1
|
Chioino A, Sandi C. The Emerging Role of Brain Mitochondria in Fear and Anxiety. Curr Top Behav Neurosci 2024. [PMID: 39505817 DOI: 10.1007/7854_2024_537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
The functional complexity of brain circuits underlies the broad spectrum of behaviors, cognitive functions, and their associated disorders. Mitochondria, traditionally known for their role in cellular energy metabolism, are increasingly recognized as central to brain function and behavior. This review examines how mitochondria are pivotal in linking cellular energy processes with the functioning of neural circuits that govern fear and anxiety. Following an introductory section in which we summarize current knowledge about fear and anxiety neural circuits, we provide a brief summary of mitochondria fundamental roles (e.g., from energy production and calcium buffering to their involvement in reactive oxygen species (ROS) generation, mitochondrial dynamics, and signaling), particularly emphasizing their contribution to synaptic plasticity, neurodevelopment, and stress response mechanisms. The review's core focuses on the current state of knowledge regarding how mitochondrial function and dysfunction impact the neural substrates of fear and anxiety. Furthermore, we explore the implications of mitochondrial alterations in the context of posttraumatic stress disorder (PTSD) and anxiety disorders, underscoring the potential of mitochondrial pathways as new therapeutic targets. Integrating insights from genetic, biochemical, neurobiological, behavioral, and clinical studies, we propose a model in which mitochondrial function is critical for regulating the neural circuits that underpin fear and anxiety behaviors, highlighting how mitochondrial dysfunction can lead to their pathological manifestations. This integration emphasizes the potential for developing novel treatments targeting the biological roots of fear, anxiety, and related disorders. By merging mitochondrial biology with behavioral and circuit neuroscience, we enrich our neurobiological understanding of fear and anxiety, uncovering promising avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Alessandro Chioino
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Synapsy Center for Neuroscience and Mental Health Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
2
|
Chen L, Zhang Y, Wang Z, Zhang Z, Wang J, Zhu G, Yang S. Activation of GPER1 by G1 prevents PTSD-like behaviors in mice: Illustrating the mechanisms from BDNF/TrkB to mitochondria and synaptic connection. CNS Neurosci Ther 2024; 30:e14855. [PMID: 38992889 PMCID: PMC11239537 DOI: 10.1111/cns.14855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/11/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND G1 is a specific agonist of G protein-coupled estrogen receptor 1 (GPER1), which binds and activates GPER1 to exert various neurological functions. However, the preventive effect of G1 on post-traumatic stress disorder (PTSD) and its mechanisms are unclear. OBJECTIVE To evaluate the protective effect of G1 against synaptic and mitochondrial impairments and to investigate the mechanism of G1 to improve PTSD from brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) signaling. METHODS This study initially detected GPER1 expression in the hippocampus of single prolonged stress (SPS) mice, utilizing both Western blot and immunofluorescence staining. Subsequently, the effects of G1 on PTSD-like behaviors, synaptic, and mitochondrial functions in SPS mice were investigated. Additionally, the involvement of BDNF/TrkB signaling involved in the protection was further confirmed using GPER1 antagonist and TrkB inhibitor, respectively. RESULTS The expression of GPER1 was reduced in the hippocampus of SPS mice, and G1 treatment given for 14 consecutive days significantly improved PTSD-like behaviors in SPS mice compared with model group. Electrophysiological local field potential (LFP) results showed that G1 administration for 14 consecutive days could reverse the abnormal changes in the gamma oscillation in the CA1 region of SPS mice. Meanwhile, G1 administration for 14 consecutive days could significantly improve the abnormal expression of synaptic proteins, increase the expression of mitochondria-related proteins, increase the number of synapses in the hippocampus, and ameliorate the damage of hippocampal mitochondrial structure in SPS mice. In addition, G15 (GPER1 inhibitor) and ANA-12 (TrkB inhibitor) blocked the ameliorative effects of G1 on PTSD-like behaviors and aberrant expression of hippocampal synaptic and mitochondrial proteins in SPS mice and inhibited the reparative effects of G1 on structural damage to hippocampal mitochondria, respectively. CONCLUSION G1 improved PTSD-like behaviors in SPS mice, possibly by increasing hippocampal GPER1 expression and promoting BDNF/TrkB signaling to repair synaptic and mitochondrial functional impairments. This study would provide critical mechanism for the prevention and treatment of PTSD.
Collapse
Affiliation(s)
- Lixia Chen
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zisheng Wang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Zhengrong Zhang
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Jingji Wang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- Acupuncture and Moxibustion Clinical Medical Research Center of Anhui Province, The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
3
|
Bortolozzi A, Fico G, Berk M, Solmi M, Fornaro M, Quevedo J, Zarate CA, Kessing LV, Vieta E, Carvalho AF. New Advances in the Pharmacology and Toxicology of Lithium: A Neurobiologically Oriented Overview. Pharmacol Rev 2024; 76:323-357. [PMID: 38697859 PMCID: PMC11068842 DOI: 10.1124/pharmrev.120.000007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 05/05/2024] Open
Abstract
Over the last six decades, lithium has been considered the gold standard treatment for the long-term management of bipolar disorder due to its efficacy in preventing both manic and depressive episodes as well as suicidal behaviors. Nevertheless, despite numerous observed effects on various cellular pathways and biologic systems, the precise mechanism through which lithium stabilizes mood remains elusive. Furthermore, there is recent support for the therapeutic potential of lithium in other brain diseases. This review offers a comprehensive examination of contemporary understanding and predominant theories concerning the diverse mechanisms underlying lithium's effects. These findings are based on investigations utilizing cellular and animal models of neurodegenerative and psychiatric disorders. Recent studies have provided additional support for the significance of glycogen synthase kinase-3 (GSK3) inhibition as a crucial mechanism. Furthermore, research has shed more light on the interconnections between GSK3-mediated neuroprotective, antioxidant, and neuroplasticity processes. Moreover, recent advancements in animal and human models have provided valuable insights into how lithium-induced modifications at the homeostatic synaptic plasticity level may play a pivotal role in its clinical effectiveness. We focused on findings from translational studies suggesting that lithium may interface with microRNA expression. Finally, we are exploring the repurposing potential of lithium beyond bipolar disorder. These recent findings on the therapeutic mechanisms of lithium have provided important clues toward developing predictive models of response to lithium treatment and identifying new biologic targets. SIGNIFICANCE STATEMENT: Lithium is the drug of choice for the treatment of bipolar disorder, but its mechanism of action in stabilizing mood remains elusive. This review presents the latest evidence on lithium's various mechanisms of action. Recent evidence has strengthened glycogen synthase kinase-3 (GSK3) inhibition, changes at the level of homeostatic synaptic plasticity, and regulation of microRNA expression as key mechanisms, providing an intriguing perspective that may help bridge the mechanistic gap between molecular functions and its clinical efficacy as a mood stabilizer.
Collapse
Affiliation(s)
- Analia Bortolozzi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Giovanna Fico
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michael Berk
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Marco Solmi
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Michele Fornaro
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Joao Quevedo
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Carlos A Zarate
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Lars V Kessing
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Eduard Vieta
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| | - Andre F Carvalho
- Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Spanish National Research Council (CSIC), Barcelona, Spain (A.B.); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain (A.B., G.F., E.V.); Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain (A.B., G.F., E.V.); Hospital Clinic, Institute of Neuroscience, University of Barcelona, Barcelona, Spain (G.F., E.V.); IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia (M.B., A.F.C.); Department of Psychiatry, University of Ottawa, Ontario, Canada (M.S.); The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ontario, Canada (M.S.); Department of Child and Adolescent Psychiatry, Charité Universitätsmedizin, Berlin, Germany (M.S.); Section of Psychiatry, Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy (M.F.); Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UT Health), Houston, Texas (J.Q.); Experimental Therapeutics and Pathophysiology Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland (C.A.Z.); Copenhagen Affective Disorders Research Centre (CADIC), Psychiatric Center Copenhagen, Rigshospitalet, Denmark (L.V.K.); and Department of Clinical Medicine, University of Copenhagen, Denmark (L.V.K.)
| |
Collapse
|
4
|
Kmita H, Pinna G, Lushchak VI. Potential oxidative stress related targets of mitochondria-focused therapy of PTSD. Front Physiol 2023; 14:1266575. [PMID: 38028782 PMCID: PMC10679466 DOI: 10.3389/fphys.2023.1266575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) remains a highly prevalent, under-diagnosed, and under-treated psychiatric disorder that often deteriorates over time, and is highly comorbid with major depressive disorder, suicidality, and substance use disorder. Several biomarkers have been proposed but have yet to be implemented into clinical practice. Treatments, including selective serotonin reuptake inhibitors, are efficacious in only a small number of patients, which underscores the need to develop novel, efficient treatments. Mitochondrial dysfunction resulting from chronic oxidative stress has been linked with both altered neurotransmitter signaling and the inflammatory response. Hereinafter, we discuss mechanisms by which mitochondrial dysfunction may contribute to the development of PTSD symptoms, and how these may even increase PTSD susceptibility. We also highlight possible therapeutic targets to reduce oxidative stress to prevent or treat PTSD symptoms.
Collapse
Affiliation(s)
- Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Graziano Pinna
- Psychiatric Institute (SPHPI), Chicago, IL, United States
- UI Center on Depression and Resilience (UICDR), Chicago, IL, United States
- Center for Alcohol Research in Epigenetics (CARE), Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Volodymyr I. Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
- Research and Development University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
5
|
Zhu Z, Huang X, Du M, Wu C, Fu J, Tan W, Wu B, Zhang J, Liao ZB. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. Mol Psychiatry 2023; 28:2630-2644. [PMID: 37340171 PMCID: PMC10615752 DOI: 10.1038/s41380-023-02126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Post-traumatic stress disorder (PTSD) is usually considered a psychiatric disorder upon emotional trauma. However, with the rising number of conflicts and traffic accidents around the world, the incidence of PTSD has skyrocketed along with traumatic brain injury (TBI), a complex neuropathological disease due to external physical force and is also the most common concurrent disease of PTSD. Recently, the overlap between PTSD and TBI is increasingly attracting attention, as it has the potential to stimulate the emergence of novel treatments for both conditions. Of note, treatments exploiting the microRNAs (miRNAs), a well-known class of small non-coding RNAs (ncRNAs), have rapidly gained momentum in many nervous system disorders, given the miRNAs' multitudinous and key regulatory role in various biological processes, including neural development and normal functioning of the nervous system. Currently, a wealth of studies has elucidated the similarities of PTSD and TBI in pathophysiology and symptoms; however, there is a dearth of discussion with respect to miRNAs in both PTSD and TBI. In this review, we summarize the recent available studies of miRNAs in PTSD and TBI and discuss and highlight promising miRNAs therapeutics for both conditions in the future.
Collapse
Affiliation(s)
- Ziyu Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xuekang Huang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Mengran Du
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chenrui Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jiayuanyuan Fu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weilin Tan
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Biying Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jie Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Z B Liao
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
6
|
Gardea-Resendez M, Coombes BJ, Veldic M, Tye SJ, Romo-Nava F, Ozerdem A, Prieto ML, Cuellar-Barboza A, Nunez NA, Singh B, Pendegraft RS, Miola A, McElroy SL, Biernacka JM, Morava E, Kozicz T, Frye MA. Antidepressants that increase mitochondrial energetics may elevate risk of treatment-emergent mania. Mol Psychiatry 2023; 28:1020-1026. [PMID: 36513812 PMCID: PMC10005962 DOI: 10.1038/s41380-022-01888-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022]
Abstract
Preclinical evidence suggests that antidepressants (ADs) may differentially influence mitochondrial energetics. This study was conducted to investigate the relationship between mitochondrial function and illness vulnerability in bipolar disorder (BD), specifically risk of treatment-emergent mania (TEM). Participants with BD already clinically phenotyped as TEM+ (n = 176) or TEM- (n = 516) were further classified whether the TEM associated AD, based on preclinical studies, increased (Mito+, n = 600) or decreased (Mito-, n = 289) mitochondrial electron transport chain (ETC) activity. Comparison of TEM+ rates between Mito+ and Mito- ADs was performed using generalized estimating equations to account for participants exposed to multiple ADs while adjusting for sex, age at time of enrollment into the biobank and BD type (BD-I/schizoaffective vs. BD-II). A total of 692 subjects (62.7% female, 91.4% White, mean age 43.0 ± 14.0 years) including 176 cases (25.3%) of TEM+ and 516 cases (74.7%) of TEM- with previous exposure to Mito+ and/or Mito- antidepressants were identified. Adjusting for age, sex and BD subtype, TEM+ was more frequent with antidepressants that increased (24.7%), versus decreased (13.5%) mitochondrial energetics (OR = 2.21; p = 0.000009). Our preliminary retrospective data suggests there may be merit in reconceptualizing AD classification, not solely based on monoaminergic conventional drug mechanism of action, but additionally based on mitochondrial energetics. Future prospective clinical studies on specific antidepressants and mitochondrial activity are encouraged. Recognizing pharmacogenomic investigation of drug response may extend or overlap to genomics of disease risk, future studies should investigate potential interactions between mitochondrial mechanisms of disease risk and drug response.
Collapse
Affiliation(s)
- Manuel Gardea-Resendez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Brandon J Coombes
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Susannah J Tye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Queensland Brain Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Francisco Romo-Nava
- Lindner Center of HOPE /Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Aysegul Ozerdem
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Miguel L Prieto
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Psychiatry, Facultad de Medicina, Universidad de los Andes, Santiago, Chile.,Mental Health Service, Clínica Universidad de los Andes, Santiago, Chile
| | | | - Nicolas A Nunez
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - Balwinder Singh
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Alessandro Miola
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Neuroscience (DNS), University of Padova, Padua, Italy
| | - Susan L McElroy
- Lindner Center of HOPE /Department of Psychiatry and Behavioral Neurosciences, University of Cincinnati College of Medicine, Mason, OH, USA
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.,Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Anatomy, University of Pecs, Medical School, Pecs, Hungary.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Hummel EM, Piovesan K, Berg F, Herpertz S, Kessler H, Kumsta R, Moser DA. Mitochondrial DNA as a marker for treatment-response in post-traumatic stress disorder. Psychoneuroendocrinology 2023; 148:105993. [PMID: 36462294 DOI: 10.1016/j.psyneuen.2022.105993] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a serious mental health condition thought to be mediated by a dysregulated stress response system. Stress, especially chronic stress, affects mitochondrial activity and their efficiency in duplicating their genomes. Human cells contain numerous mitochondria that harbor multiple copies of their own genome, which consist of a mixture of wild type and variant mtDNA - a condition known as mitochondrial heteroplasmy. Number of mitochondrial genomes in a cell and the degree of heteroplasmy may serve as an indicator of mitochondrial allostatic load. Changes in mtDNA copy number and the proportion of variant mtDNA may be related to mental disorders and symptom severity, suggesting an involvement of mitochondrial dysfunction also in PTSD. Therefore, we examined number and composition of mitochondrial DNA before and after six weeks of inpatient psychotherapy treatment in a cohort of 60 female PTSD patients. We extracted DNA from isolated monocytes before and after inpatient treatment and quantified cellular mtDNA using multiplex qPCR. We hypothesized that treatment would lead to changes in cellular mtDNA levels and that change in mtDNA level would be associated with PTSD symptom severity and treatment response. It could be shown that mtDNA copy number and the ratio of variant mtDNA decreased during therapy, however, this change did not correlate with treatment response. Our results suggest that inpatient treatment can reduce signs of mitochondrial allostatic load, which could have beneficial effects on mental health. The quantification of mtDNA and the determination of cellular heteroplasmy could represent valuable biomarkers for the molecular characterization of mental disorders in the future.
Collapse
Affiliation(s)
- E M Hummel
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| | - K Piovesan
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - F Berg
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - S Herpertz
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany
| | - H Kessler
- Department of Psychosomatic Medicine and Psychotherapy, LWL-University Hospital, Ruhr University Bochum, Germany; Department of Psychosomatic Medicine and Psychotherapy, Fulda Hospital, University Medicine Marburg Campus Fulda, Fulda, Germany
| | - R Kumsta
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Department of Behavioural and Cognitive Sciences, Laboratory for Stress and Gene-Environment nterplay, University of Luxemburg, Porte des Sciences, L-4366 Esch-sur-Alzette, Luxemburg
| | - D A Moser
- Department of Genetic Psychology, Faculty of Psychology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
8
|
Brivio P, Gallo MT, Karel P, Cogi G, Fumagalli F, Homberg JR, Calabrese F. Alterations of mitochondrial dynamics in serotonin transporter knockout rats: A possible role in the fear extinction recall mechanisms. Front Behav Neurosci 2022; 16:957702. [PMID: 36386781 PMCID: PMC9650094 DOI: 10.3389/fnbeh.2022.957702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 08/20/2023] Open
Abstract
Stress-related mental disorders encompass a plethora of pathologies that share the exposure to a negative environment as trigger for their development. The vulnerability to the effects of a negative environment is not equal to all but differs between individuals based on the genetic background makeup. Here, to study the molecular mechanisms potentially underlying increased threat anticipation, we employed an animal model showing this symptom (5-HTT knockout rats) which we exposed to Pavlovian fear conditioning (FC). We investigated the role of mitochondria, taking advantage of the recent evidence showing that the dynamic of these organelles is dysregulated after stress exposure. Behavioral experiments revealed that, during the second day of extinction of the FC paradigm, 5-HTT knockout (5-HTT-/-) animals showed a lack of fear extinction recall. From a mechanistic standpoint, we carried out our molecular analyses on the amygdala and prefrontal cortex, given their role in the management of the fear response due to their tight connection. We demonstrated that mitochondrial dynamics are impaired in the amygdala and prefrontal cortex of 5-HTT-/- rats. The dissection of the potential contributing factors revealed a critical role in the mechanisms regulating fission and fusion that are dysregulated in transgenic animals. Furthermore, mitochondrial oxidative phosphorylation, mitochondrial biogenesis, and the production of antioxidant enzymes were altered in these brain regions in 5-HTT-/- rats. In summary, our data suggest that increased extracellular 5-HT levels cause an unbalance of mitochondrial functionality that could contribute to the reduced extinction recall of 5-HTT-/- rats, pointing out the role of mitochondrial dynamics in the etiology of psychiatric disorders. Our findings, also, provide some interesting insights into the targeted development of drugs to treat such disorders.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Peter Karel
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giulia Cogi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
9
|
Lu D, Sapkota Y, Valdimarsdóttir UA, Koenen KC, Li N, Leisenring WM, Gibson T, Wilson CL, Robison LL, Hudson MM, Armstrong GT, Krull KR, Yasui Y, Bhatia S, Recklitis CJ. Genome-wide association study of posttraumatic stress disorder among childhood cancer survivors: results from the Childhood Cancer Survivor Study and the St. Jude Lifetime Cohort. Transl Psychiatry 2022; 12:342. [PMID: 35999196 PMCID: PMC9399128 DOI: 10.1038/s41398-022-02110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
Genetic influence shapes who develops posttraumatic stress disorder (PTSD) after traumatic events. However, the genetic variants identified for PTSD may in fact be associated with traumatic exposures (e.g., interpersonal violence), which appear heritable as well. Childhood cancer survivors (CCS) are at risk for PTSD, but genetic influences affecting cancer are unlikely to overlap with those affecting PTSD. This offers a unique opportunity to identify variants specific to PTSD risk. In a genome-wide association study (GWAS), 3984 5-year survivors of childhood cancer of European-ancestry from the Childhood Cancer Survivor Study (CCSS) were evaluated for discovery and 1467 survivors from the St. Jude Lifetime (SJLIFE) cohort for replication. Childhood cancer-related PTSD symptoms were assessed using the Posttraumatic Stress Diagnostic Scale in CCSS. GWAS was performed in CCSS using logistic regression and lead markers were replicated/meta-analyzed using SJLIFE. Cross-associations of identified loci were examined between CCS and the general population. PTSD criteria were met for 671 participants in CCSS and 161 in SJLIFE. Locus 10q26.3 was significantly associated with PTSD (rs34713356, functionally mapped to ECHS1, P = 1.36 × 10-8, OR 1.57), and was replicated in SJLIFE (P = 0.047, OR 1.37). Variants in locus 6q24.3-q25.1 reached marginal significance (rs9390543, SASH1, P = 3.56 × 10-6, OR 0.75) in CCSS and significance when meta-analyzing with SJLIFE (P = 2.02 × 10-8, OR 0.75). Both loci were exclusively associated with PTSD in CCS rather than PTSD/stress-related disorders in general population (P-for-heterogeneity < 5 × 10-6). Our CCS findings support the role of genetic variation in PTSD development and may provide implications for understanding PTSD heterogeneity.
Collapse
Affiliation(s)
- Donghao Lu
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden. .,Perini Family Survivors' Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA. .,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, 02115, US.
| | - Yadav Sapkota
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Unnur A. Valdimarsdóttir
- grid.4714.60000 0004 1937 0626Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden ,grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115 US ,grid.14013.370000 0004 0640 0021Center of Public Health Sciences, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| | - Karestan C. Koenen
- grid.38142.3c000000041936754XDepartment of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115 US ,grid.32224.350000 0004 0386 9924Department of Psychiatry, Psychiatric and Neurodevelopmental Genetics Research Unit, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Nan Li
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Wendy M. Leisenring
- grid.270240.30000 0001 2180 1622Public Health Sciences and Clinical Research Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Todd Gibson
- grid.94365.3d0000 0001 2297 5165Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, 20892 MD US
| | - Carmen L. Wilson
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Leslie L. Robison
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Melissa M. Hudson
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA ,grid.240871.80000 0001 0224 711XDepartment of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Gregory T. Armstrong
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kevin R. Krull
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA ,grid.240871.80000 0001 0224 711XDepartment of Psychology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Yutaka Yasui
- grid.240871.80000 0001 0224 711XDepartment of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Smita Bhatia
- grid.265892.20000000106344187Institute for Cancer Outcomes and Survivorship, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233 USA
| | - Christopher J. Recklitis
- grid.38142.3c000000041936754XPerini Family Survivors’ Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215 USA
| |
Collapse
|
10
|
van Rensburg D, Lindeque Z, Harvey BH, Steyn SF. Reviewing the mitochondrial dysfunction paradigm in rodent models as platforms for neuropsychiatric disease research. Mitochondrion 2022; 64:82-102. [DOI: 10.1016/j.mito.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022]
|
11
|
Tengeler AC, Emmerzaal TL, Geenen B, Verweij V, van Bodegom M, Morava E, Kiliaan AJ, Kozicz T. Early-adolescent antibiotic exposure results in mitochondrial and behavioral deficits in adult male mice. Sci Rep 2021; 11:12875. [PMID: 34145328 PMCID: PMC8213690 DOI: 10.1038/s41598-021-92203-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/21/2021] [Indexed: 11/21/2022] Open
Abstract
Exposure to antibiotic treatment has been associated with increased vulnerability to various psychiatric disorders. However, a research gap exists in understanding how adolescent antibiotic therapy affects behavior and cognition. Many antibiotics that target bacterial translation may also affect mitochondrial translation resulting in impaired mitochondrial function. The brain is one of the most metabolically active organs, and hence is the most vulnerable to impaired mitochondrial function. We hypothesized that exposure to antibiotics during early adolescence would directly affect brain mitochondrial function, and result in altered behavior and cognition. We administered amoxicillin, chloramphenicol, or gentamicin in the drinking water to young adolescent male wild-type mice. Next, we assayed mitochondrial oxidative phosphorylation complex activities in the cerebral cortex, performed behavioral screening and targeted mass spectrometry-based acylcarnitine profiling in the cerebral cortex. We found that mice exposed to chloramphenicol showed increased repetitive and compulsive-like behavior in the marble burying test, an accurate and sensitive assay of anxiety, concomitant with decreased mitochondrial complex IV activity. Our results suggest that only adolescent chloramphenicol exposure leads to impaired brain mitochondrial complex IV function, and could therefore be a candidate driver event for increased anxiety-like and repetitive, compulsive-like behaviors.
Collapse
Affiliation(s)
- Anouk C Tengeler
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Tim L Emmerzaal
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands.,Department of Clinical Genomics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Bram Geenen
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Vivienne Verweij
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Miranda van Bodegom
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 First St. SW, Rochester, MN, USA
| | - Amanda J Kiliaan
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands
| | - Tamas Kozicz
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Donders Institute for Brain, Cognition & Behaviour, Centre for Medical Neuroscience, Preclinical Imaging Centre PRIME, Nijmegen, The Netherlands. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
12
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
13
|
Preston G, Emmerzaal T, Radenkovic S, Lanza IR, Oglesbee D, Morava E, Kozicz T. Cerebellar and multi-system metabolic reprogramming associated with trauma exposure and post-traumatic stress disorder (PTSD)-like behavior in mice. Neurobiol Stress 2021; 14:100300. [PMID: 33604421 PMCID: PMC7872981 DOI: 10.1016/j.ynstr.2021.100300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/08/2021] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial metabolism is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We recently reported that mice exposed to a novel paradigm for the induction of PTSD-like behavior displayed reduced mitochondrial electron transport chain (mtETC) complex activity as well as decreased multi-system fatty acid oxidation (FAO) flux. Based on these results, we hypothesized that stressed and PTSD-like animals would display evidence of metabolic reprogramming in both cerebellum and plasma consistent with increased energetic demand, mitochondrial metabolic reprogramming, and increased oxidative stress. We performed targeted metabolomics in both cerebellar tissue and plasma, as well as untargeted nuclear magnetic resonance (NMR) spectroscopy in the cerebellum of 6 PTSD-like and 7 resilient male mice as well as 7 trauma-naïve controls. We identified numerous differences in amino acids and tricarboxylic acid (TCA) cycle metabolite concentrations in the cerebellum and plasma consistent with altered mitochondrial energy metabolism in trauma exposed and PTSD-like animals. Pathway analysis identified metabolic pathways with significant metabolic pathway shifts associated with trauma exposure, including the tricarboxylic acid cycle, pyruvate, and branched-chain amino acid metabolism in both cerebellar tissue and plasma. Altered glutamine and glutamate metabolism, and arginine biosynthesis was evident uniquely in cerebellar tissue, while ketone body levels were modified in plasma. Importantly, we also identified several cerebellar metabolites (e.g. choline, adenosine diphosphate, beta-alanine, taurine, and myo-inositol) that were sufficient to discriminate PTSD-like from resilient animals. This multilevel analysis provides a comprehensive understanding of local and systemic metabolite fingerprints associated with PTSD-like behavior, and subsequently altered brain bioenergetics. Notably, several transformed metabolic pathways observed in the cerebellum were also reflected in plasma, connecting central and peripheral biosignatures of PTSD-like behavior. These preliminary findings could direct further mechanistic studies and offer insights into potential metabolic interventions, either pharmacological or dietary, to improve PTSD resilience.
Collapse
Affiliation(s)
- Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tim Emmerzaal
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Anatomy, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, Netherlands
| | - Silvia Radenkovic
- Metabolomic Expertise Center, CCB, VIB- KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
- Laboratory of Hepatology, Department of CHROMETA, KU Leuven, Oude Markt 13, 3000, Leuven, Belgium
| | - Ian R. Lanza
- Division of Endocrinology, 200 1st St SW, Mayo Clinic, Rochester, MN, 55905, USA
| | - Devin Oglesbee
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave, New Orleans, LA, 70112, USA
| |
Collapse
|
14
|
Kozicz T, Morava E, Yardeni T. Powering the brain in health and disease. Eur J Neurosci 2021; 53:2943-2945. [PMID: 33861478 DOI: 10.1111/ejn.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Canter for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.,Canter for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Tal Yardeni
- Children's Hospital of Philadelphia Research Institute, Center for Mitochondrial and Epigenomic Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Vlaikou AM, Nussbaumer M, Komini C, Lambrianidou A, Konidaris C, Trangas T, Filiou MD. Exploring the crosstalk of glycolysis and mitochondrial metabolism in psychiatric disorders and brain tumours. Eur J Neurosci 2021; 53:3002-3018. [PMID: 33226682 DOI: 10.1111/ejn.15057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 10/13/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022]
Abstract
Dysfunction of metabolic pathways characterises a plethora of common pathologies and has emerged as an underlying hallmark of disease phenotypes. Here, we focus on psychiatric disorders and brain tumours and explore changes in the interplay between glycolysis and mitochondrial energy metabolism in the brain. We discuss alterations in glycolysis versus core mitochondrial metabolic pathways, such as the tricarboxylic acid cycle and oxidative phosphorylation, in major psychiatric disorders and brain tumours. We investigate potential common patterns of altered mitochondrial metabolism in different brain regions and sample types and explore how changes in mitochondrial number, shape and morphology affect disease-related manifestations. We also highlight the potential of pharmacologically targeting mitochondria to achieve therapeutic effects.
Collapse
Affiliation(s)
- Angeliki-Maria Vlaikou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Markus Nussbaumer
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Chrysoula Komini
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Andromachi Lambrianidou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Konidaris
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| | - Theoni Trangas
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Michaela D Filiou
- Laboratory of Biochemistry, Department of Biological Applications and Technology, School of Health Sciences, University of Ioannina, Ioannina, Greece.,Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas (FORTH), Ioannina, Greece
| |
Collapse
|
16
|
Zitkovsky EK, Daniels TE, Tyrka AR. Mitochondria and early-life adversity. Mitochondrion 2021; 57:213-221. [PMID: 33484871 PMCID: PMC8172448 DOI: 10.1016/j.mito.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 12/24/2020] [Accepted: 01/16/2021] [Indexed: 12/12/2022]
Abstract
Early-life adversity (ELA), which includes maltreatment, neglect, or severe trauma in childhood, increases the life-long risk for negative health outcomes. Mitochondria play a key role in the stress response and may be an important mechanism by which stress is transduced into biological risk for disease. By responding to cues from stress-signaling pathways, mitochondria interact dynamically with physiological stress responses coordinated by the central nervous, endocrine, and immune systems. Preclinical evidence suggests that alterations in mitochondrial function and structure are linked to both early stress and systemic biological dysfunction. Early clinical studies support that increased mitochondrial DNA content and altered cellular energy demands may be present in individuals with a history of ELA. Further research should investigate mitochondria as a potential therapeutic target following ELA.
Collapse
Affiliation(s)
- Emily K Zitkovsky
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Alpert Medical School of Brown University, 222 Richmond St, Providence, RI 02903, USA.
| | - Teresa E Daniels
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA.
| | - Audrey R Tyrka
- Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, 345 Blackstone Boulevard, Providence, RI 02906, USA; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, 345 Blackstone Boulevard, Providence, RI 02906, USA.
| |
Collapse
|
17
|
Schraut KG, Kalnytska O, Lamp D, Jastroch M, Eder M, Hausch F, Gassen NC, Moore S, Nagaraj N, Lopez JP, Chen A, Schmidt MV. Loss of the psychiatric risk factor SLC6A15 is associated with increased metabolic functions in primary hippocampal neurons. Eur J Neurosci 2020; 53:390-401. [PMID: 33007132 DOI: 10.1111/ejn.14990] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/25/2020] [Accepted: 09/22/2020] [Indexed: 11/30/2022]
Abstract
Major depressive disorder (MDD) is one of the most severe global health problems with millions of people affected, however, the mechanisms underlying this disorder is still poorly understood. Genome-wide association studies have highlighted a link between the neutral amino acid transporter SLC6A15 and MDD. Additionally, a number of preclinical studies support the function of this transporter in modulating levels of brain neurotransmitters, stress system regulation and behavioural phenotypes related to MDD. However, the molecular and functional mechanisms involved in this interaction are still unresolved. Therefore, to investigate the effects of the SLC6A15 transporter, we used hippocampal tissue from Slc6a15-KO and wild-type mice, together with several in-vitro assays in primary hippocampal neurons. Utilizing a proteomics approach we identified differentially regulated proteins that formed a regulatory network and pathway analysis indicated significantly affected cellular domains, including metabolic, mitochondrial and structural functions. Furthermore, we observed reduced release probability at glutamatergic synapses, increased mitochondrial function, higher GSH/GSSG redox ratio and an improved neurite outgrowth in primary neurons lacking SLC6A15. In summary, we hypothesize that by controlling the intracellular concentrations of neutral amino acids, SLC6A15 affects mitochondrial activity, which could lead to alterations in neuronal structure and activity. These data provide further indication that a pharmacological or genetic reduction of SLC6A15 activity may indeed be a promising approach for antidepressant therapy.
Collapse
Affiliation(s)
- Karla-Gerlinde Schraut
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Oleksandra Kalnytska
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniel Lamp
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Jastroch
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Neuherberg, Germany
| | - Matthias Eder
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Felix Hausch
- Structure-Based Drug Research, Technische Universität Darmstadt, Darmstadt, Germany
| | - Nils C Gassen
- Department of Psychiatry and Psychotherapy, Bonn Clinical Center, University of Bonn, Bonn, Germany
| | - Sarah Moore
- Department of Medical Genetics, University of British Columbia, BC Children's Hospital Research Institute, Vancouver, Canada.,Department Translational Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Nagarjuna Nagaraj
- Biochemistry Core Facility, Max Planck Institute of Biochemistry, Munich, Germany
| | - Juan P Lopez
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
18
|
Neurophysiology and Psychopathology Underlying PTSD and Recent Insights into the PTSD Therapies-A Comprehensive Review. J Clin Med 2020; 9:jcm9092951. [PMID: 32932645 PMCID: PMC7565106 DOI: 10.3390/jcm9092951] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a well-known psychiatric disorder that affects millions of people worldwide. Pharmacodynamic and cognitive-behavioral therapies (CBT) have been used to treat patients with PTSD. However, it remains unclear whether there are concurrent changes in psychopathological and neurophysiological factors associated with PTSD patients. Past reports described those PTSD patients with efficient fatty acid metabolism, neurogenesis, mitochondrial energy balance could improve ability to cope against the conditioned fear responses and traumatic memories. Furthermore, cognitive, behavioral, cellular, and molecular evidence can be combined to create personalized therapies for PTSD sufferers either with or without comorbidities such as depression or memory impairment. Unfortunately, there is still evidence lacking to establish a full understanding of the underlying neurophysiological and psychopathological aspects associated with PTSD. This review has extensively discussed the single nucleotide polymorphism (SNPs) of genetic factors to cause PTSD, the implications of inflammation, neurotransmitter genomics, metabolic alterations, neuroendocrine disturbance (hypothalamus-pituitary-adrenal (HPA) axis), mitochondrial dynamics, neurogenesis, and premature aging related to PTSD-induced psychopathology and neurophysiology. In addition, the review delineated the importance of CBT and several pharmacodynamic therapies to mitigate symptomatology of PTSD.
Collapse
|
19
|
Traumatic stress history interacts with sex and chronic peripheral inflammation to alter mitochondrial function of synaptosomes. Brain Behav Immun 2020; 88:203-219. [PMID: 32389700 PMCID: PMC9380700 DOI: 10.1016/j.bbi.2020.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Repeated exposures to chronic stress can lead to long lasting negative behavioral and metabolic outcomes. Here, we aim to determine the impact of chronic stress and chronic low-level inflammation on behavior and synaptosomal metabolism. METHODS Male (n = 31) and female (n = 32) C57Bl/6 mice underwent chronic repeated predation stress or daily handling for two rounds of 15 consecutive days of exposure during the adolescent and early adult timeframes. Subsequently, mice were exposed to repeated lipopolysaccharide (LPS; 7.5 × 105 EU/kg) or saline injections every third day for eight weeks. Exploratory and social behaviors were assessed in the open field and social interaction tests prior to examination of learning and memory with the Barnes Maze. Mitochondrial function and morphology were assessed in synaptosomes post-mortem using the Cell Mito Stress test and Seahorse XFe24 analyzer, TEM, and western analysis, respectively. In addition, expression of TNF-α, IL-1ß, and ROMO1 were examined in the hippocampus and prefrontal cortex with Taqman qPCR. Circulating pro- and anti-inflammatory cytokines in the periphery were assessed using the MSD V-plex Proinflammatory Panel 1 following the first and last LPS injection as well as at the time of tissue collection. Circulating ROMO1 was assessed in terminal samples via ELISA. RESULTS Exposure to repeated predatory stress increased time spent in the corners of the open field, suggestive of anxiety-like behavior, in both males and females. There were no significant group differences in the social interaction test and minimal effects were evident in the Barnes maze. A history of chronic stress interacted with chronic LPS in male mice to lead to a deficit in synaptosomal respiration. Female mice were more sensitive to both chronic stress and chronic LPS such that either a history of chronic stress or chronic LPS exposure was sufficient to disrupt synaptosomal respiration in females. Both stress and chronic LPS were sufficient to increase inflammation and reactive oxygen in males centrally and peripherally. Females had increased markers of peripheral inflammation following acute LPS but no evidence of peripheral or central increases in inflammatory factors or reactive oxygen following chronic exposures. CONCLUSION Collectively, these data suggest that while metrics of inflammation and reactive oxygen are disrupted in males following chronic stress and chronic LPS, only the combined condition is sufficient to alter synaptosomal respiration. Conversely, although evidence of chronic inflammation or chronic elevation in reactive oxygen is absent, females demonstrate profound shifts in synaptosomal mitochondrial function with either a history of chronic stress or a history of chronic inflammation. These data highlight that different mechanisms are likely in play between the sexes and that sex differences in neural outcomes may be precipitated by sex-specific effects of life experiences on mitochondrial function in the synapse.
Collapse
|
20
|
Preston G, Emmerzaal T, Kirdar F, Schrader L, Henckens M, Morava E, Kozicz T. Cerebellar mitochondrial dysfunction and concomitant multi-system fatty acid oxidation defects are sufficient to discriminate PTSD-like and resilient male mice. Brain Behav Immun Health 2020; 6:100104. [PMID: 34589865 PMCID: PMC8474165 DOI: 10.1016/j.bbih.2020.100104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/01/2020] [Accepted: 07/05/2020] [Indexed: 11/25/2022] Open
Abstract
The impact of trauma on mental health is complex with poorly understood underlying mechanisms. Mitochondrial dysfunction is increasingly implicated in psychopathologies and mood disorders, including post-traumatic stress disorder (PTSD). We hypothesized that defects in mitochondrial energy metabolism in the cerebellum, an emerging region of interest in the pathobiology of mood disorders, would be associated with PTSD-like symptomatology, and that PTSD-like symptomatology would correlate with the activities of the mitochondrial electron transport chain (mtETC) and fatty acid oxidation (FAO) pathways. We assayed mitochondrial energy metabolism and fatty acid profiling using targeted metabolomics in mice exposed to a recently developed paradigm for PTSD-induction. 48 wild type male FVB.129P2 mice were exposed to a trauma, and PTSD-like and resilient animals were identified using behavioral profiling. Mice displaying PTSD-like symptomatology displayed reduced mtETC complex activities in the cerebellum, and cerebellar mtETC complex activity negatively correlated with PTSD-like symptomatology. PTSD-like animals also displayed fatty acid profiles consistent with FAO dysfunction in both cerebellum and plasma. Machine learning analysis of all biochemical measures in this cohort of animals also identified plasma acetylcarnitine, along with reduced activity of cerebellar complex I and IV as well as succinate:cytochrome c oxidoreductase as state predictive discriminators of PTSD-symptomatology. Our data also suggest that trauma-induced impaired mtETC function in the cerebellum and concomitant impaired multi-system fatty acid oxidation are candidate drivers of PTSD-like behavior in mice. These bioenergetic and metabolic changes may offer an informative window into the underlying biology and highlight novel potential targets for diagnostics and therapeutic interventions in PTSD.
Collapse
Affiliation(s)
- Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA.,Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Tim Emmerzaal
- Department of Clinical Genomics, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA.,Department of Anatomy, Radboudumc, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, Netherlands
| | - Faisal Kirdar
- Hayward Genetics Center, Tulane University School of Medicine, 1430 Tulane Ave., New Orleans, LA, 70112, USA
| | - Laura Schrader
- Department of Cell and Molecular Biology, Tulane University, 6823 St Charles Ave, New Orleans, LA, 70118, USA
| | - Marloes Henckens
- Department of Cognitive Neurosciences, Radboudumc, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, Netherlands
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, 200 1st St. SW, Rochester, MN, 55905, USA
| |
Collapse
|
21
|
Somvanshi PR, Mellon SH, Flory JD, Abu-Amara D, Wolkowitz OM, Yehuda R, Jett M, Hood L, Marmar C, Doyle FJ. Mechanistic inferences on metabolic dysfunction in posttraumatic stress disorder from an integrated model and multiomic analysis: role of glucocorticoid receptor sensitivity. Am J Physiol Endocrinol Metab 2019; 317:E879-E898. [PMID: 31322414 PMCID: PMC6879860 DOI: 10.1152/ajpendo.00065.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 02/08/2023]
Abstract
Posttraumatic stress disorder (PTSD) is associated with neuroendocrine alterations and metabolic abnormalities; however, how metabolism is affected by neuroendocrine disturbances is unclear. The data from combat-exposed veterans with PTSD show increased glycolysis to lactate flux, reduced TCA cycle flux, impaired amino acid and lipid metabolism, insulin resistance, inflammation, and hypersensitive hypothalamic-pituitary-adrenal (HPA) axis. To analyze whether the co-occurrence of multiple metabolic abnormalities is independent or arises from an underlying regulatory defect, we employed a systems biological approach using an integrated mathematical model and multiomic analysis. The models for hepatic metabolism, HPA axis, inflammation, and regulatory signaling were integrated to perform metabolic control analysis (MCA) with respect to the observations from our clinical data. We combined the metabolomics, neuroendocrine, clinical laboratory, and cytokine data from combat-exposed veterans with and without PTSD to characterize the differences in regulatory effects. MCA revealed mechanistic association of the HPA axis and inflammation with metabolic dysfunction consistent with PTSD. This was supported by the data using correlational and causal analysis that revealed significant associations between cortisol suppression, high-sensitivity C-reactive protein, homeostatic model assessment of insulin resistance, γ-glutamyltransferase, hypoxanthine, and several metabolites. Causal mediation analysis indicates that the effects of enhanced glucocorticoid receptor sensitivity (GRS) on glycolytic pathway, gluconeogenic and branched-chain amino acids, triglycerides, and hepatic function are jointly mediated by inflammation, insulin resistance, oxidative stress, and energy deficit. Our analysis suggests that the interventions to normalize GRS and inflammation may help to manage features of metabolic dysfunction in PTSD.
Collapse
Affiliation(s)
- Pramod R Somvanshi
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Synthia H Mellon
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, California
| | - Janine D Flory
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Duna Abu-Amara
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California, San Francisco, California
| | - Rachel Yehuda
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marti Jett
- Integrative Systems Biology, US Army Medical Research and Materiel Command, US Army Center for Environmental Health Research, Fort Detrick, Frederick, Maryland
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington
| | - Charles Marmar
- Department of Psychiatry, New York Langone Medical School, New York, New York
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
22
|
Anxiety and Brain Mitochondria: A Bidirectional Crosstalk. Trends Neurosci 2019; 42:573-588. [DOI: 10.1016/j.tins.2019.07.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 12/11/2022]
|
23
|
Seo JH, Park HS, Park SS, Kim CJ, Kim DH, Kim TW. Physical exercise ameliorates psychiatric disorders and cognitive dysfunctions by hippocampal mitochondrial function and neuroplasticity in post-traumatic stress disorder. Exp Neurol 2019; 322:113043. [PMID: 31446079 DOI: 10.1016/j.expneurol.2019.113043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 07/24/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a stress-related condition that can be triggered by witnessing or experiencing a life-threatening event, such as a war, natural disaster, terrorist attack, major accident, or assault. PTSD is caused by dysfunction of the hippocampus and causes problems associated with brain functioning, such as anxiety, depression, and cognitive impairment. Exercise is known to have a positive effect on brain function, especially in the hippocampus. In this study, we investigated the effect of aerobic exercise on mitochondrial function and neuroplasticity in the hippocampus as well as behavioral changes in animal models of PTSD. Exposure to severe stress resulted in mitochondrial dysfunction in the hippocampus, including impaired Ca2+ homeostasis, an increase in reactive oxygen species such as H2O2, a decrease in the O2 respiration rate, and overexpression of membrane permeability transition pore-related proteins, including voltage-dependent anion channel, adenine nucleotide translocase, and cyclophilin-D. Exposure to extreme stress also decreased neuroplasticity by increasing apoptosis and decreasing the brain-derived neurotrophic factor level and neurogenesis, resulting in increased anxiety, depression, and cognitive impairment. The impairments in mitochondrial function and neuroplasticity in the hippocampus, as well as anxiety, depression, and cognitive impairment, were all improved by exercise. Exercise-induced improvement of the brain-derived neurotrophic factor level in particular might alter mitochondrial function, neuroplasticity, and the rate of apoptosis in the hippocampus. Therefore, exercise might be an important non-pharmacological intervention for the prevention and treatment of the pathobiology of PTSD.
Collapse
Affiliation(s)
- Jin-Hee Seo
- Department of Adapted physical education, Baekseok University, Cheonan, Republic of Korea
| | - Hye-Sang Park
- Department of Kinesiology, College of public health and Cardiovascular Research Center, Lewis Katz school of Medicine, Temple University, Philadelphia, PA, USA
| | - Sang-Seo Park
- Department of physiology, College of medicine, Kyung Hee University, Seoul, Republic of Korea; Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Ju Kim
- Department of physiology, College of medicine, Kyung Hee University, Seoul, Republic of Korea; Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- College of Sports science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Tae-Woon Kim
- Department of physiology, College of medicine, Kyung Hee University, Seoul, Republic of Korea; Kohwang Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea; Exercise Rehabilitation Research Institute, Department of Exercise & Health Science, Sangmyung University, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Fišar Z, Hansíková H, Křížová J, Jirák R, Kitzlerová E, Zvěřová M, Hroudová J, Wenchich L, Zeman J, Raboch J. Activities of mitochondrial respiratory chain complexes in platelets of patients with Alzheimer's disease and depressive disorder. Mitochondrion 2019; 48:67-77. [PMID: 31377247 DOI: 10.1016/j.mito.2019.07.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/03/2019] [Accepted: 07/31/2019] [Indexed: 12/14/2022]
Abstract
We analyzed activities of complex I, II, III, and IV, and citrate synthase (CS) in patients with major depressive disorder (MDD) or Alzheimer's disease (AD) presenting with or without depression. Associations of these parameters with disease or disease severity were observed in both AD and MDD; however, mean values of mitochondrial parameters were significantly altered in AD but not in MDD. Potential mitochondrial dysfunction in MDD seems not to be caused by disturbed activity of CS or respiratory complexes. In AD, a decrease in the activity of CS and complex IV may cause mitochondrial dysfunction, whereas an increase in activities of other mitochondrial complexes or their ratios to CS may be an adaptive response. The data indicate that comorbid depression in AD is associated with increased complex II activity. The mitochondrial parameters measured can be included in the panel of biomarkers of AD.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Hana Hansíková
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Jana Křížová
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Roman Jirák
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Eva Kitzlerová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Martina Zvěřová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic; Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, Praha 2 128 00, Prague 2, Czech Republic.
| | - László Wenchich
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Jiří Zeman
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 2, 120 00 Prague 2, Czech Republic.
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
25
|
Kast RE. Inhibiting the NLRP3 Inflammasome With Methylene Blue as Treatment Adjunct in Myelodysplasia. Front Oncol 2018; 8:280. [PMID: 30101125 PMCID: PMC6072867 DOI: 10.3389/fonc.2018.00280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 07/04/2018] [Indexed: 11/17/2022] Open
Abstract
Myelodysplasia refers to a group of clonal hematopoietic neoplasms characterized by genetic heterogeneity, different clinical behaviors and prognoses. Some of this group of bone marrow failure conditions have known external causes, some are of unknown origin. Within marrow, intracellular, and extracellular elements of the innate immune system are activated and contribute to creation of multiple cytogenetic abnormalities and are central to the mode of hematopoietic cell failure. Basiorka et al. showed that NLRP3 inflammasome activity is essential to the innate immune system's destruction of marrow hematopoietic cells commonly in myelodysplasia. In April 2018 Hao et al. reported that methylene blue inhibits rat NLRP3 inflammasome function. Methylene blue has been in continuous use in humans for over a century. It is associated with an eminently benign side effect profile in human use. If as in rodents, methylene blue also inhibits NLRP3 inflammasome function in human myelodysplasia a trial of adjunctive methylene blue treatment in transfusion dependent, low risk myelodysplasia where marrow inflammation and apoptosis predominates, would be worth trying. HIGHLIGHTS- Cytogenetic abnormalities and innate immune activation are seen in myelodysplasia - The NLRP3 inflammasome is a core element generating marrow failure of myelodysplasia - In April 2018 methylene blue was reported to potently inhibit NLRP3 inflammasome function - Methylene blue has benign side effects and has been in human use for a century - Study of methylene blue treatment of myelodysplasia would be a low-risk intervention
Collapse
|