.O.R.)
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PS, Brazil; (A.C.S.); (P.M.P.d.L.); (D.d.O.C.); (F.P.B.R.)
| |
Collapse
|
3
|
Bhardwaj JK, Bikal P, Sachdeva SN. Cadmium as an ovarian toxicant: A review. J Appl Toxicol 2024; 44:129-147. [PMID: 37587800 DOI: 10.1002/jat.4526] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/18/2023]
Abstract
Cadmium (Cd) is a ubiquitous heavy metal toxicant with no biological function in the human body. Considerably, because of its long biological half-life and very low excretion rate, Cd is inclined to accumulate and cause deleterious effects on various body organs (e.g., liver, kidney, and ovary) in humans and animals. Ovaries are the most vulnerable targets of Cd toxicity. Cd has been shown to induce oxidative stress, follicular atresia, hormonal imbalance, and impairment of oocyte growth and development. Moreover, Cd toxicity has been associated with increasing incidences of menstrual disorders, pregnancy loss, preterm births, delayed puberty, and female infertility. Therefore, it is crucial to understand how Cd poisoning impacts specific ovarian processes for the development of preventive interventions to enhance female fertility. The current review attempts to collate the recent findings on Cd-induced oxidative stress, follicular apoptosis, steroid synthesis inhibition, and teratogenic toxicity, along with their possible mechanisms in the ovarian tissue of different animal species. Additionally, the review also summarizes the studies related to the use of many antioxidants, medicinal herbs, and other compounds as remedial approaches for managing Cd-induced ovarian toxicity.
Collapse
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Prerna Bikal
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Som Nath Sachdeva
- Department of Civil Engineering, National Institute of Technology Kurukshetra, Kurukshetra University, Kurukshetra, Haryana, India
| |
Collapse
|
4
|
Peng H, Guo D, Shan W, Tan S, Wang C, Wang H, Liu Z, Xu B, Guo X, Wang Y. Identification of the AccCDK7 and AccCDK9 genes and their involvement in the response to resist external stress in Apis cerana cerana. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104117. [PMID: 37019323 DOI: 10.1016/j.etap.2023.104117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/08/2023] [Accepted: 03/31/2023] [Indexed: 06/15/2023]
Abstract
Previous studies examining the functions of cyclin-dependent kinases (CDKs) have mainly focused on the regulation of the cell cycle. Recent studies have found that cyclin-dependent kinase 7 (CDK7) and cyclin-dependent kinase 9 (CDK9) play important roles in cell stress, metabolism of toxic substances and maintaining the stability of the internal environment. Here, we found that under stress conditions, the transcription and protein expression of AccCDK7 and AccCDK9 were induced to varying degrees. Meanwhile, the silencing of AccCDK7 and AccCDK9 also affected the expression of antioxidant genes and the activity of antioxidant enzymes, and reduced the survival rate of bees under high temperature stress. Furthermore, the exogenous overexpression of AccCDK7 and AccCDK9 improved the viability of yeast under stress conditions. Therefore, AccCDK7 and AccCDK9 may play roles in A.cerana cerana resistance to oxidative stress caused by external stimuli, potentially revealing a new mechanism of the honeybee response to oxidative stress.
Collapse
Affiliation(s)
- Hongyan Peng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Dezheng Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Wenlu Shan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shuai Tan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, PR China.
| |
Collapse
|
5
|
Dellin M, Rohrbeck I, Asrani P, Schreiber JA, Ritter N, Glorius F, Wünsch B, Budde T, Temme L, Strünker T, Stallmeyer B, Tüttelmann F, Meuth SG, Spehr M, Matschke J, Steinbicker A, Gatsogiannis C, Stoll R, Strutz-Seebohm N, Seebohm G. The second PI(3,5)P 2 binding site in the S0 helix of KCNQ1 stabilizes PIP 2-at the primary PI1 site with potential consequences on intermediate-to-open state transition. Biol Chem 2023; 404:241-254. [PMID: 36809224 DOI: 10.1515/hsz-2022-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 12/13/2022] [Indexed: 02/23/2023]
Abstract
The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.
Collapse
Affiliation(s)
- Maurice Dellin
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Ina Rohrbeck
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Purva Asrani
- Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy and RUBiospek|NMR, Ruhr University of Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Julian A Schreiber
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
| | - Nadine Ritter
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Frank Glorius
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, D-48149, Münster, Germany
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Thomas Budde
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Institute of Physiology I, Westfälische Wilhelms-Universität, Robert-Koch-Str. 27a, D-48149, Münster, Germany
| | - Louisa Temme
- Institut für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Timo Strünker
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Domagkstraße 11, D-48149, Münster, Germany
- Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany
| | - Birgit Stallmeyer
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, D-48149, Münster, Germany
| | - Frank Tüttelmann
- Institute of Reproductive Genetics, University of Münster, Vesaliusweg 12-14, D-48149, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Heinrich Heine University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, D-52074, Aachen, Germany
| | - Johann Matschke
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, D-45147, Essen, Germany
| | - Andrea Steinbicker
- Goethe University Frankfurt and University Hospital Frankfurt, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Christos Gatsogiannis
- Institute for Medical Physics and Biophysics and Center for Soft Nanoscience, Westfälische Wilhelms-Universität Münster, Münster, Busso-Peus Strasse 10, D-48149, Germany
| | - Raphael Stoll
- Faculty of Chemistry and Biochemistry, Biomolecular NMR Spectroscopy and RUBiospek|NMR, Ruhr University of Bochum, Universitätsstraße 150, D-44780, Bochum, Germany
| | - Nathalie Strutz-Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
| | - Guiscard Seebohm
- IfGH-Cellular Electrophysiology, Department of Cardiology and Angiology, University Hospital of Münster, Robert-Koch Str. 45, D-48149, Münster, Germany
- GRK 2515, Chemical biology of ion channels (Chembion), Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
6
|
Toxic Effects of Cadmium on the Female Reproductive Organs a Review. FOLIA VETERINARIA 2022. [DOI: 10.2478/fv-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Cadmium (Cd) is a common environmental pollutant present in soil and associated with many modern industrial processes. Cadmium may adversely influence the health of experimental animals and humans and exert significant effects on the reproductive tract morphology and physiology. During embryonic development, cadmium suppresses the normal growth and development of the ovaries, and in adults it disrupts the morphology and function of the ovaries and uterus. The exposure to cadmium has adverse effects on the oocyte meiotic maturation affecting the structure of ovarian tissue. The distribution of follicles and corpus luteum in the ovarian tissues has been shown to be disrupted, affecting the normal growth and development of the follicles. In the ovarian cortex, the number of follicles at different stages of maturation decreased, and the number of atretic follicles increased. In the medulla, oedema and ovarian haemorrhage and necrosis appears at higher doses. Granulosa cells exposed to cadmium exhibited morphological alterations. Oocyte development was inhibited and the amount of oocyte apoptosis was higher. Cadmium exposure also caused changes in the structure of the ovarian blood vessels with reduction in the vascular area. Cadmium effects included increased uterine weight, hyperplasia and hypertrophy of the endometrial lining. Exposure to cadmium had specific effects on gonadal steroidogenesis by suppressing steroid biosynthesis of the ovarian granulosa cells and luteal cells. Progesterone, follicle stimulating hormone, and luteinizing hormone decreased significantly after CdCl2 administration. Cadmium can suppress the female’s ovulation process and cause temporary infertility.
Collapse
|
7
|
Zhukov VV, Saphonov MV. Calcium Component of the Retinal Light Response in the Snail Lymnaea stagnalis: a Pharmacological and Ultrastructural Study. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Yoo JW, Cho H, Lee KW, Won EJ, Lee YM. Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comp Biochem Physiol C Toxicol Pharmacol 2021; 239:108863. [PMID: 32781295 DOI: 10.1016/j.cbpc.2020.108863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/22/2020] [Accepted: 08/03/2020] [Indexed: 02/05/2023]
Abstract
The combined effect of toxic inducers has emerged as a challenging topic, particularly due to their inconsistent impacts on the environment. Using toxic unit (TU) based on LC50 value, we investigated the 48 h acute toxicities of the following combinations: Cd + As, Cd + Pb, As + Pb, and Cd + As + Pb, and binary and ternary combined effects were interpreted using concentration addition (CA) and independent action (IA) model. The molecular effects of these combinations were further examined on the basis of gene expression (four GST and two SOD isoforms) and antioxidant enzymes activity (SOD and GST). The CA-predicted LC50 was similar to the observed results, indicating that the CA model is more applicable for evaluating the combined effects of the metal mixtures. Synergistic effects (ΣTULC50 < 0.8) were observed for the mixtures As + Pb and Cd + Pb, while additive effects (0.8 < ΣTULC50 < 1.2) were observed for the mixtures Cd + As + Pb and Cd + As. No antagonistic effects were observed in this study. Molecular biomarkers for oxidative stress caused by metals, as well as traditional endpoints such as lethality, have shown a clear response in assessing the toxicity of binary and ternary mixtures. This study opens up a new avenue for the use of biomarkers to assess the combined effects of metals in aquatic environments.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Hayoung Cho
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Kyun-Woo Lee
- Korea Institute of Ocean Science and Technology, 385, Haeyang-ro, Youngdo, Busan 49111, Republic of Korea
| | - Eun-Ji Won
- Department of Marine Science & Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
9
|
Marini M, Caro D, Thomsen M. The new fertilizer regulation: A starting point for cadmium control in European arable soils? THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 745:140876. [PMID: 32726694 DOI: 10.1016/j.scitotenv.2020.140876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Bioaccumulation of cadmium (Cd) in the agricultural soil constitutes a dangerous risk for the health of both the environment and humans. Especially in the European Union, a large amount of Cd in agricultural topsoil originates from mineral fertilizer application. In this context, the EU has recently adopted the Regulation (EU) 2019/1009 with the aim to establish stricter limits for Cd presence in fertilizer products and to promote a higher use of fertilizers from organic sources. This paper discusses the future implications of the new regulation to limit the presence of cadmium (Cd) in agricultural soils and food products. The Regulation (EU) 2019/1009 represents an important step of the EU circular economy action plan with its aim to encourage the production of low cadmium content fertilizers. This paper focuses on the limits of the Regulation (EU) 2019/1009 and on the need for complementary policy instruments to protect and conserve agricultural soil health. We highlight the recently proposed, and subsequently withdrawn, EU Soil Framework Directive (SFD) as a meaningful complementary policy tool in the context of a renewed effort to pursue protection and conservation of soil health.
Collapse
Affiliation(s)
- Michele Marini
- Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Postboks 358, DK-4000 Roskilde, Denmark
| | - Dario Caro
- Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Postboks 358, DK-4000 Roskilde, Denmark
| | - Marianne Thomsen
- Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Aarhus University, Frederiksborgvej 399, Postboks 358, DK-4000 Roskilde, Denmark; Aarhus University Centre for Circular Bioeconomy, Denmark.
| |
Collapse
|
10
|
Wang R, Lou J, Fang J, Cai J, Hu Z, Sun P. Effects of heavy metals and metal (oxide) nanoparticles on enhanced biological phosphorus removal. REV CHEM ENG 2020. [DOI: 10.1515/revce-2018-0076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractWith the rapid growth of economics and nanotechnology, a significant portion of the anthropogenic emissions of heavy metals and nanoparticles (NPs) enters wastewater streams and discharges to wastewater treatment plants, thereby potentially posing a risk to the bacteria that facilitate the successful operation of the enhanced biological phosphorus (P) removal (EBPR) process. Although some efforts have been made to obtain detailed insights into the effects of heavy metals and metal (oxide) nanoparticles [Me(O)NPs], many unanswered questions remain. One question is whether the toxicity of Me(O)NPs originates from the released metal ions. This review aims to holistically evaluate the effects of heavy metals and Me(O)NPs. The interactions among extracellular polymeric substances, P, and heavy metals [Me(O)NPs] are presented and discussed for the first time. The potential mechanisms of the toxicity of heavy metals [Me(O)NPs] are summarized. Additionally, mathematical models of the toxicity and removal of P, heavy metals, and Me(O)NPs are overviewed. Finally, knowledge gaps and opportunities for further study are discussed to pave the way for fully understanding the inhibition of heavy metals [Me(O)NPs] and for reducing their inhibitory effect to maximize the reliability of the EBPR process.
Collapse
Affiliation(s)
- Ruyi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Juqing Lou
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Fang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Jing Cai
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| | - Zhirong Hu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
- GL Environment Inc., Hamilton, Canada
| | - Peide Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, China
| |
Collapse
|
11
|
Požgajová M, Navrátilová A, Šebová E, Kovár M, Kačániová M. Cadmium-Induced Cell Homeostasis Impairment is Suppressed by the Tor1 Deficiency in Fission Yeast. Int J Mol Sci 2020; 21:ijms21217847. [PMID: 33105893 PMCID: PMC7660220 DOI: 10.3390/ijms21217847] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/10/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Cadmium has no known physiological function in the body; however, its adverse effects are associated with cancer and many types of organ system damage. Although much has been shown about Cd toxicity, the underlying mechanisms of its responses to the organism remain unclear. In this study, the role of Tor1, a catalytic subunit of the target of rapamycin complex 2 (TORC2), in Cd-mediated effects on cell proliferation, the antioxidant system, morphology, and ionome balance was investigated in the eukaryotic model organism Schizosaccharomyces pombe. Surprisingly, spectrophotometric and biochemical analyses revealed that the growth rate conditions and antioxidant defense mechanisms are considerably better in cells lacking the Tor1 signaling. The malondialdehyde (MDA) content of Tor1-deficient cells upon Cd treatment represents approximately half of the wild-type content. The microscopic determination of the cell morphological parameters indicates the role for Tor1 in cell shape maintenance. The ion content, determined by inductively coupled plasma optical emission spectroscopy (ICP-OES), showed that the Cd uptake potency was markedly lower in Tor1-depleted compared to wild-type cells. Conclusively, we show that the cadmium-mediated cell impairments in the fission yeast significantly depend on the Tor1 signaling. Additionally, the data presented here suggest the yet-undefined role of Tor1 in the transport of ions.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia
- Correspondence: ; Tel.: +421-37-641-4919
| | - Alica Navrátilová
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Eva Šebová
- Institute of Experimental Medicine, Czech Academy of Science, 14220 Prague, Czech Republic;
| | - Marek Kovár
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
| | - Miroslava Kačániová
- Department of Fruit Science, Viticulture and Enology, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture in Nitra, 94976 Nitra, Slovakia;
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, 35-601 Rzeszow, Poland
| |
Collapse
|
12
|
Linking molecular targets of Cd in the bloodstream to organ-based adverse health effects. J Inorg Biochem 2020; 216:111279. [PMID: 33413916 DOI: 10.1016/j.jinorgbio.2020.111279] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/25/2022]
Abstract
The chronic exposure of human populations to toxic metals remains a global public health concern. Although chronic Cd exposure is linked to kidney damage, osteoporosis and cancer, the underlying biomolecular mechanisms remain incompletely understood. Since other diseases could also be causally linked to chronic Cd exposure, a systems toxicology-based approach is needed to gain new insight into the underlying exposure-disease relationship. This approach requires one to integrate the cascade of dynamic bioinorganic chemistry events that unfold in the bloodstream after Cd enters with toxicological events that unfold in target organs over time. To this end, we have conducted a systematic literature search to identify all molecular targets of Cd in plasma and in red blood cells (RBCs). Based on this information it is impossible to describe the metabolism of Cd and the toxicological relevance of it binding to molecular targets in/on RBCs is elusive. Perhaps most importantly, the role that peptides, amino acids and inorganic ions, including HCO3-, Cl- and HSeO3- play in terms of mediating the translocation of Cd to target organs and its detoxification is poorly understood. Causally linking human exposure to this metal with diseases requires a much better integration of the bioinorganic chemistry of Cd that unfolds in the bloodstream with target organs. This from a public health point of view important goal will require collaborations between scientists from different disciplines to untangle the complex mechanisms which causally link Cd exposure to disease.
Collapse
|
13
|
Bhardwaj JK, Panchal H, Saraf P. Cadmium as a testicular toxicant: A Review. J Appl Toxicol 2020; 41:105-117. [DOI: 10.1002/jat.4055] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Affiliation(s)
- Jitender Kumar Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Harish Panchal
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology Kurukshetra University Kurukshetra Haryana India
| |
Collapse
|
14
|
Bjørklund G, Dadar M, Chirumbolo S, Aaseth J, Peana M. Metals, autoimmunity, and neuroendocrinology: Is there a connection? ENVIRONMENTAL RESEARCH 2020; 187:109541. [PMID: 32445945 DOI: 10.1016/j.envres.2020.109541] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/04/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
It has been demonstrated that metals can induce autoimmunity. However, few studies have attempted to assess and elucidate the underlying mechanisms of action. Recent research has tried to evaluate the possible interactions of the immune system with metal ions, particularly with heavy metals. Research indicates that metals have the potential to induce or promote the development of autoimmunity in humans. Metal-induced inflammation may dysregulate the hypothalamic-pituitary-adrenal (HPA) axis and thus contribute to fatigue and other non-specific symptoms characterizing disorders related to autoimmune diseases. The toxic effects of several metals are also mediated through free radical formation, cell membrane disturbance, or enzyme inhibition. There are worldwide increases in environmental metal pollution. It is therefore critical that studies on the role of metals in autoimmunity, and neuroendocrine disorders, including effects on the developing immune system and brain and the genetic susceptibility are performed. These studies can lead to efficient preventive strategies and improved therapeutic approaches. In this review, we have retrieved and commented on studies that evaluated the effects of metal toxicity on immune and endocrine-related pathways. This review aims to increase awareness of metals as factors in the onset and progression of autoimmune and neuroendocrine disorders.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; CONEM Scientific Secretary, Verona, Italy
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway; IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
15
|
Li X, Cui X, Zhang X, Liu W, Cui Z. Combined toxicity and detoxification of lead, cadmium and arsenic in Solanum nigrum L. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121874. [PMID: 31848093 DOI: 10.1016/j.jhazmat.2019.121874] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/04/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
A 3-factor-5-level central composite design was conducted to investigate the combined toxicity and detoxification mechanisms of lead (Pb), cadmium (Cd) and arsenic (As) in Solanum nigrum L. The three metal(loid)s exhibited low-dose stimulation and high-dose inhibition on plant length. Analyses of eleven oxidative stress and antioxidant parameters showed all Pb, Cd and As induced oxidative damages, and the co-exposure further enhanced their toxic effects. Pb, Cd and As were mainly accumulated in plant roots and poorly translocated to shoots, being beneficial for metal(loid) detoxification. The results of subcellular fractionation showed that Pb, Cd and As in plant leaves, stems and roots were mainly localized in the cell wall and soluble fractions. Most of Pb and As in soils occurred in residual fraction while Cd in exchangeable fraction. Although single Pb, Cd and As in all plant tissues existed predominantly in 1 M NaCl-soluble form, the d-H2O and 80 % ethanol-soluble forms were increased under the binary or ternary combinations. This study will conduce to the potential use of S. nigrum L. in the phytostablization of soil co-contaminated with Pb, Cd and As.
Collapse
Affiliation(s)
- Xinxin Li
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Xiaowei Cui
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Zhang
- School of Architecture and Urban Planning, Shandong Jianzhu University, Jinan, 250101, China
| | - Wei Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhaojie Cui
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
16
|
Banik S, Akter M, Corpus Bondad SE, Saito T, Hosokawa T, Kurasaki M. Carvacrol inhibits cadmium toxicity through combating against caspase dependent/independent apoptosis in PC12 cells. Food Chem Toxicol 2019; 134:110835. [DOI: 10.1016/j.fct.2019.110835] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 01/03/2023]
|
17
|
Alese MO, Agbaje MA, Alese OO. Cadmium induced damage in Wistar rats, ameliorative potentials of progesterone. J Trace Elem Med Biol 2018; 50:276-282. [PMID: 30262291 DOI: 10.1016/j.jtemb.2018.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 11/17/2022]
Abstract
Asides the increased human exposure to Cadmium containing products; the adverse effects of Cadmium on human health is further exacerbated by its toxicity at low dosage, long biologic half-life and low rate of excretion from the body. This study investigated the protective potential of progesterone on cadmium-induced damage in Wistar rats. Adult male Wistar rats received CdCl2 once daily for 21 days. Progesterone was given 30 min. after administration of CdCl2 while 3 other groups were given distilled water, CdCl2 and progesterone alone. Blood samples were collected from the animals for the determination of liver function and antioxidant status while the liver, kidney, cerebellar and hippocampal tissues were excised and fixed in Neutral buffered formalin for histopathological studies. While Cadmium caused changes in liver function parameters which were indicative of oxidative stress, pre-treatment with progesterone caused restoration to values which were non-significant to the control. Similar findings were made for G6PD, GSH, SOD, CAT and MDA. Histopathology revealed tissue damage in the Cd treated group; this was attenuated by prior treatment with progesterone. Progesterone ameliorated the free radical induced oxidative stress and tissue injury arising from exposure to Cadmium; attention should be given to its antioxidant role in Cadmium toxicity.
Collapse
Affiliation(s)
- M O Alese
- Department of Anatomy, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria.
| | - M A Agbaje
- Department of Anatomy, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| | - O O Alese
- Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti, Nigeria
| |
Collapse
|
18
|
Ollson CJ, Smith E, Juhasz AL. Can in vitro assays account for interactions between inorganic co-contaminants observed during in vivo relative bioavailability assessment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:348-355. [PMID: 29096308 DOI: 10.1016/j.envpol.2017.10.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 06/07/2023]
Abstract
In vitro assays act as surrogate measurements of relative bioavailability (RBA) for inorganic contaminants. The values derived from these assays are routinely used to refine human health risk assessments (HHRA). Extensive in vitro research has been performed on three major inorganic contaminants; As, Cd and Pb. However, the majority of these studies have evaluated the contaminants individually, even in cases when they are found as co-contaminants. Recently, in vivo studies (animal model) have determined that when the three aforementioned contaminants are present in the same soil matrix, they have the ability to influence each other's individual bioavailability. Since in vitro assays are used to inform HHRA, this study investigated whether bioaccessibility methods including the Solubility/Bioavailability Research Consortium (SBRC) assay, and physiologically based extraction test (PBET), have the ability to detect interactions between As, Cd and Pb. Using a similar dosing methodology to recently published in vivo studies, spiked aged (12 years) soil was assessed by evaluating contaminant bioaccessibility individually, in addition to tertiary combinations. In two spiked aged soils (grey and brown chromosols), there was no influence on contaminant bioaccessibility when As, Cd and Pb we present as co-contaminants. However, in a red ferrosol, the presence of As and Pb significantly decreased (p < 0.05) the bioaccessibility of Cd when assessed using gastric and intestinal phases of the SBRC assay and the PBET. Conceivable, differences in key physico-chemical properties (TOC, Fe, Al, P) between the study soils influenced contaminant interactions and bioaccessibility outcomes. Although bioaccessibility methods may not account for interactions between elements as demonstrated in in vivo models, in vitro assessment provides a conservative prediction of contaminant RBA under co-contaminant scenarios.
Collapse
Affiliation(s)
- Cameron J Ollson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
19
|
Williams LJ, Chen L, Zosky GR. The respiratory health effects of geogenic (earth derived) PM10. Inhal Toxicol 2017; 29:342-355. [DOI: 10.1080/08958378.2017.1367054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lewis J. Williams
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Graeme R. Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| |
Collapse
|
20
|
Ollson CJ, Smith E, Herde P, Juhasz AL. Influence of sample matrix on the bioavailability of arsenic, cadmium and lead during co-contaminant exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 595:660-665. [PMID: 28407582 DOI: 10.1016/j.scitotenv.2017.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/27/2017] [Accepted: 04/05/2017] [Indexed: 06/07/2023]
Abstract
In this study, the influence of sample matrix on the relative bioavailability of arsenic (As), cadmium (Cd) and lead (Pb) was assessed following exposure of C57BL/6 mice to spiked aged (12years) soils. AIN93G mouse chow was amended with individual and tertiary As, Cd and Pb soil combinations which were administered to mice over a 9day exposure period. Contaminant relative bioavailability was calculated by comparing As urinary excretion and Cd-kidney/Pb-liver accumulation to corresponding values for compounds used to derive the respective toxicity reference value. Strong linear dose-responses were observed for mice exposed to AIN93G mouse chow augmented with individually spiked soil with As, Cd and Pb. When mice were exposed to co-contaminants, As relative bioavailability (RBA) decreased similar to results from previous co-contaminant salt experiments presumably due to the influence of Cd on phosphate transport proteins, which are utilized for As absorption. However, a decrease in Cd-kidney and Pb-liver accumulation was also observed following co-co-exposure. It was postulated that this resulted from interactions with other (essential) metals (e.g. iron, aluminium, manganese, magnesium) within the soil matrix and their influence on absorption via divalent metal transporters.
Collapse
Affiliation(s)
- Cameron J Ollson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), eUniversity of Newcastle, Callagham, NSW 2308, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gilles Plains, SA 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
21
|
Cao Z, Fang Y, Lu Y, Tan D, Du C, Li Y, Ma Q, Yu J, Chen M, Zhou C, Pei L, Zhang L, Ran H, He M, Yu Z, Zhou Z. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J Pineal Res 2017; 62. [PMID: 28099758 DOI: 10.1111/jpi.12389] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a persistent environmental and occupational contaminant that accumulates in the liver and induces oxidative stress and inflammation. Melatonin possesses potent hepatoprotective properties against the development and progression of acute and chronic liver injury. Nevertheless, the molecular mechanism underlying the protective effects of melatonin against Cd-induced hepatotoxicity remains obscure. In this study, we aimed to investigate the effects of melatonin on Cd-induced liver inflammation and hepatocyte death. Male C57BL/6 mice were intraperitoneally injected with melatonin (10 mg/kg) once a day for 3 days before exposure to CdCl2 (2.0 mg/kg). We found that Cd induced hepatocellular damage and inflammatory infiltration as well as increased serum ALT/AST enzymes. In addition, we showed that Cd triggered an inflammatory cell death, which is mediated by the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Moreover, melatonin treatment significantly alleviated Cd-induced liver injury by decreasing serum ALT/AST levels, suppressing pro-inflammatory cytokine production, inhibiting NLRP3 inflammasome activation, ameliorating oxidative stress, and attenuating hepatocyte death. Most importantly, melatonin markedly abrogated Cd-induced TXNIP overexpression and decreased the interaction between TXNIP and NLRP3 in vivo and in vitro. However, treatment with siRNA targeting TXNIP blocked the protective effects of melatonin in Cd-treated primary hepatocytes. Collectively, our results suggest that melatonin confers protection against Cd-induced liver inflammation and hepatocyte death via inhibition of the TXNIP-NLRP3 inflammasome pathway.
Collapse
Affiliation(s)
- Zhengwang Cao
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yiliang Fang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Dunxian Tan
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Third Military Medical University, Chongqing, China
| | - Yuming Li
- Institute of Hepatobiliary Surgery, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Qinlong Ma
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Junmei Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mengyan Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Liping Pei
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Haiying Ran
- Biomedical Analysis Center, Third Military Medical University, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Zhou Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
- Department of Occupational Health, School of Medicine, Guangxi University, Nanning, China
| |
Collapse
|
22
|
Ostrowski TD, Dantzler HA, Polo-Parada L, Kline DD. H 2O 2 augments cytosolic calcium in nucleus tractus solitarii neurons via multiple voltage-gated calcium channels. Am J Physiol Cell Physiol 2017; 312:C651-C662. [PMID: 28274920 DOI: 10.1152/ajpcell.00195.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species (ROS) play a profound role in cardiorespiratory function under normal physiological conditions and disease states. ROS can influence neuronal activity by altering various ion channels and transporters. Within the nucleus tractus solitarii (nTS), a vital brainstem area for cardiorespiratory control, hydrogen peroxide (H2O2) induces sustained hyperexcitability following an initial depression of neuronal activity. The mechanism(s) associated with the delayed hyperexcitability are unknown. Here we evaluate the effect(s) of H2O2 on cytosolic Ca2+ (via fura-2 imaging) and voltage-dependent calcium currents in dissociated rat nTS neurons. H2O2 perfusion (200 µM; 1 min) induced a delayed, slow, and moderate increase (~27%) in intracellular Ca2+ concentration ([Ca2+]i). The H2O2-mediated increase in [Ca2+]i prevailed during thapsigargin, excluding the endoplasmic reticulum as a Ca2+ source. The effect, however, was abolished by removal of extracellular Ca2+ or the addition of cadmium to the bath solution, suggesting voltage-gated Ca2+ channels (VGCCs) as targets for H2O2 modulation. Recording of the total voltage-dependent Ca2+ current confirmed H2O2 enhanced Ca2+ entry. Blocking VGCC L, N, and P/Q subtypes decreased the number of cells and their calcium currents that respond to H2O2 The number of responder cells to H2O2 also decreased in the presence of dithiothreitol, suggesting the actions of H2O2 were dependent on sulfhydryl oxidation. In summary, here, we have shown that H2O2 increases [Ca2+]i and its Ca2+ currents, which is dependent on multiple VGCCs likely by oxidation of sulfhydryl groups. These processes presumably contribute to the previously observed delayed hyperexcitability of nTS neurons in in vitro brainstem slices.
Collapse
Affiliation(s)
- Tim D Ostrowski
- Department of Physiology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, Missouri.,Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Heather A Dantzler
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Luis Polo-Parada
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - David D Kline
- Department of Biomedical Sciences, Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
23
|
Toxicity assessment of cadmium chloride on planktonic copepods Centropages ponticus using biochemical markers. Toxicol Rep 2017; 4:83-88. [PMID: 28959629 PMCID: PMC5615093 DOI: 10.1016/j.toxrep.2017.01.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/27/2017] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Ecotoxicological effects of cadmium chloride were tested in planktonic copepods Centropages ponticus. Cadmium chloride toxicity influenced enzymatic activity and proteins synthesis in treated groups. Synthesis of proteins, together with changes in antioxidant enzymes activity, could be used as biomarkers for further studies of copepods species.
Pollution of the aquatic environment by heavy metals has become a worldwide problem. Most heavy metals exhibit toxic waste on aquatic organisms. Cadmium (Cd) is a highly toxic metal which affects aquatic organisms acutely and chronically. Planktonic calanoid copepods are the secondary dominant producers of pelagic ecosystems and play a considerable role in the transfer of energy and organic matter from primary producers to higher trophic levels. We investigated the effect of cadmium chloride on biochemical responses of the planktonic calanoid copepods Centropages ponticus which is a key species in the Mediterranean Sea. The response of copepods to cadmium chloride was examined under laboratory-controlled conditions during a 72-h exposure. Catalase (CAT), Glutathion Reductase (GR), Glutathione Peroxidase (GPx), Glutathione-S-Transferase (GST) and Acetylcholinesterase (AChE) were analyzed for cadmium chloride treatments (0, 0.2 and 0.4 μg/L) after 24, 48 and 72 h. Additionally, the thiobarbituric reactive species assay was used to evaluate lipid peroxidation (LPO) level of the copepod. In this study, it is observed that contents of protein increased gradually with an increase in concentrations of metals and exposure time. Our findings showed that cadmium chloride directly influenced malondialdehyde (MDA) levels in the treated copepods hinting that the copepods had suffered from oxidative damage. During exposure, the Cd treatments significantly influenced the biochemical markers (CAT, GR, GPx, GST and AChE). Thus, Centropages ponticus could be used as a suitable bioindicator of exposure to Cd using biochemicals markers.
Collapse
|
24
|
Ollson CJ, Smith E, Herde P, Juhasz AL. Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead. CHEMOSPHERE 2017; 168:658-666. [PMID: 27836265 DOI: 10.1016/j.chemosphere.2016.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 05/05/2023]
Abstract
Incidental ingestion of contaminated soil and dust is a major pathway for human exposure to many inorganic contaminants. To date, exposure research has focused on arsenic (As), cadmium (Cd) and lead (Pb), however, these studies have typically assessed metal(loid) bioavailability individually, even when multiple elements are present in the same matrix. As a consequence, it is unclear whether interactions between these elements occur within the gastro-intestinal tract, which may impact absorption and accumulation. In this study, the influence of contaminant co-exposure was assessed using a mouse bioassay and soluble forms of As, Cd and Pb supplied in mouse chow as individual, binary and tertiary elemental combinations. Arsenic urinary excretion and Pb-liver accumulation were unaffected by As-Pb co-exposure (1-10 mg As kg-1 and 3-30 mg Pb kg-1) while Cd-kidney accumulation was unaffected by the presence of As and/or Pb. However, Cd co-exposure decreased As urinary excretion and increased Pb-liver accumulation. It was hypothesized that Cd influenced arsenate absorption as a consequence of the impairment of phosphate transporters. Although the reason for increasing Pb-liver accumulation following Cd co-exposure is unclear, enhanced Pb accumulation may occur as a result of transport protein overexpression or changes in divalent metal compartmentalization.
Collapse
Affiliation(s)
- Cameron J Ollson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), Salisbury South, SA 5106, Australia.
| | - Euan Smith
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Paul Herde
- South Australian Health and Medical Research Institute, Gilles Plains, SA 5086, Australia
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| |
Collapse
|
25
|
Prozialeck WC, Lamar PC, Edwards JR. Effects of sub-chronic Cd exposure on levels of copper, selenium, zinc, iron and other essential metals in rat renal cortex. Toxicol Rep 2016; 3:740-746. [PMID: 28959600 PMCID: PMC5616073 DOI: 10.1016/j.toxrep.2016.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 02/04/2023] Open
Abstract
Cd (Cd) is a nephrotoxic environmental pollutant that causes generalized proximal tubule dysfunction. Even though the specific mechanisms by which Cd damages the kidney have yet to be fully elucidated, there is evidence to suggest that some of these nephrotoxic effects may result from the ability of Cd to alter the levels and function of metals such as Cu, Se, Zn and Fe within the kidney. In order to further explore this issue, we examined the effects of subchronic Cd exposure on tissue levels of a panel of metals (Ca, Cu, Fe, K, Mg, Na, Se and Zn) in the rat renal cortex. Adult male Sprague-Dawley rats were treated with CdCl2 (0.6 mg Cd/kg body weight in isotonic saline by subcutaneous injection, 5 days per week for 6, 9 or 12 weeks). At each time point, 24 h urine samples were collected and assayed for levels of protein, creatinine, β2 microglobulin and cystatin C. Samples of renal cortex were removed and assayed for levels of the metals of interest by inductively-coupled mass spectrometry at Michigan State University. Results showed that at 9 and 12 weeks, Cd caused significant increases in urine volume and urinary protein with no change in creatinine excretion. Increases in the excretion of the urinary biomarkers β2 microglobulin and cystatin C were evident after 6 weeks of Cd exposure. Results of the metal analyses showed that Cd caused significant increases in tissue levels of Cu and Se at all of the time points examined. Tissue levels of Zn were transiently elevated at 6 weeks but declined to control levels at 9 and 12 weeks. Cd caused a significant decrease in levels of Fe at 9 and 12 weeks. Cd had no effects on any of the other metals. Tissue levels of Cd were 530 ± 52, 863 ± 23, 837 ± 23 ppm dry weight at 6, 9 and 12 weeks, respectively. These results indicate that the early stages of Cd nephrotoxicity are associated with alterations in renal tissue levels of Cu, Se, Zn and Fe. The fact that the changes in levels of the metals occurred during the early stages of Cd toxicity raises the possibility that the alterations in renal cortical metal content may play some role in the pathophysiology or Cd-induced injury.
Collapse
Affiliation(s)
- Walter C Prozialeck
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | - Peter C Lamar
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| | - Joshua R Edwards
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL 60515, United States
| |
Collapse
|
26
|
Gerasimenko TN, Senyavina NV, Anisimov NU, Tonevitskaya SA. A Model of Cadmium Uptake and Transport in Caco-2 Cells. Bull Exp Biol Med 2016; 161:187-92. [PMID: 27259497 DOI: 10.1007/s10517-016-3373-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Indexed: 01/09/2023]
Abstract
We created a physiologically substantiated kinetic model of cadmium transport and toxicity in intestinal cell model (Caco-2 cells). Transcriptome profiling of Caco-2 cells revealed high content of transporter DMT1 and ZIP14 and intensive expression of some calcium channels of the CACN family. The mathematical model describing three types of transporters, as well as intracellular cadmium binding with metallothionein and excretion through the basolateral membrane allowed us to construct cadmium uptake and transport curves that approximated the previously obtained experimental data. Using the proposed model, we determined toxic intracellular cadmium concentration leading to cell death and impairing the integrity of cell monolayer and described cadmium transport in this case.
Collapse
Affiliation(s)
| | - N V Senyavina
- BioCilicum Research and Production Center, Moscow, Russia.
| | - N U Anisimov
- Moscow State University of Mechanical Engineering (MAMI), Moscow, Russia
| | - S A Tonevitskaya
- Moscow State University of Mechanical Engineering (MAMI), Moscow, Russia
| |
Collapse
|
27
|
Physiologically relevant plasma d,l-homocysteine concentrations mobilize Cd from human serum albumin. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1027:181-6. [PMID: 27294530 DOI: 10.1016/j.jchromb.2016.05.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Although low-level chronic exposure of humans to cadmium (Cd(2+)) can result in a variety of adverse health effects, little is known about the role that its interactions with plasma proteins and small molecular weight (SMW) ligands in the bloodstream may play in delivering this metal to its target organs. To gain insight, a Cd-human serum albumin (HSA) 1:1 (molar ratio) complex was analyzed by size exclusion chromatography (SEC) coupled on-line to a flame atomic absorption spectrometer (FAAS). Using a phosphate buffered saline (PBS)-buffer mobile phase, the stability of the Cd-HSA complex was investigated in the presence of 2.0mM of SMW ligands, including taurine, acetaminophen, l-methionine, l-cysteine (Cys), d,l-homocysteine (hCys) or l-cysteine methyl-ester (Cys-Me). While taurine, acetaminophen and l-methionine did not affect its integrity, Cys, hCys and Cys-Me completely abstracted Cd from HSA. Subsequent investigations into the effect of 1.5, 1.0 and 0.5mM Cys and hCys on the integrity of the Cd-HSA complex revealed clear differences with regard to the nature of the eluting SMW-Cd species between these structurally related endogenous thiols. Interestingly, the Cd-specific chromatograms that were obtained for 0.5mM hCys revealed the elution of an apparent mixture of the parent Cd-HSA complex with a significant contribution of a structurally uncharacterized CdxhCysy species. Since this hCys concentration is encountered in blood plasma of hyperhomocysteinemia patients and since previous studies by others have revealed that a SH-containing carrier mediates the uptake of Cd into hepatocytes, our results suggest that plasma hCys may play a role in the toxicologically relevant translocation of Cd from the bloodstream to mammalian target organs.
Collapse
|
28
|
Wu X, Cobbina SJ, Mao G, Xu H, Zhang Z, Yang L. A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8244-59. [PMID: 26965280 DOI: 10.1007/s11356-016-6333-x] [Citation(s) in RCA: 544] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 02/21/2016] [Indexed: 04/16/2023]
Abstract
The rational for the study was to review the literature on the toxicity and corresponding mechanisms associated with lead (Pb), mercury (Hg), cadmium (Cd), and arsenic (As), individually and as mixtures, in the environment. Heavy metals are ubiquitous and generally persist in the environment, enabling them to biomagnify in the food chain. Living systems most often interact with a cocktail of heavy metals in the environment. Heavy metal exposure to biological systems may lead to oxidation stress which may induce DNA damage, protein modification, lipid peroxidation, and others. In this review, the major mechanism associated with toxicities of individual metals was the generation of reactive oxygen species (ROS). Additionally, toxicities were expressed through depletion of glutathione and bonding to sulfhydryl groups of proteins. Interestingly, a metal like Pb becomes toxic to organisms through the depletion of antioxidants while Cd indirectly generates ROS by its ability to replace iron and copper. ROS generated through exposure to arsenic were associated with many modes of action, and heavy metal mixtures were found to have varied effects on organisms. Many models based on concentration addition (CA) and independent action (IA) have been introduced to help predict toxicities and mechanisms associated with metal mixtures. An integrated model which combines CA and IA was further proposed for evaluating toxicities of non-interactive mixtures. In cases where there are molecular interactions, the toxicogenomic approach was used to predict toxicities. The high-throughput toxicogenomics combines studies in genetics, genome-scale expression, cell and tissue expression, metabolite profiling, and bioinformatics.
Collapse
Affiliation(s)
- Xiangyang Wu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China.
| | - Samuel J Cobbina
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Hai Xu
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Zhen Zhang
- School of the Environment, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, Jiangsu, China
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|
29
|
Weaver VM, Kotchmar DJ, Fadrowski JJ, Silbergeld EK. Challenges for environmental epidemiology research: are biomarker concentrations altered by kidney function or urine concentration adjustment? JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:1-8. [PMID: 25736163 DOI: 10.1038/jes.2015.8] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 01/07/2015] [Accepted: 01/07/2015] [Indexed: 05/28/2023]
Abstract
Biomonitoring has become a standard approach for exposure assessment in occupational and environmental epidemiology. The use of biological effect markers to identify early adverse changes in target organs has also become widely adopted. However, the potential for kidney function to affect biomarker levels in the body and the optimal approach to adjustment of biomarker concentrations in spot urine samples for hydration status are two important but underappreciated challenges associated with biomarker use. Several unexpected findings, such as positive associations between urine nephrotoxicant levels and estimated glomerular filtration rate (eGFR), have been reported recently in research using biomarkers. These and other findings, discussed herein, suggest an impact of kidney glomerular filtration or tubule processing on biomarker levels. This is more commonly raised in the context of decreased kidney filtration, traditionally referred to as reverse causality; however, recent data suggest that populations with normal kidney filtration may be affected as well. Misclassification bias would result if biomarkers reflect kidney function as well as either exposures or early biological effect outcomes. Furthermore, urine biomarker associations with eGFR that differ markedly by approach used to adjust for urine concentration have been reported. Associations between urine measures commonly used for this adjustment, such as urine creatinine, and specific research outcomes could alter observed biomarker associations with outcomes. Research recommendations to address the potential impact of kidney function and hydration status adjustment on biomarkers are provided, including a range of approaches to study design, exposure and outcome assessment, and adjustment for urine concentration.
Collapse
Affiliation(s)
- Virginia M Weaver
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Dennis J Kotchmar
- National Center for Environmental Assessment, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Jeffrey J Fadrowski
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Pandey M, Joshi GM, Polu AR. Electrical performance of soft polymer ionic membranes with mono and multi polymer systems. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2015. [DOI: 10.1016/j.kijoms.2015.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
31
|
Microbial and Heavy Metal Contaminant of Antidiabetic Herbal Preparations Formulated in Bangladesh. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:243593. [PMID: 26587044 PMCID: PMC4637483 DOI: 10.1155/2015/243593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/17/2015] [Accepted: 10/04/2015] [Indexed: 02/03/2023]
Abstract
The aim of the current study was to evaluate microbial contamination in terms of microbial load (total aerobic count and total coliform count) and specific pathogenic bacteria (Salmonella spp., Escherichia coli, particularly Escherichia coli 0157) in thirteen antidiabetic herbal preparations (ADHPs) from Dhaka City. All the thirteen ADHPs had been found contaminated with fungi and different pathogenic bacteria. From the data, it is found that only two of these preparations (ADHP-1 and ADHP-12) complied with the safety limit (as stated in different Pharmacopoeias and WHO guidelines) evaluated by all different microbial counts. None of these herbal preparations could assure the safety as all of them were contaminated by fungi. The overall safety regarding heavy metal content (Zn, Cu, Mn, Cr, Cd, and Pb) was assured as none of them exceeded the safety limit of the daily intake. Microbial contaminants in these herbal preparations pose a potential risk for human health and care should be taken in every step involved in the preparation of these herbal preparations to assure safety.
Collapse
|
32
|
Adamczyk J, Bal W, Krężel A. Coordination properties of dithiobutylamine (DTBA), a newly introduced protein disulfide reducing agent. Inorg Chem 2014; 54:596-606. [PMID: 25531180 DOI: 10.1021/ic5025026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The acid-base properties and metal-binding abilities of (2S)-2-amino-1,4-dimercaptobutane, otherwise termed dithiobutylamine (DTBA), which is a newly introduced reagent useful for reducing protein and peptide disulfides, were studied in solution using potentiometry, (1)H NMR spectroscopy, spectropolarimetry, and UV-vis spectroscopy. The list of metal ions studied here includes Zn(II), Cd(II), Ni(II), Co(II), and Cu(I). We found that DTBA forms specific and very stable polynuclear and mononuclear complexes with all of these metal ions using both of its sulfur donors. DTBA forms complexes more stable than those of the commonly used disulfide reducing agent DTT, giving it more interference capacity in studies of metal binding in thiol-containing biomolecules. The ability of DTBA to strongly bind metal ions is reflected in its limited properties as a thiol protectant in their presence, which is manifested through slower disulfide reduction kinetics. We found that this effect correlated with the stabilities of the complexes. Additionally, the reducing properties of DTBA toward MMTS-modified papain (MMTS = S-methylmethanethiosulfonate) were also significantly affected by the investigated metal ions. In this case, however, electrostatic interactions and stereospecific effects, rather than metal-binding abilities, were found to be responsible for the reduced protective properties of DTBA. Despite its limitations, a high affinity toward metal ions makes DTBA an attractive agent in competition studies with metalloproteins.
Collapse
Affiliation(s)
- Justyna Adamczyk
- Laboratory of Chemical Biology, Faculty of Biotechnology, University of Wroclaw , Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | | | | |
Collapse
|
33
|
Ortega P, Custódio MR, Zanotto FP. Characterization of cadmium plasma membrane transport in gills of a mangrove crab Ucides cordatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 157:21-29. [PMID: 25456216 DOI: 10.1016/j.aquatox.2014.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/16/2014] [Accepted: 09/19/2014] [Indexed: 06/04/2023]
Abstract
Membrane pathway for intracellular cadmium (Cd(2+)) accumulation is not fully elucidated in many organisms and has not been studied in crab gill cells. To characterize membrane Cd(2+) transport of anterior and posterior gill cells of Ucides cordatus, a hypo-hyper-regulating crab, a change in intracellular Cd(2+) concentration under various experimental conditions was examined by using FluoZin, a fluorescent probe. The membrane Cd(2+) transport was estimated by the augmentation of FluoZin fluorescence induced by extracellular application of CdCl2 and different inhibitors. Addition of extracellular calcium (Ca(2+)) to the cells affected little the fluorescence of FluoZin, confirming that Cd(2+) was the main ion increasing intracellular fluorescence. Ca(2+) channels blockers (nimodipine and verapamil) decreased Cd(2+) influx as well as vanadate, a Ca(2+)-ATPase blocker. Chelating intracellular Ca(2+) (BAPTA) decreased Cd(2+) influx in gill cells, while increasing intracellular Ca(2+) (caffeine) augmented Cd influx. Cd(2+) and ATP added at different temporal conditions were not effective at increasing intracellular Cd(2+) accumulation. Ouabain (Na(+)/K(+)-ATPase inhibitor) increased Cd(2+) influx probably through a change in intracellular Na and/or a change in cell membrane potential. Routes of Cd(2+) influx, a non-essential metal, through the gill cell plasma membrane of crabs are suggested.
Collapse
Affiliation(s)
- P Ortega
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP, Brazil
| | - M R Custódio
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP, Brazil
| | - F P Zanotto
- Instituto de Biociências, Departamento de Fisiologia, Universidade de São Paulo, Rua do Matão, Travessa 14, #101, São Paulo 05508-900, SP, Brazil; Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo 04044-020, Brazil.
| |
Collapse
|
34
|
Silva AOFD, Martinez CBR. Acute effects of cadmium on osmoregulation of the freshwater teleost Prochilodus lineatus: enzymes activity and plasma ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 156:161-168. [PMID: 25203423 DOI: 10.1016/j.aquatox.2014.08.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/21/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Cadmium (Cd) is a trace element that is very toxic to fish. It is commonly found in surface waters contaminated with industrial effluents. When dissolved in water, Cd can rapidly cause physiological changes in the gills and kidneys of freshwater fish. The objective of this study was to evaluate the acute effects of Cd on the osmoregulation of the Neotropical fish Prochilodus lineatus. Juvenile fish were exposed to Cd at two concentrations [1 (Cd1) and 10 (Cd10) μgL(-1)] for 24 and 96h. The effects of Cd were evaluated through the analysis of ions (Na(+), K(+), Ca(2+), and Cl(-)) and plasma osmolality, and by measuring the activities of enzymes involved in osmoregulation obtained from the gills and kidney. Fish exposed to Cd for 24 and 96h showed a decrease in Na(+)/K(+)-ATPase activity in the gills and kidney. The activity of carbonic anhydrase decreased in the gills after 24h and in both tissues after 96h of Cd exposure. The gill Ca(2+)-ATPase activity also decreased with Cd exposure, with a concomitant drop in the plasma concentration of Ca(2+). Despite the hypocalcemia, there were no changes in the concentration of the ions Na(+), K(+), and Cl(-) or in plasma osmolality. Among the enzymes involved in ion transport, H(+)-ATPase was the only enzyme that showed increased activity in gills, whereas its activity in kidney remained unchanged. The results of this study demonstrate that waterborne Cd at the maximum concentrations set by Brazilian guidelines for freshwater affects the gills and kidney functions of P. lineatus. Acute exposure to Cd resulted in the decrease of the activity of enzymes, which culminated with the loss of the fish's ability to regulate the levels of calcium in the blood, leading to hypocalcemia.
Collapse
Affiliation(s)
- Alexandre O F da Silva
- Departamento de Ciências Fisiológicas, Laboratório de Ecofisiologia Animal, UEL, Londrina, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, UEL, Londrina, Brazil; Centro de Ciências Humanas e da Educação, UENP, Jacarezinho, Brazil
| | - Cláudia B R Martinez
- Departamento de Ciências Fisiológicas, Laboratório de Ecofisiologia Animal, UEL, Londrina, Brazil; Programa Multicêntrico de Pós-graduação em Ciências Fisiológicas, UEL, Londrina, Brazil.
| |
Collapse
|
35
|
Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2014; 24:378-99. [PMID: 24117228 DOI: 10.1080/09603123.2013.835032] [Citation(s) in RCA: 437] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cadmium is a widespread toxic pollutant of occupational and environmental concern because of its diverse toxic effects: extremely protracted biological half-life (approximately 20-30 years in humans), low rate of excretion from the body and storage predominantly in soft tissues (primarily, liver and kidneys). It is an extremely toxic element of continuing concern because environmental levels have risen steadily due to continued worldwide anthropogenic mobilization. Cadmium is absorbed in significant quantities from cigarette smoke, food, water and air contamination and is known to have numerous undesirable effects in both humans and animals. Cadmium has a diversity of toxic effects including nephrotoxicity, carcinogenicity, teratogenicity and endocrine and reproductive toxicities. At the cellular level, cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Most important seems to be cadmium interaction with DNA repair mechanism, generation of reactive oxygen species and induction of apoptosis. In this article, we have reviewed recent developments and findings on cadmium toxicology.
Collapse
Affiliation(s)
- Anju Rani
- a Department of Biotechnology , Graphic Era University , Dehradun , India
| | | | | | | |
Collapse
|
36
|
Weaver VM, Vargas GG, Silbergeld EK, Rothenberg SJ, Fadrowski JJ, Rubio-Andrade M, Parsons PJ, Steuerwald AJ, Navas-Acien A, Guallar E. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents. ENVIRONMENTAL RESEARCH 2014; 132:226-32. [PMID: 24815335 PMCID: PMC4128831 DOI: 10.1016/j.envres.2014.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 05/21/2023]
Abstract
Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m(2); 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary.
Collapse
Affiliation(s)
- Virginia M Weaver
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| | - Gonzalo García Vargas
- Faculty of Medicine, University of Juárez of Durango State, Durango, Mexico; Secretaría de Salud del Estado de Coahuila, Coahuila, México
| | - Ellen K Silbergeld
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen J Rothenberg
- Instituto Nacional de Salud Publica, Centro de Investigacion en Salud Poblacional, Cuernavaca, Morelos, Mexico
| | - Jeffrey J Fadrowski
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | | - Patrick J Parsons
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - Amy J Steuerwald
- Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Eliseo Guallar
- Johns Hopkins University School of Medicine, Baltimore, MD, USA; Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
37
|
Morris TT, Keir JL, Boshart SJ, Lobanov VP, Ruhland AM, Bahl N, Gailer J. Mobilization of Cd from human serum albumin by small molecular weight thiols. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 958:16-21. [DOI: 10.1016/j.jchromb.2014.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/05/2014] [Accepted: 03/09/2014] [Indexed: 11/26/2022]
|
38
|
Young RK, Villalobos ARA. Stress-induced stimulation of choline transport in cultured choroid plexus epithelium exposed to low concentrations of cadmium. Am J Physiol Regul Integr Comp Physiol 2014; 306:R291-303. [PMID: 24401988 DOI: 10.1152/ajpregu.00252.2013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The choroid plexus epithelium forms the blood-cerebrospinal fluid barrier and accumulates essential minerals and heavy metals. Choroid plexus is cited as being a "sink" for heavy metals and excess minerals, serving to minimize accumulation of these potentially toxic agents in the brain. An understanding of how low doses of contaminant metals might alter transport of other solutes in the choroid plexus is limited. Using primary cultures of epithelial cells isolated from neonatal rat choroid plexus, our objective was to characterize modulation of apical uptake of the model organic cation choline elicited by low concentrations of the contaminant metal cadmium (CdCl₂). At 50-1,000 nM, cadmium did not directly decrease or increase 30-min apical uptake of 10 μM [(3)H]choline. However, extended exposure to 250-500 nM cadmium increased [(3)H]choline uptake by as much as 75% without marked cytotoxicity. In addition, cadmium induced heat shock protein 70 and heme oxygenase-1 protein expression and markedly induced metallothionein gene expression. The antioxidant N-acetylcysteine attenuated stimulation of choline uptake and induction of stress proteins. Conversely, an inhibitor of glutathione synthesis l-buthionine-sulfoximine (BSO) enhanced stimulation of choline uptake and induction of stress proteins. Cadmium also activated ERK1/2 MAP kinase. The MEK1 inhibitor PD98059 diminished ERK1/2 activation and attenuated stimulation of choline uptake. Furthermore, inhibition of ERK1/2 activation abated stimulation of choline uptake in cells exposed to cadmium with BSO. These data indicate that in the choroid plexus, exposure to low concentrations of cadmium may induce oxidative stress and consequently stimulate apical choline transport through activation of ERK1/2 MAP kinase.
Collapse
|
39
|
Takashima I, Kinoshita M, Kawagoe R, Nakagawa S, Sugimoto M, Hamachi I, Ojida A. Design of Ratiometric Fluorescent Probes Based on Arene-Metal-Ion Interactions and Their Application to CdIIand Hydrogen Sulfide Imaging in Living Cells. Chemistry 2014; 20:2184-92. [DOI: 10.1002/chem.201304181] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Indexed: 01/23/2023]
|
40
|
Tsutsumi T, Ishihara A, Yamamoto A, Asaji H, Yamakawa S, Tokumura A. The potential protective role of lysophospholipid mediators in nephrotoxicity induced by chronically exposed cadmium. Food Chem Toxicol 2013; 65:52-62. [PMID: 24361405 DOI: 10.1016/j.fct.2013.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 12/09/2013] [Accepted: 12/12/2013] [Indexed: 12/17/2022]
Abstract
Cadmium is a hazardous metal whose chronic exposure induces renal failure due to fibrosis, but the mechanisms are not well known. In this study we analyzed the molecular species of lysophosphatidic acid (LPA) and related phospholipids, together with their metabolic enzyme activity, in plasma from Wistar rats exposed up to 300ppm Cd(2+) in drinking water for 114days. Exposure of 300ppm Cd(2+) for 114days enhanced autotoxin (ATX)/lysophospholipase D activity, but significantly lowered the total levels of LPA and lysophosphatidylethanolamine. Interestingly, the total level of sphingosine-1-phosphate (S1P) was elevated dose-dependently by Cd(2+). Cultured rat kidney-derived interstitial fibroblast cells, NRK49F cells and proximal epithelial cells, NRK52E cells, were both responsive to the protective action of LPA or S1P against Cd(2+) toxicity. The former cell expresses ATX RNA. In conclusion, the elevation of LPA-producing enzyme activity and S1P concentrations in plasma after exposure of rats to Cd(2+) would protect from the renal toxicity of Cd(2+).
Collapse
Affiliation(s)
- Toshihiko Tsutsumi
- Department of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Japan
| | - Akira Ishihara
- Department of Anatomic Pathology, Prefectural Nobeoka Hospital, Miyazaki, Japan
| | - Aimi Yamamoto
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Hiroki Asaji
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Syougo Yamakawa
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, Japan.
| |
Collapse
|
41
|
Bernhoft RA. Cadmium toxicity and treatment. ScientificWorldJournal 2013; 2013:394652. [PMID: 23844395 PMCID: PMC3686085 DOI: 10.1155/2013/394652] [Citation(s) in RCA: 293] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/28/2013] [Indexed: 02/06/2023] Open
Abstract
Cadmium is a heavy metal of considerable toxicity with destructive impact on most organ systems. It is widely distributed in humans, the chief sources of contamination being cigarette smoke, welding, and contaminated food and beverages. Toxic impacts are discussed and appear to be proportional to body burden of cadmium. Detoxification of cadmium with EDTA and other chelators is possible and has been shown to be therapeutically beneficial in humans and animals when done using established protocols.
Collapse
Affiliation(s)
- Robin A Bernhoft
- Bernhoft Centers for Advanced Medicine, 11677 San Vicente Blvd, Suite 208/211, Los Angeles, CA 93023, USA.
| |
Collapse
|
42
|
Costa PM, Caeiro S, Costa MH. Multi-organ histological observations on juvenile Senegalese soles exposed to low concentrations of waterborne cadmium. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:143-158. [PMID: 22752339 DOI: 10.1007/s10695-012-9686-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 06/20/2012] [Indexed: 06/01/2023]
Abstract
A histopathological screening was performed on juvenile Senegalese soles exposed to environmentally realistic concentrations of waterborne Cd (0.5, 5 and 10 μg L(-1)) for 28 days. The severity and dissemination of histopathological changes were variable and limited to the kidney, liver, spleen, gills and skin goblet cells. Contradicting available literature that refers the liver as the most affected organ upon acute exposure and the kidney following chronic exposure, the liver was the most impacted organ (even at the lowest concentration), in a trend that could relate to the duration of exposure and Cd concentration. The most noticeable hepatic alterations related to inflammation, although hepatocellular alterations like lipidosis and eosinophilic foci also occurred. The trunk kidney of exposed fish endured moderate inflammation, apoptosis and necrosis, however, without a clear time-dependent effect. The spleen of fish subjected to the highest concentrations revealed diffuse necrotic foci accompanied by melanomacrophage intrusion. The gills, albeit the most important apical uptake organ of dissolved toxicants, sustained only moderate damage, from epithelial hyperplasia and pavement cell detachment to the potentially more severe chloride cell alterations. In the skin, an increase in goblet cell size occurred, most notoriously correlated to Cd concentration at earlier stages of exposure. The results show that a metal-naïve juvenile fish can endure deleterious effects when exposed to low, ecologically relevant, concentrations of a common toxic metal and that the pattern of Cd-induced histopathological alterations can be complex and linked to organ-specific responses and metal translocation within the organism.
Collapse
Affiliation(s)
- P M Costa
- IMAR-Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | | | | |
Collapse
|
43
|
|
44
|
Abstract
Cadmium is known for its toxicity in animals and man as it is not used in these species. Its only role in biology is as a zinc replacement at the catalytic site of a particular class of carbonic anhydrases in some marine diatoms. The toxicity of cadmium continues to be a significant public health concern as cadmium enters the food chain and it is taken up by tobacco smokers. The biochemical basis for its toxicity has been the objective of research for over 50 years. Cadmium damages the kidneys, the lungs upon inhalation, and interferes with bone metabolism. Evidence is accumulating that it affects the cardiovascular system. Cadmium is classified as a human carcinogen. It generates oxidative stress. This chapter discusses the chemistry and biochemistry of cadmium(II) ions, the only important state of cadmium in biology. This background is needed to interpret the countless effects of cadmium in laboratory experiments with cultured cells or with animals with regard to their significance for human health. Evaluation of the risks of cadmium exposure and the risk factors that affect cadmium's biological effects in tissues is an on-going process. It appears that the more we learn about the biochemistry of cadmium and the more sensitive assays we develop for determining exposure, the lower we need to set the upper limits for exposure to protect those at risk. But proper control of cadmium's presence and interactions with living species and the environment still needs to be based on improved knowledge about the mechanisms of cadmium toxicity; the gaps in our knowledge in this area are discussed herein.
Collapse
|
45
|
Weaver VM, Kim NS, Lee BK, Parsons PJ, Spector J, Fadrowski J, Jaar BG, Steuerwald AJ, Todd AC, Simon D, Schwartz BS. Differences in urine cadmium associations with kidney outcomes based on serum creatinine and cystatin C. ENVIRONMENTAL RESEARCH 2011; 111:1236-42. [PMID: 21871619 PMCID: PMC3210933 DOI: 10.1016/j.envres.2011.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 07/23/2011] [Accepted: 07/28/2011] [Indexed: 05/23/2023]
Abstract
Cadmium is a well-known nephrotoxicant; chronic exposure increases risk for chronic kidney disease. Recently, however, associations between urine cadmium and higher creatinine-based estimated glomerular filtration rate (eGFR) have been reported. Analyses utilizing alternate biomarkers of kidney function allow evaluation of potential mechanisms for these observations. We compared associations of urine cadmium with kidney function measures based on serum cystatin C to those with serum creatinine in 712 lead workers. Mean (standard deviation) molybdenum-corrected urine cadmium, Modification of Diet in Renal Disease (MDRD) eGFR and multi-variable cystatin C eGFR were 1.02 (0.65) μg/g creatinine, and 97.4 (19.2) and 112.0 (17.7) mL/min/1.73 m2, respectively. The eGFR measures were moderately correlated (rs=0.5; p<0.001). After adjustment, ln (urine cadmium) was not associated with serum cystatin-C-based measures. However, higher ln (urine cadmium) was associated with higher creatinine-based eGFRs including the MDRD and an equation incorporating serum cystatin C and creatinine (beta-coefficient=4.1 mL/min/1.73 m2; 95% confidence interval=1.6, 6.6). Urine creatinine was associated with serum creatinine-based but not cystatin-C-based eGFRs. These results support a biomarker-specific, rather than a kidney function, effect underlying the associations observed between higher urine cadmium and creatinine-based kidney function measures. Given the routine use of serum and urine creatinine in kidney and biomarker research, additional research to elucidate the mechanism(s) for these associations is essential.
Collapse
Affiliation(s)
- Virginia M Weaver
- Division of Occupational and Environmental Health, Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, 615N. Wolfe St., Rm. 7041, Baltimore, MD 21205, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Moulis JM, Thévenod F. New perspectives in cadmium toxicity: an introduction. Biometals 2010; 23:763-8. [DOI: 10.1007/s10534-010-9365-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022]
|
47
|
Moulis JM. Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals 2010; 23:877-96. [DOI: 10.1007/s10534-010-9336-y] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 04/01/2010] [Indexed: 01/12/2023]
|