1
|
Chanvanichtrakool M, Schreiber JM, Chen WL, Barber J, Zhang A, Ah Mew N, Schulze A, Wilkening G, Nagamani SCS, Gropman A. Unraveling the Link: Seizure Characteristics and Ammonia Levels in Urea Cycle Disorder During Hyperammonemic Crises. Pediatr Neurol 2024; 159:48-55. [PMID: 39121557 PMCID: PMC11381174 DOI: 10.1016/j.pediatrneurol.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/02/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND This retrospective clinical study performed at a single clinical center aimed to identify the prevalence of seizures in individuals with urea cycle disorders (UCDs) with and without hyperammonemic (HA) crises. In addition, we sought to correlate the utility of biochemical markers and electroencephalography (EEG) in detecting subclinical seizures during HA. METHODS Medical records of individuals with UCDs enrolled in Urea Cycle Disorders Consortium Longitudinal Study (UCDC-LS) (NCT00237315) at Children's National Hospital between 2006 and 2022 were reviewed for evidence of clinical and subclinical seizuress during HA crises, and initial biochemical levels concurrently. RESULTS Eighty-five individuals with UCD were included in the analyses. Fifty-six of the 85 patients (66%) experienced HA crises, with a total of 163 HA events. Seizures are observed in 13% of HA events. Among all HA events with concomitant EEG, subclinical seizures were identified in 27% of crises of encephalopathy without clinical seizures and 53% of crises with clinical seizures. The odds of seizures increases 2.65 (95% confidence interval [CI], 1.51 to 4.66) times for every 100 μmol/L increase in ammonia and 1.14 (95% CI, 1.04 to 1.25) times for every 100 μmol/L increase in glutamine. CONCLUSIONS This study highlights the utility of EEG monitoring during crises for patients presenting with clinical seizures or encephalopathy with HA. During HA events, measurement of initial ammonia and glutamine can help determine risk for seizures and guide EEG monitoring decisions.
Collapse
Affiliation(s)
- Mongkol Chanvanichtrakool
- Faculty of Medicine Siriraj Hospital, Division of Neurology, Department of Pediatrics, Mahidol University, Bangkok, Thailand; Division of Neurogenetics & Developmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia
| | - John M Schreiber
- Division of Neurogenetics & Developmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia
| | - Wei-Liang Chen
- Division of Neurogenetics & Developmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia
| | - John Barber
- Division of Biostatistics and Study Methodology, Children's National Medical Center, Washington, District of Columbia
| | - Anqing Zhang
- Division of Biostatistics and Study Methodology, Children's National Medical Center, Washington, District of Columbia
| | - Nicholas Ah Mew
- Division of Genetics & Metabolism, Children's National Hospital, Washington, District of Columbia
| | - Andreas Schulze
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada; Departments of Pediatrics and Biochemistry, University of Toronto, Toronto, Canada
| | - Greta Wilkening
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado, Aurora, Colorado
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas
| | - Andrea Gropman
- Division of Neurogenetics & Developmental Pediatrics, Center for Neuroscience and Behavioral Medicine, Children's National Medical Center, Washington, District of Columbia.
| |
Collapse
|
2
|
Zielonka M, Kölker S, Garbade SF, Gleich F, Nagamani SCS, Gropman AL, Druck AC, Ramdhouni N, Göde L, Hoffmann GF, Posset R. Severity-adjusted evaluation of initial dialysis on short-term health outcomes in urea cycle disorders. Mol Genet Metab 2024; 143:108566. [PMID: 39299137 DOI: 10.1016/j.ymgme.2024.108566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE In individuals with urea cycle disorders (UCDs) and neonatal disease onset, extracorporeal detoxification by continuous kidney replacement therapy is considered the therapeutic method of choice in addition to metabolic emergency treatment to resolve hyperammonemic decompensation. However, the indications for the initiation of dialysis are heterogeneously implemented transnationally, thereby hampering our understanding of (optimal) short-term health outcomes. METHODS We performed a retrospective comparative analysis evaluating the therapeutic effects of initial dialysis on survival as well as neurocognitive outcome parameters in individuals with UCDs in comparison to a severity-adjusted non-dialyzed control cohort. Overall, 108 individuals with a severe phenotype of male ornithine transcarbamylase deficiency (mOTC-D), citrullinemia type 1 (CTLN1) and argininosuccinic aciduria (ASA) were investigated by stratification based on a recently established and validated genotype-specific disease prediction model. RESULTS Mortality is associated with the height of initial peak plasma ammonium concentration, but appears to be independent from treatment with initial dialysis in mOTC-D. However, improved survival after initial dialysis was observed in CTLN1, while there was a trend towards improved survival in ASA. In survivors, annual frequency of (subsequent) metabolic decompensations did not differ between the dialyzed and non-dialyzed cohorts. Moreover, treatment with initial dialysis was not associated with improved neurocognitive outcomes. INTERPRETATION The present severity-adjusted comparative analysis reveals that general practice of initial dialysis is neither associated with improved survival in individuals with mOTC-D nor does it differ with regard to the neurocognitive outcome for the investigated UCD subtypes. However, initial dialysis might potentially prove beneficial for survival in CTLN1 and ASA. CLINICAL TRIAL REGISTRATION The UCDC database is recorded at the US National Library of Medicine (https://clinicaltrials.gov).
Collapse
Affiliation(s)
- Matthias Zielonka
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| | - Stefan Kölker
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Florian Gleich
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Andrea L Gropman
- Children's National Health System and The George Washington School of Medicine, Washington, DC, USA
| | - Ann-Catrin Druck
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Nesrine Ramdhouni
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Laura Göde
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| | - Roland Posset
- Heidelberg University, Medical Faculty Heidelberg, and Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany.
| |
Collapse
|
3
|
Jiang A, You L, Handley RR, Hawkins V, Reid SJ, Jacobsen JC, Patassini S, Rudiger SR, Mclaughlan CJ, Kelly JM, Verma PJ, Bawden CS, Gusella JF, MacDonald ME, Waldvogel HJ, Faull RLM, Lehnert K, Snell RG. Single nuclei RNA-seq reveals a medium spiny neuron glutamate excitotoxicity signature prior to the onset of neuronal death in an ovine Huntington's disease model. Hum Mol Genet 2024; 33:1524-1539. [PMID: 38776957 PMCID: PMC11336116 DOI: 10.1093/hmg/ddae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a neurodegenerative genetic disorder caused by an expansion in the CAG repeat tract of the huntingtin (HTT) gene resulting in behavioural, cognitive, and motor defects. Current knowledge of disease pathogenesis remains incomplete, and no disease course-modifying interventions are in clinical use. We have previously reported the development and characterisation of the OVT73 transgenic sheep model of HD. The 73 polyglutamine repeat is somatically stable and therefore likely captures a prodromal phase of the disease with an absence of motor symptomatology even at 5-years of age and no detectable striatal cell loss. To better understand the disease-initiating events we have undertaken a single nuclei transcriptome study of the striatum of an extensively studied cohort of 5-year-old OVT73 HD sheep and age matched wild-type controls. We have identified transcriptional upregulation of genes encoding N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors in medium spiny neurons, the cell type preferentially lost early in HD. Further, we observed an upregulation of astrocytic glutamate uptake transporters and medium spiny neuron GABAA receptors, which may maintain glutamate homeostasis. Taken together, these observations support the glutamate excitotoxicity hypothesis as an early neurodegeneration cascade-initiating process but the threshold of toxicity may be regulated by several protective mechanisms. Addressing this biochemical defect early may prevent neuronal loss and avoid the more complex secondary consequences precipitated by cell death.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Linya You
- Department of Human Anatomy & Histoembryology, School of Basic Medical Sciences, Fudan University, 131 Dong'an Road, Shanghai 200032, China
- Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, 130 Dong'an Road, Shanghai 200032, China
| | - Renee R Handley
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Victoria Hawkins
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Suzanne J Reid
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Jessie C Jacobsen
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Stefano Patassini
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Skye R Rudiger
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - Clive J Mclaughlan
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - Jennifer M Kelly
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - Paul J Verma
- Aquatic and Livestock Sciences, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - C Simon Bawden
- Molecular Biology and Reproductive Technology Laboratories, South Australian Research and Development Institute, 129 Holland Road, Adelaide, SA 5350, Australia
| | - James F Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States
- Department of Genetics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Marcy E MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, United States
- Department of Neurology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, United States
| | - Henry J Waldvogel
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, The University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| | - Russell G Snell
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, 3 Symonds Street, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Sun XM, Wu X, Wei MG, Zhu LZ, Wu WH, Zhou XY, Qi LW, Liu Q. CPS1 augments hepatic glucagon response through CaMKII/FOXO1 pathway. Front Pharmacol 2024; 15:1437738. [PMID: 39193349 PMCID: PMC11347310 DOI: 10.3389/fphar.2024.1437738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Introduction: Elevated glucagon levels are a characteristic feature of type 2 diabetes. This abnormal increase in glucagon can lead to an accelerated rate of gluconeogenesis. Glucagon also stimulates hepatic metabolism of amino acids, particularly promoting the formation of urea. The specific role of carbamoyl phosphate synthetase 1 (CPS1), a rate-limiting enzyme in the urea cycle, in the development versus the persistence of glucagon-induced hyperglycemia has not been previously established. Methods: The study employed both in vivo and in vitro approaches to assess the impact of CPS1 modulation on glucagon response. CPS1 was knockdown or overexpression to evaluate its influence on hepatic gluconeogenesis. In addition, an in-silico strategy was employed to identify a potential CPS1 inhibitor. Results: Knockdown of CPS1 significantly reduced the glucagon response both in vivo and in vitro. Conversely, overexpression of CPS1 resulted in an overactive hepatic gluconeogenic response. Mechanistically, CPS1 induced the release of calcium ions from the endoplasmic reticulum, which in turn triggered the phosphorylation of CaMKII. The activation of CaMKII then facilitated the dephosphorylation and nuclear translocation of FOXO1, culminating in the enhancement of hepatic gluconeogenesis. Furthermore, cynarin, a natural CPS1 inhibitor derived from the artichoke plant, had the capacity to attenuate the hepatic glucagon response in a CPS1-dependent manner. Discussion: CPS1 played a pivotal role in mediating glucagon-induced hepatic gluconeogenesis. The discovery of cynarin as a natural inhibitor of CPS1 suggested its potential as a therapeutic agent for diabetes treatment.
Collapse
Affiliation(s)
- Xiao-Meng Sun
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Meng-Guang Wei
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Li-Zeng Zhu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Wen-hui Wu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Xin-Yue Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Lian-Wen Qi
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Qun Liu
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
- Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Prakash P, Erdjument-Bromage H, O'Dea MR, Munson CN, Labib D, Fossati V, Neubert TA, Liddelow SA. Proteomic profiling of interferon-responsive reactive astrocytes in rodent and human. Glia 2024; 72:625-642. [PMID: 38031883 PMCID: PMC10843807 DOI: 10.1002/glia.24494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023]
Abstract
Astrocytes are a heterogeneous population of central nervous system glial cells that respond to pathological insults and injury by undergoing a transformation called "reactivity." Reactive astrocytes exhibit distinct and context-dependent cellular, molecular, and functional state changes that can either support or disturb tissue homeostasis. We recently identified a reactive astrocyte sub-state defined by interferon-responsive genes like Igtp, Ifit3, Mx1, and others, called interferon-responsive reactive astrocytes (IRRAs). To further this transcriptomic definition of IRRAs, we wanted to define the proteomic changes that occur in this reactive sub-state. We induced IRRAs in immunopanned rodent astrocytes and human iPSC-differentiated astrocytes using TNF, IL1α, C1Q, and IFNβ and characterized their proteomic profile (both cellular and secreted) using unbiased quantitative proteomics. We identified 2335 unique cellular proteins, including IFIT2/3, IFITM3, OASL1/2, MX1/2/3, and STAT1. We also report that rodent and human IRRAs secrete PAI1, a serine protease inhibitor which may influence reactive states and functions of nearby cells. Finally, we evaluated how IRRAs are distinct from neurotoxic reactive astrocytes (NRAs). While NRAs are described by expression of the complement protein C3, it was not upregulated in IRRAs. Instead, we found ~90 proteins unique to IRRAs not identified in NRAs, including OAS1A, IFIT3, and MX1. Interferon signaling in astrocytes is critical for the antiviral immune response and for regulating synaptic plasticity and glutamate transport mechanisms. How IRRAs contribute to these functions is unknown. This study provides the basis for future experiments to define the functional roles of IRRAs in the context of neurodegenerative disorders.
Collapse
Affiliation(s)
- Priya Prakash
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Hediye Erdjument-Bromage
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Michael R O'Dea
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - Christy N Munson
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
| | - David Labib
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, New York, USA
| | - Thomas A Neubert
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, New York, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York, New York, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
6
|
Rojas CR, Chapman J, Regier D. Hyperammonemia in the Pediatric Emergency Department. Pediatr Emerg Care 2024; 40:156-161. [PMID: 38295195 DOI: 10.1097/pec.0000000000003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
ABSTRACT Hyperammonemia is a serious clinical condition associated with significant morbidity and mortality. In the pediatric population, this is often caused by urea cycle disorders, acute liver failure, or other less common underlying etiologies. Children and teens with hyperammonemia can have a broad range of clinical findings, including vomiting, respiratory distress, and changes in mental status. As ammonia levels worsen, this presentation can progress to respiratory failure, encephalopathy, cerebral edema, seizures, and death. Given the risk of neurologic damage, timely identification and management of hyperammonemia is critical and includes initial resuscitation, early consultation with subspecialists, and initiation of appropriate therapies. It is important for pediatric emergency medicine providers to understand the clinical findings, causes, diagnosis, and management of hyperammonemia because they play a key role in the provision of effective, multidisciplinary care of these patients.
Collapse
|
7
|
Vacca M, Calabrese FM, Loperfido F, Maccarini B, Cerbo RM, Sommella E, Salviati E, Voto L, De Angelis M, Ceccarelli G, Di Napoli I, Raspini B, Porri D, Civardi E, Garofoli F, Campiglia P, Cena H, De Giuseppe R. Maternal Exposure to Endocrine-Disrupting Chemicals: Analysis of Their Impact on Infant Gut Microbiota Composition. Biomedicines 2024; 12:234. [PMID: 38275405 PMCID: PMC10813257 DOI: 10.3390/biomedicines12010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Endocrine disruptors (EDCs) are chemicals that interfere with the endocrine system. EDC exposure may contribute to the development of obesity, type 2 diabetes, and cardiovascular diseases by impacting the composition of an infant's gut microbiota during the first 1000 days of life. To explore the relationship between maternal urinary levels of Bisphenol-A and phthalates (UHPLC-MS/MS), and the composition of the infant gut microbiota (16S rDNA) at age 12 months (T3) and, retrospectively, at birth (T0), 1 month (T1), and 6 months (T2), stool samples from 20 infants breastfed at least once a day were analyzed. Metataxonomic bacteria relative abundances were correlated with EDC values. Based on median Bisphenol-A levels, infants were assigned to the over-exposed group (O, n = 8) and the low-exposed group (B, n = 12). The B-group exhibited higher gut colonization of the Ruminococcus torques group genus and the O-group showed higher abundances of Erysipelatoclostridium and Bifidobacterium breve. Additionally, infants were stratified as high-risk (HR, n = 12) or low-risk (LR, n = 8) exposure to phthalates, based on the presence of at least three phthalates with concentrations exceeding the cohort median values; no differences were observed in gut microbiota composition. A retrospective analysis of gut microbiota (T0-T2) revealed a disparity in β-diversity between the O-group and the B-group. Considering T0-T3, the Linear Discriminant Effect Size indicated differences in certain microbes between the O-group vs. the B-group and the HR-group vs. the LR-group. Our findings support the potential role of microbial communities as biomarkers for high EDC exposure levels. Nevertheless, further investigations are required to deeply investigate this issue.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Beatrice Maccarini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Eduardo Sommella
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Luana Voto
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Gabriele Ceccarelli
- Human Anatomy Unit, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Ilaria Di Napoli
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Benedetta Raspini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (R.M.C.); (E.C.); (F.G.)
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (E.S.); (E.S.); (P.C.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (B.M.); (L.V.); (I.D.N.); (B.R.); (D.P.); (H.C.); (R.D.G.)
| |
Collapse
|
8
|
Anderson C, Bucholc M, McClean PL, Zhang SD. The Potential of a Stratified Approach to Drug Repurposing in Alzheimer's Disease. Biomolecules 2023; 14:11. [PMID: 38275752 PMCID: PMC10813465 DOI: 10.3390/biom14010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition that is characterized by the build-up of amyloid-beta plaques and neurofibrillary tangles. While multiple theories explaining the aetiology of the disease have been suggested, the underlying cause of the disease is still unknown. Despite this, several modifiable and non-modifiable factors that increase the risk of developing AD have been identified. To date, only eight AD drugs have ever gained regulatory approval, including six symptomatic and two disease-modifying drugs. However, not all are available in all countries and high costs associated with new disease-modifying biologics prevent large proportions of the patient population from accessing them. With the current patient population expected to triple by 2050, it is imperative that new, effective, and affordable drugs become available to patients. Traditional drug development strategies have a 99% failure rate in AD, which is far higher than in other disease areas. Even when a drug does reach the market, additional barriers such as high cost and lack of accessibility prevent patients from benefiting from them. In this review, we discuss how a stratified medicine drug repurposing approach may address some of the limitations and barriers that traditional strategies face in relation to drug development in AD. We believe that novel, stratified drug repurposing studies may expedite the discovery of alternative, effective, and more affordable treatment options for a rapidly expanding patient population in comparison with traditional drug development methods.
Collapse
Affiliation(s)
- Chloe Anderson
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Magda Bucholc
- School of Computing, Engineering and Intelligent Systems, Magee Campus, Ulster University, Northland Road, Derry/Londonderry BT48 7JL, UK
| | - Paula L. McClean
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| | - Shu-Dong Zhang
- Personalised Medicine Centre, School of Medicine, Altnagelvin Hospital Campus, Ulster University, Glenshane Road, Derry/Londonderry BT47 6SB, UK;
| |
Collapse
|
9
|
Seker Yilmaz B, Baruteau J, Chakrapani A, Champion M, Chronopoulou E, Claridge LC, Daly A, Davies C, Davison J, Dhawan A, Grunewald S, Gupte GL, Heaton N, Lemonde H, McKiernan P, Mills P, Morris AA, Mundy H, Pierre G, Rajwal S, Sivananthan S, Sreekantam S, Stepien KM, Vara R, Yeo M, Gissen P. Liver transplantation in ornithine transcarbamylase deficiency: A retrospective multicentre cohort study. Mol Genet Metab Rep 2023; 37:101020. [PMID: 38053940 PMCID: PMC10694733 DOI: 10.1016/j.ymgmr.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked defect of ureagenesis and the most common urea cycle disorder. Patients present with hyperammonemia causing neurological symptoms, which can lead to coma and death. Liver transplantation (LT) is the only curative therapy, but has several limitations including organ shortage, significant morbidity and requirement of lifelong immunosuppression. This study aims to identify the characteristics and outcomes of patients who underwent LT for OTCD. We conducted a retrospective study for OTCD patients from 5 UK centres receiving LT in 3 transplantation centres between 2010 and 2022. Patients' demographics, family history, initial presentation, age at LT, graft type and pre- and post-LT clinical, metabolic, and neurocognitive profile were collected from medical records. A total of 20 OTCD patients (11 males, 9 females) were enrolled in this study. 6/20 had neonatal and 14/20 late-onset presentation. 2/20 patients had positive family history for OTCD and one of them was diagnosed antenatally and received prospective treatment. All patients were managed with standard of care based on protein-restricted diet, ammonia scavengers and supplementation with arginine and/or citrulline before LT. 15/20 patients had neurodevelopmental problems before LT. The indication for LT was presence (or family history) of recurrent metabolic decompensations occurring despite standard medical therapy leading to neurodisability and quality of life impairment. Median age at LT was 10.5 months (6-24) and 66 months (35-156) in neonatal and late onset patients, respectively. 15/20 patients had deceased donor LT (DDLT) and 5/20 had living related donor LT (LDLT). Overall survival was 95% with one patient dying 6 h after LT. 13/20 had complications after LT and 2/20 patients required re-transplantation. All patients discontinued dietary restriction and ammonia scavengers after LT and remained metabolically stable. Patients who had neurodevelopmental problems before LT persisted to have difficulties after LT. 1/5 patients who was reported to have normal neurodevelopment before LT developed behavioural problems after LT, while the remaining 4 maintained their abilities without any reported issues. LT was found to be effective in correcting the metabolic defect, eliminates the risk of hyperammonemia and prolongs patients' survival.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Anupam Chakrapani
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Michael Champion
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Efstathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | | | - Anne Daly
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Catherine Davies
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - James Davison
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Anil Dhawan
- Paediatric Liver Gastroenterology and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, WC2R 2LS, London, UK
| | - Stephanie Grunewald
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Girish L. Gupte
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Nigel Heaton
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, WC2R 2LS London, UK
| | - Hugh Lemonde
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Pat McKiernan
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Philippa Mills
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew A.M. Morris
- Willink Unit, Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Helen Mundy
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Germaine Pierre
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Sanjay Rajwal
- Leeds Teaching Hospitals NHS Trust, LS9 7TF Leeds, UK
| | - Siyamini Sivananthan
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Srividya Sreekantam
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, M6 8HD Salford, UK
| | - Roshni Vara
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Mildrid Yeo
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
10
|
Barnett D, Bohmbach K, Grelot V, Charlet A, Dallérac G, Ju YH, Nagai J, Orr AG. Astrocytes as Drivers and Disruptors of Behavior: New Advances in Basic Mechanisms and Therapeutic Targeting. J Neurosci 2023; 43:7463-7471. [PMID: 37940585 PMCID: PMC10634555 DOI: 10.1523/jneurosci.1376-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
Astrocytes are emerging as key regulators of cognitive function and behavior. This review highlights some of the latest advances in the understanding of astrocyte roles in different behavioral domains across lifespan and in disease. We address specific molecular and circuit mechanisms by which astrocytes modulate behavior, discuss their functional diversity and versatility, and highlight emerging astrocyte-targeted treatment strategies that might alleviate behavioral and cognitive dysfunction in pathologic conditions. Converging evidence across different model systems and manipulations is revealing that astrocytes regulate behavioral processes in a precise and context-dependent manner. Improved understanding of these astrocytic functions may generate new therapeutic strategies for various conditions with cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Daniel Barnett
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, New York 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021
| | - Kirsten Bohmbach
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, 53127 Bonn, Germany
| | - Valentin Grelot
- Institute of Cellular and Integrative Neuroscience, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France
| | - Alexandre Charlet
- Institute of Cellular and Integrative Neuroscience, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, 67000, France
| | - Glenn Dallérac
- Centre National de la Recherche Scientifique and Paris-Saclay University, Paris-Saclay Institute for Neurosciences, Paris, 91400, France
| | - Yeon Ha Ju
- Department of Psychiatry and Neuroscience, University of Texas-Austin Dell Medical School, Austin, Texas 78712
| | - Jun Nagai
- RIKEN Center for Brain Science, Laboratory for Glia-Neuron Circuit Dynamics, Saitama, 351-0198, Japan
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, New York 10021
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, New York 10021
| |
Collapse
|
11
|
Islam M, Behura SK. Role of caveolin-1 in metabolic programming of fetal brain. iScience 2023; 26:107710. [PMID: 37720105 PMCID: PMC10500482 DOI: 10.1016/j.isci.2023.107710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Mice lacking caveolin-1 (Cav1), a key protein of plasma membrane, exhibit brain aging at an early adult stage. Here, integrative analyses of metabolomics, transcriptomics, epigenetics, and single-cell data were performed to test the hypothesis that metabolic deregulation of fetal brain due to the ablation of Cav1 is linked to brain aging in these mice. The results of this study show that lack of Cav1 caused deregulation in the lipid and amino acid metabolism in the fetal brain, and genes associated with these deregulated metabolites were significantly altered in the brain upon aging. Moreover, ablation of Cav1 deregulated several metabolic genes in specific cell types of the fetal brain and impacted DNA methylation of those genes in coordination with mouse epigenetic clock. The findings of this study suggest that the aging program of brain is confounded by metabolic abnormalities in the fetal stage due to the absence of Cav1.
Collapse
Affiliation(s)
- Maliha Islam
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
| | - Susanta K. Behura
- Division of Animal Sciences, 920 East Campus Drive, University of Missouri, Columbia, MO 65211, USA
- MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
- Interdisciplinary Reproduction and Health Group, University of Missouri, Columbia, MO, USA
- Interdisciplinary Neuroscience Program, University of Missouri, Columbia, MO, USA
| |
Collapse
|
12
|
Jiang A, Handley RR, Lehnert K, Snell RG. From Pathogenesis to Therapeutics: A Review of 150 Years of Huntington's Disease Research. Int J Mol Sci 2023; 24:13021. [PMID: 37629202 PMCID: PMC10455900 DOI: 10.3390/ijms241613021] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Huntington's disease (HD) is a debilitating neurodegenerative genetic disorder caused by an expanded polyglutamine-coding (CAG) trinucleotide repeat in the huntingtin (HTT) gene. HD behaves as a highly penetrant dominant disorder likely acting through a toxic gain of function by the mutant huntingtin protein. Widespread cellular degeneration of the medium spiny neurons of the caudate nucleus and putamen are responsible for the onset of symptomology that encompasses motor, cognitive, and behavioural abnormalities. Over the past 150 years of HD research since George Huntington published his description, a plethora of pathogenic mechanisms have been proposed with key themes including excitotoxicity, dopaminergic imbalance, mitochondrial dysfunction, metabolic defects, disruption of proteostasis, transcriptional dysregulation, and neuroinflammation. Despite the identification and characterisation of the causative gene and mutation and significant advances in our understanding of the cellular pathology in recent years, a disease-modifying intervention has not yet been clinically approved. This review includes an overview of Huntington's disease, from its genetic aetiology to clinical presentation and its pathogenic manifestation. An updated view of molecular mechanisms and the latest therapeutic developments will also be discussed.
Collapse
Affiliation(s)
- Andrew Jiang
- Applied Translational Genetics Group, Centre for Brain Research, School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand; (R.R.H.); (K.L.); (R.G.S.)
| | | | | | | |
Collapse
|
13
|
Prince N, Stav M, Cote M, Chu SH, Vyas CM, Okereke OI, Palacios N, Litonjua AA, Vokonas P, Sparrow D, Spiro A, Lasky-Su JA, Kelly RS. Metabolomics and Self-Reported Depression, Anxiety, and Phobic Symptoms in the VA Normative Aging Study. Metabolites 2023; 13:851. [PMID: 37512558 PMCID: PMC10383599 DOI: 10.3390/metabo13070851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Traditional approaches to understanding metabolomics in mental illness have focused on investigating a single disorder or comparisons between diagnoses, but a growing body of evidence suggests substantial mechanistic overlap in mental disorders that could be reflected by the metabolome. In this study, we investigated associations between global plasma metabolites and abnormal scores on the depression, anxiety, and phobic anxiety subscales of the Brief Symptom Inventory (BSI) among 405 older males who participated in the Normative Aging Study (NAS). Our analysis revealed overlapping and distinct metabolites associated with each mental health dimension subscale and four metabolites belonging to xenobiotic, carbohydrate, and amino acid classes that were consistently associated across all three symptom dimension subscales. Furthermore, three of these four metabolites demonstrated a higher degree of alteration in men who reported poor scores in all three dimensions compared to men with poor scores in only one, suggesting the potential for shared underlying biology but a differing degree of perturbation when depression and anxiety symptoms co-occur. Our findings implicate pathways of interest relevant to the overlap of mental health conditions in aging veterans and could represent clinically translatable targets underlying poor mental health in this high-risk population.
Collapse
Affiliation(s)
- Nicole Prince
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Meryl Stav
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
| | - Margaret Cote
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
| | - Su H. Chu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Chirag M. Vyas
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Olivia I. Okereke
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Natalia Palacios
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
- Department of Public Health, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
- Geriatric Research Education Clinical Center, Edith Nourse Rogers Memorial Veterans Hospital, Bedford, MA 01730, USA
| | - Augusto A Litonjua
- Division of Pediatric Pulmonary Medicine, Golisano Children’s Hospital at Strong, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Pantel Vokonas
- Department of Veterans Affairs, Boston, MA 02114, USA; (P.V.); (D.S.)
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
| | - David Sparrow
- Department of Veterans Affairs, Boston, MA 02114, USA; (P.V.); (D.S.)
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
| | - Avron Spiro
- VA Normative Aging Study, VA Boston Healthcare System, Boston, MA 02130, USA;
- Department of Medicine, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
- Department of Psychiatry, Boston University Chobanian and Avidisian School of Medicine, Boston, MA 02118, USA
| | - Jessica A. Lasky-Su
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| | - Rachel S. Kelly
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA; (N.P.); (M.S.); (M.C.); (S.H.C.); (O.I.O.); (J.A.L.-S.)
- Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
14
|
Durrleman C, Grevent D, Aubart M, Kossorotoff M, Roux CJ, Kaminska A, Rio M, Barcia G, Boddaert N, Munnich A, Nabbout R, Desguerre I. Clinical and radiological description of 120 pediatric stroke-like episodes. Eur J Neurol 2023; 30:2051-2061. [PMID: 37046408 DOI: 10.1111/ene.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/27/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023]
Abstract
BACKGROUND AND PURPOSE Stroke-like episodes (SLEs) are defined as acute onset of neurological symptoms mimicking a stroke and radiological lesions non-congruent to vascular territory. We aimed to analyze the acute clinical and radiological features of SLEs to determine their pathophysiology. METHODS We performed a monocenter retrospective analysis of 120 SLEs in 60 children over a 20-year period. Inclusion criteria were compatible clinical symptoms and stroke-like lesions on brain magnetic resonance imaging (MRI; performed for all 120 events) with focal hyperintensity on diffusion-weighted imaging in a non-vascular territory. RESULTS Three groups were identified: children with mitochondrial diseases (n = 22) involving mitochondrial DNA mutations (55%) or nuclear DNA mutations (45%); those with other metabolic diseases or epilepsy disorders (n = 22); and those in whom no etiology was found despite extensive investigations (n = 16). Age at first SLE was younger in the group with metabolic or epilepsy disorders (18 months vs. 128 months; p < 0.0001) and an infectious trigger was more frequent (69% vs. 20%; p = 0.0001). Seizures occurred in 75% of episodes, revealing 50% episodes of SLEs and mainly leading to status epilepticus (90%). Of the 120 MRI scans confirming the diagnosis, 28 were performed within a short and strict 48-h period and were further analyzed to better understand the underlying mechanisms. The scans showed primary cortical hyperintensity (n = 28/28) with decreased apparent diffusion coefficient in 52% of cases. Systematic hyperperfusion was found on spin labeling sequences when available (n = 18/18). CONCLUSION Clinical and radiological results support the existence of a vicious circle based on two main mechanisms: energy deficit and neuronal hyperexcitability at the origin of SLE.
Collapse
Affiliation(s)
- Chloe Durrleman
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - David Grevent
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
- Lumiere Platform, Université Paris Cité, Paris, France
| | - Melodie Aubart
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Manoelle Kossorotoff
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Charles-Joris Roux
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Anna Kaminska
- Neurophysiology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Marlene Rio
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Giulia Barcia
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Nathalie Boddaert
- Pediatric Imaging Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
- Lumiere Platform, Université Paris Cité, Paris, France
| | - Arnold Munnich
- Genetic Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Rima Nabbout
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Isabelle Desguerre
- Pediatric Neurology Department, Necker Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| |
Collapse
|
15
|
Cederbaum SD, Edwards J, Kellmeyer T, Peters Y, Steiner RD. Taste-masked formulation of sodium phenylbutyrate (ACER-001) for the treatment of urea cycle disorders. Mol Genet Metab 2023; 138:107558. [PMID: 37004302 DOI: 10.1016/j.ymgme.2023.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023]
Abstract
Urea cycle disorders (UCDs) are a group of rare inherited metabolic diseases caused by a deficiency of one of the enzymes or transporters that constitute the urea cycle. Defects in these enzymes lead to acute accumulation (hyperammonemic crises, HAC) or chronically elevated levels (hyperammonemia) of ammonia in the blood and/or various tissues including the brain, which can cause persistent neurological deficits, irreversible brain damage, coma, and death. Ongoing treatment of UCDs include the use of nitrogen-scavenging agents, such as sodium phenylbutyrate (salt of 4-phenylbutyric acid; NaPBA) or glycerol phenylbutyrate (GPB). These treatments provide an alternative pathway for nitrogen disposal through the urinary excretion of phenylacetylglutamine. ACER-001 is a novel formulation of NaPBA with polymer coated pellets in suspension, which is designed to briefly mask the unpleasant bitter taste of NaPBA and is being developed as a treatment option for patients with UCDs. Four Phase 1 studies were conducted to characterize the bioavailability (BA) and/or bioequivalence (BE) of ACER-001 (in healthy volunteers) and taste assessment relative to NaPBA powder (in taste panelists). ACER-001 was shown to be bioequivalent to NaPBA powder under both fed and fasting conditions. Lower systemic exposure of phenylacetate (PAA) and phenylbutyrate (PBA) was observed when ACER-001 was administered with a high-fat meal relative to a fasting state suggesting that the lower doses of PBA administered under fasting conditions may yield similar efficacy with potentially fewer dose dependent adverse effects relative to higher doses with a meal. ACER-001 appeared to be adequately taste-masked, staying below the aversive taste threshold for the first 3 min after the formulation was prepared and remaining palatable when taken within 5 min.
Collapse
Affiliation(s)
- Stephen D Cederbaum
- Departments of Psychiatry, Pediatrics, and Human Genetics, UCLA Geffen Medical School, Los Angeles, CA, United States of America
| | - Jeffrey Edwards
- Acer Therapeutics Inc., Newton, MA, United States of America
| | | | - Yvette Peters
- Acer Therapeutics Inc., Newton, MA, United States of America
| | | |
Collapse
|
16
|
Seker Yilmaz B, Baruteau J, Arslan N, Aydin HI, Barth M, Bozaci AE, Brassier A, Canda E, Cano A, Chronopoulou E, Connolly GM, Damaj L, Dawson C, Dobbelaere D, Douillard C, Eminoglu FT, Erdol S, Ersoy M, Fang S, Feillet F, Gokcay G, Goksoy E, Gorce M, Inci A, Kadioglu B, Kardas F, Kasapkara CS, Kilic Yildirim G, Kor D, Kose M, Marelli C, Mundy H, O’Sullivan S, Ozturk Hismi B, Ramachandran R, Roubertie A, Sanlilar M, Schiff M, Sreekantam S, Stepien KM, Uzun Unal O, Yildiz Y, Zubarioglu T, Gissen P. Three-Country Snapshot of Ornithine Transcarbamylase Deficiency. Life (Basel) 2022; 12:1721. [PMID: 36362876 PMCID: PMC9695856 DOI: 10.3390/life12111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle defect. The disease severity ranges from asymptomatic carrier state to severe neonatal presentation with hyperammonaemic encephalopathy. We audited the diagnosis and management of OTCD, using an online 12-question-survey that was sent to 75 metabolic centres in Turkey, France and the UK. Thirty-nine centres responded and 495 patients were reported in total. A total of 208 French patients were reported, including 71 (34%) males, 86 (41%) symptomatic and 51 (25%) asymptomatic females. Eighty-five Turkish patients included 32 (38%) males, 39 (46%) symptomatic and 14 (16%) asymptomatic females. Out of the 202 UK patients, 66 (33%) were male, 83 (41%) asymptomatic and 53 (26%) symptomatic females. A total of 19%, 12% and 7% of the patients presented with a neonatal-onset phenotype in France, Turkey and the UK, respectively. Vomiting, altered mental status and encephalopathy were the most common initial symptoms in all three countries. While 69% in France and 79% in Turkey were receiving protein restriction, 42% were on a protein-restricted diet in the UK. A total of 76%, 47% and 33% of patients were treated with ammonia scavengers in Turkey, France and the UK, respectively. The findings of our audit emphasize the differences and similarities in manifestations and management practices in three countries.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Nur Arslan
- Paediatric Metabolic Medicine Department, Dokuz Eylul University Faculty of Medicine, Izmir 35340, Turkey
| | - Halil Ibrahim Aydin
- Paediatric Metabolic Medicine Department, Baskent University Faculty of Medicine, Ankara 06490, Turkey
| | - Magalie Barth
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU Angers, 4 rue Larrey, CEDEX 9, 49933 Angers, France
| | - Ayse Ergul Bozaci
- Paediatric Metabolic Medicine Department, Diyarbakir Children’s Hospital, Diyarbakir 21100, Turkey
| | - Anais Brassier
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, 75015 Paris, France
| | - Ebru Canda
- Paediatric Metabolic Medicine Department, Ege University Faculty of Medicine, Izmir 35100, Turkey
| | - Aline Cano
- Reference Center of Inherited Metabolic Disorders, Timone Enfants Hospital, 264 rue Saint-Pierre, 13005 Marseille, France
| | - Efstathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women’s and Children’s Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | | | - Lena Damaj
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Hôpital Sud, CEDEX 2, 35203 Rennes, France
| | - Charlotte Dawson
- Metabolic Medicine Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Dries Dobbelaere
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, EA 7364 CHRU Lille, 59000 Lille, France
| | - Claire Douillard
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, EA 7364 CHRU Lille, 59000 Lille, France
| | - Fatma Tuba Eminoglu
- Paediatric Metabolic Medicine Department, Ankara University Faculty of Medicine, Ankara 06080, Turkey
| | - Sahin Erdol
- Paediatric Metabolic Medicine Department, Uludag University Faculty of Medicine, Bursa 16059, Turkey
| | - Melike Ersoy
- Paediatric Metabolic Medicine Department, Dr Sadi Konuk Reseach & Training Hospital, Istanbul 34450, Turkey
| | - Sherry Fang
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - François Feillet
- Centre de Référence des Maladies Métaboliques de Nancy, CHU Brabois Enfants, 5 Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - Gulden Gokcay
- Paediatric Metabolic Medicine Department, Istanbul University Istanbul Faculty of Medicine, Istanbul 34093, Turkey
| | - Emine Goksoy
- Paediatric Metabolic Medicine Department, Cengiz Gokcek Children’s Hospital, Gaziantep 27010, Turkey
| | - Magali Gorce
- Centre de Référence des Maladies Rares du Métabolisme, Hôpital des Enfants—CHU Toulouse, 330 Avenue de Grande-Bretagne, CEDEX 9, 31059 Toulouse, France
| | - Asli Inci
- Paediatric Metabolic Medicine Department, Gazi University Faculty of Medicine, Ankara 06500, Turkey
| | - Banu Kadioglu
- Paediatric Metabolic Medicine Department, Konya City Hospital, Konya 42020, Turkey
| | - Fatih Kardas
- Paediatric Metabolic Medicine Department, Erciyes University Faculty of Medicine, Kayseri 38030, Turkey
| | - Cigdem Seher Kasapkara
- Paediatric Metabolic Medicine Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara 06800, Turkey
| | - Gonca Kilic Yildirim
- Paediatric Metabolic Medicine Department, Osmangazi University Faculty of Medicine, Eskisehir 26480, Turkey
| | - Deniz Kor
- Paediatric Metabolic Medicine Department, Cukurova University Faculty of Medicine, Adana 01250, Turkey
| | - Melis Kose
- Paediatric Metabolic Medicine Department, Faculty of Medicine, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Cecilia Marelli
- MMDN, University Montpellier, EPHE, INSERM, 34090 Montpellier, France
- Expert Center for Metabolic and Neurogenetic Diseases, Centre Hospitalier Universitaire (CHU), 34090 Montpellier, France
| | - Helen Mundy
- Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | | | - Burcu Ozturk Hismi
- Paediatric Metabolic Medicine Department, Marmara University Faculty of Medicine, Istanbul 34854, Turkey
| | | | - Agathe Roubertie
- MMDN, University Montpellier, EPHE, INSERM, 34090 Montpellier, France
- Expert Center for Metabolic and Neurogenetic Diseases, Centre Hospitalier Universitaire (CHU), 34090 Montpellier, France
| | - Mehtap Sanlilar
- Paediatric Metabolic Medicine Department, Antalya Training and Research Hospital, Antalya 07100, Turkey
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, 75015 Paris, France
| | - Srividya Sreekantam
- Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Ozlem Uzun Unal
- Paediatric Metabolic Medicine Department, Kocaeli University Faculty of Medicine, Kocaeli 41380, Turkey
| | - Yilmaz Yildiz
- Paediatric Metabolic Medicine Department, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Tanyel Zubarioglu
- Paediatric Metabolic Medicine Department, Istanbul University-Cerrahpasa Faculty of Medicine, Istanbul 34096, Turkey
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
17
|
Bai R, He AL, Guo J, Li Z, Yu X, Zeng J, Mi Y, Wang L, Zhang J, Yang D. Novel pathogenic variant (c.2947C > T) of the carbamoyl phosphate synthetase 1 gene in neonatal-onset deficiency. Front Neurosci 2022; 16:1025572. [PMID: 36340787 PMCID: PMC9634248 DOI: 10.3389/fnins.2022.1025572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is a rare autosomal recessive urea cycle disorder characterized by hyperammonaemia. The biochemical measurement of the intermediate metabolites is helpful for CPS1D diagnosis; it however cannot distinguish CPS1D from N-acetylglutamate synthetase deficiency. Therefore, next-generation sequencing (NGS) is often essential for the accurate diagnosis of CPS1D. Methods NGS was performed to identify candidate gene variants of CPS1D in a Asian neonatal patient presented with poor feeding, reduced activity, tachypnea, lethargy, and convulsions. The potential pathogenicity of the identified variants was predicted by various types of bioinformatical analyses, including evolution conservation, domain and 3D structure simulations. Results Compound heterozygosity of CPS1D were identified. One was in exon 24 with a novel heterozygous missense variant c.2947C > T (p.P983S), and another was previously reported in exon 20 with c.2548C > T (p.R850C). Both variants were predicted to be deleterious. Conservation analysis and structural modeling showed that the two substituted amino acids were highly evolutionarily conserved, resulting in potential decreases of the binding pocket stability and the partial loss of enzyme activity. Conclusion In this study, two pathogenic missense variants were identified with NGS, expanding the variants pectrum of the CPS1 gene. The variants and related structural knowledge of CPS enzyme demonstrate the applicability for the accurate diagnosis of CPS1D.
Collapse
Affiliation(s)
- Ruimiao Bai
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - ALing He
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jinzhen Guo
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Zhankui Li
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Xiping Yu
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - JunAn Zeng
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Yang Mi
- Department of Obstetrics, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Lin Wang
- Genetics Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Jingjing Zhang
- Medical Imaging Center, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| | - Dong Yang
- Department of Neonatology, Northwest Women’s and Children’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
18
|
Duff C, Baruteau J. Modelling urea cycle disorders using iPSCs. NPJ Regen Med 2022; 7:56. [PMID: 36163209 PMCID: PMC9513077 DOI: 10.1038/s41536-022-00252-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/10/2022] [Indexed: 11/23/2022] Open
Abstract
The urea cycle is a liver-based pathway enabling disposal of nitrogen waste. Urea cycle disorders (UCDs) are inherited metabolic diseases caused by deficiency of enzymes or transporters involved in the urea cycle and have a prevalence of 1:35,000 live births. Patients present recurrent acute hyperammonaemia, which causes high rate of death and neurological sequelae. Long-term therapy relies on a protein-restricted diet and ammonia scavenger drugs. Currently, liver transplantation is the only cure. Hence, high unmet needs require the identification of effective methods to model these diseases to generate innovative therapeutics. Advances in both induced pluripotent stem cells (iPSCs) and genome editing technologies have provided an invaluable opportunity to model patient-specific phenotypes in vitro by creating patients' avatar models, to investigate the pathophysiology, uncover novel therapeutic targets and provide a platform for drug discovery. This review summarises the progress made thus far in generating 2- and 3-dimensional iPSCs models for UCDs, the challenges encountered and how iPSCs offer future avenues for innovation in developing the next-generation of therapies for UCDs.
Collapse
Affiliation(s)
- Claire Duff
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London, UK.
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London, UK.
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
19
|
Khaksari K, Chen WL, Gropman AL. Review of Applications of Near-Infrared Spectroscopy in Two Rare Disorders with Executive and Neurological Dysfunction: UCD and PKU. Genes (Basel) 2022; 13:genes13101690. [PMID: 36292574 PMCID: PMC9602148 DOI: 10.3390/genes13101690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Studying rare diseases, particularly those with neurological dysfunction, is a challenge to researchers and healthcare professionals due to their complexity and small population with geographical dispersion. Universal and standardized biomarkers generated by tools such as functional neuroimaging have been forged to collect baseline data as well as treatment effects. However, the cost and heavily infrastructural requirement of those technologies have substantially limited their availability. Thus, developing non-invasive, portable, and inexpensive modalities has become a major focus for both researchers and clinicians. When considering neurological disorders and diseases with executive dysfunction, EEG is the most convenient tool to obtain biomarkers which can correlate the objective severity and clinical observation of these conditions. However, studies have also shown that EEG biomarkers and clinical observations alone are not sensitive enough since not all the patients present classical phenotypical features or EEG evidence of dysfunction. This article reviews disorders, including two rare disorders with neurological dysfunction and the usefulness of functional near-infrared spectroscopy (fNIRS) as a non-invasive optical modality to obtain hemodynamic biomarkers of diseases and for screening and monitoring the disease.
Collapse
Affiliation(s)
- Kosar Khaksari
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC 20010, USA
- Correspondence:
| | - Wei-Liang Chen
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrea L. Gropman
- Division of Neurogenetics and Developmental Pediatrics, Children’s National Health System, Washington, DC 20010, USA
- Department of Neurology, George Washington University, Washington, DC 20052, USA
| |
Collapse
|
20
|
Cao LX, Hu WZ, Dong W, Yang Q, Yin JH, Wang Y, Ni X, Huang Y. Neuropathological report of propionic acidemia. Neuropathology 2022; 43:143-150. [PMID: 36102083 DOI: 10.1111/neup.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Propionic acidemia (PA) is an autosomal recessive inheritable metabolic disease caused by mutations in the propionyl CoA carboxylase gene (PCC) that affects multiple systems of the human body. Here, we report neuropathological findings of a PA patient. The patient was a male infant who presented with increasing lethargy and poor feeding from four days postpartum. He gradually became comatose and died from complications after liver transplantation at three months old. The results of laboratory examination were consistent with PA, and genetic analysis revealed compound heterozygous mutations in the gene for PCC subunit beta: c.838dupC (rs769968548) and c.1127G>T (rs142982097). Brain-restricted autopsy was performed 23 h after his death, and the neuropathological examination revealed distinct astrocytosis, oligodendrocytic loss, neuronal loss, and demyelination across the brainstem, motor cortex, basal ganglia, and thalamus. Spongiosis, vacuolization, and the appearance of Alzheimer type II astrocytes and activated microglia were observed as well. This is the first brain autopsy report of PA with a clear genetic cause.
Collapse
Affiliation(s)
- Ling-Xiao Cao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wen-Zheng Hu
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Dong
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qing Yang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jin-Hui Yin
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yue Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin Ni
- Beijing Children Hospital, Capital Medical University, Beijing, China
| | - Yue Huang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,School of Medical Sciences, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
21
|
Park SH, Lee JH, Kim JS, Kim TJ, Shin J, Im JH, Cha B, Lee S, Kwon KS, Shin YW, Ko SB, Choi SH. Fecal microbiota transplantation can improve cognition in patients with cognitive decline and Clostridioides difficile infection. Aging (Albany NY) 2022; 14:6449-6466. [PMID: 35980280 PMCID: PMC9467396 DOI: 10.18632/aging.204230] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022]
Abstract
After fecal microbiota transplantation (FMT) to treat Clostridioides difficile infection (CDI), cognitive improvement is noticeable, suggesting an essential association between the gut microbiome and neural function. Although the gut microbiome has been associated with cognitive function, it remains to be elucidated whether fecal microbiota transplantation can improve cognition in patients with cognitive decline. The study included 10 patients (age range, 63-90 years; female, 80%) with dementia and severe CDI who were receiving FMT. Also, 10 patients (age range, 62-91; female, 80%) with dementia and severe CDI who were not receiving FMT. They were evaluated using cognitive function tests (Mini-Mental State Examination [MMSE] and Clinical Dementia Rating scale Sum of Boxes [CDR-SB]) at 1 month before and after FMT or antibiotics treatment (control group). The patients' fecal samples were analyzed to compare the composition of their gut microbiota before and 3 weeks after FMT or antibiotics treatment. Ten patients receiving FMT showed significantly improvements in clinical symptoms and cognitive functions compared to control group. The MMSE and CDR-SB of FMT group were improved compare to antibiotics treatment (MMSE: 16.00, median, 13.00-18.00 [IQR] vs. 10.0, median, 9.8-15.3 [IQR]); CDR-SB: 5.50, median, 4.00-8.00 [IQR]) vs. 8.0, median, 7.9-12.5, [IQR]). FMT led to changes in the recipient's gut microbiota composition, with enrichment of Proteobacteria and Bacteroidetes. Alanine, aspartate, and glutamate metabolism pathways were also significantly different after FMT. This study revealed important interactions between the gut microbiome and cognitive function. Moreover, it suggested that FMT may effectively delay cognitive decline in patients with dementia.
Collapse
Affiliation(s)
- Soo-Hyun Park
- Department of Neurology, Department of Critical Care Medicine, Department of Hospital Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Jung-Hwan Lee
- Division of Gastroenterology, Department of Internal Medicine, Department of Hospital Medicine, Inha University Hospital, Incheon 22332, Republic of Korea
| | - Jun-Seob Kim
- Department of Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Tae Jung Kim
- Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Jongbeom Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Jae Hyoung Im
- Division of Infectious Diseases, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Boram Cha
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Suhjoon Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Kye Sook Kwon
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Yong Woon Shin
- Division of Gastroenterology, Department of Internal Medicine, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Sang-Bae Ko
- Department of Neurology and Department of Critical Care Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon 22332, Republic of Korea
| |
Collapse
|
22
|
Castellanos DB, Martín-Jiménez CA, Pinzón A, Barreto GE, Padilla-González GF, Aristizábal A, Zuluaga M, González Santos J. Metabolomic Analysis of Human Astrocytes in Lipotoxic Condition: Potential Biomarker Identification by Machine Learning Modeling. Biomolecules 2022; 12:biom12070986. [PMID: 35883542 PMCID: PMC9313230 DOI: 10.3390/biom12070986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
The association between neurodegenerative diseases (NDs) and obesity has been well studied in recent years. Obesity is a syndrome of multifactorial etiology characterized by an excessive accumulation and release of fatty acids (FA) in adipose and non-adipose tissue. An excess of FA generates a metabolic condition known as lipotoxicity, which triggers pathological cellular and molecular responses, causing dysregulation of homeostasis and a decrease in cell viability. This condition is a hallmark of NDs, and astrocytes are particularly sensitive to it, given their crucial role in energy production and oxidative stress management in the brain. However, analyzing cellular mechanisms associated with these conditions represents a challenge. In this regard, metabolomics is an approach that allows biochemical analysis from the comprehensive perspective of cell physiology. This technique allows cellular metabolic profiles to be determined in different biological contexts, such as those of NDs and specific metabolic insults, including lipotoxicity. Since data provided by metabolomics can be complex and difficult to interpret, alternative data analysis techniques such as machine learning (ML) have grown exponentially in areas related to omics data. Here, we developed an ML model yielding a 93% area under the receiving operating characteristic (ROC) curve, with sensibility and specificity values of 80% and 93%, respectively. This study aimed to analyze the metabolomic profiles of human astrocytes under lipotoxic conditions to provide powerful insights, such as potential biomarkers for scenarios of lipotoxicity induced by palmitic acid (PA). In this work, we propose that dysregulation in seleno-amino acid metabolism, urea cycle, and glutamate metabolism pathways are major triggers in astrocyte lipotoxic scenarios, while increased metabolites such as alanine, adenosine, and glutamate are suggested as potential biomarkers, which, to our knowledge, have not been identified in human astrocytes and are proposed as candidates for further research and validation.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
| | - Cynthia A. Martín-Jiménez
- Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, Atlanta, GA 30329-4208, USA;
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - George E. Barreto
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland;
| | | | - Andrés Aristizábal
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
| | - Martha Zuluaga
- Escuela de Ciencias Básicas Tecnologías e Ingenierías, Universidad Nacional Abierta y a Distancia, Dosquebradas 661001, Colombia;
| | - Janneth González Santos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110311, Colombia; (D.B.C.); (A.A.)
- Correspondence: ; Tel.: +57-60-1-3208320
| |
Collapse
|
23
|
Benefits of tailored disease management in improving tremor, white matter hyperintensities, and liver enzymes in a child with heterozygous X-linked ornithine transcarbamylase deficiency. Mol Genet Metab Rep 2022; 33:100891. [PMID: 36620387 PMCID: PMC9817482 DOI: 10.1016/j.ymgmr.2022.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/11/2023] Open
Abstract
We report the case of a 19-month-old girl with late-onset ornithine transcarbamylase (OTC) deficiency initially referred to gastroenterology for intermittent vomiting lasting a year and abnormal liver enzymes (AST 730 U/L [reference range 26-55 U/L]; ALT 1213 U/L [reference range 11-30 U/L]) without hepatomegaly. While the patient was hospitalized for liver biopsy, intermittent tremors of the upper extremities with varying severity were noted. The patient was presumed to have hyperammonemia secondary to acute liver failure and was discharged after 5 days; follow-up monitoring led to readmission 7 days later. A brain MRI showed nonspecific bilateral pericallosal and bifrontal white matter FLAIR hyperintensities. These findings raised suspicion for a metabolic disease and prompted a genetics consultation. After inconclusive biochemical testing and worsening clinical status, rapid whole genome sequencing results were obtained identifying a novel, de novo, likely pathogenic, variant c.608C > T (p.Ser203Phe) in the OTC gene. The patient was promptly started on an oral nitrogen scavenger, citrulline supplementation, and protein restriction. Ammonia and glutamine levels normalized within 1 month of treatment and have stayed within the goal ranges with continued tailoring of treatment. Her parents noted resolution of vomiting and improved mood stability. Liver enzymes normalized after 2 months of treatment. The tremor, identified as asterixis, improved and a repeat brain MRI 3 months after the initial imaging showed near-complete resolution of previous white matter hyperintensities.
Collapse
Key Words
- ALT, alanine transaminase
- AST, aspartate aminotransferase
- Asterixis
- BASC-3, Behavior Assessment System for Children
- BCAA, branched-chain amino acid
- FLAIR, fluid-attenuated inversion recovery
- GGT, gamma-glutamyl transferase
- Late onset
- MRI, magnetic resonance imaging
- MRS, magnetic resonance spectroscopy
- Manifesting heterozygote
- OTC, ornithine transcarbamylase
- Ornithine transcarbamylase deficiency
- PT, prothrombin time
- Partial onset
- TID, 3 times a day
- UCD, urea cycle disorder
- Urea cycle disorder
- WPPSI-IV, Wechsler Preschool and Primary Scale of Intelligence
- X linked
Collapse
|
24
|
Recommendations for the Diagnosis and Therapeutic Management of Hyperammonaemia in Paediatric and Adult Patients. Nutrients 2022; 14:nu14132755. [PMID: 35807935 PMCID: PMC9269083 DOI: 10.3390/nu14132755] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/20/2022] Open
Abstract
Hyperammonaemia is a metabolic derangement that may cause severe neurological damage and even death due to cerebral oedema, further complicating the prognosis of its triggering disease. In small children it is a rare condition usually associated to inborn errors of the metabolism. As age rises, and especially in adults, it may be precipitated by heterogeneous causes such as liver disease, drugs, urinary infections, shock, or dehydration. In older patients, it is often overlooked, or its danger minimized. This protocol was drafted to provide an outline of the clinical measures required to normalise ammonia levels in patients of all ages, aiming to assist clinicians with no previous experience in its treatment. It is an updated protocol developed by a panel of experts after a review of recent publications. We point out the importance of frequent monitoring to assess the response to treatment, the nutritional measures that ensure not only protein restriction but adequate caloric intake and the need to avoid delays in the use of specific pharmacological therapies and, especially, extrarenal clearance measures. In this regard, we propose initiating haemodialysis when ammonia levels are >200−350 µmol/L in children up to 18 months of age and >150−200 µmol/L after that age.
Collapse
|
25
|
Ishikawa R, Sugimoto T, Abe T, Ohno N, Tazuma T, Giga M, Naito H, Kono T, Nomura E, Hara K, Yorifuji T, Yamawaki T. A 36-year-old Man with Repeated Short-term Transient Hyperammonemia and Impaired Consciousness with a Confirmed Carbamoyl Phosphate Synthase 1 Gene Monoallelic Mutation. Intern Med 2022; 61:1387-1392. [PMID: 34670888 PMCID: PMC9152872 DOI: 10.2169/internalmedicine.7961-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A 36-year-old man experienced severely impaired consciousness twice after drinking because of hyperammonemia. No abnormal blood tests were found other than ammonia levels. However, magnetic resonance imaging (MRI) showed atrophy of the brain parenchyma. One the second occasion, the patient suffered severe impairment of consciousness, and because of seizures and glossoptosis, mechanical ventilation was started. Urea cycle disorders (UCDs) were assumed to be involved. Genetic testing revealed a monoallelic mutation of the carbamoyl phosphate synthase 1 (CPS1) gene. When transient hyperammonemia of unknown cause occurs repeatedly in adults, an active investigation for UCDs should be conducted.
Collapse
Affiliation(s)
- Ruoyi Ishikawa
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Takamichi Sugimoto
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Takafumi Abe
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Narumi Ohno
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Taku Tazuma
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Mayumi Giga
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Hiroyuki Naito
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Tomoyuki Kono
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Eiichi Nomura
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| | - Keiichi Hara
- Department of Pediatrics and Institute for Clinical Research, NHO Kure Medical Center, Japan
| | - Tohru Yorifuji
- Division of Pediatric Endocrinology and Metabolism, Osaka City General Hospital, Japan
| | - Takemori Yamawaki
- Department of Neurology, Hiroshima City Hiroshima Citizens Hospital, Japan
| |
Collapse
|
26
|
Nayok SB, Thimmaiah SM, Dhanashree Akshatha H S. Intact Higher Mental Functions Despite High Serum Urea and Creatinine Levels in a Patient with Acute Kidney Injury: A Case Report. Indian J Psychol Med 2022; 44:207-208. [PMID: 35655972 PMCID: PMC9120989 DOI: 10.1177/02537176211026877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Swarna Buddha Nayok
- Department of Clinical Neurosciences, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | | | - Dhanashree Akshatha H S
- Dept. of Psychiatry, Sri Siddhartha Medical College and Hospital, Tumakuru, Karnataka, India
| |
Collapse
|
27
|
Geller S, Lieberman H, Belanger AJ, Yew NS, Kloss A, Ivanov AR. Comparison of Microflow and Analytical Flow Liquid Chromatography Coupled to Mass Spectrometry Global Metabolomics Methods Using a Urea Cycle Disorder Mouse Model. J Proteome Res 2022; 21:151-163. [PMID: 34843255 PMCID: PMC8742624 DOI: 10.1021/acs.jproteome.1c00628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Microscale-based separations are increasingly being applied in the field of metabolomics for the analysis of small-molecule metabolites. These methods have the potential to provide improved sensitivity, less solvent waste, and reduced sample-size requirements. Ion-pair free microflow-based global metabolomics methods, which we recently reported, were further compared to analytical flow ion-pairing reagent containing methods using a sample set from a urea cycle disorder (UCD) mouse model. Mouse urine and brain homogenate samples representing healthy, diseased, and disease-treated animals were analyzed by both methods. Data processing was performed using univariate and multivariate techniques followed by analyte trend analysis. The microflow methods performed comparably to the analytical flow ion-pairing methods with the ability to separate the three sample groups when analyzed by partial least-squares analysis. The number of detected metabolic features present after each data processing step was similar between the microflow-based methods and the ion-pairing methods in the negative ionization mode. The observed analyte trend and coverage of known UCD biomarkers were the same for both evaluated approaches. The 12.5-fold reduction in sample injection volume required for the microflow-based separations highlights the potential of this method to support studies with sample-size limitations.
Collapse
Affiliation(s)
- Sarah Geller
- Sanofi, Waltham, Massachusetts 02451, United States
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | | | | | - Nelson S Yew
- Sanofi, Waltham, Massachusetts 02451, United States
| | - Alla Kloss
- Sanofi, Waltham, Massachusetts 02451, United States
| | - Alexander R Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
28
|
Sen K, Whitehead M, Castillo Pinto C, Caldovic L, Gropman A. Fifteen years of urea cycle disorders brain research: Looking back, looking forward. Anal Biochem 2022; 636:114343. [PMID: 34637785 PMCID: PMC8671367 DOI: 10.1016/j.ab.2021.114343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023]
Abstract
Urea cycle disorders (UCD) are inherited diseases resulting from deficiency in one of six enzymes or two carriers that are required to remove ammonia from the body. UCD may be associated with neurological damage encompassing a spectrum from asymptomatic/mild to severe encephalopathy, which results in most cases from Hyperammonemia (HA) and elevation of other neurotoxic intermediates of metabolism. Electroencephalography (EEG), Magnetic resonance imaging (MRI) and Proton Magnetic resonance spectroscopy (MRS) are noninvasive measures of brain function and structure that can be used during HA to guide management and provide prognostic information, in addition to being research tools to understand the pathophysiology of UCD associated brain injury. The Urea Cycle Rare disorders Consortium (UCDC) has been invested in research to understand the immediate and downstream effects of hyperammonemia (HA) on brain using electroencephalogram (EEG) and multimodal brain MRI to establish early patterns of brain injury and to track recovery and prognosis. This review highlights the evolving knowledge about the impact of UCD and HA in particular on neurological injury and recovery and use of EEG and MRI to study and evaluate prognostic factors for risk and recovery. It recognizes the work of others and discusses the UCDC's prior work and future research priorities.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States
| | - Matthew Whitehead
- Division of Radiology, Children's National Hospital, Washington D.C., United States
| | | | - Ljubica Caldovic
- Childrens' Research Institute, Children's National Hospital, Washington D.C., United States
| | - Andrea Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Children's National Hospital, Washington D.C., United States.
| |
Collapse
|
29
|
Ficicioglu C, Liu N, Sun Q, Burdett A, Hata A, Porter M, Sutton VR. Perceptions and use of phenylbutyrate metabolite testing in urea cycle disorders: Results of a clinician survey and analysis of a centralized testing database. Mol Genet Metab 2022; 135:35-41. [PMID: 34980542 DOI: 10.1016/j.ymgme.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022]
Abstract
The nitrogen scavengers sodium and glycerol phenylbutyrate (PB), approved for chronic treatment of urea cycle disorders (UCDs), undergo hepatic conversion to phenylacetate (PAA), which conjugates glutamine to form phenylacetylglutamine for urinary nitrogen excretion. Elevated PAA has been associated with reversible neurological toxicity, with symptoms similar to hyperammonemia. Plasma PB metabolite analysis can assess for toxicity and therapeutic drug levels. An online survey was undertaken to assess US clinician perceptions and use of the test in addition to an analysis of centralized US laboratory records. Survey responses from 52 clinicians were analyzed, including 58% who reported using plasma PB metabolite testing. Test users reported managing more UCD patients than nonusers. Users rated the test as "often helpful" for ruling out PAA toxicity (44%), informing PB dosing decisions (42%), and assessing adherence (28%). Test results were reported as most often unremarkable (61%) or suggestive of poor adherence (13%); 46% of users had never encountered results indicative of PAA toxicity. Analyses of laboratory records for 1668 plasma metabolite tests determined that only 5% of samples had plasma PAA-to-phenylacetylglutamine ratios associated with increased risk of PAA toxicity. Nearly half of surveyed clinicians were unsure of metabolite targets; those conducting ad hoc (versus regular) testing were significantly more likely to be unsure of targets. One-fifth of test users identified uncertainties, including questions about test validation, timing, and interpretation. Increased awareness of published PB metabolite data and further clinician education on test interpretation may help to inform the use of metabolite testing to optimize UCD care.
Collapse
Affiliation(s)
- Can Ficicioglu
- Perelman School of Medicine, The University of Pennsylvania, Philadelphia, PA, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ning Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | | | | | | | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA; Inborn Errors of Metabolism Service, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
30
|
Rangasamy SB, Raha S, Dasarathy S, Pahan K. Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive, Improves Cognitive Functions in Mice after Controlled Cortical Impact Injury. Int J Mol Sci 2021; 23:192. [PMID: 35008615 PMCID: PMC8745327 DOI: 10.3390/ijms23010192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major health concern, sometimes leading to long-term neurological disability, especially in children, young adults and war veterans. Although research investigators and clinicians have applied different treatment strategies or neurosurgical procedures to solve this health issue, we are still in need of an effective therapy to halt the pathogenesis of brain injury. Earlier, we reported that sodium benzoate (NaB), a metabolite of cinnamon and a Food and Drug Administration-approved drug against urea cycle disorders and glycine encephalopathy, protects neurons in animal models of Parkinson's disease and Alzheimer's disease. This study was undertaken to examine the therapeutic efficacy of NaB in a controlled cortical impact (CCI)-induced preclinical mouse model of TBI. Oral treatment with NaB, but not sodium formate (NaFO), was found to decrease the activation of microglia and astrocytes and to inhibit the expression of inducible nitric oxide synthase (iNOS) in the hippocampus and cortex of CCI-insulted mice. Further, administration of NaB also reduced the vascular damage and decreased the size of the lesion cavity in the brain of CCI-induced mice. Importantly, NaB-treated mice showed significant improvements in memory and locomotor functions as well as displaying a substantial reduction in depression-like behaviors. These results delineate a novel neuroprotective property of NaB, highlighting its possible therapeutic importance in TBI.
Collapse
Affiliation(s)
- Suresh B. Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA;
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (S.D.)
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (S.D.)
| | - Sridevi Dasarathy
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (S.D.)
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA;
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, USA; (S.R.); (S.D.)
| |
Collapse
|
31
|
Cieślik P, Siekierzycka A, Radulska A, Płoska A, Burnat G, Brański P, Kalinowski L, Wierońska JM. Nitric Oxide-Dependent Mechanisms Underlying MK-801- or Scopolamine-Induced Memory Dysfunction in Animals: Mechanistic Studies. Int J Mol Sci 2021; 22:12282. [PMID: 34830164 PMCID: PMC8624219 DOI: 10.3390/ijms222212282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
MK-801, an NMDA receptor antagonist, and scopolamine, a cholinergic receptor blocker, are widely used as tool compounds to induce learning and memory deficits in animal models to study schizophrenia or Alzheimer-type dementia (AD), respectively. Memory impairments are observed after either acute or chronic administration of either compound. The present experiments were performed to study the nitric oxide (NO)-related mechanisms underlying memory dysfunction induced by acute or chronic (14 days) administration of MK-801 (0.3 mg/kg, i.p.) or scopolamine (1 mg/kg, i.p.). The levels of L-arginine and its derivatives, L-citrulline, L-glutamate, L-glutamine and L-ornithine, were measured. The expression of constitutive nitric oxide synthases (cNOS), dimethylaminohydrolase (DDAH1) and protein arginine N-methyltransferases (PMRTs) 1 and 5 was evaluated, and the impact of the studied tool compounds on cGMP production and NMDA receptors was measured. The studies were performed in both the cortex and hippocampus of mice. S-nitrosylation of selected proteins, such as GLT-1, APP and tau, was also investigated. Our results indicate that the availability of L-arginine decreased after chronic administration of MK-801 or scopolamine, as both the amino acid itself as well as its level in proportion to its derivatives (SDMA and NMMA) were decreased. Additionally, among all three methylamines, SDMA was the most abundant in the brain (~70%). Administration of either compound impaired eNOS-derived NO production, increasing the monomer levels, and had no significant impact on nNOS. Both compounds elevated DDAH1 expression, and slight decreases in PMRT1 and PMRT5 in the cortex after scopolamine (acute) and MK-801 (chronic) administration were observed in the PFC, respectively. Administration of MK-801 induced a decrease in the cGMP level in the hippocampus, accompanied by decreased NMDA expression, while increased cGMP production and decreased NMDA receptor expression were observed after scopolamine administration. Chronic MK-801 and scopolamine administration affected S-nitrosylation of GLT-1 transport protein. Our results indicate that the analyzed tool compounds used in pharmacological models of schizophrenia or AD induce changes in NO-related pathways in the brain structures involved in cognition. To some extent, the changes resemble those observed in human samples.
Collapse
Affiliation(s)
- Paulina Cieślik
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| | - Anna Siekierzycka
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
| | - Adrianna Radulska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
- Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 Dębinki Street, 80-211 Gdańsk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
- Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 Dębinki Street, 80-211 Gdańsk, Poland
| | - Grzegorz Burnat
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| | - Piotr Brański
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics—Fahrenheit Biobank BBMRI.pl, Medical University of Gdańsk, 7 Dębinki Street, 80-211 Gdańsk, Poland; (A.R.); (A.P.)
- Biobanking and Biomoleclular Resources Research Infrastructure Consortium Poland (BBMRI.pl), 7 Dębinki Street, 80-211 Gdańsk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, 11/12 Narutowicza, 80-233 Gdańsk, Poland
| | - Joanna M. Wierońska
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, 31-343 Kraków, Poland; (P.C.); (A.S.); (G.B.); (P.B.)
| |
Collapse
|
32
|
Leuger L, Dieu X, Chao de la Barca JM, Moriconi M, Halley G, Donin de Rosière X, Reynier P, Mirebeau‐Prunier D, Homedan C. Late-onset argininosuccinic aciduria in a 72-year-old man presenting with fatal hyperammonemia. JIMD Rep 2021; 62:44-48. [PMID: 34765397 PMCID: PMC8574183 DOI: 10.1002/jmd2.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/07/2022] Open
Abstract
Argininosuccinate lyase deficiency (ASLD, MIM #207900) is an inherited urea cycle disorder. There are mainly two clinical forms, an acute neonatal form which manifests as life-threatening hyperammonemia, and a late-onset form characterised by polymorphic neuro-cognitive or psychiatric presentation with transient hyperammonemia episodes. Here, we report a late-onset case of ASLD in a 72-year-old man carrying a homozygous pathogenic variant in the exon 16 of the ASL gene, presenting for the first time with fatal hyperammonemic coma. This case report shows the need to systematically carry out an ammonia assay when faced with an unexplained coma.
Collapse
Affiliation(s)
- Laurent Leuger
- Laboratoire de Biochimie et biologie moléculaire, Centre Hospitalier Universitaire d'AngersAngers Cedex 9France
| | - Xavier Dieu
- Laboratoire de Biochimie et biologie moléculaire, Centre Hospitalier Universitaire d'AngersAngers Cedex 9France
| | | | - Mikael Moriconi
- Service de Réanimation Polyvalente et Unité de soins continus, Centre Hospitalier de CornouailleQuimper CedexFrance
| | - Guillaume Halley
- Service de Réanimation Polyvalente et Unité de soins continus, Centre Hospitalier de CornouailleQuimper CedexFrance
| | | | - Pascal Reynier
- Laboratoire de Biochimie et biologie moléculaire, Centre Hospitalier Universitaire d'AngersAngers Cedex 9France
| | - Delphine Mirebeau‐Prunier
- Laboratoire de Biochimie et biologie moléculaire, Centre Hospitalier Universitaire d'AngersAngers Cedex 9France
| | - Chadi Homedan
- Laboratoire de Biochimie et biologie moléculaire, Centre Hospitalier Universitaire d'AngersAngers Cedex 9France
| |
Collapse
|
33
|
Ribas GS, Lopes FF, Deon M, Vargas CR. Hyperammonemia in Inherited Metabolic Diseases. Cell Mol Neurobiol 2021; 42:2593-2610. [PMID: 34665389 DOI: 10.1007/s10571-021-01156-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022]
Abstract
Ammonia is a neurotoxic compound which is detoxified through liver enzymes from urea cycle. Several inherited or acquired conditions can elevate ammonia concentrations in blood, causing severe damage to the central nervous system due to the toxic effects exerted by ammonia on the astrocytes. Therefore, hyperammonemic patients present potentially life-threatening neuropsychiatric symptoms, whose severity is related with the hyperammonemia magnitude and duration, as well as the brain maturation stage. Inherited metabolic diseases caused by enzymatic defects that compromise directly or indirectly the urea cycle activity are the main cause of hyperammonemia in the neonatal period. These diseases are mainly represented by the congenital defects of urea cycle, classical organic acidurias, and the defects of mitochondrial fatty acids oxidation, with hyperammonemia being more severe and frequent in the first two groups mentioned. An effective and rapid treatment of hyperammonemia is crucial to prevent irreversible neurological damage and it depends on the understanding of the pathophysiology of the diseases, as well as of the available therapeutic approaches. In this review, the mechanisms underlying the hyperammonemia and neurological dysfunction in urea cycle disorders, organic acidurias, and fatty acids oxidation defects, as well as the therapeutic strategies for the ammonia control will be discussed.
Collapse
Affiliation(s)
- Graziela Schmitt Ribas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| | - Franciele Fátima Lopes
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Marion Deon
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. .,Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, Porto Alegre, RS, CEP 90035-003, Brazil.
| |
Collapse
|
34
|
Pribožič L, Žerjav Tanšek M, Herga P, Osredkar D, Rajtar Osredkar S, Vidmar I, Repič Lampret B, Klemenčič S, Bratina N, Battelino T, Groselj U. Reye Syndrome with Severe Hyperammonemia and a Good Neurological Outcome. AMERICAN JOURNAL OF CASE REPORTS 2021; 22:e932864. [PMID: 34629460 PMCID: PMC8522526 DOI: 10.12659/ajcr.932864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Patient: Male, 4-year-old
Final Diagnosis: Reye syndrome
Symptoms: Hypoglycemia • disturbance of consciousness • diarrhoea • signs of respiratory infection • vomiting and nausea
Medication: —
Clinical Procedure: —
Specialty: Critical Care Medicine • Endocrinology and Metabolic • Pediatrics and Neonatology
Collapse
Affiliation(s)
- Lucija Pribožič
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Mojca Žerjav Tanšek
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primož Herga
- Department of Pediatric Surgery and Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Damjan Osredkar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Department for Pediatric Neurology, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Simona Rajtar Osredkar
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Ivan Vidmar
- Department of Pediatric Surgery and Intensive Care, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Barbka Repič Lampret
- Clinical Institute for Special Laboratory Diagnostics, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Simona Klemenčič
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - Nataša Bratina
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Urh Groselj
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Children's Hospital, University Medical Center Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
35
|
Kolchina AN, Yatsyshina EE, Malysheva LV, Ledentsova EE, Lidyaeva EE, Khaletskaya OV. Diagnostics of Inherited Metabolic Diseases in Newborns with the Hyperammonemia Syndrome at the Onset of Disease (Pilot Study). Sovrem Tekhnologii Med 2021; 13:59-64. [PMID: 34513067 PMCID: PMC8353695 DOI: 10.17691/stm2021.13.1.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Indexed: 11/23/2022] Open
Abstract
The aim of the study was to develop a diagnostic model that allows with a high degree of probability predicting the development of inherited metabolic disease (IMD) in newborns with the hyperammonemia syndrome at the onset of disease and determine the adequate management tactics for such patients.
Collapse
Affiliation(s)
- A N Kolchina
- PhD Student, Department of Hospital Pediatrics, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - E E Yatsyshina
- Associate Professor, Department of Hospital Pediatrics, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| | - L V Malysheva
- Head of the Clinical Diagnostic Laboratory, Children's City Clinical Hospital No.1, 76 Prospect Gagarina, Nizhny Novgorod, 603081, Russia
| | - E E Ledentsova
- Physician of Clinical Laboratory Diagnostics, Children's City Clinical Hospital No.1, 76 Prospect Gagarina, Nizhny Novgorod, 603081, Russia
| | - E E Lidyaeva
- Anesthesiologist-Resuscitator, Resuscitation and Intensive Care Unit, Children's City Clinical Hospital No.1, 76 Prospect Gagarina, Nizhny Novgorod, 603081, Russia
| | - O V Khaletskaya
- Professor, Head of the Department of Hospital Pediatrics, Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
36
|
Ingoglia F, Chong JL, Pasquali M, Longo N. Creatine metabolism in patients with urea cycle disorders. Mol Genet Metab Rep 2021; 29:100791. [PMID: 34471603 PMCID: PMC8387902 DOI: 10.1016/j.ymgmr.2021.100791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
The urea cycle generates arginine that is one of the major precursors for creatine biosynthesis. Here we evaluate levels of creatine and guanidinoacetate (the precursor in the synthesis of creatine) in plasma samples (ns = 207) of patients (np = 73) with different types of urea cycle disorders (ornithine transcarbamylase deficiency (ns = 22; np = 7), citrullinemia type 1 (ns = 60; np = 22), argininosuccinic aciduria (ns = 81; np = 31), arginase deficiency (ns = 44; np = 13)). The concentration of plasma guanidinoacetate positively correlated (p < 0.001, R2 = 0.64) with levels of arginine, but not with glycine in all patients with urea cycle defects, rising to levels above normal in most samples (34 out of 44) of patients with arginase deficiency. In contrast to patients with guanidinoacetate methyltransferase deficiency (a disorder of creatine synthesis characterized by elevated guanidinoacetate concentrations), creatine levels were normal (32 out of 44) or above normal (12 out of 44) in samples from patients with arginase deficiency. Creatine levels correlated significantly, but poorly (p < 0.01, R2 = 0.1) with guanidinoacetate levels and, despite being overall in the normal range in patients with all other urea cycle disorders, were occasionally below normal in some patients with argininosuccinic acid synthase and lyase deficiency. Creatine levels positively correlated with levels of methionine (p < 0.001, R2 = 0.16), the donor of the methyl group for creatine synthesis. The direct correlation of arginine levels with guanidinoacetate in patients with urea cycle disorders explains the increased concentration of guanidino compounds in arginase deficiency. Low creatine levels in some patients with other urea cycle defects might be explained by low protein intake (creatine is naturally present in meat) and relative or absolute intracellular arginine deficiency.
Collapse
Key Words
- AGAT, arginine glycine amidinotransferase
- ASL, argininosuccinate lyase
- ASS, argininosuccinate synthase
- Arginase deficiency
- Arginine
- CT1, creatine transporter 1
- Creatine
- Creatine deficiency
- GAA, guanidinoacetate
- GAMT, guanidino acetate methyltransferase
- Guanidinoacetate
- NOS, nitric oxide synthase
- ORNT1, ornithine transporter 1
- OTC, ornithine transcarbamylase
- SLC6A8, solute carrier family 6 member 8 gene
- UCD, urea cycle disorders
- Urea cycle defect
Collapse
Affiliation(s)
- Filippo Ingoglia
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Jean-Leon Chong
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Marzia Pasquali
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| | - Nicola Longo
- Department of Pathology, University of Utah, Salt Lake City, UT 84108, USA.,Department of Pediatrics, University of Utah, Salt Lake City, UT 84108, USA.,ARUP Laboratories, 500 Chipeta Way, Salt Lake City, UT 84108, USA
| |
Collapse
|
37
|
Strong A, Gold J, Gold NB, Yudkoff M. Hepatic Manifestations of Urea Cycle Disorders. Clin Liver Dis (Hoboken) 2021; 18:198-203. [PMID: 34745578 PMCID: PMC8549711 DOI: 10.1002/cld.1115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 02/04/2023] Open
Abstract
Content available: Author Interview and Audio Recording.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPA,The Center for Applied GenomicsChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Jessica Gold
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPA
| | - Nina B. Gold
- Division of Medical Genetics and MetabolismMassachusetts General HospitalBostonMA,Department of PediatricsHarvard Medical SchoolBostonMA
| | - Marc Yudkoff
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPA,Department of PediatricsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA
| |
Collapse
|
38
|
Kido J, Matsumoto S, Häberle J, Nakajima Y, Wada Y, Mochizuki N, Murayama K, Lee T, Mochizuki H, Watanabe Y, Horikawa R, Kasahara M, Nakamura K. Long-term outcome of urea cycle disorders: Report from a nationwide study in Japan. J Inherit Metab Dis 2021; 44:826-837. [PMID: 33840128 DOI: 10.1002/jimd.12384] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inherited metabolic disorders with impaired nitrogen detoxification caused by defects in urea cycle enzymes. They often manifest with hyperammonemic attacks resulting in significant morbidity or death. We performed a nationwide questionnaire-based study between January 2000 and March 2018 to document all UCDs in Japan, including diagnoses, treatments, and outcomes. A total of 229 patients with UCDs were enrolled in this study: 73 males and 53 females with ornithine transcarbamylase deficiency (OTCD), 33 patients with carbamoylphosphate synthetase 1 deficiency, 48 with argininosuccinate synthetase deficiency, 14 with argininosuccinate lyase deficiency, and 8 with arginase deficiency. Survival rates at 20 years of age of male and female patients with late-onset OTCD were 100% and 97.7%, respectively. Blood ammonia levels and time of onset had a significant impact on the neurodevelopmental outcome (P < .001 and P = .028, respectively). Hemodialysis and liver transplantation did not prevent poor neurodevelopmental outcomes. While treatment including medication, hemodialysis, and liver transplantation may aid in decreasing blood ammonia and/or preventing severe hyperammonemia, a blood ammonia level ≥ 360 μmol/L was found to be a significant indicator for a poor neurodevelopmental outcome. In conclusion, although current therapy for UCDs has advanced and helped saving lives, patients with blood ammonia levels ≥ 360 μmol/L at onset often have impaired neurodevelopmental outcomes. Novel neuroprotective measures should therefore be developed to achieve better neurodevelopmental outcomes in these patients.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Yoko Nakajima
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yoichi Wada
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Narutaka Mochizuki
- Department of Neonatal Medicine, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Kei Murayama
- Department of Metabolism, Center for Medical Genetics, Chiba Children's Hospital, Chiba, Japan
| | - Tomoko Lee
- Department of Pediatrics, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hiroshi Mochizuki
- Division of Endocrinology and Metabolism, Saitama Children's Medical Center, Saitama, Japan
| | - Yoriko Watanabe
- Research Institute of Medical Mass Spectrometry, Kurume University School of Medicine, Kurume, Japan
- Department of Pediatrics and Child Health, Kurume University School of Medicine, Kurume, Japan
| | - Reiko Horikawa
- Division of Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Mureo Kasahara
- Organ Transplantation Center, National Center for Child Health and Development, Tokyo, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
39
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxon CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2002085. [PMID: 34105297 PMCID: PMC8188209 DOI: 10.1002/advs.202002085] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 01/06/2021] [Indexed: 05/04/2023]
Abstract
The prevalence of neurological/neurodegenerative diseases, such as Alzheimer's disease is known to be increasing due to an aging population and is anticipated to further grow in the decades ahead. The treatment of brain diseases is challenging partly due to the inaccessibility of therapeutic agents to the brain. An increasingly important observation is that the physiology of the brain alters during many brain diseases, and aging adds even more to the complexity of the disease. There is a notion that the permeability of the blood-brain barrier (BBB) increases with aging or disease, however, the body has a defense mechanism that still retains the separation of the brain from harmful chemicals in the blood. This makes drug delivery to the diseased brain, even more challenging and complex task. Here, the physiological changes to the diseased brain and aged brain are covered in the context of drug delivery to the brain using nanoparticles. Also, recent and novel approaches are discussed for the delivery of therapeutic agents to the diseased brain using nanoparticle based or magnetic resonance imaging guided systems. Furthermore, the complement activation, toxicity, and immunogenicity of brain targeting nanoparticles as well as novel in vitro BBB models are discussed.
Collapse
Affiliation(s)
- Yamir Islam
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Andrew G. Leach
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- Division of Pharmacy and OptometryThe University of ManchesterStopford Building, Oxford RoadManchesterM13 9PTUK
| | - Jayden Smith
- Cambridge Innovation Technologies Consulting (CITC) LimitedSt. John's Innovation CentreCowley RoadCambridgeCB4 0WSUK
| | - Stefano Pluchino
- Department of Clinical NeurosciencesClifford Allbutt Building – Cambridge Biosciences Campus and NIHR Biomedical Research CentreUniversity of CambridgeHills RoadCambridgeCB2 0HAUK
| | - Christopher R. Coxon
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
- School of Engineering and Physical SciencesHeriot‐Watt UniversityWilliam Perkin BuildingEdinburghEH14 4ASUK
| | - Muttuswamy Sivakumaran
- Department of HaematologyPeterborough City HospitalEdith Cavell CampusBretton Gate PeterboroughPeterboroughPE3 9GZUK
| | - James Downing
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Amos A. Fatokun
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| | - Meritxell Teixidò
- Institute for Research in Biomedicine (IRB Barcelona)Barcelona Institute of Science and Technology (BIST)Baldiri Reixac 10Barcelona08028Spain
| | - Touraj Ehtezazi
- School of Pharmacy and Biomolecular SciencesLiverpool John Moores UniversityByrom StreetLiverpoolL3 3AFUK
| |
Collapse
|
40
|
Sen K, Anderson AA, Whitehead MT, Gropman AL. Review of Multi-Modal Imaging in Urea Cycle Disorders: The Old, the New, the Borrowed, and the Blue. Front Neurol 2021; 12:632307. [PMID: 33995244 PMCID: PMC8113618 DOI: 10.3389/fneur.2021.632307] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/26/2021] [Indexed: 12/16/2022] Open
Abstract
The urea cycle disorders (UCD) are rare genetic disorder due to a deficiency of one of six enzymes or two transport proteins that act to remove waste nitrogen in form of ammonia from the body. In this review, we focus on neuroimaging studies in OTCD and Arginase deficiency, two of the UCD we have extensively studied. Ornithine transcarbamylase deficiency (OTCD) is the most common of these, and X-linked. Hyperammonemia (HA) in OTCD is due to deficient protein handling. Cognitive impairments and neurobehavioral disorders have emerged as the major sequelae in Arginase deficiency and OTCD, especially in relation to executive function and working memory, impacting pre-frontal cortex (PFC). Clinical management focuses on neuroprotection from HA, as well as neurotoxicity from other known and yet unclassified metabolites. Prevention and mitigation of neurological injury is a major challenge and research focus. Given the impact of HA on neurocognitive function of UCD, neuroimaging modalities, especially multi-modality imaging platforms, can bring a wealth of information to understand the neurocognitive function and biomarkers. Such information can further improve clinical decision making, and result in better therapeutic interventions. In vivo investigations of the affected brain using multimodal neuroimaging combined with clinical and behavioral phenotyping hold promise. MR Spectroscopy has already proven as a tool to study biochemical aberrations such as elevated glutamine surrounding HA as well as to diagnose partial UCD. Functional Near Infrared Spectroscopy (fNIRS), which assesses local changes in cerebral hemodynamic levels of cortical regions, is emerging as a non-invasive technique and will serve as a surrogate to fMRI with better portability. Here we review two decades of our research using non-invasive imaging and how it has contributed to an understanding of the cognitive effects of this group of genetic conditions.
Collapse
Affiliation(s)
- Kuntal Sen
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Afrouz A Anderson
- Department of Research, Focus Foundation, Crofton, MD, United States
| | - Matthew T Whitehead
- Department of Radiology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| | - Andrea L Gropman
- Division of Neurogenetics and Neurodevelopmental Pediatrics, Department of Neurology, Children's National Hospital, George Washington University School of Medicine, Washington, DC, United States
| |
Collapse
|
41
|
Rangasamy SB, Dasarathi S, Nutakki A, Mukherjee S, Nellivalasa R, Pahan K. Stimulation of Dopamine Production by Sodium Benzoate, a Metabolite of Cinnamon and a Food Additive. J Alzheimers Dis Rep 2021; 5:295-310. [PMID: 34113786 PMCID: PMC8150256 DOI: 10.3233/adr-210001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most important neurodegenerative disorders in human in which recovery of functions could be achieved by improving the survival and function of residual dopaminergic neurons in the substantia nigra pars compacta. Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the dopamine (DA) biosynthesis pathway. OBJECTIVE Earlier our laboratory has shown that sodium benzoate (NaB), a metabolite of cinnamon and an FDA-approved drug against urea cycle disorders and glycine encephalopathy, increases neuroprotective molecules and protects dopaminergic neurons in a mouse model of PD. Here, we examined whether NaB could stimulate the production of DA in dopaminergic neurons. METHODS We employed PCR, real-time PCR, western blot, immunostaining, and HPLC to study the signature function of dopaminergic neurons. Locomotor functions were monitored in mice by open-field. RESULTS NaB increased the mRNA and protein expression of TH to produce DA in mouse MN9D dopaminergic neuronal cells. Accordingly, oral feeding of NaB increased the expression of TH in the nigra, upregulated striatal DA, and improved locomotor activities in striatum of normal C57/BL6 and aged A53T-α-syn transgenic mice. Rapid induction of cAMP response element binding (CREB) activation by NaB in dopaminergic neuronal cells and the abrogation of NaB-induced expression of TH by siRNA knockdown of CREB suggest that NaB stimulates the transcription of TH in dopaminergic neurons via CREB. CONCLUSION These results indicate a new function of NaB in which it may be beneficial in PD via stimulation of DA production from residual dopaminergic neurons.
Collapse
Affiliation(s)
- Suresh B. Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sridevi Dasarathi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Aparna Nutakki
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Shreya Mukherjee
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rohith Nellivalasa
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
42
|
Liu Y, Luo Y, Xia L, Qiu B, Zhou T, Feng M, Wang C, Xue F, Chen X, Han L, Zhang J, Xia Q. Outcome of Liver Transplantation for Neonatal-onset Citrullinemia Type I. Transplantation 2021; 105:569-576. [PMID: 33617202 DOI: 10.1097/tp.0000000000003261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND We evaluated the outcome of liver transplantation (LT) in neonatal-onset citrullinemia type I patients, especially its impact on neurological deficits and developmental retardation. METHODS From October 2006 to October 2019, 5 of the 2003 children who received LT at Ren Ji Hospital had been diagnosed with citrullinemia type I. The primary indication for transplantation was repeated metabolic compensation and developmental retardation in 4 patients and prophylactic transplantation in the other. Among them, 3 patients received living donor LT and 2 received orthotopic LT. RESULTS All recipients had successfully recovered within the median follow-up period of 32 months (range, 6-54 mo). Transplantation restored citrulline metabolism and liver function. Plasma ammonia and citrulline concentration decreased to normal levels with no further hyperammonemic episodes being reported, even after normal diet intake began. Meanwhile, uracil-2 and orotic acid were not detected in urinary excretion. Strikingly, patients suffered developmental retardation before LT showed improved psychomotor ability and significant catch-up growth during the follow-up period. Cognitive ability, including language skills and academic performance, also greatly improved. Three patients had sustained brain injuries and exhibited severe neurological deficits before transplantation, especially repeated generalized tonic-clonic seizures. LT halted neurological deterioration and controlled seizure episodes, which further facilitated the intellectual development and improvement of life quality. CONCLUSIONS LT is an effective treatment for neonatal-onset citrullinemia type I patients, which reverses metabolism decompensation and improves quality of life. For patients who have suffered severe hyperammonemic insults, LT should be conducted at an early age to avoid further neurological or developmental deficits.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Richmond CR, Ballantyne LL, de Guzman AE, Nieman BJ, Funk CD, Ghasemlou N. Arginase-1 deficiency in neural cells does not contribute to neurodevelopment or functional outcomes after sciatic nerve injury. Neurochem Int 2021; 145:104984. [PMID: 33561495 DOI: 10.1016/j.neuint.2021.104984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 10/22/2022]
Abstract
Arginase-1 (Arg1) is an enzyme controlling the final step of the urea cycle, with highest expression in the liver and lower expression in the lungs, pancreas, kidney, and some blood cells. Arg1 deficiency is an inherited urea cycle disorder presenting with neurological dysfunction including spastic diplegia, intellectual and growth retardation, and encephalopathy. The contribution of Arg1 expression in the central and peripheral nervous system to the development of neurological phenotypes remains largely unknown. Previous studies have shown prominent arginase-1 expression in the nervous system and post-peripheral nerve injury in mice, but very low levels in the naïve state. To investigate neurobiological roles of Arg1, we created a conditional neural (n)Arg1 knockout (KO) mouse strain, with expression eliminated in neuronal and glial precursors, and compared them to littermate controls. Long-term analysis did not reveal any major differences in blood amino acid levels, body weight, or stride gait cycle from 8 to 26-weeks of age. Brain structure measured by magnetic resonance imaging at 16-weeks of age observed only a significant decrease in the volume of the mammillary bodies. We also assessed whether nArg1, which is expressed by sensory neurons after injury, may play a role in regeneration following sciatic nerve crush. Only subtle differences were observed in locomotor and sensory recovery between nArg1 KO and control mice. These results suggest that arginase-1 expression in central and peripheral neural cells does not contribute substantially to the phenotypes of this urea cycle disorder, nor is it likely crucial for post-injury regeneration in this mouse model.
Collapse
Affiliation(s)
- Christopher R Richmond
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Laurel L Ballantyne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - A Elizabeth de Guzman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5T 3H7, Canada
| | - Brian J Nieman
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, M5T 3H7, Canada; Ontario Institute for Cancer Research, Ontario, M5G 0A3, Canada
| | - Colin D Funk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Department of Anesthesiology & Perioperative Medicine, Queen's University, Kingston, Ontario, K7L 3N6, Canada; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
44
|
McGowan M, Ferreira C, Whitehead M, Basu SK, Chang T, Gropman A. The Application of Neurodiagnostic Studies to Inform the Acute Management of a Newborn Presenting With Sarbamoyl Shosphate Synthetase 1 Deficiency. Child Neurol Open 2021; 8:2329048X20985179. [PMID: 33644249 PMCID: PMC7841664 DOI: 10.1177/2329048x20985179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/14/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022] Open
Abstract
Neonatal-onset urea cycle disorders (UCDs) may result in hyperammonemic (HA) encephalopathy presenting with several neurologic sequelae including seizures, coma, and death. However, no recommendations are given in how and when neurodiagnostic studies should be used to screen or assess for these neurologic complications. We present a case of carbamoyl phosphate synthetase 1 (CPS1) deficiency in a newborn female in which electroencephalogram monitoring to assess encephalopathy and seizures, and magnetic resonance imaging measurements of brain metabolites were used to guide care during her hyperammonemic crisis. Her neurologic course and response to treatment characterizes the significant neurologic impact of HA encephalopathy. Our group herein proposes a clinical neurodiagnostic pathway for managing acute HA encephalopathy.
Collapse
Affiliation(s)
- Meaghan McGowan
- University of Illinois College of Medicine, Chicago, IL,
USA
| | - Carlos Ferreira
- Medical Genomics and Metabolic Genetics Branch, National
Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Matthew Whitehead
- Neuroradiology, Children’s National Hospital, George
Washington University School of Medicine, Washington, DC, USA
| | - Sudeepta K. Basu
- Neonatology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| | - Taeun Chang
- Neurology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| | - Andrea Gropman
- Neurology, Children’s National Hospital, George Washington
University School of Medicine, Washington, DC, USA
| |
Collapse
|
45
|
Bernal AC, Tubio MC, Crespo C, Eiroa HD. Clinical and Genetic Characterization and Biochemical Correlation at Presentation in 48 Patients Diagnosed with Urea Cycle Disorders at the Hospital Juan P Garrahan, Argentina. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2020-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
46
|
Cavino K, Sung B, Su Q, Na E, Kim J, Cheng X, Gromada J, Okamoto H. Glucagon Receptor Inhibition Reduces Hyperammonemia and Lethality in Male Mice with Urea Cycle Disorder. Endocrinology 2021; 162:5988952. [PMID: 33206168 DOI: 10.1210/endocr/bqaa211] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/14/2022]
Abstract
The liver plays a critical role in maintaining ammonia homeostasis. Urea cycle defects, liver injury, or failure and glutamine synthetase (GS) deficiency result in hyperammonemia, serious clinical conditions, and lethality. In this study we used a mouse model with a defect in the urea cycle enzyme ornithine transcarbamylase (Otcspf-ash) to test the hypothesis that glucagon receptor inhibition using a monoclonal blocking antibody will reduce the hyperammonemia and associated lethality induced by a high-protein diet, which exacerbates disease. We found reduced expression of glutaminase, which degrades glutamine and increased expression of GS in livers of Otcspf-ash mice treated with the glucagon receptor blocking antibody. The gene expression changes favor ammonia consumption and were accompanied by increased circulating glutamine levels and diminished hyperammonemia. Otcspf-ash mice treated with the glucagon receptor-blocking antibody gained lean and body mass and had increased survival. These data suggest that glucagon receptor inhibition using a monoclonal antibody could reduce the risk for hyperammonemia and other clinical manifestations of patients suffering from defects in the urea cycle, liver injury, or failure and GS deficiency.
Collapse
Affiliation(s)
- Katie Cavino
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Biin Sung
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Erqian Na
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Jinrang Kim
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Tarrytown, New York USA
| | | | | |
Collapse
|
47
|
Li J, Li R, Gao Y, Jin X, Zhang J, Ren J, Hou Y, Wang X, Wang G. Increasing serum ammonia level is a risk factor for the prognosis of critically ill patients: A multicenter retrospective cohort study. J Crit Care 2020; 62:218-222. [PMID: 33429115 DOI: 10.1016/j.jcrc.2020.12.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/15/2020] [Accepted: 12/27/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess the association between serum ammonia level upon admission during the initial intensive care unit (ICU) stay and mortality. MATERIALS AND METHODS This retrospective cohort study included 2703 adult patients in eICU Collaborative Research Database. The ICU mortality within ammonia deciles were assessed. Logistic regression analyses were performed to analyze the relationship between ammonia and mortality. RESULTS We defined three ammonia categories: <47, 47-111, and ≥111 μg/dL, corresponding to low, intermediate, and high ICU mortality. Increased ammonia was significantly associated with increased ICU mortality (per 10 μg/dL increase: odds ratio, 1.070 [95% confidence intervals, 1.05-1.09]; intermediate vs. low: 1.90 [1.41-2.56]; high vs. low: 4.38 [2.99-6.41]) and in-hospital mortality (1.06 [1.04-1.08]; 1.45 [1.13-1.87]; 3.41 [2.43-4.79]). Adding ammonia to the Acute Physiology and Chronic Health Evaluation (APACHE) IV score improved the area under the curve from 0.826 to 0.839 (P < 0.001) and from 0.806 to 0.813 (P = 0.001) for ICU and in-hospital mortality, respectively. Interaction and subgroup analyses demonstrated consistent results in patients with different APACHE IV scores, with or without hepatic diseases. CONCLUSIONS Elevated serum ammonia level in critically ill patients upon admission was an early risk factor for higher ICU and in-hospital mortality.
Collapse
Affiliation(s)
- Jiamei Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Gao
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xuting Jin
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingjing Zhang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Ren
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yanli Hou
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaochuang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
48
|
Cui B, Wei L, Sun LY, Qu W, Zeng ZG, Liu Y, Zhu ZJ. Status epilepticus as an initial manifestation of hepatic encephalopathy: A case report. World J Clin Cases 2020; 8:6480-6486. [PMID: 33392334 PMCID: PMC7760455 DOI: 10.12998/wjcc.v8.i24.6480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Status epilepticus in patients with hepatic encephalopathy (HE) is a rare but serious condition that is refractory to antiepileptic drugs, and current treatment plans are vague. Diagnosis may be difficult without a clear history of cirrhosis. Liver transplantation (LT) is effective to alleviate symptoms, however, there are few reports about LT in the treatment of status epilepticus with HE. To our knowledge, this is the first report of status epilepticus present as initial manifestation of HE.
CASE SUMMARY A 59-year-old woman with a 20-year history of heavy drinking was hospitalized for generalized tonic-clonic seizures. She reported no history of episodes of HE, stroke, spontaneous bacterial peritonitis, ascites or gastrointestinal bleeding. Neurological examination revealed a comatose patient, without papilledema. Laboratory examination suggested liver cirrhosis. Plasma ammonia levels upon admission were five times normal. Brain computed tomography (CT) was normal, while abdominal CT and ultrasound revealed mild ascites, liver cirrhosis and splenomegaly. Electroencephalography (EEG)showed diffuse slow waves rhythm, consistent with HE, and sharp waves during ictal EEG corresponding to clinical semiology of focal tonic seizures. The symptoms were reversed by continuous antiepileptic treatment and lactulose. She was given oral levetiracetam, and focal aware seizures occasionally affected her 10 mo after LT.
CONCLUSION Status epilepticus could be an initial manifestation of HE. Antiepileptic drugs combined with lactulose are essential for treatment of status epilepticus with HE, and LT is effective to prevent the relapse.
Collapse
Affiliation(s)
- Bin Cui
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lin Wei
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Li-Ying Sun
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Intensive Care Unit, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Wei Qu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Gui Zeng
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Ying Liu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Zhi-Jun Zhu
- Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| |
Collapse
|
49
|
Dominguini D, Dall'igna DM, Nogueira L, Steckert AV, GonÇalves RC, Michels M, Quevedo J, Ritter C, Barichello T, Dal-Pizzol F. Ammonia exposition during gestation induces neonatal oxidative damage in the brain and long-term cognitive alteration in rats. AN ACAD BRAS CIENC 2020; 92:e20190925. [PMID: 33295575 DOI: 10.1590/0001-3765202020190925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/07/2020] [Indexed: 11/22/2022] Open
Abstract
Ammonia is involved in the pathogenesis of neurological conditions associated with hyperammonemia, including hepatic encephalopathy. Few is known about the effects of gestational exposition to ammonia in the developing brain, and the possible long-term consequences of such exposure. We aimed to evaluate the effects of ammonia exposure during the gestation and the possible long-term cognitive alterations on pups. Eight female rats were divided into two groups: (1) control (saline solution); (2) ammonia (ammonium acetate, 2,5mmol/Kg). Each rat received a single subcutaneous injection during all gestational period. The brains from 1-day-old rats were obtained to the determination of thiobarbituric acid reactive species (TBARS), protein carbonyl and nitrite/nitrate levels. Some animals were followed 30 days after delivery and were subjected to the step-down inhibitory avoidance task. It was observed a significant increase in protein carbonyl, but not TBARS or nitrite/nitrate levels, in pups exposed to ammonia. Rats exposed to ammonia presented long-term cognitive impairment. Gestational exposition to ammonia induces protein oxidative damage in the neonatal rat brain, and long-term cognitive impairment.
Collapse
Affiliation(s)
- Diogo Dominguini
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - DhÉbora M Dall'igna
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Lauro Nogueira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Amanda V Steckert
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Renata C GonÇalves
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Monique Michels
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - JoÃo Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77054, USA
| | - Cristiane Ritter
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
| | - Tatiana Barichello
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, 77054, USA
- Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77054, USA
| | - Felipe Dal-Pizzol
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, Universitário, 88806-000 Criciúma, SC, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Universidade Federal de Santa Catarina/UFSC, Centro de Excelência em Neurociências Aplicadas de Santa Catarina/ NENASC, Rua Eng. Agronômico Andrei Cristian Ferreira, s/n, Trindade, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
50
|
Reshaping circadian metabolism in the suprachiasmatic nucleus and prefrontal cortex by nutritional challenge. Proc Natl Acad Sci U S A 2020; 117:29904-29913. [PMID: 33172990 DOI: 10.1073/pnas.2016589117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Food is a powerful entrainment cue for circadian clocks in peripheral tissues, and changes in the composition of nutrients have been demonstrated to metabolically reprogram peripheral clocks. However, how food challenges may influence circadian metabolism of the master clock in the suprachiasmatic nucleus (SCN) or in other brain areas is poorly understood. Using high-throughput metabolomics, we studied the circadian metabolome profiles of the SCN and medial prefrontal cortex (mPFC) in lean mice compared with mice challenged with a high-fat diet (HFD). Both the mPFC and the SCN displayed a robust cyclic metabolism, with a strikingly high sensitivity to HFD perturbation in an area-specific manner. The phase and amplitude of oscillations were drastically different between the SCN and mPFC, and the metabolic pathways impacted by HFD were remarkably region-dependent. Furthermore, HFD induced a significant increase in the number of cycling metabolites exclusively in the SCN, revealing an unsuspected susceptibility of the master clock to food stress.
Collapse
|