1
|
Alver CG, Dominguez-Bendala J, Agarwal A. Engineered tools to study endocrine dysfunction of pancreas. BIOPHYSICS REVIEWS 2024; 5:041303. [PMID: 39449867 PMCID: PMC11498943 DOI: 10.1063/5.0220396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024]
Abstract
Pancreas, a vital organ with intricate endocrine and exocrine functions, is central to the regulation of the body's glucose levels and digestive processes. Disruptions in its endocrine functions, primarily regulated by islets of Langerhans, can lead to debilitating diseases such as diabetes mellitus. Murine models of pancreatic dysfunction have contributed significantly to the understanding of insulitis, islet-relevant immunological responses, and the optimization of cell therapies. However, genetic differences between mice and humans have severely limited their clinical translational relevance. Recent advancements in tissue engineering and microfabrication have ushered in a new era of in vitro models that offer a promising solution. This paper reviews the state-of-the-art engineered tools designed to study endocrine dysfunction of the pancreas. Islet on a chip devices that allow precise control of various culture conditions and noninvasive readouts of functional outcomes have led to the generation of physiomimetic niches for primary and stem cell derived islets. Live pancreatic slices are a new experimental tool that could more comprehensively recapitulate the complex cellular interplay between the endocrine and exocrine parts of the pancreas. Although a powerful tool, live pancreatic slices require more complex control over their culture parameters such as local oxygenation and continuous removal of digestive enzymes and cellular waste products for maintaining experimental functionality over long term. The combination of islet-immune and slice on chip strategies can guide the path toward the next generation of pancreatic tissue modeling for better understanding and treatment of endocrine pancreatic dysfunctions.
Collapse
Affiliation(s)
| | - Juan Dominguez-Bendala
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Ashutosh Agarwal
- Author to whom correspondence should be addressed:. Tel.: +1 305 243-8925
| |
Collapse
|
2
|
Yahyazadeh Shourabi A, Kieffer R, de Jong D, Tam D, Aubin-Tam ME. Mechanical characterization of freestanding lipid bilayers with temperature-controlled phase. SOFT MATTER 2024; 20:8524-8537. [PMID: 39417217 DOI: 10.1039/d4sm00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Coexistence of lipid domains in cell membranes is associated with vital biological processes. Here, we investigate two such membranes: a multi-component membrane composed of DOPC and DPPC lipids with gel and fluid separated domains, and a single component membrane composed of PMPC lipids forming ripples. We characterize their mechanical properties below their melting point, where ordered and disordered regions coexist, and above their melting point, where they are in fluid phase. To conduct these inquiries, we create lipid bilayers in a microfluidic chip interfaced with a heating system and optical tweezers. The chip features a bubble trap and enables high-throughput formation of planar bilayers. Optical tweezers experiments reveal interfacial hydrodynamics (fluid-slip) and elastic properties (membrane tension and bending rigidity) at various temperatures. For PMPC bilayers, we demonstrate a higher fluid slip at the interface in the fluid-phase compared to the ripple phase, while for the DOPC:DPPC mixture, similar fluid slip is measured below and above the transition point. Membrane tension for both compositions increases after thermal fluidization. Bending rigidity is also measured using the forces required to extend a lipid nanotube pushed out of the freestanding membranes. This novel temperature-controlled microfluidic platform opens numerous possibilities for thermomechanical studies on freestanding planar membranes.
Collapse
Affiliation(s)
- Arash Yahyazadeh Shourabi
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Roland Kieffer
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Djanick de Jong
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Daniel Tam
- Laboratory for Aero and Hydrodynamics, Faculty of Mechanical Engineering, Delft University of Technology, 2628 CD, Delft, The Netherlands.
| | - Marie-Eve Aubin-Tam
- Department of Bionanoscience, Kavli institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| |
Collapse
|
3
|
Sitte ZR, Karlsson EE, Li H, Zhou H, Lockett MR. Continuous flow delivery system for the perfusion of scaffold-based 3D cultures. LAB ON A CHIP 2024; 24:4105-4114. [PMID: 39099241 PMCID: PMC11391725 DOI: 10.1039/d4lc00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The paper-based culture platform developed by Whitesides readily incorporates tissue-like structures into laboratories with established workflows that rely on monolayer cultures. Cell-laden hydrogels are deposited in these porous scaffolds with micropipettes; these scaffolds support the thin gel slabs, allowing them to be evaluated individually or stacked into thick constructs. The paper-based culture platform has inspired many basic and translational studies, each exploring how readily accessible materials can generate complex structures that mimic aspects of tissues in vivo. Many of these examples have relied on static culture conditions, which result in diffusion-limited environments and cells experiencing pericellular hypoxia. Perfusion-based systems can alleviate pericellular hypoxia and other cell stresses by continually exposing the cells to fresh medium. These perfusion systems are common in microfluidic and organ-on-chip devices supporting cells as monolayer cultures or as 3D constructs. Here, we introduce a continuous flow delivery system, which uses parts readily produced with 3D printing to provide a self-contained culture platform in which cells in paper or other scaffolds are exposed to fresh (flowing) medium. We demonstrate the utility of this device with examples of cells maintained in single cell-laden scaffolds, stacks of cell-laden scaffolds, and scaffolds that contain monolayers of endothelial cells. These demonstrations highlight some possible experimental questions that can be enabled with readily accessible culture materials and a perfusion-based device that can be readily fabricated.
Collapse
Affiliation(s)
- Zachary R Sitte
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Elizabeth E Karlsson
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
| | - Haolin Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Haibo Zhou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
- UNC Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC 27599-7400, USA
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, 125 South Road, Chapel Hill, NC 27599-3290, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC 27599-7295, USA
| |
Collapse
|
4
|
Kefallinou D, Grigoriou M, Boumpas DT, Tserepi A. Mesenchymal Stem Cell and Hematopoietic Stem and Progenitor Cell Co-Culture in a Bone-Marrow-on-a-Chip Device toward the Generation and Maintenance of the Hematopoietic Niche. Bioengineering (Basel) 2024; 11:748. [PMID: 39199706 PMCID: PMC11352072 DOI: 10.3390/bioengineering11080748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Bone marrow has raised a great deal of scientific interest, since it is responsible for the vital process of hematopoiesis and is affiliated with many normal and pathological conditions of the human body. In recent years, organs-on-chips (OoCs) have emerged as the epitome of biomimetic systems, combining the advantages of microfluidic technology with cellular biology to surpass conventional 2D/3D cell culture techniques and animal testing. Bone-marrow-on-a-chip (BMoC) devices are usually focused only on the maintenance of the hematopoietic niche; otherwise, they incorporate at least three types of cells for on-chip generation. We, thereby, introduce a BMoC device that aspires to the purely in vitro generation and maintenance of the hematopoietic niche, using solely mesenchymal stem cells (MSCs) and hematopoietic stem and progenitor cells (HSPCs), and relying on the spontaneous formation of the niche without the inclusion of gels or scaffolds. The fabrication process of this poly(dimethylsiloxane) (PDMS)-based device, based on replica molding, is presented, and two membranes, a perforated, in-house-fabricated PDMS membrane and a commercial poly(ethylene terephthalate) (PET) one, were tested and their performances were compared. The device was submerged in a culture dish filled with medium for passive perfusion via diffusion in order to prevent on-chip bubble accumulation. The passively perfused BMoC device, having incorporated a commercial poly(ethylene terephthalate) (PET) membrane, allows for a sustainable MSC and HSPC co-culture and proliferation for three days, a promising indication for the future creation of a hematopoietic bone marrow organoid.
Collapse
Affiliation(s)
- Dionysia Kefallinou
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patr. Gregoriou Ε’ and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece;
| | - Maria Grigoriou
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (M.G.); (D.T.B.)
| | - Dimitrios T. Boumpas
- Laboratory of Inflammation and Autoimmunity, Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; (M.G.); (D.T.B.)
- 4th Department of Internal Medicine, Attikon University Hospital and Joint Rheumatology Program, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Angeliki Tserepi
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research “Demokritos”, Patr. Gregoriou Ε’ and 27 Neapoleos Str., Aghia Paraskevi, 15341 Athens, Greece;
| |
Collapse
|
5
|
Pamies D, Ekert J, Zurich MG, Frey O, Werner S, Piergiovanni M, Freedman BS, Keong Teo AK, Erfurth H, Reyes DR, Loskill P, Candarlioglu P, Suter-Dick L, Wang S, Hartung T, Coecke S, Stacey GN, Wagegg BA, Dehne EM, Pistollato F, Leist M. Recommendations on fit-for-purpose criteria to establish quality management for microphysiological systems and for monitoring their reproducibility. Stem Cell Reports 2024; 19:604-617. [PMID: 38670111 PMCID: PMC11103889 DOI: 10.1016/j.stemcr.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Cell culture technology has evolved, moving from single-cell and monolayer methods to 3D models like reaggregates, spheroids, and organoids, improved with bioengineering like microfabrication and bioprinting. These advancements, termed microphysiological systems (MPSs), closely replicate tissue environments and human physiology, enhancing research and biomedical uses. However, MPS complexity introduces standardization challenges, impacting reproducibility and trust. We offer guidelines for quality management and control criteria specific to MPSs, facilitating reliable outcomes without stifling innovation. Our fit-for-purpose recommendations provide actionable advice for achieving consistent MPS performance.
Collapse
Affiliation(s)
- David Pamies
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland.
| | - Jason Ekert
- Jason E Ekert: UCB Pharma, Cambridge, MA, USA
| | - Marie-Gabrielle Zurich
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | | | - Sophie Werner
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Benjamin S Freedman
- Division of Nephrology, Kidney Research Institute, and Institute for Stem Cell and Regenerative Medicine, Department of Medicine, University of Washington, Seattle, WA 98109, USA; Plurexa LLC, Seattle, WA 98109, USA
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), Proteos, Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Darwin R Reyes
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Peter Loskill
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany; 3R Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Laura Suter-Dick
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland; University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Muttenz, Switzerland
| | - Shan Wang
- Department of Biomedical Science, University of Lausanne, Lausanne, Switzerland
| | - Thomas Hartung
- Doerenkamp-Zbinden Professor and Chair for Evidence-based Toxicology, Johns Hopkins Bloomberg School of Public Health and Whiting School of Engineering, Baltimore, MD, USA; CAAT Europe, University of Konstanz, Konstanz, Germany
| | - Sandra Coecke
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Glyn N Stacey
- International Stem Cell Banking Initiative, 2 High Street, Barley, Herts SG88HZ, UK; National Stem Cell Resource Centre, Institute of Zoology, Chinese Academy of Sciences, Beijing 100190, China; Institute for Stem Cell and Regenerative Merdicine, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | - Marcel Leist
- CAAT Europe, University of Konstanz, Konstanz, Germany; In vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden foundation, University of Konstanz, Konstanz, Germany
| |
Collapse
|
6
|
Shin H, Hong L, Park W, Shin J, Park JB. Frequency dependence of nanorod self-alignment using microfluidic methods. NANOTECHNOLOGY 2024; 35:305603. [PMID: 38636472 DOI: 10.1088/1361-6528/ad403d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Dielectrophoresis is a potential candidate for aligning nanorods on electrodes, in which the interplay between electric fields and microfluidics is critically associated with its yield. Despite much of previous work on dielectrophoresis, the impact of frequency modulation on dielectrophoresis-driven nanorod self-assembly is insufficiently understood. In this work, we systematically explore the frequency dependence of the self-alignment of silicon nanorod using a microfluidic channel. We vary the frequency from 1kHz to 1000 kHz and analyze the resulting alignments in conjunction with numerical analysis. Our experiment reveals an optimal alignment yield at approximately 100 kHz, followed by a decrease in alignment efficiency. The nanorod self-alignments are influenced by multiple consequences, including the trapping effect, induced electrical double layer, electrohydrodynamic flow, and particle detachment. This study provides insights into the impact of frequency modulation of electric fields on the alignment of silicon nanorods using dielectrophoresis, broadening its use in various future nanotechnology applications.
Collapse
Affiliation(s)
- Hosan Shin
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| | - Lia Hong
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woosung Park
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jae Byung Park
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| |
Collapse
|
7
|
Tokuoka Y, Ishida T. Local Microbubble Removal in Polydimethylsiloxane Microchannel by Balancing Negative and Atmospheric Pressures. MICROMACHINES 2023; 15:37. [PMID: 38258156 PMCID: PMC10819605 DOI: 10.3390/mi15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024]
Abstract
Long-term experiments using organoids and tissues are crucial for drug development. Microfluidic devices have been regularly used in long-term experiments. However, microbubbles often form in these devices, and they may damage and starve cells. A method involving the application of negative pressure has been reported to remove microbubbles from microfluidic devices composed of polydimethylsiloxane; however, negative pressure affects the cells and tissues in microfluidic devices. In this study, a local microbubble removal method was developed using a microfluidic device with 0.5 mm thin polydimethylsiloxane sidewalls. The thin sidewalls counterbalanced the negative and atmospheric pressures, thereby localizing the negative pressure near the negatively pressurized chamber. Microbubbles were removed within 5 mm of the negatively pressurized chamber; however, those in an area 7 mm and more from the chamber were not removed. Using the local removal method, a long-term perfusion test was performed, and no contact was confirmed between the bubbles and the simulated tissue for 72 h.
Collapse
Affiliation(s)
- Yasunori Tokuoka
- Department of Mechanical Engineering, School of Engineering, Institute of Technology, Tokyo 226-8503, Japan
| | - Tadashi Ishida
- Department of Mechanical Engineering, School of Engineering, Institute of Technology, Tokyo 226-8503, Japan
| |
Collapse
|
8
|
Bao M, Dollery SJ, Yuqing F, Tobin GJ, Du K. Micropillar enhanced FRET-CRISPR biosensor for nucleic acid detection. LAB ON A CHIP 2023; 24:47-55. [PMID: 38019145 PMCID: PMC11221459 DOI: 10.1039/d3lc00780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
CRISPR technology has gained widespread adoption for pathogen detection due to its exceptional sensitivity and specificity. Although recent studies have investigated the potential of high-aspect-ratio microstructures in enhancing biochemical applications, their application in CRISPR-based detection has been relatively rare. In this study, we developed a FRET-based biosensor in combination with high-aspect-ratio microstructures and Cas12a-mediated trans-cleavage for detecting HPV 16 DNA fragments. Remarkably, our results show that micropillars with higher density exhibit superior molecular binding capabilities, leading to a tenfold increase in detection sensitivity. Furthermore, we investigated the effectiveness of two surface chemical treatment methods for enhancing the developed FRET assay. A simple and effective approach was also developed to mitigate bubble generation in microfluidic devices, a crucial issue in biochemical reactions within such devices. Overall, this work introduces a novel approach using micropillars for CRISPR-based viral detection and provides valuable insights into optimizing biochemical reactions within microfluidic devices.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | | | - Fnu Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| | - Gregory J Tobin
- Biological Mimetics, Inc., 124 Byte Drive, Frederick, MD 21702, USA
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA.
| |
Collapse
|
9
|
Vanderlaan EL, Sexton J, Evans-Molina C, Buganza Tepole A, Voytik-Harbin SL. Islet-on-chip: promotion of islet health and function via encapsulation within a polymerizable fibrillar collagen scaffold. LAB ON A CHIP 2023; 23:4466-4482. [PMID: 37740372 DOI: 10.1039/d3lc00371j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The protection and interrogation of pancreatic β-cell health and function ex vivo is a fundamental aspect of diabetes research, including mechanistic studies, evaluation of β-cell health modulators, and development and quality control of replacement β-cell populations. However, present-day islet culture formats, including traditional suspension culture as well as many recently developed microfluidic devices, suspend islets in a liquid microenvironment, disrupting mechanochemical signaling normally found in vivo and limiting β-cell viability and function in vitro. Herein, we present a novel three-dimensional (3D) microphysiological system (MPS) to extend islet health and function ex vivo by incorporating a polymerizable collagen scaffold to restore biophysical support and islet-collagen mechanobiological cues. Informed by computational models of gas and molecular transport relevant to β-cell physiology, a MPS configuration was down-selected based on simulated oxygen and nutrient delivery to collagen-encapsulated islets, and 3D-printing was applied as a readily accessible, low-cost rapid prototyping method. Recreating critical aspects of the in vivo microenvironment within the MPS via perfusion and islet-collagen interactions mitigated post-isolation ischemia and apoptosis in mouse islets over a 5-day period. In contrast, islets maintained in traditional suspension formats exhibited progressive hypoxic and apoptotic cores. Finally, dynamic glucose-stimulated insulin secretion measurements were performed on collagen-encapsulated mouse islets in the absence and presence of well-known chemical stressor thapsigargin using the MPS platform and compared to conventional protocols involving commercial perifusion machines. Overall, the MPS described here provides a user-friendly islet culture platform that not only supports long-term β-cell health and function but also enables multiparametric evaluations.
Collapse
Affiliation(s)
- Emma L Vanderlaan
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Medical Scientist/Engineer Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Joshua Sexton
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Carmella Evans-Molina
- Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Adrian Buganza Tepole
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
- School of Mechanical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Sherry L Voytik-Harbin
- Weldon School of Biomedical Engineering, College of Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
10
|
Bao M, Dollery SJ, Yuqing F, Tobin GJ, Du K. Micropillar enhanced FRET-CRISPR biosensor for nucleic acid detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554533. [PMID: 37662406 PMCID: PMC10473682 DOI: 10.1101/2023.08.23.554533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
CRISPR technology has gained widespread adoption for pathogen detection due to its exceptional sensitivity and specificity. Although recent studies have investigated the potential of high-aspect-ratio microstructures in enhancing biochemical applications, their application in CRISPR-based detection has been relatively rare. In this study, we developed a FRET-based biosensor in combination with high-aspect-ratio microstructures and Cas12a-mediated trans-cleavage for detecting HPV 16 DNA fragments. Remarkably, our results show that micropillars with higher density exhibit superior molecular binding capabilities, leading to a tenfold increase in detection sensitivity. Furthermore, we investigated the effectiveness of two surface chemical treatment methods for enhancing the developed FRET assay. A simple and effective approach was also developed to mitigate bubble generation in microfluidic devices, a crucial issue in biochemical reactions within such devices. Overall, this work introduces a novel approach using micropillars for CRISPR-based viral detection and provides valuable insights into optimizing biochemical reactions within microfluidic devices.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Stephen J Dollery
- Biological Mimetics, Inc. 124 Byte Drive, Frederick, MD 21702, United States
| | - Fnu Yuqing
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| | - Gregory J Tobin
- Biological Mimetics, Inc. 124 Byte Drive, Frederick, MD 21702, United States
| | - Ke Du
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, USA
| |
Collapse
|
11
|
Vis MAM, Zhao F, Bodelier ESR, Bood CM, Bulsink J, van Doeselaar M, Amirabadi HE, Ito K, Hofmann S. Osteogenesis and osteoclastogenesis on a chip: Engineering a self-assembling 3D coculture. Bone 2023; 173:116812. [PMID: 37236415 DOI: 10.1016/j.bone.2023.116812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Healthy bone is maintained by the process of bone remodeling. An unbalance in this process can lead to pathologies such as osteoporosis which are often studied with animal models. However, data from animals have limited power in predicting the results that will be obtained in human clinical trials. In search for alternatives to animal models, human in vitro models are emerging as they address the principle of reduction, refinement, and replacement of animal experiments (3Rs). At the moment, no complete in vitro model for bone-remodeling exists. Microfluidic chips offer great possibilities, particularly because of the dynamic culture options, which are crucial for in vitro bone formation. In this study, a scaffold free, fully human, 3D microfluidic coculture model of bone remodeling is presented. A bone-on-a-chip coculture system was developed in which human mesenchymal stromal cells differentiated into the osteoblastic lineage and self-assembled into scaffold free bone-like tissues with the shape and dimensions of human trabeculae. Human monocytes were able to attach to these tissues and to fuse into multinucleated osteoclast-like cells, establishing the coculture. Computational modeling was used to determine the fluid flow induced shear stress and strain in the formed tissue. Furthermore, a set-up was developed allowing for long-term (35 days) on-chip cell culture with benefits including continuous fluid-flow, low bubble formation risk, easy culture medium exchange inside the incubator and live cell imaging options. This on-chip coculture is a crucial advance towards developing in vitro bone remodeling models to facilitate drug testing.
Collapse
Affiliation(s)
- M A M Vis
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands.
| | - F Zhao
- Department of Biomedical Engineering and Zienkiewicz Centre for Computational Engineering, Faculty of Science and Engineering, Swansea University, Swansea, United Kingdom
| | - E S R Bodelier
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - C M Bood
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - J Bulsink
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - M van Doeselaar
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - K Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| | - S Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
12
|
Zeng Y, Khor JW, van Neel TL, Tu WC, Berthier J, Thongpang S, Berthier E, Theberge AB. Miniaturizing chemistry and biology using droplets in open systems. Nat Rev Chem 2023; 7:439-455. [PMID: 37117816 PMCID: PMC10107581 DOI: 10.1038/s41570-023-00483-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2023] [Indexed: 04/30/2023]
Abstract
Open droplet microfluidic systems manipulate droplets on the picolitre-to-microlitre scale in an open environment. They combine the compartmentalization and control offered by traditional droplet-based microfluidics with the accessibility and ease-of-use of open microfluidics, bringing unique advantages to applications such as combinatorial reactions, droplet analysis and cell culture. Open systems provide direct access to droplets and allow on-demand droplet manipulation within the system without needing pumps or tubes, which makes the systems accessible to biologists without sophisticated setups. Furthermore, these systems can be produced with simple manufacturing and assembly steps that allow for manufacturing at scale and the translation of the method into clinical research. This Review introduces the different types of open droplet microfluidic system, presents the physical concepts leveraged by these systems and highlights key applications.
Collapse
Affiliation(s)
- Yuting Zeng
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jian Wei Khor
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Tammi L van Neel
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Wan-Chen Tu
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Jean Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Sanitta Thongpang
- Department of Chemistry, University of Washington, Seattle, WA, USA
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom, Thailand
| | - Erwin Berthier
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| | - Ashleigh B Theberge
- Department of Chemistry, University of Washington, Seattle, WA, USA.
- Department of Urology, School of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Stern S, Wang H, Sadrieh N. Microphysiological Models for Mechanistic-Based Prediction of Idiosyncratic DILI. Cells 2023; 12:1476. [PMID: 37296597 PMCID: PMC10253021 DOI: 10.3390/cells12111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Drug-induced liver injury (DILI) is a major contributor to high attrition rates among candidate and market drugs and a key regulatory, industry, and global health concern. While acute and dose-dependent DILI, namely, intrinsic DILI, is predictable and often reproducible in preclinical models, the nature of idiosyncratic DILI (iDILI) limits its mechanistic understanding due to the complex disease pathogenesis, and recapitulation using in vitro and in vivo models is extremely challenging. However, hepatic inflammation is a key feature of iDILI primarily orchestrated by the innate and adaptive immune system. This review summarizes the in vitro co-culture models that exploit the role of the immune system to investigate iDILI. Particularly, this review focuses on advancements in human-based 3D multicellular models attempting to supplement in vivo models that often lack predictability and display interspecies variations. Exploiting the immune-mediated mechanisms of iDILI, the inclusion of non-parenchymal cells in these hepatoxicity models, namely, Kupffer cells, stellate cells, dendritic cells, and liver sinusoidal endothelial cells, introduces heterotypic cell-cell interactions and mimics the hepatic microenvironment. Additionally, drugs recalled from the market in the US between 1996-2010 that were studies in these various models highlight the necessity for further harmonization and comparison of model characteristics. Challenges regarding disease-related endpoints, mimicking 3D architecture with different cell-cell contact, cell source, and the underlying multi-cellular and multi-stage mechanisms are described. It is our belief that progressing our understanding of the underlying pathogenesis of iDILI will provide mechanistic clues and a method for drug safety screening to better predict liver injury in clinical trials and post-marketing.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA;
| | - Nakissa Sadrieh
- Office of New Drugs, Center of Drug Evaluation and Research, FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993, USA
| |
Collapse
|
14
|
Llabjani V, Siddique MR, Macos A, Abouzid A, Hoti V, Martin FL, Patel II, Raza A. Introducing CELLBLOKS ®: a novel organ-on-a-chip platform allowing a plug-and-play approach towards building organotypic models. IN VITRO MODELS 2022; 1:423-435. [PMID: 39872618 PMCID: PMC11756440 DOI: 10.1007/s44164-022-00027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 01/30/2025]
Abstract
Human organs are structurally and functionally complex systems. Their function is driven by the interactions between many specialised cell types, which is difficult to unravel on a standard Petri dish format. Conventional "Petri dish" approaches to culturing cells are static and self-limiting. However, current organ-on-a-chip technologies are difficult to use, have a limited throughput and lack compatibility with standard workflow conditions. We developed CELLBLOKS® as a novel "plug-and-play" organ-on-a-chip platform that enables straightforward creation of multiple cell-type organ-specific microenvironments. Herein, we demonstrate its advantages by building a liver model representative of live tissue function. CELLBLOKS® allows one to systematically test and identify various cell combinations that replicate optimal hepatic relevance. The combined interactions of fibroblasts, endothelial cells and hepatocytes were analysed using hepatic biochemistry (CYP3A4 and urea), cellular proliferation indices and transporter activities (albumin). The results demonstrate that optimal liver function can be achieved by exploiting crosstalk in co-culture combinations compared to conventional mono-culture. The optimised CELLBLOKS® liver model was tested to analyse drug-induced liver toxicity using tamoxifen. The data suggests that our CELLBLOKS® liver model is highly sensitive to toxic insult compared to mono-culture liver models. In summary, CELLBLOKS® provides a novel cell culture technology for creating human-relevant organotypic models that are easy and straightforward to establish in laboratory settings. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00027-8.
Collapse
Affiliation(s)
- Valon Llabjani
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - M. R. Siddique
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Anaïs Macos
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Afaf Abouzid
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Valmira Hoti
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Francis L. Martin
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Imran I. Patel
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| | - Ahtasham Raza
- REVIVOCELL Limited, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Warrington, WA4 4AD UK
| |
Collapse
|
15
|
Damiati LA, El-Yaagoubi M, Damiati SA, Kodzius R, Sefat F, Damiati S. Role of Polymers in Microfluidic Devices. Polymers (Basel) 2022; 14:5132. [PMID: 36501526 PMCID: PMC9738615 DOI: 10.3390/polym14235132] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Polymers are sustainable and renewable materials that are in high demand due to their excellent properties. Natural and synthetic polymers with high flexibility, good biocompatibility, good degradation rate, and stiffness are widely used for various applications, such as tissue engineering, drug delivery, and microfluidic chip fabrication. Indeed, recent advances in microfluidic technology allow the fabrication of polymeric matrix to construct microfluidic scaffolds for tissue engineering and to set up a well-controlled microenvironment for manipulating fluids and particles. In this review, polymers as materials for the fabrication of microfluidic chips have been highlighted. Successful models exploiting polymers in microfluidic devices to generate uniform particles as drug vehicles or artificial cells have been also discussed. Additionally, using polymers as bioink for 3D printing or as a matrix to functionalize the sensing surface in microfluidic devices has also been mentioned. The rapid progress made in the combination of polymers and microfluidics presents a low-cost, reproducible, and scalable approach for a promising future in the manufacturing of biomimetic scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Laila A. Damiati
- Department of Biology, Collage of Science, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Marwa El-Yaagoubi
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Safa A. Damiati
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rimantas Kodzius
- Faculty of Medicine, Ludwig Maximilian University of Munich (LMU), 80539 Munich, Germany
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | - Farshid Sefat
- Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford BD7 1DP, UK
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, BD7 1DP, UK
| | - Samar Damiati
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
16
|
Giampetruzzi L, Blasi L, Barca A, Sciurti E, Verri T, Casino F, Siciliano P, Francioso L. Advances in Trans-Epithelial Electrical Resistance (TEER) monitoring integration in an Intestinal Barrier-on-Chip (IBoC) platform with microbubbles-tolerant analytical method. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Shakeri A, Jarad NA, Khan S, F Didar T. Bio-functionalization of microfluidic platforms made of thermoplastic materials: A review. Anal Chim Acta 2022; 1209:339283. [PMID: 35569863 DOI: 10.1016/j.aca.2021.339283] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
As a result of their favorable physical and chemical characteristics, thermoplastics have garnered significant interest in the area of microfluidics. The moldable nature of these inexpensive polymers enables easy fabrication, while their durability and chemical stability allow for resistance to high shear stress conditions and functionalization, respectively. This review provides a comprehensive examination several commonly used thermoplastic polymers in the microfluidics space including poly(methyl methacrylate) (PMMA), cyclic olefin polymer (COP) and copolymer (COC), polycarbonates (PC), poly(ethylene terephthalate) (PET), polystyrene (PS), poly(ethylene glycol) (PEG), polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), and polyester. We describe various biofunctionalization strategies applied within thermoplastic microfluidic platforms and their resultant applications. Lastly, emerging technologies with a focus on applying recently developed microfluidic and biofunctionalization strategies into thermoplastic systems are discussed.
Collapse
Affiliation(s)
- Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada
| | - Tohid F Didar
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada; School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
18
|
Patel SN, Mathews CE, Chandler R, Stabler CL. The Foundation for Engineering a Pancreatic Islet Niche. Front Endocrinol (Lausanne) 2022; 13:881525. [PMID: 35600597 PMCID: PMC9114707 DOI: 10.3389/fendo.2022.881525] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022] Open
Abstract
Progress in diabetes research is hindered, in part, by deficiencies in current experimental systems to accurately model human pathophysiology and/or predict clinical outcomes. Engineering human-centric platforms that more closely mimic in vivo physiology, however, requires thoughtful and informed design. Summarizing our contemporary understanding of the unique and critical features of the pancreatic islet can inform engineering design criteria. Furthermore, a broad understanding of conventional experimental practices and their current advantages and limitations ensures that new models address key gaps. Improving beyond traditional cell culture, emerging platforms are combining diabetes-relevant cells within three-dimensional niches containing dynamic matrices and controlled fluidic flow. While highly promising, islet-on-a-chip prototypes must evolve their utility, adaptability, and adoptability to ensure broad and reproducible use. Here we propose a roadmap for engineers to craft biorelevant and accessible diabetes models. Concurrently, we seek to inspire biologists to leverage such tools to ask complex and nuanced questions. The progenies of such diabetes models should ultimately enable investigators to translate ambitious research expeditions from benchtop to the clinic.
Collapse
Affiliation(s)
- Smit N. Patel
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| | - Rachel Chandler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Cherie L. Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
- Diabetes Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Thalhofer T, Keck M, Kibler S, Hayden O. Capacitive Sensor and Alternating Drive Mixing for Microfluidic Applications Using Micro Diaphragm Pumps. SENSORS 2022; 22:s22031273. [PMID: 35162018 PMCID: PMC8839760 DOI: 10.3390/s22031273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/01/2023]
Abstract
Microfluidic systems are of paramount importance in various fields such as medicine, biology, and pharmacy. Despite the plethora of methods, accurate dosing and mixing of small doses of liquid reagents remain challenges for microfluidics. In this paper, we present a microfluidic device that uses two micro pumps and an alternating drive pattern to fill a microchannel. With a capacitive sensor system, we monitored the fluid process and controlled the micro pumps. In a first experiment, the system was set up to generate a 1:1 mixture between two fluids while using a range of fluid packet sizes from 0.25 to 2 µL and pumping frequencies from 50 to 100 Hz. In this parameter range, a dosing accuracy of 50.3 ± 0.9% was reached, validated by a gravimetric measurement. Other biased mixing ratios were tested as well and showed a deviation of 0.3 ± 0.3% from the targeted mixing ratio. In a second experiment, Trypan blue was used to study the mixing behavior of the system. Within one to two dosed packet sets, the two reagents were reliably mixed. The results are encouraging for future use of micro pumps and capacitive sensing in demanding microfluidic applications.
Collapse
Affiliation(s)
- Thomas Thalhofer
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (M.K.); (S.K.)
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Department of Electrical and Computer Engineering, TU Munich, Einsteinstrasse 25, 81675 Munich, Germany;
- Correspondence:
| | - Mauro Keck
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (M.K.); (S.K.)
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Department of Electrical and Computer Engineering, TU Munich, Einsteinstrasse 25, 81675 Munich, Germany;
| | - Sebastian Kibler
- Fraunhofer EMFT Research Institution for Microsystems and Solid State Technologies, Hansastrasse 27d, 80686 Munich, Germany; (M.K.); (S.K.)
| | - Oliver Hayden
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Department of Electrical and Computer Engineering, TU Munich, Einsteinstrasse 25, 81675 Munich, Germany;
| |
Collapse
|
20
|
Rodríguez-Comas J, Ramón-Azcón J. Islet-on-a-chip for the study of pancreatic β-cell function. IN VITRO MODELS 2022; 1:41-57. [PMID: 39872972 PMCID: PMC11749753 DOI: 10.1007/s44164-021-00005-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 11/08/2021] [Indexed: 01/30/2025]
Abstract
Diabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing β-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ's physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic β-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this "organ" and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic β-cell function.
Collapse
Affiliation(s)
- Júlia Rodríguez-Comas
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
| | - Javier Ramón-Azcón
- Biosensors for Bioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac, 10-12, 08028 Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
21
|
Abstract
Subcutaneous injection is crucial for the treatment of many diseases. Especially for regular or continuous injections, automated dosing is beneficial. However, existing devices are large, uncomfortable, visible under clothing, or interfere with physical activity. Thus, the development of small, energy efficient and reliable patch pumps or implantable systems is necessary and research on microelectromechanical system (MEMS) based drug delivery devices has gained increasing interest. However, the requirements of medical applications are challenging and especially the dosing precision and reliability of MEMS pumps are not yet sufficiently evaluated. To enable further miniaturization, we propose a precise 5 × 5 mm2 silicon micropump. Detailed experimental evaluation of ten pumps proves a backpressure capability with air of 12.5 ± 0.8 kPa, which indicates the ability to transport bubbles. The maximal water flow rate is 74 ± 6 µL/min and the pumps’ average blocking pressure is 51 kPa. The evaluation of the dosing precision for bolus deliveries with water and insulin shows a high repeatability of dosed package volumes. The pumps show a mean standard deviation of only 0.02 mg for 0.5 mg packages, and therefore, stay below the generally accepted 5% deviation, even for this extremely small amount. The high precision enables the combination with higher concentrated medication and is the foundation for the development of an extremely miniaturized patch pump.
Collapse
|
22
|
Baldwin SA, Van Bruggen SM, Koelbl JM, Appalabhotla R, Bear JE, Haugh JM. Microfluidic devices fitted with "flowver" paper pumps generate steady, tunable gradients for extended observation of chemotactic cell migration. BIOMICROFLUIDICS 2021; 15:044101. [PMID: 34290842 PMCID: PMC8282348 DOI: 10.1063/5.0054764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/19/2021] [Indexed: 05/11/2023]
Abstract
Microfluidics approaches have gained popularity in the field of directed cell migration, enabling control of the extracellular environment and integration with live-cell microscopy; however, technical hurdles remain. Among the challenges are the stability and predictability of the environment, which are especially critical for the observation of fibroblasts and other slow-moving cells. Such experiments require several hours and are typically plagued by the introduction of bubbles and other disturbances that naturally arise in standard microfluidics protocols. Here, we report on the development of a passive pumping strategy, driven by the high capillary pressure and evaporative capacity of paper, and its application to study fibroblast chemotaxis. The paper pumps-flowvers (flow + clover)-are inexpensive, compact, and scalable, and they allow nearly bubble-free operation, with a predictable volumetric flow rate on the order of μl/min, for several hours. To demonstrate the utility of this approach, we combined the flowver pumping strategy with a Y-junction microfluidic device to generate a chemoattractant gradient landscape that is both stable (6+ h) and predictable (by finite-element modeling calculations). Integrated with fluorescence microscopy, we were able to recapitulate previous, live-cell imaging studies of fibroblast chemotaxis to platelet derived growth factor (PDGF), with an order-of-magnitude gain in throughput. The increased throughput of single-cell analysis allowed us to more precisely define PDGF gradient conditions conducive for chemotaxis; we were also able to interpret how the orientation of signaling through the phosphoinositide 3-kinase pathway affects the cells' sensing of and response to conducive gradients.
Collapse
Affiliation(s)
- Scott A. Baldwin
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Shawn M. Van Bruggen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Joseph M. Koelbl
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - Ravikanth Appalabhotla
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| | - James E. Bear
- Department of Cell Biology and Physiology, UNC Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, USA
| | - Jason M. Haugh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Campus Box 7905, Raleigh, North Carolina 27695, USA
| |
Collapse
|
23
|
Cheng C, Foxworthy G, Fridman G. On-chip ionic current sensor. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2021; 127:314. [PMID: 36726779 PMCID: PMC9887663 DOI: 10.1007/s00339-021-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/25/2021] [Indexed: 06/18/2023]
Abstract
Neural implants that deliver drugs or electrical stimuli via microfluidic ports are promising in providing therapy for various disorders such as epilepsy, chronic pain, and vestibular diseases. To deliver the stimuli to a neural target, these devices incorporate two or more electrodes that apply an electric field to drive charged particles or ions along an aqueous route provided by microfluidic channels. The amount of drug/current delivered is determined by measuring the ionic current flow. When the ionic current can only travel from one electrode to another via a single route or channel, the amount of therapeutic current is stoichiometrically equal to the electronic current applied by the device and therefore can be measured with an electronic current sensor. However, some recently developed devices contain networks of branched channels. In this case, the presence of multiple parallel ionic current paths makes it so that the current through any one individual channel is no longer measurable by observing electronic current alone. Here, we present an on-chip sensor that uses two Pt/Ir electrodes to transduce the ionic current through a target channel into a measurable voltage signal. The size of the metal wires did not impact the measured voltage, the size of the channel between the two sensing electrodes determines sensitivity of the sensor, change in temperature can cause a change in readings, and input impedance of the voltage measuring equipment must be greater than 1 GΩ to maintain measurement stability. The sensor showed stability of reading in a one-week longevity test.
Collapse
Affiliation(s)
- Chaojun Cheng
- Mechanical Engineering, Johns Hopkins University, Baltimore, USA
| | - Grace Foxworthy
- Biomedical Engineering, Johns Hopkins University, Baltimore, USA
| | - Gene Fridman
- Otolaryngology HNS, Johns Hopkins University, Baltimore, USA
- Biomedical Engineering, Johns Hopkins University, Baltimore, USA
- Computer and Electrical Engineering, Johns Hopkins University, Baltimore, USA
| |
Collapse
|
24
|
Glieberman AL, Pope BD, Melton DA, Parker KK. Building Biomimetic Potency Tests for Islet Transplantation. Diabetes 2021; 70:347-363. [PMID: 33472944 PMCID: PMC7881865 DOI: 10.2337/db20-0297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Diabetes is a disease of insulin insufficiency, requiring many to rely on exogenous insulin with constant monitoring to avoid a fatal outcome. Islet transplantation is a recent therapy that can provide insulin independence, but the procedure is still limited by both the availability of human islets and reliable tests to assess their function. While stem cell technologies are poised to fill the shortage of transplantable cells, better methods are still needed for predicting transplantation outcome. To ensure islet quality, we propose that the next generation of islet potency tests should be biomimetic systems that match glucose stimulation dynamics and cell microenvironmental preferences and rapidly assess conditional and continuous insulin secretion with minimal manual handing. Here, we review the current approaches for islet potency testing and outline technologies and methods that can be used to arrive at a more predictive potency test that tracks islet secretory capacity in a relevant context. With the development of potency tests that can report on islet secretion dynamics in a context relevant to their intended function, islet transplantation can expand into a more widely accessible and reliable treatment option for individuals with diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Benjamin D Pope
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
| | - Douglas A Melton
- Harvard Department of Stem Cell and Regenerative Biology, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| | - Kevin Kit Parker
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA
- Harvard Stem Cell Institute, Cambridge, MA
| |
Collapse
|
25
|
Tsao CW, Huang QZ, You CY, Hilpert M, Hsu SY, Lamorski K, Chang LC, Sławiński C. The effect of channel aspect ratio on air entrapment during imbibition in soil-on-a-chip micromodels with 2D and 2.5D pore structures. LAB ON A CHIP 2021; 21:385-396. [PMID: 33315024 DOI: 10.1039/d0lc01029d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We developed a low-cost method for fabricating "soil-on-a-chip" micromodels with 2D and 2.5D pore structures by stacking layers made with a conventional low-cost tabletop CNC router followed by tape bonding. The pore structure was extracted from an X-ray micro-computed tomography scanning image of a medium-grain sandstone sample. The imbibition experiments performed in the 2D and 2.5D micromodels showed the trends of the residual saturation versus capillary number (Ca). The channels showed opposing trends for low-aspect-ratio 2D and high-aspect-ratio 2.5D micromodels. As the channel aspect ratio increased, the location of air entrapment changed from dead-end pores to transport pores. The sizes of trapped air bubbles in the transport pores decreased as the injection flow rates increased. To show the relationship between the air trapped size and Ca, we derived equations that described the competition between the bulk menisci and the corner flow in the channels for different Ca based on the "supply principle." The relative contributions of the piston displacement and corner film flow, which were dependent on the cross-sectional shapes of the pores and Ca, determined the size and location of the air bubbles trapped in the 2.5D micromodel.
Collapse
Affiliation(s)
- Chia-Wen Tsao
- Department of Mechanical Engineering, National Central University, Taoyuan City 32001, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Huang C, Wippold JA, Stratis-Cullum D, Han A. Eliminating air bubble in microfluidic systems utilizing integrated in-line sloped microstructures. Biomed Microdevices 2020; 22:76. [PMID: 33090275 DOI: 10.1007/s10544-020-00529-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
In most microfluidic systems, formation and accumulation of air and other gas bubbles can be detrimental to their operation. Air bubbles in a microfluidic channel induce a pressure profile fluctuation and therefore disturb the stability of the system. Once an air bubble is generated, it is also extremely difficult to remove such bubbles from the microfluidic systems. In tissue and cell culture microfluidic systems, a single air bubble can completely shear off cells that are being cultured. Air bubbles can be especially problematic in microfluidic systems that have to operate for long periods of time, since completely eliminating the generation of air bubbles for prolonged periods of time, where a single air bubble can ruin an entire multi-day/multi-week experiment, is extremely challenging. Several in-line and off-chip bubble traps have been developed so far, but cannot completely eliminate air bubbles from the system or are relatively difficult to integrate into microfluidic systems. Recent advancements in two-photon polymerization (2PP)-based microfabrication method eliminates the restriction in Z-axis control in conventional two-dimensional microfabrication methods, and thus enables complex 3D structures to be fabricated at sub-micrometer resolution. In this work, by utilizing this 2PP technique, we developed a sloped microfluidic structure that is capable of both trapping and real-time removal of air bubbles from the system in a consistent and reliable manner. The novel structures and designs developed in this work present a unique opportunity to overcome many limitations of current methods, bring state-of-the-art solutions in air bubble removal, and enable a multifunctional microfluidic device to operate seamlessly free from air bubble disruption. The microfabricated system was tested in both droplet microfluidics and continuous-flow microfluidics applications, and demonstrated to be effective in preventing air bubble aggregation over time. This simple sloped microstructure can be easily integrated into broad ranges of microfluidic devices to minimize bubble introduction, which will contribute to creating a stable and bubble-free microfluidic platform amenable for long-term operation.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Jose A Wippold
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA
| | | | - Arum Han
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
- Faculty of Texas A&M Health Science Center, College Station, TX, USA.
- Faculty of Texas A&M Institute for Neuroscience, College Station, TX, USA.
| |
Collapse
|
27
|
3D-Printed Bubble-Free Perfusion Cartridge System for Live-Cell Imaging. SENSORS 2020; 20:s20205779. [PMID: 33053875 PMCID: PMC7650622 DOI: 10.3390/s20205779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023]
Abstract
The advent of 3D-printing technologies has had a significant effect on the development of medical and biological devices. Perfusion chambers are widely used for live-cell imaging in cell biology research; however, air-bubble invasion is a pervasive problem in perfusion systems. Although 3D printing allows the rapid fabrication of millifluidic and microfluidic devices with high resolution, little has been reported on 3D-printed fluidic devices with bubble trapping systems. Herein, we present a 3D-printed millifluidic cartridge system with bent and flat tapered flow channels for preventing air-bubble invasion, irrespective of bubble volume and without the need for additional bubble-removing devices. This system realizes bubble-free perfusion with a user-friendly interface and no-time-penalty manufacturing processes. We demonstrated the bubble removal capability of the cartridge by continually introducing air bubbles with different volumes during the calcium imaging of Sf21 cells expressing insect odorant receptors. Calcium imaging was conducted using a low-magnification objective lens to show the versatility of the cartridge for wide-area observation. We verified that the cartridge could be used as a chemical reaction chamber by conducting protein staining experiments. Our cartridge system is advantageous for a wide range of cell-based bioassays and bioanalytical studies, and can be easily integrated into portable biosensors.
Collapse
|
28
|
Morbioli GG, Speller NC, Stockton AM. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Anal Chim Acta 2020; 1135:150-174. [PMID: 33070852 DOI: 10.1016/j.aca.2020.09.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/09/2020] [Accepted: 09/07/2020] [Indexed: 12/30/2022]
Abstract
Micro total analytical systems (μTAS) are attractive to multiple fields that include chemistry, medicine and engineering due to their portability, low power usage, potential for automation, and low sample and reagent consumption, which in turn results in low waste generation. The development of fully-functional μTAS is an iterative process, based on the design, fabrication and testing of multiple prototype microdevices. Typically, microfabrication protocols require a week or more of highly-skilled personnel time in high-maintenance cleanroom facilities, which makes this iterative process cost-prohibitive in many locations worldwide. Rapid-prototyping tools, in conjunction with the use of polydimethylsiloxane (PDMS), enable rapid development of microfluidic structures at lower costs, circumventing these issues in conventional microfabrication techniques. Multiple rapid-prototyping methods to fabricate PDMS-based microfluidic devices have been demonstrated in literature since the advent of soft-lithography in 1998; each method has its unique advantages and drawbacks. Here, we present a tutorial discussing current rapid-prototyping techniques to fabricate PDMS-based microdevices, including soft-lithography, print-and-peel and scaffolding techniques, among other methods, specifically comparing resolution of the features, fabrication processes and associated costs for each technique. We also present thoughts and insights towards each step of the iterative microfabrication process, from design to testing, to improve the development of fully-functional PDMS-based microfluidic devices at faster rates and lower costs.
Collapse
Affiliation(s)
| | - Nicholas Colby Speller
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
29
|
Tsai HF, IJspeert C, Shen AQ. Voltage-gated ion channels mediate the electrotaxis of glioblastoma cells in a hybrid PMMA/PDMS microdevice. APL Bioeng 2020; 4:036102. [PMID: 32637857 PMCID: PMC7332302 DOI: 10.1063/5.0004893] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Transformed astrocytes in the most aggressive form cause glioblastoma, the most common cancer in the central nervous system with high mortality. The physiological electric field by neuronal local field potentials and tissue polarity may guide the infiltration of glioblastoma cells through the electrotaxis process. However, microenvironments with multiplex gradients are difficult to create. In this work, we have developed a hybrid microfluidic platform to study glioblastoma electrotaxis in controlled microenvironments with high throughput quantitative analysis by machine learning-powered single cell tracking software. By equalizing the hydrostatic pressure difference between inlets and outlets of the microchannel, uniform single cells can be seeded reliably inside the microdevice. The electrotaxis of two glioblastoma models, T98G and U-251MG, requires an optimal laminin-containing extracellular matrix and exhibits opposite directional and electro-alignment tendencies. Calcium signaling is a key contributor in glioblastoma pathophysiology but its role in glioblastoma electrotaxis is still an open question. Anodal T98G electrotaxis and cathodal U-251MG electrotaxis require the presence of extracellular calcium cations. U-251MG electrotaxis is dependent on the P/Q-type voltage-gated calcium channel (VGCC) and T98G is dependent on the R-type VGCC. U-251MG electrotaxis and T98G electrotaxis are also mediated by A-type (rapidly inactivating) voltage-gated potassium channels and acid-sensing sodium channels. The involvement of multiple ion channels suggests that the glioblastoma electrotaxis is complex and patient-specific ion channel expression can be critical to develop personalized therapeutics to fight against cancer metastasis. The hybrid microfluidic design and machine learning-powered single cell analysis provide a simple and flexible platform for quantitative investigation of complicated biological systems.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Camilo IJspeert
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Amy Q. Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
30
|
Bukys MA, Mihas A, Finney K, Sears K, Trivedi D, Wang Y, Oberholzer J, Jensen J. High-Dimensional Design-Of-Experiments Extracts Small-Molecule-Only Induction Conditions for Dorsal Pancreatic Endoderm from Pluripotency. iScience 2020; 23:101346. [PMID: 32745983 PMCID: PMC7398937 DOI: 10.1016/j.isci.2020.101346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 01/27/2023] Open
Abstract
The derivation of endoderm and descendant organs, such as pancreas, liver, and intestine, impacts disease modeling and regenerative medicine. Use of TGF-β signaling agonism is a common method for induction of definitive endoderm from pluripotency. By using a data-driven, High-Dimensional Design of Experiments (HD-DoE)-based methodology to address multifactorial problems in directed differentiation, we found instead that optimal conditions demanded BMP antagonism and retinoid input leading to induction of dorsal foregut endoderm (DFE). We demonstrate that pancreatic identity can be rapidly, and robustly, induced from DFE and that such cells are of dorsal pancreatic identity. The DFE population was highly competent to differentiate into both stomach organoids and pancreatic tissue types and able to generate fetal-type β cells through two subsequent differentiation steps using only small molecules. This alternative, rapid, and low-cost basis for generating pancreatic insulin-producing cells may have impact for the development of cell-based therapies for diabetes. Method development for addressing multifactorial problems in directed differentiation Generation of endodermal populations without the use of TGF-β agonism Small-molecule-based pancreatic differentiation protocol
Collapse
Affiliation(s)
- Michael A Bukys
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Alexander Mihas
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Krystal Finney
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Katie Sears
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Divya Trivedi
- Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yong Wang
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jose Oberholzer
- Division of Transplantation, University of Virginia, Charlottesville, VA 22903, USA
| | - Jan Jensen
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA; Trailhead Biosystems Inc, 10000 Cedar Avenue, Cleveland, OH, USA; Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
31
|
Low LA, Sutherland M, Lumelsky N, Selimovic S, Lundberg MS, Tagle DA. Organs-on-a-Chip. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1230:27-42. [PMID: 32285363 DOI: 10.1007/978-3-030-36588-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Organs-on-chips, also known as "tissue chips" or microphysiological systems (MPS), are bioengineered microsystems capable of recreating aspects of human organ physiology and function and are in vitro tools with multiple applications in drug discovery and development. The ability to recapitulate human and animal tissues in physiologically relevant three-dimensional, multi-cellular environments allows applications in the drug development field, including; (1) use in assessing the safety and toxicity testing of potential therapeutics during early-stage preclinical drug development; (2) confirmation of drug/therapeutic efficacy in vitro; and (3) disease modeling of human tissues to recapitulate pathophysiology within specific subpopulations and even individuals, thereby advancing precision medicine efforts. This chapter will discuss the development and evolution of three-dimensional organ models over the past decade, and some of the opportunities offered by MPS technology that are not available through current standard two-dimensional cell cultures, or three-dimensional organoid systems. This chapter will outline future avenues of research in the MPS field, how cutting-edge biotechnology advances are expanding the applications for these systems, and discuss the current and future potential and challenges remaining for the field to address.
Collapse
Affiliation(s)
- Lucie A Low
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA.
| | - Margaret Sutherland
- National Institute for Neurological Disorder and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Nadya Lumelsky
- National Institute of Dental and Craniofacial Research (NIDCR), National Institutes of Health, Bethesda, MD, USA
| | - Seila Selimovic
- National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health, Bethesda, MD, USA
| | - Martha S Lundberg
- National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Danilo A Tagle
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
32
|
Tillo A, Bartelmess J, Chauhan VP, Bell J, Rurack K. Microfluidic Device for the Determination of Water Chlorination Levels Combining a Fluorescent meso-Enamine Boron Dipyrromethene Probe and a Microhydrocyclone for Gas Bubble Separation. Anal Chem 2019; 91:12980-12987. [PMID: 31525031 DOI: 10.1021/acs.analchem.9b03039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chlorination procedures are commonly applied in swimming pool water and wastewater treatment, yet also in food, pharmaceutical, and paper production. The amount of chlorine in water needs to be strictly controlled to ensure efficient killing of pathogens but avoid the induction of negative health effects. Miniaturized microfluidic fluorescence sensors are an appealing approach here when aiming at online or at-site measurements. Two meso-enamine-substituted boron dipyrromethene (BODIPY) dyes were found to exhibit favorable indication properties, their reaction with hypochlorite leading to strong fluorescence enhancement. Real-time assays became possible after integration of these fluorescent probes with designed two-dimensional (2D) and three-dimensional (3D) microfluidic chips, incorporating a passive sinusoidal mixer and a microhydrocyclone, respectively. A comparison of the two microfluidic systems, including their abilities to prevent accumulation or circulation of microbubbles produced by the chemical indication reaction, showed excellent fluidic behavior for the microhydrocyclone-based device. After coupling to a miniaturized optical reader for fluorescence detection, the 2D microfluidic system showed a promising detection range of 0.04-0.5 mg L-1 while still being prone to bubble-induced fluctuations and suffering from considerably low signal gain. The microhydrocyclone-based system was distinctly more robust against gas bubbles, showed a higher signal gain, and allowed us to halve the limit of detection to 0.02 mg L-1. The use of the 3D system to quantify the chlorine content of swimming pool water samples for sensitive and quantitative chlorine monitoring was demonstrated.
Collapse
Affiliation(s)
- Adam Tillo
- Department of Chemical Technology of Drugs , Poznan University of Medical Sciences , Grunwaldzka 6 , 60-780 Poznan , Poland
| | - Juergen Bartelmess
- Chemical and Optical Sensing Division , Bundesanstalt für Materialforschung und -prüfung , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| | - Vraj P Chauhan
- Department of Chemical Engineering , Indian Institute of Technology Kharagpur , Kharagpur , 721302 , West Bengal , India
| | - Jérémy Bell
- Chemical and Optical Sensing Division , Bundesanstalt für Materialforschung und -prüfung , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| | - Knut Rurack
- Chemical and Optical Sensing Division , Bundesanstalt für Materialforschung und -prüfung , Richard-Willstätter-Straße 11 , 12489 Berlin , Germany
| |
Collapse
|
33
|
Glieberman AL, Pope BD, Zimmerman JF, Liu Q, Ferrier JP, Kenty JHR, Schrell AM, Mukhitov N, Shores KL, Tepole AB, Melton DA, Roper MG, Parker KK. Synchronized stimulation and continuous insulin sensing in a microfluidic human Islet on a Chip designed for scalable manufacturing. LAB ON A CHIP 2019; 19:2993-3010. [PMID: 31464325 PMCID: PMC6814249 DOI: 10.1039/c9lc00253g] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pancreatic β cell function is compromised in diabetes and is typically assessed by measuring insulin secretion during glucose stimulation. Traditionally, measurement of glucose-stimulated insulin secretion involves manual liquid handling, heterogeneous stimulus delivery, and enzyme-linked immunosorbent assays that require large numbers of islets and processing time. Though microfluidic devices have been developed to address some of these limitations, traditional methods for islet testing remain the most common due to the learning curve for adopting microfluidic devices and the incompatibility of most device materials with large-scale manufacturing. We designed and built a thermoplastic, microfluidic-based Islet on a Chip compatible with commercial fabrication methods, that automates islet loading, stimulation, and insulin sensing. Inspired by the perfusion of native islets by designated arterioles and capillaries, the chip delivers synchronized glucose pulses to islets positioned in parallel channels. By flowing suspensions of human cadaveric islets onto the chip, we confirmed automatic capture of islets. Fluorescent glucose tracking demonstrated that stimulus delivery was synchronized within a two-minute window independent of the presence or size of captured islets. Insulin secretion was continuously sensed by an automated, on-chip immunoassay and quantified by fluorescence anisotropy. By integrating scalable manufacturing materials, on-line, continuous insulin measurement, and precise spatiotemporal stimulation into an easy-to-use design, the Islet on a Chip should accelerate efforts to study and develop effective treatments for diabetes.
Collapse
Affiliation(s)
- Aaron L Glieberman
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Pierce Hall, 29 Oxford Street, Cambridge, MA 02138, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Open microfluidic capillary systems are a rapidly evolving branch of microfluidics where fluids are manipulated by capillary forces in channels lacking physical walls on all sides. Typical channel geometries include grooves, rails, or beams and complex systems with multiple air-liquid interfaces. Removing channel walls allows access for retrieval (fluid sampling) and addition (pipetting reagents or adding objects like tissue scaffolds) at any point in the channel; the entire channel becomes a "device-to-world" interface, whereas such interfaces are limited to device inlets and outlets in traditional closed-channel microfluidics. Open microfluidic capillary systems are simple to fabricate and reliable to operate. Prototyping methods (e.g., 3D printing) and manufacturing methods (e.g., injection molding) can be used seamlessly, accelerating development. This Perspective highlights fundamentals of open microfluidic capillary systems including unique advantages, design considerations, fabrication methods, and analytical considerations for flow; device features that can be combined to create a "toolbox" for fluid manipulation; and applications in biology, diagnostics, chemistry, sensing, and biphasic applications.
Collapse
Affiliation(s)
- Erwin Berthier
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ashley M. Dostie
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ulri N. Lee
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Jean Berthier
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
| | - Ashleigh B. Theberge
- University of Washington, Department of Chemistry, Seattle, Washington 98195, USA
- University of Washington School of Medicine, Department of Urology, Seattle, Washington 98105, USA
| |
Collapse
|
35
|
Williams MJ, Lee NK, Mylott JA, Mazzola N, Ahmed A, Abhyankar VV. A Low-Cost, Rapidly Integrated Debubbler (RID) Module for Microfluidic Cell Culture Applications. MICROMACHINES 2019; 10:mi10060360. [PMID: 31151206 PMCID: PMC6632054 DOI: 10.3390/mi10060360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 01/08/2023]
Abstract
Microfluidic platforms use controlled fluid flows to provide physiologically relevant biochemical and biophysical cues to cultured cells in a well-defined and reproducible manner. Undisturbed flows are critical in these systems, and air bubbles entering microfluidic channels can lead to device delamination or cell damage. To prevent bubble entry into microfluidic channels, we report a low-cost, Rapidly Integrated Debubbler (RID) module that is simple to fabricate, inexpensive, and easily combined with existing experimental systems. We demonstrate successful removal of air bubbles spanning three orders of magnitude with a maximum removal rate (dV/dt)max = 1.5 mL min−1, at flow rates required to apply physiological wall shear stress (1–200 dyne cm−2) to mammalian cells cultured in microfluidic channels.
Collapse
Affiliation(s)
- Matthew J Williams
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicholas K Lee
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Joseph A Mylott
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Nicole Mazzola
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Adeel Ahmed
- Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA.
| |
Collapse
|
36
|
Abstract
Translational research requires reliable biomedical microdevices (BMMD)
to mimic physiological conditions and answer biological questions. In this work, we
introduce a reversibly sealed quick-fit hybrid BMMD that is operator-friendly and
bubble-free, requires low reagent and cell consumption, enables robust and high
throughput performance for biomedical experiments. Specifically, we fabricate a
quick-fit poly(methyl methacrylate) and poly(dimethyl siloxane) (PMMA/PDMS)
prototype to illustrate its utilities by probing the adhesion of glioblastoma cells
(T98G and U251MG) to primary endothelial cells. In static condition, we confirm that
angiopoietin-Tie2 signaling increases the adhesion of glioblastoma cells to
endothelial cells. Next, to mimic the physiological hemodynamic flow and investigate
the effect of physiological electric field, the endothelial cells are
pre-conditioned with concurrent shear flow (with fixed 1 Pa shear stress) and direct
current electric field (dcEF) in the quick-fit PMMA/PDMS BMMD. With shear flow
alone, endothelial cells exhibit classical parallel alignment; while under a
concurrent dcEF, the cells align perpendicularly to the electric current when the
dcEF is greater than 154 V m− 1. Moreover, with fixed
shear stress of 1 Pa, T98G glioblastoma cells demonstrate increased adhesion to
endothelial cells conditioned in dcEF of 154 V m− 1,
while U251MG glioblastoma cells show no difference. The quick-fit hybrid BMMD
provides a simple and flexible platform to create multiplex systems, making it
possible to investigate complicated biological conditions for translational
research.
Collapse
Affiliation(s)
- Hsieh-Fu Tsai
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan.
| | - Kazumi Toda-Peters
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan
| | - Amy Q Shen
- Micro/Bio/Nanofluidics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 9040495, Japan.
| |
Collapse
|
37
|
Kimura H, Nishikawa M, Yanagawa N, Nakamura H, Miyamoto S, Hamon M, Hauser P, Zhao L, Jo OD, Komeya M, Ogawa T, Yanagawa N. Effect of fluid shear stress on in vitro cultured ureteric bud cells. BIOMICROFLUIDICS 2018; 12:044107. [PMID: 30034570 PMCID: PMC6039298 DOI: 10.1063/1.5035328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 06/26/2018] [Indexed: 05/08/2023]
Abstract
Most kidney cells are continuously exposed to fluid shear stress (FSS) from either blood flow or urine flow. Recent studies suggest that changes in FSS could contribute to the function and injury of these kidney cells. However, it is unclear whether FSS influences kidney development when urinary flow starts in the embryonic kidneys. In this study, we evaluated the influence of FSS on in vitro cultured ureteric bud (UB) cells by using a pumpless microfluidic device, which offers the convenience of conducting parallel cell culture experiments while also eliminating the need for cumbersome electronic driven equipment and intricate techniques. We first validated the function of the device by both mathematical model and experimental measurements. UB cells dissected from E15.5 mouse embryonic kidneys were cultured in the pumpless microfluidic device and subjected to FSS in the range of 0.4-0.6 dyn mm-2 for 48 h (dynamic). Control UB cells were similarly cultured in the device and maintained under a no-flow condition (static). We found from our present study that the exposure to FSS for up to 48 h led to an increase in mRNA expression levels of UB tip cell marker genes (Wnt11, Ret, Etv4) with a decrease in stalk cell marker genes (Wnt7b, Tacstd2). In further support of the enrichment of UB tip cell population in response to FSS, we also found that exposure to FSS led to a remarkable reduction in the binding of lectin Dolichos Biflorus Agglutinin. In conclusion, results of our present study show that exposure to FSS led to an enrichment in UB tip cell populations, which could contribute to the development and function of the embryonic kidney when urine flow starts at around embryonic age E15.5 in mouse. Since UB tip cells are known to be the proliferative progenitor cells that contribute to the branching morphogenesis of the collecting system in the kidney, our finding could imply an important link between the FSS from the initiation of urine flow and the development and function of the kidney.
Collapse
Affiliation(s)
| | | | | | - Hiroko Nakamura
- Department of Mechanical Engineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | - Shunsuke Miyamoto
- Department of Mechanical Engineering, School of Engineering, Tokai University, Hiratsuka, Kanagawa 259-1292, Japan
| | | | | | - Lifu Zhao
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California 91343, USA
| | - Oak D. Jo
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California 91343, USA
| | - Mitsuru Komeya
- Department of Urology, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa 236-0004, Japan
| | | | | |
Collapse
|
38
|
Pocock K, Delon L, Bala V, Rao S, Priest C, Prestidge C, Thierry B. Intestine-on-a-Chip Microfluidic Model for Efficient in Vitro Screening of Oral Chemotherapeutic Uptake. ACS Biomater Sci Eng 2017; 3:951-959. [PMID: 33429567 DOI: 10.1021/acsbiomaterials.7b00023] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Many highly effective chemotherapeutic agents can only be administered intravenously as their oral delivery is compromised by low gastro-intestinal solubility and permeability. SN-38 (7-ethyl-10-hydroxycamptothecin) is one such drug; however, recently synthesized lipophilic prodrugs offer a potential solution to the low oral bioavailability issue. Here we introduce a microfluidic-based intestine-on-a-chip (IOAC) model, which has the potential to provide new insight into the structure-permeability relationship for lipophilic prodrugs. More specifically, the IOAC model utilizes external mechanical cues that induce specific differentiation of an epithelial cell monolayer to provide a barrier function that exhibits an undulating morphology with microvilli expression on the cell surface; this is more biologically relevant than conventional Caco-2 Transwell models. IOAC permeability data for SN38 modified with fatty acid esters of different chain lengths and at different molecular positions correlate excellently with water-lipid partitioning data and have the potential to significantly advance their preclinical development. In addition to advancing mechanistic insight into the permeability of many challenging drug candidates, we envisage the IOAC model to also be applicable to nanoparticle and biological entities.
Collapse
Affiliation(s)
- Kyall Pocock
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Ludivine Delon
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Vaskor Bala
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
| | - Shasha Rao
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia
| | - Craig Priest
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Clive Prestidge
- School of Pharmacy and Medical Sciences, University of South Australia, City East Campus, Adelaide, South Australia 5000, Australia.,ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, Adelaide, South Australia 5095, Australia.,ARC Centre of Excellence in Convergent Bio and Nano Science and Technology, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
39
|
Hase T, Ishigaki S, Shibusawa K, Hamanaka S, Yabuki Y, Tamano Y, Tsukada K. Immobilized Monolayer Nanoparticles in a Microfluidic Device for Surface Enhanced Raman Scattering Measurement. ADVANCED BIOMEDICAL ENGINEERING 2017. [DOI: 10.14326/abe.6.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Takumi Hase
- Graduate School of Fundamental Science and Technology, Keio University
| | - Soichiro Ishigaki
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University
| | - Kazuki Shibusawa
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University
| | - Sakuya Hamanaka
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University
| | - Yuki Yabuki
- Graduate School of Fundamental Science and Technology, Keio University
| | - Yuki Tamano
- Graduate School of Fundamental Science and Technology, Keio University
| | - Kosuke Tsukada
- Graduate School of Fundamental Science and Technology, Keio University
| |
Collapse
|
40
|
Schrell AM, Mukhitov N, Yi L, Wang X, Roper MG. Microfluidic Devices for the Measurement of Cellular Secretion. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2016; 9:249-69. [PMID: 27306310 DOI: 10.1146/annurev-anchem-071114-040409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The release of chemical information from cells and tissues holds the key to understanding cellular behavior and dysfunction. The development of methodologies that can measure cellular secretion in a time-dependent fashion is therefore essential. Often these measurements are made difficult by the high-salt conditions of the cellular environment, the presence of numerous other secreted factors, and the small mass samples that are produced when frequent sampling is used to resolve secretory dynamics. In this review, the methods that we have developed for measuring hormone release from islets of Langerhans are dissected to illustrate the practical difficulties of studying cellular secretions. Other methods from the literature are presented that provide alternative approaches to particularly challenging areas of monitoring cellular secretion. The examples presented in this review serve as case studies and should be adaptable to other cell types and systems for unique applications.
Collapse
Affiliation(s)
- Adrian M Schrell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306;
| | - Nikita Mukhitov
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306;
| | - Lian Yi
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306;
| | - Xue Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306;
| | - Michael G Roper
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306;
| |
Collapse
|
41
|
Nourmohammadzadeh M, Xing Y, Lee JW, Bochenek MA, Mendoza-Elias JE, McGarrigle JJ, Marchese E, Chun-Chieh Y, Eddington DT, Oberholzer J, Wang Y. A microfluidic array for real-time live-cell imaging of human and rodent pancreatic islets. LAB ON A CHIP 2016; 16:1466-72. [PMID: 26999734 PMCID: PMC6286192 DOI: 10.1039/c5lc01173f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this study, we present a microfluidic array for high-resolution imaging of individual pancreatic islets. The device is based on hydrodynamic trapping principle and enables real-time analysis of islet cellular responses to insulin secretagogues. This device has significant advantages over our previously published perifusion chamber device including significantly increased analytical power and assay sensitivity, as well as improved spatiotemporal resolution. The islet array, with live-cell multiparametric imaging integration, provides a better tool to understand the physiological and pathophysiological changes of pancreatic islets through the analysis of single islet responses. This platform demonstrates the feasibility of array-based islet cellular analysis and opens up a new modality to conduct informative and quantitive evaluation of islets and cell-based screening for new diabetes treatments.
Collapse
Affiliation(s)
- Mohammad Nourmohammadzadeh
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA. and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| | - Yuan Xing
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA. and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| | - Jin Wuk Lee
- Department of Electroengineering, Northern Illinois University, Chicago, IL, 60115 USA
| | - Matthew A Bochenek
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA. and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| | - Joshua E Mendoza-Elias
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA. and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| | - James J McGarrigle
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA.
| | - Enza Marchese
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA.
| | - Yeh Chun-Chieh
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA.
| | - David T Eddington
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| | - José Oberholzer
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA. and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| | - Yong Wang
- Department of Surgery/Transplant, University of Illinois at Chicago, Chicago, IL, 60612 USA. and Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607 USA
| |
Collapse
|
42
|
Castiello FR, Heileman K, Tabrizian M. Microfluidic perfusion systems for secretion fingerprint analysis of pancreatic islets: applications, challenges and opportunities. LAB ON A CHIP 2016; 16:409-31. [PMID: 26732665 DOI: 10.1039/c5lc01046b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
A secretome signature is a heterogeneous profile of secretions present in a single cell type. From the secretome signature a smaller panel of proteins, namely a secretion fingerprint, can be chosen to feasibly monitor specific cellular activity. Based on a thorough appraisal of the literature, this review explores the possibility of defining and using a secretion fingerprint to gauge the functionality of pancreatic islets of Langerhans. It covers the state of the art regarding microfluidic perfusion systems used in pancreatic islet research. Candidate analytical tools to be integrated within microfluidic perfusion systems for dynamic secretory fingerprint monitoring were identified. These analytical tools include patch clamp, amperometry/voltametry, impedance spectroscopy, field effect transistors and surface plasmon resonance. Coupled with these tools, microfluidic devices can ultimately find applications in determining islet quality for transplantation, islet regeneration and drug screening of therapeutic agents for the treatment of diabetes.
Collapse
Affiliation(s)
- F Rafael Castiello
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Khalil Heileman
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| | - Maryam Tabrizian
- Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
43
|
Choi M, Na Y, Kim SJ. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber. Electrophoresis 2015; 36:2896-901. [DOI: 10.1002/elps.201500258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/09/2015] [Accepted: 08/11/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Munseok Choi
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Yang Na
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| | - Sung-Jin Kim
- Department of Mechanical Engineering; Konkuk University; Seoul Republic of Korea
| |
Collapse
|
44
|
Hydrodynamic Flow Confinement Technology in Microfluidic Perfusion Devices. MICROMACHINES 2012. [DOI: 10.3390/mi3020442] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|