1
|
Yang J, Hawthorne L, Stack S, Blagg B, Ali A, Zorlutuna P. Engineered Age-Mimetic Breast Cancer Models Reveal Differential Drug Responses in Young and Aged Microenvironments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.06.616903. [PMID: 39416111 PMCID: PMC11482747 DOI: 10.1101/2024.10.06.616903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Aging is one of the most significant risk factors for breast cancer. With the growing interests in the alterations of the aging breast tissue microenvironment, it has been identified that aging is related to tumorigenesis, invasion, and drug resistance. However, current pre-clinical disease models often neglect the impact of aging and sometimes result in worse clinical outcomes. In this study, we utilized aged animal-generated materials to create and validate a novel age-mimetic breast cancer model that generates an aging microenvironment for cells and alters cells towards a phenotype found in the aged environment. Furthermore, we utilized the age-mimetic models for 3D breast cancer invasion assessment and high-throughput screening of over 700 drugs in the FDA-approved drug library. We identified 36 potential effective drug targets and 34 potential drug targets with different drug responses in different age groups, demonstrating the potential of this age-mimetic breast cancer model for further in-depth breast cancer studies and drug development.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Lauren Hawthorne
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Sharon Stack
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Brian Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Aktar Ali
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| | - Pinar Zorlutuna
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, 46556, USA
| |
Collapse
|
2
|
Hossain MA. Targeting the RAS upstream and downstream signaling pathway for cancer treatment. Eur J Pharmacol 2024; 979:176727. [PMID: 38866361 DOI: 10.1016/j.ejphar.2024.176727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Cancer often involves the overactivation of RAS/RAF/MEK/ERK (MAPK) and PI3K-Akt-mTOR pathways due to mutations in genes like RAS, RAF, PTEN, and PIK3CA. Various strategies are employed to address the overactivation of these pathways, among which targeted therapy emerges as a promising approach. Directly targeting specific proteins, leads to encouraging results in cancer treatment. For instance, RTK inhibitors such as imatinib and afatinib selectively target these receptors, hindering ligand binding and reducing signaling initiation. These inhibitors have shown potent efficacy against Non-Small Cell Lung Cancer. Other inhibitors, like lonafarnib targeting Farnesyltransferase and GGTI 2418 targeting geranylgeranyl Transferase, disrupt post-translational modifications of proteins. Additionally, inhibition of proteins like SOS, SH2 domain, and Ras demonstrate promising anti-tumor activity both in vivo and in vitro. Targeting downstream components with RAF inhibitors such as vemurafenib, dabrafenib, and sorafenib, along with MEK inhibitors like trametinib and binimetinib, has shown promising outcomes in treating cancers with BRAF-V600E mutations, including myeloma, colorectal, and thyroid cancers. Furthermore, inhibitors of PI3K (e.g., apitolisib, copanlisib), AKT (e.g., ipatasertib, perifosine), and mTOR (e.g., sirolimus, temsirolimus) exhibit promising efficacy against various cancers such as Invasive Breast Cancer, Lymphoma, Neoplasms, and Hematological malignancies. This review offers an overview of small molecule inhibitors targeting specific proteins within the RAS upstream and downstream signaling pathways in cancer.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Bangladesh.
| |
Collapse
|
3
|
Shaban N, Kamashev D, Emelianova A, Buzdin A. Targeted Inhibitors of EGFR: Structure, Biology, Biomarkers, and Clinical Applications. Cells 2023; 13:47. [PMID: 38201251 PMCID: PMC10778338 DOI: 10.3390/cells13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Members of the EGFR family of tyrosine kinase receptors are major regulators of cellular proliferation, differentiation, and survival. In humans, abnormal activation of EGFR is associated with the development and progression of many cancer types, which makes it an attractive target for molecular-guided therapy. Two classes of EGFR-targeted cancer therapeutics include monoclonal antibodies (mAbs), which bind to the extracellular domain of EGFR, and tyrosine kinase inhibitors (TKIs), which mostly target the intracellular part of EGFR and inhibit its activity in molecular signaling. While EGFR-specific mAbs and three generations of TKIs have demonstrated clinical efficacy in various settings, molecular evolution of tumors leads to apparent and sometimes inevitable resistance to current therapeutics, which highlights the need for deeper research in this field. Here, we tried to provide a comprehensive and systematic overview of the rationale, molecular mechanisms, and clinical significance of the current EGFR-targeting drugs, highlighting potential candidate molecules in development. We summarized the underlying mechanisms of resistance and available personalized predictive approaches that may lead to improved efficacy of EGFR-targeted therapies. We also discuss recent developments and the use of specific therapeutic strategies, such as multi-targeting agents and combination therapies, for overcoming cancer resistance to EGFR-specific drugs.
Collapse
Affiliation(s)
- Nina Shaban
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Dmitri Kamashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Aleksandra Emelianova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anton Buzdin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia; (D.K.); (A.B.)
- Laboratory for Translational Genomic Bioinformatics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Institute of Personalized Oncology, I.M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
- PathoBiology Group, European Organization for Research and Treatment of Cancer (EORTC), 1200 Brussels, Belgium
| |
Collapse
|
4
|
Yang H, Zhang Z, Liu Q, Yu J, Liu C, Lu W. Identification of Dual-Target Inhibitors for Epidermal Growth Factor Receptor and AKT: Virtual Screening Based on Structure and Molecular Dynamics Study. Molecules 2023; 28:7607. [PMID: 38005329 PMCID: PMC10673407 DOI: 10.3390/molecules28227607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Epidermal growth factor EGFR is an important target for non-small cell lung (NSCL) cancer, and inhibitors of the AKT protein have been used in many cancer treatments, including those for NSCL cancer. Therefore, searching small molecular inhibitors which can target both EGFR and AKT may help cancer treatment. In this study, we applied a ligand-based pharmacophore model, molecular docking, and MD simulation methods to search for potential inhibitors of EGFR and then studied dual-target inhibitors of EGFR and AKT by screening the immune-oncology Chinese medicine (TCMIO) database and the human endogenous database (HMDB). It was found that TCMIO89212, TCMIO90156, and TCMIO98874 had large binding free energies with EGFR and AKT, and HMDB0012243 also has the ability to bind to EGFR and AKT. These results may provide valuable information for further experimental study.
Collapse
Affiliation(s)
- Hanyu Yang
- College of Physics, Qingdao University, Qingdao 266071, China; (H.Y.); (Z.Z.); (J.Y.); (C.L.)
| | - Zhiwei Zhang
- College of Physics, Qingdao University, Qingdao 266071, China; (H.Y.); (Z.Z.); (J.Y.); (C.L.)
| | - Qian Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - Jie Yu
- College of Physics, Qingdao University, Qingdao 266071, China; (H.Y.); (Z.Z.); (J.Y.); (C.L.)
| | - Chongjin Liu
- College of Physics, Qingdao University, Qingdao 266071, China; (H.Y.); (Z.Z.); (J.Y.); (C.L.)
| | - Wencai Lu
- College of Physics, Qingdao University, Qingdao 266071, China; (H.Y.); (Z.Z.); (J.Y.); (C.L.)
| |
Collapse
|
5
|
Li L, Zhang D, Wu Y, Wang J, Ma F. Efficacy and safety of trastuzumab with or without a tyrosine kinase inhibitor for HER2-positive breast cancer: A systematic review and meta-analysis. Biochim Biophys Acta Rev Cancer 2023; 1878:188969. [PMID: 37640146 DOI: 10.1016/j.bbcan.2023.188969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND This study aimed to explore the efficacy and safety of trastuzumab plus tyrosine kinase inhibitors (TKIs) compared with those of trastuzumab monotherapy in patients with human epidermal growth factor receptor (HER2)-positive breast cancer. METHODS The PubMed, Embase, Cochrane, and Web of Science databases were systematically searched for relevant articles from inception until September 2022. The primary outcomes were overall survival (OS) and progression-free survival (PFS). Subgroup analyses were performed based on disease status, TKI type, and hormone receptor status. RESULTS Sixteen studies were included in the current analysis. Trastuzumab plus TKI significantly improved OS and PFS compared to trastuzumab monotherapy. In the neoadjuvant setting, trastuzumab plus TKI significantly increased the pathologic complete response (pCR) rate compared to trastuzumab monotherapy. Moreover, a higher objective response rate (ORR) was observed with trastuzumab plus TKI. Patients who received the combination therapy had a higher incidence of discontinuation, all-grade diarrhea, and grade ≥ 3 diarrhea. CONCLUSIONS Trastuzumab plus TKI was better than trastuzumab monotherapy for treating different stages of HER2-positive breast cancer. The safety of trastuzumab plus TKI anti-HER2 therapy was controllable. The different efficacies of TKIs combined with trastuzumab may be related to the mechanism of action of the different TKIs, needing further investigations.
Collapse
Affiliation(s)
- Lixi Li
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Di Zhang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China; Department of Medical Oncology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yun Wu
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China
| | - Jiayu Wang
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Chaoyang District, Pan jia yuan nan Road 17, Beijing 100021, China.
| |
Collapse
|
6
|
Ochoa SV, Casas Z, Albarracín SL, Sutachan JJ, Torres YP. Therapeutic potential of TRPM8 channels in cancer treatment. Front Pharmacol 2023; 14:1098448. [PMID: 37033630 PMCID: PMC10073478 DOI: 10.3389/fphar.2023.1098448] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Cancer is a multifactorial process associated with changes in signaling pathways leading to cell cycle variations and gene expression. The transient receptor potential melastatin 8 (TRPM8) channel is a non-selective cation channel expressed in neuronal and non-neuronal tissues, where it is involved in several processes, including thermosensation, differentiation, and migration. Cancer is a multifactorial process associated with changes in signaling pathways leading to variations in cell cycle and gene expression. Interestingly, it has been shown that TRPM8 channels also participate in physiological processes related to cancer, such as proliferation, survival, and invasion. For instance, TRPM8 channels have an important role in the diagnosis, prognosis, and treatment of prostate cancer. In addition, it has been reported that TRPM8 channels are involved in the progress of pancreatic, breast, bladder, colon, gastric, and skin cancers, glioblastoma, and neuroblastoma. In this review, we summarize the current knowledge on the role of TRPM8 channels in cancer progression. We also discuss the therapeutic potential of TRPM8 in carcinogenesis, which has been proposed as a molecular target for cancer therapy.
Collapse
Affiliation(s)
- Sara V. Ochoa
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- Semillero de Investigación, Biofísica y Fisiología de Canales Iónicos, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| | - Zulma Casas
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Sonia L. Albarracín
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jhon Jairo Sutachan
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yolima P. Torres
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
- *Correspondence: Sara V. Ochoa, ; Yolima P. Torres,
| |
Collapse
|
7
|
Tan Y, Jiang W, Ni P, Fu Y, Ding Q. One‐Pot Synthesis of Quinazolines via Elemental Sulfur‐Mediated Oxidative Condensation of Nitriles and 2‐(Aminomethyl)anilines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuxing Tan
- Jiangxi Normal University Yaohu Campus CHINA
| | - Wujiu Jiang
- Jiangxi Normal University Yaohu Campus CHINA
| | | | - Yang Fu
- Jiangxi Normal University CHINA
| | | |
Collapse
|
8
|
Wang G, Zheng H, Zhao X, Wang Y, Zeng Y, Du J. The Prognostic Model and Drug Sensitivity of LKB1-Mutant Lung Adenocarcinoma Based on Immune Landscape. Front Mol Biosci 2022; 9:756772. [PMID: 35720127 PMCID: PMC9201220 DOI: 10.3389/fmolb.2022.756772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Lung cancer is the most common cause of cancer-related deaths worldwide. LKB1-mutant lung adenocarcinoma (LUAD) is a unique subtype of this deadly cancer. LKB1 mutations cause functional changes in a variety of cell processes, including immune functions, that affect prognosis. To date, the potential role of immunity in the prognosis of LKB1-mutant LUAD is not well understood.Methods: We systematically analyzed immune-related genes in LUAD samples from The Cancer Genome Atlas (TCGA) database. ESTIMATE and CIBERSORT algorithms were used to explore the immune microenvironment. A prognostic risk model was constructed, and prognostic, immune function, drug sensitivity, and model specificity analyses were performed to identify the effectiveness of the model.Results: Our results showed that LKB1 mutations suppressed immune function in LUAD. A three-gene signature was constructed to stratify patients into two risk groups. The risk score was an independent predictor for overall survival (OS) in multivariate Cox regression analyses [hazard ratio (HR) > 1, p = 0.002]. Receiver operating characteristic (ROC) curve analyses confirmed that the risk score has better performance than clinicopathological characteristics. Functional analysis revealed that the immune status was different between the risk groups. ZM.447439 was an appropriate treatment for the high-risk group of patients. This risk model is only suitable for LKB1-mutant tumors; it performed poorly in LUAD patients with wild-type LKB1.Conclusion: Our findings indicate the potential role of immunity in LKB1-mutant LUAD, providing novel insights into prognosis and guiding effective immunotherapy.
Collapse
Affiliation(s)
- Guanghui Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Haotian Zheng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Xiaogang Zhao
- Department of Thoracic Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Yadong Wang
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yukai Zeng
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jiajun Du
- Institute of Oncology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Thoracic Surgery, Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Jiajun Du,
| |
Collapse
|
9
|
Amiri Souri E, Laddach R, Karagiannis SN, Papageorgiou LG, Tsoka S. Novel drug-target interactions via link prediction and network embedding. BMC Bioinformatics 2022; 23:121. [PMID: 35379165 PMCID: PMC8978405 DOI: 10.1186/s12859-022-04650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As many interactions between the chemical and genomic space remain undiscovered, computational methods able to identify potential drug-target interactions (DTIs) are employed to accelerate drug discovery and reduce the required cost. Predicting new DTIs can leverage drug repurposing by identifying new targets for approved drugs. However, developing an accurate computational framework that can efficiently incorporate chemical and genomic spaces remains extremely demanding. A key issue is that most DTI predictions suffer from the lack of experimentally validated negative interactions or limited availability of target 3D structures. RESULTS We report DT2Vec, a pipeline for DTI prediction based on graph embedding and gradient boosted tree classification. It maps drug-drug and protein-protein similarity networks to low-dimensional features and the DTI prediction is formulated as binary classification based on a strategy of concatenating the drug and target embedding vectors as input features. DT2Vec was compared with three top-performing graph similarity-based algorithms on a standard benchmark dataset and achieved competitive results. In order to explore credible novel DTIs, the model was applied to data from the ChEMBL repository that contain experimentally validated positive and negative interactions which yield a strong predictive model. Then, the developed model was applied to all possible unknown DTIs to predict new interactions. The applicability of DT2Vec as an effective method for drug repurposing is discussed through case studies and evaluation of some novel DTI predictions is undertaken using molecular docking. CONCLUSIONS The proposed method was able to integrate and map chemical and genomic space into low-dimensional dense vectors and showed promising results in predicting novel DTIs.
Collapse
Affiliation(s)
- E Amiri Souri
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
| | - R Laddach
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, Guy's Hospital, London, SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, SE1 9RT, UK
| | - L G Papageorgiou
- Centre for Process Systems Engineering, Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK
| | - S Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, Bush House, London, WC2B 4BG, UK.
| |
Collapse
|
10
|
Hickish T, Mehta A, Liu MC, Huang CS, Arora RS, Chang YC, Yang Y, Vladimirov V, Jain M, Tsang J, Pemberton K, Sadrolhefazi B, Jin X, Tseng LM. Afatinib alone and in combination with vinorelbine or paclitaxel, in patients with HER2-positive breast cancer who failed or progressed on prior trastuzumab and/or lapatinib (LUX-Breast 2): an open-label, multicenter, phase II trial. Breast Cancer Res Treat 2022; 192:593-602. [PMID: 35138529 PMCID: PMC8960620 DOI: 10.1007/s10549-021-06449-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Resistance to HER2 (ErbB2)-targeted therapy may be mediated by other members of the ErbB family. We investigated the efficacy and safety of the irreversible ErbB family blocker, afatinib, alone as first-line therapy in the advanced setting and in combination with vinorelbine or paclitaxel for those who progressed on afatinib monotherapy, in female patients with metastatic breast cancer who had failed or progressed on prior HER2-targeted therapy in the early disease setting. METHODS In this phase II, single-arm, two-part study (ClinicalTrials.gov: NCT01271725), patients in part A received afatinib 40 mg/day in 21-day cycles until disease progression or intolerable adverse events (AEs). Patients with progressive disease could then receive afatinib plus weekly vinorelbine 25 mg/m2 or paclitaxel 80 mg/m2 until disease progression or intolerable AEs (part B). The primary endpoint was confirmed objective response rate (RECIST v1.1). RESULTS Eighty-seven patients were enrolled and 74 were treated in part A (median age: 51 years [range 27-76]; 31 [42%] estrogen receptor-positive, 26 [35%] progesterone receptor-positive). Of these, 39 (53%) patients went on to receive afatinib plus vinorelbine (13 patients) or paclitaxel (26 patients) in part B. Thirteen (18%) and 12 (31%) patients achieved an objective response in parts A and B, respectively. The most common treatment-related AEs with afatinib monotherapy (any/grade ≥ 3) were diarrhea (68%/8%) and rash (49%/4%). Combination therapy was generally well tolerated, with no additive toxicity observed. CONCLUSION Afatinib treatment, alone or in combination with vinorelbine or paclitaxel, was associated with objective responses in ≥ 18% of patients with metastatic breast cancer for whom prior HER2-targeted therapy has failed. Treatment-related AEs were generally manageable, with few grade ≥ 3 AEs reported. TRIAL REGISTRATION ClinicalTrials.gov, NCT01271725, registered 1 July 2011.
Collapse
Affiliation(s)
- Tamas Hickish
- Royal Bournemouth Hospital/Bournemouth University, Castle Ln E, Bournemouth, BH7 7DW, UK.
| | - Ajay Mehta
- Central India Cancer Research Institute, Nagpur, India
| | - Mei-Ching Liu
- Koo Foundation Sun Yat-Sen Cancer Center, Taipei, Taiwan
| | | | | | | | - Youngsen Yang
- Division of Hematology-Oncology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Internal Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | | | | | - Janice Tsang
- Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | | | | | - Xidong Jin
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | | |
Collapse
|
11
|
Agarwal S, Sau S, Iyer AK, Dixit A, Kashaw SK. Multiple strategies for the treatment of invasive breast carcinoma: A comprehensive prospective. Drug Discov Today 2021; 27:585-611. [PMID: 34715356 DOI: 10.1016/j.drudis.2021.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/10/2021] [Accepted: 10/19/2021] [Indexed: 01/22/2023]
Abstract
In this review, we emphasize on evolving therapeutic strategies and advances in the treatment of breast cancer (BC). This includes small-molecule inhibitors under preclinical and clinical investigation, phytoconstituents with antiproliferative potential, targeted therapies as antibodies and antibody-drug conjugates (ADCs), vaccines as immunotherapeutic agents and peptides as a novel approach inhibiting the interaction of oncogenic proteins. We provide an update of molecules under different phases of clinical investigation which aid in the identification of loopholes or shortcomings that can be overcomed with future breast cancer research.
Collapse
Affiliation(s)
- Shivangi Agarwal
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India
| | - Samaresh Sau
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA; Molecular Imaging Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | | | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar, MP, India.
| |
Collapse
|
12
|
Karami K, Anbari K. Breast Cancer: A Review of Risk Factors and New Insights into Treatment. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394717999210120195208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Today, despite significant advances in cancer treatment have been made, breast cancer
remains one of the main health problems and considered a top biomedical investigation urgency.
The present study reviewed the common conventional chemotherapy agents and also some alternative
and complementary approaches such as oncolytic virotherapy, bacteriotherapy, nanotherapy,
immunotherapy, and natural products, which are recommended for breast cancer treatment. In addition
to current surgery approaches such as mastectomy, in recent years, a number of novel techniques
such as robotic mastectomies, nipple-sparing mastectomy, skin-sparing mastectomy, daycase
mastectomy were used in breast cancer surgery. In this review, we summarize new insights
into risk factors, surgical and non-surgical treatments for breast cancer.
Collapse
Affiliation(s)
- Kimia Karami
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khatereh Anbari
- Social Determinants of Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
13
|
Babaei Z, Panjehpour M, Parsian H, Aghaei M. SAR131675 Receptor Tyrosine Kinase Inhibitor Induces Apoptosis through Bcl-2/Bax/Cyto c Mitochondrial Pathway in Human Umbilical Vein Endothelial Cells. Anticancer Agents Med Chem 2021; 22:943-950. [PMID: 34238175 DOI: 10.2174/1871520621666210708102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/11/2021] [Accepted: 05/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) can be used to inhibit cancer cell proliferation by targeting the vascular endothelial growth factor receptor (VEGFR) family. SAR131675 is a highly selective receptor tyrosine kinase inhibitor to VEGFR3 that reveals the inhibitory effect on proliferation in human lymphatic endothelial cells. However, the molecular mechanisms underlying this process are generally unclear. OBJECTIVE This study was performed to investigate the possible involvement of the Bcl-2/Bax/Cyto c apoptosis pathway in human umbilical vein endothelial cells (HUVECs). In addition, the role of reactive oxygen species (ROS) and mitochondrial membrane potential was evaluated. METHODS The effect of SAR131675 on HUVEC cell viability was evaluated by MTT assay. The activity of SAR131675 in inducing apoptosis was carried out through the detection of Annexin V-FITC/PI signal by flow cytometry. To determine the mechanisms underlying SAR131675 induced apoptosis, the mitochondrial membrane potential, ROS generation, the activity of caspase-3, and expression of apoptosis-related proteins such as Bcl-2, Bax, and cytochrome c were evaluated in HUVECs. RESULTS SAR131675 significantly inhibited cell viability and induced apoptosis in HUVECs in a dose-dependent manner. Moreover, SAR131675 induced mitochondrial dysfunction, ROS generation, Bcl-2 down-regulation, Bax up-regulation, cytochrome c release, and caspase-3 activation, which displays features of the mitochondria-dependent apoptosis signaling pathway. CONCLUSION Our present data demonstrated that SAR131675-induced cytotoxicity in HUVECs is associated with the mitochondria apoptotic pathway. These results suggest that further studies are required to fully elucidate the role of TKIs in these cellular processes.
Collapse
Affiliation(s)
- Zeinab Babaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mojtaba Panjehpour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hadi Parsian
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahmoud Aghaei
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
HER2-positive breast cancer and tyrosine kinase inhibitors: the time is now. NPJ Breast Cancer 2021; 7:56. [PMID: 34016991 PMCID: PMC8137941 DOI: 10.1038/s41523-021-00265-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/08/2021] [Indexed: 12/20/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) positive breast cancer accounts for 20–25% of all breast cancers. Multiple HER2-targeted therapies have been developed over the last few years, including the tyrosine kinase inhibitors (TKI) lapatinib, neratinib, tucatinib, and pyrotinib. These drugs target HER2 and other receptors of the epidermal growth factor receptor family, therefore each has unique efficacy and adverse event profile. HER2-directed TKIs have been studied in the early stage and advanced settings and have shown promising responses. There is increasing interest in utilizing these drugs in combination with chemotherapy and /or other HER2-directed agents in patients with central nervous system involvement, TKIs have shown to be effective in this setting for which treatment options have been previously limited and the prognosis remains poor. The aim of this review is to summarize currently approved TKIs for HER2+ breast, key clinical trials, and their use in current clinical practice.
Collapse
|
15
|
Luo X, Zhang XJ, Zhu WL, Yi JL, Xiong WG, Ye F, Zheng C, Fan MX. A Sensitive LC-MS/MS Method for the Determination of Afatinib in Human Plasma and Its Application to a Bioequivalence Study. J Chromatogr Sci 2021; 60:61-67. [PMID: 33912896 DOI: 10.1093/chromsci/bmab040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/10/2021] [Indexed: 11/14/2022]
Abstract
A high performance liquid chromatography-tandem mass spectrometry assay for the determination of afatinib (AFT) in human plasma was established. A simple sample preparation of protein precipitation was used and separation was achieved on a C18 column by the gradient mixture of mobile Phase A of water (containing 0.1% ammonia) and the mobile Phase B of acetonitrile and water (V:V = 95:5, containing 0.2% ammonia). The multiple reaction monitoring mode was used to monitor the precursor-to-production transitions of m/z 486.2 → m/z 371.4 for AFT and m/z 492.2 → m/z 371.3 for AFT-d6 (internal standard) at positive ionization mode. The calibration curve ranged from 0.100 to 25.0 ng·mL-1 and the correlation coefficient was greater than 0.99. The intra- and inter-batch precision was less than or equal to 10.0%. Accuracy determined at four concentrations was in the range of 92.3-103.3%. In summary, our method was sensitive, simple and reliable for the quantification of AFT and was successfully applied to a bioequivalence study.
Collapse
Affiliation(s)
- Xi Luo
- BE/Phase I clinical center, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China.,Xiamen key laboratory of antitumor drug transformation research, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China
| | - Xiu Jin Zhang
- BE/Phase I clinical center, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China
| | - Wen Ling Zhu
- BE/Phase I clinical center, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China
| | - Jin Ling Yi
- AccuBE PharmaTech, Xiamen, Fujian 361000, China
| | | | - Feng Ye
- Xiamen key laboratory of antitumor drug transformation research, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China.,Department of Medical Oncology, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China
| | - Chao Zheng
- BE/Phase I clinical center, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China.,Xiamen key laboratory of antitumor drug transformation research, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China
| | - Ming Xia Fan
- BE/Phase I clinical center, The first affiliated hospital of Xiamen university, Xiamen, Fujian 361000, China
| |
Collapse
|
16
|
Cardiovascular toxicity of breast cancer treatment: an update. Cancer Chemother Pharmacol 2021; 88:15-24. [PMID: 33864486 DOI: 10.1007/s00280-021-04254-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/28/2021] [Indexed: 10/21/2022]
Abstract
Novel chemotherapeutic agents have marked a new era in oncology during the past decade, prolonging significantly the overall survival of breast cancer patients. Nevertheless, contemporary antineoplastic treatments can frequently cause adverse cardiovascular side effects. Common manifestations of chemotherapy-induced cardiotoxicity include cardiomyopathy, ischemia, conduction disturbances, hypertension and thromboembolic events, while the type of the treatment regimen administered crucially determines clinical outcome. The aim of this literature review is to analyze the incidence and the underlying mechanisms of cardiovascular toxicity caused by agents approved for breast cancer, as well as to describe ways of monitoring and treating the cardiotoxic effects in breast cancer patients. Moreover, our work intends to provide an easy-to-grasp synopsis of recent and clinically meaningful advances in the field.
Collapse
|
17
|
Bie L, Luo S, Li D, Wei Y, Mu Y, Chen X, Wang S, Guo P, Lu X. HOTAIR Competitively Binds MiRNA330 as a Molecular Sponge to Increase the Resistance of Gastric Cancer to Trastuzumab. Curr Cancer Drug Targets 2020; 20:700-709. [PMID: 32364078 DOI: 10.2174/1568009620666200504114000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/08/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND HOTAIR, one of the most widely studied long non-coding RNAs in tumors, is closely related to tumor proliferation, migration, invasion and chemoresistance. OBJECTIVE Here, we studied the mechanism behind proliferation and chemoresistance processes. METHODS A total of 75 samples were collected from patients who underwent surgical resection of their gastric cancer and received trastuzumab treatment. Primary cells were isolated and cultured. We also developed a cell line overexpressing HOTAIR by constructing a lentiviral vector. These cell lines were studied using an array of established biomolecular methods. RESULTS We found that HOTAIR levels were inversely associated with sensitivity to trastuzumab in gastric cancer and that overexpression of HOTAIR can promote the proliferation and invasion of gastric cancer cells. The sensitivity of cells overexpressing HOTAIR to two different types of human epidermal growth factor receptor 2 (HER2) inhibitors (trastuzumab and afatinib) showed that overexpression of HOTAIR is specific for trastuzumab resistance. Furthermore, luciferase reporter gene assay and western blot assay showed that there is a HOTAIR-miRNA330-ERBB4 competitive endogenous RNA regulatory network with miRNA330 as the core. CONCLUSION HOTAIR can not only promote tumor proliferation but also enhance the resistance of tumor cells to drugs. Our experimental data not only showed strong expression of HOTAIR in gastric cancer, but also that strong expression of HOTAIR caused the sensitivity of gastric cancer cells to trastuzumab, which is a useful reference for postoperative medication.
Collapse
Affiliation(s)
- Liangyu Bie
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Suxia Luo
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Dan Li
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Yan Wei
- Department of Pathology, Nanyang Medical College, Nanyang, Henan province, China
| | - Yu Mu
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Xiaobing Chen
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Saiqi Wang
- Department of Oncology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan Province, China
| | - Ping Guo
- Department of Oncology, The First Affiliated Hospital of Nanyang Medical College, Nanyang, Henan province, China
| | - Xiaoyu Lu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University / Henan Cancer Hospital, Zhengzhou, Henan province, China
| |
Collapse
|
18
|
Derakhshani A, Rezaei Z, Safarpour H, Sabri M, Mir A, Sanati MA, Vahidian F, Gholamiyan Moghadam A, Aghadoukht A, Hajiasgharzadeh K, Baradaran B. Overcoming trastuzumab resistance in HER2-positive breast cancer using combination therapy. J Cell Physiol 2020; 235:3142-3156. [PMID: 31566722 DOI: 10.1002/jcp.29216] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-positive breast cancer (BC) comprises around 20-30% of all BC subtypes and is correlated with poor prognosis. For many years, trastuzumab, a monoclonal antibody, has been used to inhibit the HER2 activity. Though, the main resistance to trastuzumab has challenged the use of this drug in the management of HER2-positive BC. Therefore, the determination of resistance mechanisms and the incorporation of new agents may lead to the development of a better blockade of the HER family receptor signaling. During the last few years, some therapeutic drugs have been developed for treating patients with trastuzumab-resistant HER2-positive BC that have more effective influences in the management of this condition. In this regard, the present study aimed at reviewing the mechanisms of trastuzumab resistance and the innovative therapies that have been investigated in trastuzumab-resistant HER2-positive BC subjects.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Rezaei
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Morteza Sabri
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Atefeh Mir
- Department of Biology, Faculty of Sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Mohammad Amin Sanati
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Aghadoukht
- Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Liu C, Zhao J, Lu W, Dai Y, Hockings J, Zhou Y, Nussinov R, Eng C, Cheng F. Individualized genetic network analysis reveals new therapeutic vulnerabilities in 6,700 cancer genomes. PLoS Comput Biol 2020; 16:e1007701. [PMID: 32101536 PMCID: PMC7062285 DOI: 10.1371/journal.pcbi.1007701] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 03/09/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor-specific genomic alterations allow systematic identification of genetic interactions that promote tumorigenesis and tumor vulnerabilities, offering novel strategies for development of targeted therapies for individual patients. We develop an Individualized Network-based Co-Mutation (INCM) methodology by inspecting over 2.5 million nonsynonymous somatic mutations derived from 6,789 tumor exomes across 14 cancer types from The Cancer Genome Atlas. Our INCM analysis reveals a higher genetic interaction burden on the significantly mutated genes, experimentally validated cancer genes, chromosome regulatory factors, and DNA damage repair genes, as compared to human pan-cancer essential genes identified by CRISPR-Cas9 screenings on 324 cancer cell lines. We find that genes involved in the cancer type-specific genetic subnetworks identified by INCM are significantly enriched in established cancer pathways, and the INCM-inferred putative genetic interactions are correlated with patient survival. By analyzing drug pharmacogenomics profiles from the Genomics of Drug Sensitivity in Cancer database, we show that the network-predicted putative genetic interactions (e.g., BRCA2-TP53) are significantly correlated with sensitivity/resistance of multiple therapeutic agents. We experimentally validated that afatinib has the strongest cytotoxic activity on BT474 (IC50 = 55.5 nM, BRCA2 and TP53 co-mutant) compared to MCF7 (IC50 = 7.7 μM, both BRCA2 and TP53 wild type) and MDA-MB-231 (IC50 = 7.9 μM, BRCA2 wild type but TP53 mutant). Finally, drug-target network analysis reveals several potential druggable genetic interactions by targeting tumor vulnerabilities. This study offers a powerful network-based methodology for identification of candidate therapeutic pathways that target tumor vulnerabilities and prioritization of potential pharmacogenomics biomarkers for development of personalized cancer medicine. Recent efforts to map genetic interactions in tumor cells have suggested that tumor vulnerabilities can be exploited for development of novel targeted therapies. Tumor-specific genomic alterations derived from multi-center cancer genome projects allow identification of genetic interactions that promote tumor vulnerabilities, offering novel strategies for development of targeted cancer therapies. This study develops a novel Individualized Network-based Co-Mutation (termed INCM) methodology for quantifying the putative genetic interactions in cancer. Trained on over 2.5 million nonsynonymous somatic mutations derived from 6,789 tumor exomes across 14 cancer type, we found that genes identified in the cancer type-specific genetic subnetworks were significantly enriched in established cancer pathways. The network-predicted putative genetic interactions are correlated with patient survival. By analyzing drug pharmacogenomics profiles, we showed that the network-predicted putative genetic interactions (e.g., BRCA2-TP53) were significantly correlated with sensitivity/resistance of anticancer drugs (e.g., afatinib) and we experimentally validated it in breast cancer cell lines. Finally, drug-target network analysis reveals several potential druggable genetic interactions (e.g., PIK3CA-PTEN) by targeting tumor vulnerabilities. This study offers a generalizable network-based approach for comprehensive identification of candidate therapeutic pathways that target tumor vulnerabilities and prioritization of potential prognostic and pharmacogenomics biomarkers for development of personalized cancer medicine.
Collapse
Affiliation(s)
- Chuang Liu
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biomedical Informatics, Columbia University, New York, New York, United States of America
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yao Dai
- Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, United States of America
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Gujjarappa R, Vodnala N, Reddy VG, Malakar CC. Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C-N Source. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901651] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| | - Velma Ganga Reddy
- Centre for Advanced Materials & Industrial Chemistry (CAMIC); School of Science; RMIT University; GPO Box 2476 3001 Melbourne Australia
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur, Langol; 795004 Imphal Manipur India
| |
Collapse
|
21
|
Batoo S, Bayraktar S, Al-Hattab E, Basu S, Okuno S, Glück S. Recent advances and optimal management of human epidermal growth factor receptor-2-positive early-stage breast cancer. J Carcinog 2019; 18:5. [PMID: 31949426 PMCID: PMC6961084 DOI: 10.4103/jcar.jcar_14_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/02/2019] [Indexed: 01/03/2023] Open
Abstract
With the introduction of anthracycline-based regimens, 5-year survival rates have significantly improved in patients with early-stage breast cancer. With the addition of trastuzumab, a monoclonal antibody targeting the human epidermal growth factor receptor-2 (HER2), improvements in overall survival have been observed among patients with advanced HER2-positive disease. Subsequently, lapatinib, an orally bioavailable small molecule dual HER2- and EGFR/HER1-specific tyrosine kinase inhibitor, received Food and Drug Administration (FDA) approval in combination with capecitabine for patients with advanced HER2+ breast cancer. Then, pertuzumab in 2012 and ado-trastuzumab emtansine in 2013 were approved in the US and elsewhere based on evidence showing an improvement in survival outcomes in patients with mostly trastuzumab naïve or trastuzumab-exposed metastatic disease. The FDA also approved 1 year of extended adjuvant neratinib after chemotherapy and a year of trastuzumab for HER2-positive breast cancer on the basis of the ExteNET trial. The clinical benefit demonstrated by those drugs in advanced disease has triggered several adjuvant and neoadjuvant trials testing them in combination with chemotherapy, but also without conventional chemotherapy, using single or dual HER2-targeting drugs. In this article, we review the current data on the therapeutic management of HER2-positive early-stage breast cancer in the adjuvant and neoadjuvant setting. We also review the data the efficacy and safety of anthracycline-based and nonanthracycline-based adjuvant chemotherapy regimens combined with trastuzumab, and optimum chemotherapy regimens in small HER2-positive tumors.
Collapse
Affiliation(s)
- Sameer Batoo
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Soley Bayraktar
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA.,Department of Medicine, Division of Medical Oncology and Hematology, Biruni University School of Medicine, Istanbul, Turkey
| | - Eyad Al-Hattab
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Sandeep Basu
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Scott Okuno
- Department of Medicine, Division of Medical Oncology and Hematology, Mayo Clinic Health System, Eau Claire, WI, USA
| | - Stefan Glück
- Vice President Global Medical Affairs, Early Assets, Celgene Corporation, Summit, NJ, USA
| |
Collapse
|
22
|
Lv Y, Cang W, Li Q, Liao X, Zhan M, Deng H, Li S, Jin W, Pang Z, Qiu X, Zhao K, Chen G, Qiu L, Huang L. Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer. Oncogenesis 2019; 8:70. [PMID: 31772161 PMCID: PMC6879758 DOI: 10.1038/s41389-019-0179-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are often enriched after chemotherapy and contribute to tumor relapse. While epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are widely used for the treatment of diverse types of cancer, whether EGFR-TKIs are effective against chemoresistant CSCs in cervical cancer is largely unknown. Here, we reveal that EGFR correlates with reduced disease-free survival in cervical cancer patients with chemotherapy. Erlotinib, an EGFR-TKI, effectively impedes CSCs enrichment in paclitaxel-resistant cells through inhibiting IL-6. In this context, MUC1 induces CSCs enrichment in paclitaxel-resistant cells via activation of EGFR, which directly enhances IL-6 transcription through cAMP response element-binding protein (CREB) and glucocorticoid receptor β (GRβ). Treatment with erlotinib sensitizes CSCs to paclitaxel therapy both in vitro and in vivo. More importantly, positive correlations between the expressions of MUC1, EGFR, and IL-6 were found in 20 cervical cancer patients after chemotherapy. Mining TCGA data sets also uncovered the expressions of MUC1-EGFR-IL-6 correlates with poor disease-free survival in chemo-treated cervical cancer patients. Collectively, our work has demonstrated that the MUC1-EGFR-CREB/GRβ axis stimulates IL-6 expression to induce CSCs enrichment and importantly, this effect can be abrogated by erlotinib, uncovering a novel strategy to treat paclitaxel-resistant cervical cancer.
Collapse
Affiliation(s)
- Yaping Lv
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Wei Cang
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Quanfu Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xiaodong Liao
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Mengna Zhan
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Huayun Deng
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Shengze Li
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Wei Jin
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Zhi Pang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Xingdi Qiu
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Qiu
- Department of Gynecology and Obstetrics, Shanghai Key Laboratory of Gynecologic Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China.
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China.
| |
Collapse
|
23
|
Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, Meinhold-Heerlein I, Hussain AF. Molecular Targeting Therapy against EGFR Family in Breast Cancer: Progress and Future Potentials. Cancers (Basel) 2019; 11:cancers11121826. [PMID: 31756933 PMCID: PMC6966464 DOI: 10.3390/cancers11121826] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/15/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) family contains four transmembrane tyrosine kinases (EGFR1/ErbB1, Her2/ErbB2, Her3/ErbB3 and Her4/ErbB4) and 13 secreted polypeptide ligands. EGFRs are overexpressed in many solid tumors, including breast, pancreas, head-and-neck, prostate, ovarian, renal, colon, and non-small-cell lung cancer. Such overexpression produces strong stimulation of downstream signaling pathways, which induce cell growth, cell differentiation, cell cycle progression, angiogenesis, cell motility and blocking of apoptosis.The high expression and/or functional activation of EGFRs correlates with the pathogenesis and progression of several cancers, which make them attractive targets for both diagnosis and therapy. Several approaches have been developed to target these receptors and/or the EGFR modulated effects in cancer cells. Most approaches include the development of anti-EGFRs antibodies and/or small-molecule EGFR inhibitors. This review presents the state-of-the-art and future prospects of targeting EGFRs to treat breast cancer.
Collapse
Affiliation(s)
- Amaia Eleonora Maennling
- Department of Gynecology and Obstetrics, University Hospital RWTH Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Mehmet Kemal Tur
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
- Department of Pharmacology and Personalised Medicine, Faculty of Health, Medicine and Life Science, Maastricht University, Universiteitssingel 40, 6229 MD Maastricht, The Netherlands
| | - Marcus Niebert
- Department of Molecular Cytology and Functional Genomics, Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Torsten Klockenbring
- Department of Biological Sensing and Detection, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Felix Zeppernick
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Stefan Gattenlöhner
- Institute of Pathology, University Hospital Giessen, Justus-Liebig-University Giessen, Langhanssstr. 10, 35392 Giessen, Germany
| | - Ivo Meinhold-Heerlein
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
| | - Ahmad Fawzi Hussain
- Department of Gynecology and Obstetrics, Medical Faculty, Justus-Liebig-University Giessen, Klinikstr. 33, 35392 Giessen, Germany
- Correspondence: ; Tel.: +49-64199930570
| |
Collapse
|
24
|
García-Aranda M, Redondo M. Immunotherapy: A Challenge of Breast Cancer Treatment. Cancers (Basel) 2019; 11:E1822. [PMID: 31756919 PMCID: PMC6966503 DOI: 10.3390/cancers11121822] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and is a leading cause of cancer death in women worldwide. Despite the significant benefit of the use of conventional chemotherapy and monoclonal antibodies in the prognosis of breast cancer patients and although the recent approval of the anti-PD-L1 antibody atezolizumab in combination with chemotherapy has been a milestone for the treatment of patients with metastatic triple-negative breast cancer, immunologic treatment of breast tumors remains a great challenge. In this review, we summarize current breast cancer classification and standard of care, the main obstacles that hinder the success of immunotherapies in breast cancer patients, as well as different approaches that could be useful to enhance the response of breast tumors to immunotherapies.
Collapse
Affiliation(s)
- Marilina García-Aranda
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| | - Maximino Redondo
- Research Unit, Hospital Costa del Sol, Autovía A-7, km 187, 29603 Marbella, Spain;
- Research Network in Health Services in Chronic Diseases (Red de Investigación en Servicios de Salud en Enfermedades Crónicas, REDISSEC), Carlos III Health Institute (Instituto de Salud Carlos III). Av. de Monforte de Lemos, 5. 28029 Madrid, Spain
- Malaga Biomedical Research Institute (Instituto de Investigación Biomédica de Málaga, IBIMA), Calle Doctor Miguel Díaz Recio, 28. 29010 Málaga, Spain
- Surgery, Biochemistry and Immunology Department, School of Medicine, University of Malaga, 29010 Málaga, Spain
| |
Collapse
|
25
|
Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 2019; 4:34. [PMID: 31637013 PMCID: PMC6799843 DOI: 10.1038/s41392-019-0069-2] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past 2 decades, there has been an extraordinary progress in the regimens developed for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Trastuzumab, pertuzumab, lapatinib, and ado-trastuzumab emtansine (T-DM1) are commonly recommended anti-HER2 target agents by the U.S. Food and Drug Administration. This review summarizes the most significant and updated research on clinical scenarios related to HER2-positive breast cancer management in order to revise the guidelines of everyday clinical practices. In this article, we present the data on anti-HER2 clinical research of neoadjuvant, adjuvant, and metastatic studies from the past 2 decades. We also highlight some of the promising strategies that should be critically considered. Lastly, this review lists some of the ongoing clinical trials, findings of which may soon be available.
Collapse
Affiliation(s)
- Jiani Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021 Beijing, China
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021 Beijing, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17, Panjiayuannanli, Chaoyang District, 100021 Beijing, China
| |
Collapse
|
26
|
Di J, Zheng B, Kong Q, Jiang Y, Liu S, Yang Y, Han X, Sheng Y, Zhang Y, Cheng L, Han J. Prioritization of candidate cancer drugs based on a drug functional similarity network constructed by integrating pathway activities and drug activities. Mol Oncol 2019; 13:2259-2277. [PMID: 31408580 PMCID: PMC6763777 DOI: 10.1002/1878-0261.12564] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/13/2019] [Accepted: 08/12/2019] [Indexed: 12/27/2022] Open
Abstract
Due to the speed, efficiency, relative risk, and lower costs compared to traditional drug discovery, the prioritization of candidate drugs for repurposing against cancers of interest has attracted the attention of experts in recent years. Herein, we present a powerful computational approach, termed prioritization of candidate drugs (PriorCD), for the prioritization of candidate cancer drugs based on a global network propagation algorithm and a drug–drug functional similarity network constructed by integrating pathway activity profiles and drug activity profiles. This provides a new approach to drug repurposing by first considering the drug functional similarities at the pathway level. The performance of PriorCD in drug repurposing was evaluated by using drug datasets of breast cancer and ovarian cancer. Cross‐validation tests on the drugs approved for the treatment of these cancers indicated that our approach can achieve area under receiver‐operating characteristic curve (AUROC) values greater than 0.82. Furthermore, literature searches validated our results, and comparison with other classical gene‐based repurposing methods indicated that our pathway‐level PriorCD is comparatively more effective at prioritizing candidate drugs with similar therapeutic effects. We hope that our study will be of benefit to the field of drug discovery. In order to expand the usage of PriorCD, a freely available R‐based package, PriorCD, has been developed to prioritize candidate anticancer drugs for drug repurposing.
Collapse
Affiliation(s)
- Jieyi Di
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Baotong Zheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Qingfei Kong
- Department of Neurobiology, Harbin Medical University, China
| | - Ying Jiang
- College of Basic Medical Science, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siyao Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yang Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Xudong Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yuqi Sheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Junwei Han
- College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
27
|
Zhou L, Ren Y, Wang X, Miao D, Lizaso A, Li H, Han-Zhang H, Qian J, Yang H. Efficacy of afatinib in a HER2 amplification-positive endometrioid adenocarcinoma patient- a case report. Onco Targets Ther 2019; 12:5305-5309. [PMID: 31308701 PMCID: PMC6615020 DOI: 10.2147/ott.s206732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/20/2019] [Indexed: 01/03/2023] Open
Abstract
Afatinib has improved the prognosis of epidermal growth factor receptor-positive advanced non-small cell lung cancer and has been explored in the treatment of human epidermal growth factor receptor 2 (HER2)-amplified breast cancer. However, its clinical efficacy in HER2-amplified endometrial cancer has not been reported. Herein, we present the clinical benefit of afatinib in a case of stage IIIC endometrioid adenocarcinoma refractory to multiple lines of chemotherapy and eventually developed pulmonary, abdominal and pelvic metastasis. Upon referral to our clinic, capture-based targeted sequencing was performed on both blood and tumor samples and revealed HER2 amplification. The patient was administered with afatinib and achieved partial response (PR) after two months of treatment, reflected by a significant reduction in pulmonary lesions and serum levels of tumor markers including carcinoembryonic antigen (CEA), cancer antigen (CA) 19-9, 125, 15-3 and cytokeratin 19 fragment antigen 21-1 (CY211). The patient passed away after 3 months of afatinib treatment due to suspected complications of severe intestinal obstruction. Our report demonstrates the efficacy of afatinib in a heavily pre-treated HER2-amplified endometrial cancer patient with multi-organ metastasis. This case also highlights the need to include comprehensive mutational profiling in the standard management of endometrial cancer patients for treatment guidance.
Collapse
Affiliation(s)
- Li Zhou
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Yifeng Ren
- Hepatobiliary and Pancreatic Surgery Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Xia Wang
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Dongliu Miao
- Interventional Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Analyn Lizaso
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Haiyan Li
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Han Han-Zhang
- Burning Rock Biotech, Guangzhou, People's Republic of China
| | - Jun Qian
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| | - Hui Yang
- Oncology Department, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
28
|
Gao Z, Song C, Li G, Lin H, Lian X, Zhang N, Cao B. Pyrotinib treatment on HER2-positive gastric cancer cells promotes the released exosomes to enhance endothelial cell progression, which can be counteracted by apatinib. Onco Targets Ther 2019; 12:2777-2787. [PMID: 31114227 PMCID: PMC6489591 DOI: 10.2147/ott.s194768] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Aims: Pyrotinib is a newly developed irreversible pan-ErbB receptor tyrosine kinase inhibitor for treatment of human epidermal growth factor receptor 2 (HER2)-positive cancers, and clinic trials of pyrotinib in treatment of HER2-positive gastric cancer (GC) are underway. Exosomes are tiny vesicles secreted by cancer cells and take essential roles in the progression of carcinoma. Whether pyrotinib application has any effect on the cancer cell-released exosomes has not been studied. The aim of our work was to address if pyrotinib treatment impacts the effect of HER2-positive GC cell-derived exosomes on endothelial cell (EC) progression. Methods: Isolation of exosomes released by HER2-positive NCI-N87 and MKN45 lines after pyrotinib treatment was performed. Then, human umbilical vein endothelial cells (HUVECs) were incubated with different concentrations of exosomes to address their proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS). Effect of pyrotinib-treated exosomes at concentration of 10 µg/mL was compared to that without pyrotinib treatment over 96-hr time course. Transwell assay and wound-healing assay were carried out by incubating with exosomes released by NCI-N87 and MKN45 cells with/without pyrotinib treatment over 24-hr time course. The aforementioned experiments were done under same conditions in order to evaluate the combined effect of apatinib and pyrotinib on HUVEC motility and invasive capacity. Results: We showed that HUVEC proliferation, motility and invasive capacity were further enhanced upon incubation with exosomes released by pyrotinib-treated GC cell lines, compared to those without pyrotinib treatment. Significantly, this effect was counteracted by the vascular endothelial growth factor receptor (VEGFR)-2 inhibitor apatinib which inhibits EC progression. Conclusion: Our study suggests that pyrotinib application on HER2-positive GC produces stronger exosomes that promote the proliferation and motility of vascular ECs, and combination of pyrotinib with apatinib provides potentially better therapy.
Collapse
Affiliation(s)
- Zhengxing Gao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Chunqing Song
- Department of Oncology, Beijing Daxing District Hopeople's Hospital, Capital Medical University, Beijing 102600, People's Republic of China
| | - Guangxin Li
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Haishan Lin
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xiangyao Lian
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Ninggang Zhang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Bangwei Cao
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
29
|
Seebacher NA, Stacy AE, Porter GM, Merlot AM. Clinical development of targeted and immune based anti-cancer therapies. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:156. [PMID: 30975211 PMCID: PMC6460662 DOI: 10.1186/s13046-019-1094-2] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 02/08/2023]
Abstract
Cancer is currently the second leading cause of death globally and is expected to be responsible for approximately 9.6 million deaths in 2018. With an unprecedented understanding of the molecular pathways that drive the development and progression of human cancers, novel targeted therapies have become an exciting new development for anti-cancer medicine. These targeted therapies, also known as biologic therapies, have become a major modality of medical treatment, by acting to block the growth of cancer cells by specifically targeting molecules required for cell growth and tumorigenesis. Due to their specificity, these new therapies are expected to have better efficacy and limited adverse side effects when compared with other treatment options, including hormonal and cytotoxic therapies. In this review, we explore the clinical development, successes and challenges facing targeted anti-cancer therapies, including both small molecule inhibitors and antibody targeted therapies. Herein, we introduce targeted therapies to epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), human epidermal growth factor receptor 2 (HER2), anaplastic lymphoma kinase (ALK), BRAF, and the inhibitors of the T-cell mediated immune response, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein-1 (PD-1)/ PD-1 ligand (PD-1 L).
Collapse
Affiliation(s)
- N A Seebacher
- Faculty of Medicine, The University of Sydney, Camperdown, New South Wales, 2006, Australia
| | - A E Stacy
- Faculty of Medicine, The University of Notre Dame, Darlinghurst, New South Wales, 2010, Australia
| | - G M Porter
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia
| | - A M Merlot
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,School of Women's and Children's Health, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia. .,UNSW Centre for Childhood Cancer Research, Faculty of Medicine, University of New South Wales, Kensington, New South Wales, 2031, Australia.
| |
Collapse
|
30
|
Hoffer L, Saez-Ayala M, Horvath D, Varnek A, Morelli X, Roche P. CovaDOTS: In Silico Chemistry-Driven Tool to Design Covalent Inhibitors Using a Linking Strategy. J Chem Inf Model 2019; 59:1472-1485. [PMID: 30908019 DOI: 10.1021/acs.jcim.8b00960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We recently reported an integrated fragment-based optimization strategy called DOTS (Diversity Oriented Target-focused Synthesis) that combines automated virtual screening (VS) with semirobotized organic synthesis coupled to in vitro evaluation. The molecular modeling part consists of hit-to-lead chemistry, based on the growing paradigm. Here, we have extended the applicability of the DOTS strategy by adding new functionalities, allowing a generic chemistry-driven linking approach with a particular emphasis on covalent drugs. Indeed, the covalent mode of action can be described as a specific case of linking, where suitable linkers are sought to fuse a bound organic compound with a nucleophilic protein side chain. The proof of concept is established using three retrospective study cases in which known noncovalent inhibitors have been converted to covalent inhibitors. Our method is able to automatically design reference covalent inhibitors (and/or analogs) from an initial activated substructure and predict their binding mode. More importantly, the reference compounds are ranked high among several hundred putative adducts, demonstrating the utility of the approach to design covalent inhibitors.
Collapse
Affiliation(s)
- Laurent Hoffer
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| | - Magali Saez-Ayala
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| | - Dragos Horvath
- Laboratoire de Chemoinformatique, CNRS UMR7140 , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Alexandre Varnek
- Laboratoire de Chemoinformatique, CNRS UMR7140 , 1 rue Blaise Pascal , 67000 Strasbourg , France
| | - Xavier Morelli
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| | - Philippe Roche
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM , Marseille CEDEX 09 13273 , France
| |
Collapse
|
31
|
Niebecker R, Maas H, Staab A, Freiwald M, Karlsson MO. Modeling Exposure-Driven Adverse Event Time Courses in Oncology Exemplified by Afatinib. CPT Pharmacometrics Syst Pharmacol 2019; 8:230-239. [PMID: 30681293 PMCID: PMC6482278 DOI: 10.1002/psp4.12384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
Models were developed to characterize the relationship between afatinib exposure and diarrhea and rash/acne adverse event (AE) trajectories, and their predictive ability was assessed. Based on pooled data from seven phase II/III clinical studies including 998 patients, mixed-effects models for ordered categorical data were applied to describe daily AE severity. Clinical trial simulation aided by trial execution models was used for internal and external model evaluation. The final exposure-safety model consisted of longitudinal logistic regression models with first-order Markov elements for both AEs. Drug exposure was included as daily area under the concentration-time curve (AUC), and drug effects on the AEs were correlated. Clinical trial simulation allowed adequate prediction of maximum AE grades and AE severity time courses but overestimated the proportion of AE-dependent dose reductions and discontinuations. Both diarrhea and rash/acne were correlated with afatinib exposure. The developed modeling framework allows a prospective comparison of dosing strategies and study designs with respect to safety.
Collapse
Affiliation(s)
- Ronald Niebecker
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Hugo Maas
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Alexander Staab
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Matthias Freiwald
- Translational Medicine and Clinical PharmacologyBoehringer Ingelheim Pharma GmbH & Co. KGBiberachGermany
| | - Mats O. Karlsson
- Department of Pharmaceutical BiosciencesUppsala UniversityUppsalaSweden
| |
Collapse
|
32
|
Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proc Natl Acad Sci U S A 2019; 116:7744-7749. [PMID: 30926671 DOI: 10.1073/pnas.1817251116] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Effective cancer therapies often demand delivery of combinations of drugs to inhibit multidrug resistance through synergism, and the development of multifunctional nanovehicles with enhanced drug loading and delivery efficiency for combination therapy is currently a major challenge in nanotechnology. However, such combinations are more challenging to administer than single drugs and can require multipronged approaches to delivery. In addition to being stable and biodegradable, vehicles for such therapies must be compatible with both hydrophobic and hydrophilic drugs, and release drugs at sustained therapeutic levels. Here, we report synthesis of porous silicon nanoparticles conjugated with gold nanorods [composite nanoparticles (cNPs)] and encapsulate them within a hybrid polymersome using double-emulsion templates on a microfluidic chip to create a versatile nanovehicle. This nanovehicle has high loading capacities for both hydrophobic and hydrophilic drugs, and improves drug delivery efficiency by accumulating at the tumor after i.v. injection in mice. Importantly, a triple-drug combination suppresses breast tumors by 94% and 87% at total dosages of 5 and 2.5 mg/kg, respectively, through synergy. Moreover, the cNPs retain their photothermal properties, which can be used to significantly inhibit multidrug resistance upon near-infrared laser irradiation. Overall, this work shows that our nanovehicle has great potential as a drug codelivery nanoplatform for effective combination therapy that is adaptable to other cancer types and to molecular targets associated with disease progression.
Collapse
|
33
|
Bonazzoli E, Cocco E, Lopez S, Bellone S, Zammataro L, Bianchi A, Manzano A, Yadav G, Manara P, Perrone E, Haines K, Espinal M, Dugan K, Menderes G, Altwerger G, Han C, Zeybek B, Litkouhi B, Ratner E, Silasi DA, Huang GS, Azodi M, Schwartz PE, Santin AD. PI3K oncogenic mutations mediate resistance to afatinib in HER2/neu overexpressing gynecological cancers. Gynecol Oncol 2019; 153:158-164. [PMID: 30630630 DOI: 10.1016/j.ygyno.2019.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/21/2018] [Accepted: 01/02/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Aberrant expression of HER2/neu and PIK3CA gene products secondary to amplification/mutations are common in high-grade-serous-endometrial (USC) and ovarian-cancers (HGSOC). Because scant information is currently available in the literature on the potential negative effect of PIK3CA mutations on the activity of afatinib, in this study we evaluate for the first time the role of oncogenic PIK3CA mutations as a potential mechanism of resistance to afatinib in HGSOC and USC overexpressing HER2/neu. METHODS We used six whole-exome-sequenced primary HGSOC/USC cell-lines and three xenografts overexpressing HER2/neu and harboring mutated or wild-type PIK3CA/PIK3R1 genes to evaluate the role of PI3K-mutations as potential mechanism of resistance to afatinib, an FDA-approved pan-c-erb-inhibitor in clinical trials in USC. Primary-USC harboring wild-type-PIK3CA gene was transfected with plasmids encoding oncogenic PIK3CA-mutations (H1047R/E545K). The effect of afatinib on HER2/PI3K/AKT/mTOR pathway was evaluated by immunoblotting. RESULTS We found PI3K wild-type cell-lines to be significantly more sensitive (lower IC50) than PI3K-mutated cell-lines p = 0.004). In vivo, xenografts of primary cell-line USC-ARK2, transfected with the PIK3CA-H1047R or E545K hotspot-mutations, exhibited significantly more rapid tumor growth when treated with afatinib, compared to mice harboring ARK2-tumors transfected with wild-type-PIK3CA (p = 0.041 and 0.001, respectively). By western-blot, afatinib effectively reduced total and phospho-HER2 proteins in all cell-lines. However, H1047R/E545K-PIK3CA-transfected-ARK2-cells demonstrated a greater compensatory increase in phosphorylated-AKT proteins after afatinib exposure when compared to controls ARK2. CONCLUSIONS Oncogenic PI3K mutations may represent a major mechanism of resistance to afatinib. Combinations of c-erb with PIK3CA, AKT or mTOR inhibitors may be necessary to more efficiently block the PIK3CA/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Elena Bonazzoli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emiliano Cocco
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Salvatore Lopez
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro 88100, Italy
| | - Stefania Bellone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Luca Zammataro
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anna Bianchi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Aranzazu Manzano
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ghanshyam Yadav
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Paola Manara
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emanuele Perrone
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kaitlin Haines
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mariana Espinal
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Katherine Dugan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gulden Menderes
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gary Altwerger
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Chanhee Han
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Burak Zeybek
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Babak Litkouhi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elena Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Dan-Arin Silasi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Masoud Azodi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Peter E Schwartz
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Alessandro D Santin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
34
|
Aydiner A. Systemic Treatment of HER2-Overexpressing Metastatic Breast Cancer. Breast Cancer 2019. [DOI: 10.1007/978-3-319-96947-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Bayraktar S, Aydiner A. Adjuvant Therapy for HER2-Positive Early-Stage Breast Cancer. Breast Cancer 2019. [DOI: 10.1007/978-3-319-96947-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Bonello M, Sims AH, Langdon SP. Human epidermal growth factor receptor targeted inhibitors for the treatment of ovarian cancer. Cancer Biol Med 2018; 15:375-388. [PMID: 30766749 PMCID: PMC6372909 DOI: 10.20892/j.issn.2095-3941.2018.0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/26/2018] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer is the second most lethal gynecological cancer worldwide and while most patients respond to initial therapy, they often relapse with resistant disease. Human epidermal growth factor receptors (especially HER1/EGFR and HER2/ERBB2) are involved in disease progression; hence, strategies to inhibit their action could prove advantageous in ovarian cancer patients, especially in patients resistant to first line therapy. Monoclonal antibodies and tyrosine kinase inhibitors are two classes of drugs that act on these receptors. They have demonstrated valuable antitumor activity in multiple cancers and their possible use in ovarian cancer continues to be studied. In this review, we discuss the human epidermal growth factor receptor family; review emerging clinical studies on monoclonal antibodies and tyrosine kinase inhibitors targeting these receptors in ovarian cancer patients; and propose future research possibilities in this area.
Collapse
Affiliation(s)
- Maria Bonello
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Andrew Harvey Sims
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Simon Peter Langdon
- Cancer Research UK Edinburgh Center and Division of Pathology Laboratory, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XU, UK
| |
Collapse
|
37
|
Phase I trial of afatinib and 3-weekly trastuzumab with optimal anti-diarrheal management in patients with HER2-positive metastatic cancer. Cancer Chemother Pharmacol 2018; 82:979-986. [PMID: 30350178 PMCID: PMC6267664 DOI: 10.1007/s00280-018-3689-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/17/2018] [Indexed: 12/30/2022]
Abstract
Background Trastuzumab is the mainstay of therapy for patients with HER2-positive breast and gastric cancer but resistance frequently occurs. Afatinib, an irreversible oral ErbB family blocker, shows clinical activity in trastuzumab-refractory HER2-positive metastatic breast cancer. Materials and methods This phase I study used a modified 3 + 3 dose escalation design to determine the maximum tolerated dose (MTD) of oral once-daily afatinib in combination with 3-weekly intravenous trastuzumab (8 mg/kg week 1; 6 mg/kg 3-weekly thereafter) for patients with confirmed advanced or metastatic HER2-positive cancer. Results Of the 13 patients treated, 6 received daily afatinib 20 mg and 7 received 30 mg. One patient who received afatinib 30 mg developed a tumor lysis syndrome and was not evaluable for dose-limiting toxicity (DLT). Two of the six remaining patients receiving afatinib 30 mg and 1 of the 6 patients receiving afatinib 20 mg experienced DLTs (all CTCAE ≥ grade 2 diarrhea despite optimal management) in the first treatment cycle. The most common drug-related adverse events were diarrhea (n = 13, 100%), asthenia (n = 8, 61.5%), rash (n = 7, 53.8%) and paronychia (n = 5, 38.5%). No pharmacokinetic interaction was observed. One patient (7.7%) had an objective response (20 mg afatinib cohort). Nine patients (69.2%) experienced clinical benefit. Conclusions Despite optimal management of diarrhea including treatment of grade I symptoms, it was not possible to treat the patients above a dose of 20 mg of afatinib daily in combination with 3-weekly trastuzumab. The MTD of afatinib in combination with the recommended 3-weekly dose of trastuzumab was 20 mg daily.
Collapse
|
38
|
Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T. Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 2018; 8:1483-1507. [PMID: 29978332 PMCID: PMC6133085 DOI: 10.1007/s13346-018-0551-3] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The major current conventional types of metastatic breast cancer (MBC) treatments include surgery, radiation, hormonal therapy, chemotherapy, or immunotherapy. Introducing biological drugs, targeted treatment and gene therapy can potentially reduce the mortality and improve the quality of life in patients with MBC. However, combination of several types of treatment is usually recommended. Triple negative breast cancer (TNBC) accounts for 10-20% of all cases of breast carcinoma and is characterized by the low expression of progesterone receptor (PR), estrogen receptor (ER), and human epidermal growth factor receptor 2 (HER2). Consequently, convenient treatments used for MBC that target these receptors are not effective for TNBC which therefore requires special treatment approaches. This review discusses the occurrence of MBC, the prognosis and predictive biomarkers of MBC, and focuses on the novel advanced tactics for treatment of MBC and TNBC. Nanotechnology-based combinatorial approach for the suppression of EGFR by siRNA and gifitinib is described.
Collapse
Affiliation(s)
- Sumayah Al-Mahmood
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Justin Sapiezynski
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Olga B Garbuzenko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854-8020, USA.
- Rutgers Cancer Institute, New Brunswick, NJ, 08903, USA.
- Environmental and Occupational Health Sciences Institute, Rutgers, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
39
|
Ji G, Zhang C, Guan S, Yao X. Erlotinib for Progressive Brain and Leptomeningeal Metastases From HER2-positive Breast Cancer After Treatment Failure With Trastuzumab and Lapatinib: Experience and Review of Literature. Clin Breast Cancer 2018; 18:e759-e765. [PMID: 30177482 DOI: 10.1016/j.clbc.2018.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/05/2018] [Accepted: 07/27/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Guanghui Ji
- Department of Traditional Chinese Medicine, Navy General Hospital, Beijing, China
| | - Chenyang Zhang
- Geriatric Digestive System Department, Navy General Hospital, Beijing, China
| | - Shan Guan
- Department of Traditional Chinese Medicine, Navy General Hospital, Beijing, China
| | - Xiangying Yao
- Department of Traditional Chinese Medicine, Navy General Hospital, Beijing, China.
| |
Collapse
|
40
|
Gujjarappa R, Maity SK, Hazra CK, Vodnala N, Dhiman S, Kumar A, Beifuss U, Malakar CC. Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Suvik K. Maity
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Chinmoy K. Hazra
- Department of Chemistry; Korea Advanced Institute of Science & Technology (KAIST); 34141 Daejeon 305 - 701 South Korea
| | - Nagaraju Vodnala
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| | - Shiv Dhiman
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Anil Kumar
- Department of Chemistry; BITS Pilani; Pilani Campus 333031 Pilani Rajasthan India
| | - Uwe Beifuss
- Institut für Chemie; Universität Hohenheim; Garbenstr. 30 70599 Stuttgart Germany
| | - Chandi C. Malakar
- Department of Chemistry; National Institute of Technology Manipur; 795004 Langol, Imphal Manipur India
| |
Collapse
|
41
|
Xiang Z, Huang X, Wang J, Zhang J, Ji J, Yan R, Zhu Z, Cai W, Yu Y. Cross-Database Analysis Reveals Sensitive Biomarkers for Combined Therapy for ERBB2+ Gastric Cancer. Front Pharmacol 2018; 9:861. [PMID: 30123134 PMCID: PMC6085474 DOI: 10.3389/fphar.2018.00861] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Exploring ERBB2-related pathways will help us finding sensitive molecules and potential combined therapeutic targets of ERBB2-targeted therapy for ERBB2+ gastric cancer (GC). In this study, we performed a cross-databases study focused on ERBB2+ GC. The data of ERBB2+ GC deposited in the cancer genome atlas (TCGA), gene expression omnibus (GEO), InBio MapTM, cancer cell line encyclopedia (CCLE), and cancer therapeutics response portal (CTRP) were analyzed. The correlation of expression levels of candidate and IC50 of candidate genes-targeted drugs were verified on NCI-N87 and MKN-45 GC cell lines. We found that RARA, THRA, CACNB1, and TOP2A are drug sensitive biomarkers of ERBB2-targeted treatment with FDA-approved drugs. All these genes act through Myc signaling pathway. Myc is the downstream hub gene of both ERBB2 and RARA. The expression of RARA, THRA, and CACNB1 were negatively correlated with Myc activation, while ERBB2 and TOP2A positively correlated with Myc activation. SH3BGRL3, SH3BGRL, and NRG2 were identified as potential ligands of ERBB2. The ERBB2+ GC with RARA amplification demonstrated better prognosis than those without RARA amplification, while overexpression of NRG2 and SH3BGRL correlated with poor prognosis in ERBB2+ GC. About 90% of ERBB2+ GC was compatible with chromosome instability (CIN) subtype of TCGA, which overlaps with intestinal-type GC in Lauren classification. In validating experiments, combination of Lapatinib and all-trans retinoic acid (ATRA) synergistically suppresses cell growth, and accompanied by decreased expression of MYC. In conclusions, we identified several predicting biomarkers for ERBB2-targeted therapy and corresponding histological features of ERBB2+ GC. Combination of ERBB2 antagonist or RARA agonist may be effective synergistic regimens for ERBB2+ GC.
Collapse
Affiliation(s)
- Zhen Xiang
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Xia Huang
- Department of Disease Prevention and Control, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiexuan Wang
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Jun Zhang
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Jun Ji
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Ranlin Yan
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Zhenggang Zhu
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Wei Cai
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| | - Yingyan Yu
- Department of Surgery, Ruijin Hospital, Shanghai Institute of Digestive Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai, China
| |
Collapse
|
42
|
Bahleda R, Varga A, Bergé Y, Soria JC, Schnell D, Tschoepe I, Uttenreuther-Fischer M, Delord JP. Phase I open-label study of afatinib plus vinorelbine in patients with solid tumours overexpressing EGFR and/or HER2. Br J Cancer 2018; 118:344-352. [PMID: 29337963 PMCID: PMC5808039 DOI: 10.1038/bjc.2017.436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
Background: This phase Ib study evaluated afatinib plus vinorelbine in patients with advanced solid tumours overexpressing epidermal growth factor receptor (EGFR) and/or human EGFR 2 (HER2). Methods: Maximum tolerated doses (MTDs) were determined for afatinib (20, 40 or 50 mg, once daily) combined with standard intravenous vinorelbine (part A; 25 mg m−2 per week) or oral vinorelbine (part B; 60 mg m−2 per week, increased to 80 mg m−2 per week at week 3). Secondary end points for expanded MTD cohorts included assessments of safety, pharmacokinetics, tumour response and progression-free survival (PFS). Results: The afatinib MTD was 40 mg with intravenous (MTDA) and oral (MTDB) vinorelbine. The most frequent cycle 1 dose-limiting toxicities were febrile neutropenia and diarrhoea, consistent with individual safety profiles of vinorelbine and afatinib. Common treatment-related adverse events included: diarrhoea (92.7%), asthenia (76.4%), nausea (63.6%), neutropenia (56.4%) and vomiting (54.5%). No notable pharmacokinetic interactions were observed. Best overall tumour response was stable disease in part A (16 out of 28 patients), and partial response in part B (3 out of 27 patients). Median PFS was 14.6 and 15.9 weeks for patients treated at the MTDA and MTDB, including dose-escalation and expansion cohorts. Conclusions: Afatinib in combination with intravenous or oral vinorelbine demonstrated a manageable safety profile and antitumour activity at the MTD of 40 mg per day.
Collapse
Affiliation(s)
- Rastislav Bahleda
- Département d'Innovation Thérapeutique et d'Essais Précoces, Institut Gustave Roussy, 114 Rue Edouard Vaillaint, Villejuif 94805, France
| | - Andrea Varga
- Département d'Innovation Thérapeutique et d'Essais Précoces, Institut Gustave Roussy, 114 Rue Edouard Vaillaint, Villejuif 94805, France
| | - Yann Bergé
- Department of Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse 31100, France
| | - Jean-Charles Soria
- Département d'Innovation Thérapeutique et d'Essais Précoces, Institut Gustave Roussy, 114 Rue Edouard Vaillaint, Villejuif 94805, France
| | - David Schnell
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Strasse 65, Biberach 88397, Germany
| | - Inga Tschoepe
- Boehringer Ingelheim France S.A.S., Reims 51100, France
| | | | - Jean-Pierre Delord
- Department of Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer-Oncopole, Toulouse 31100, France
| |
Collapse
|
43
|
|
44
|
Abstract
The efficient production, folding, and secretion of proteins is critical for cancer cell survival. However, cancer cells thrive under stress conditions that damage proteins, so many cancer cells overexpress molecular chaperones that facilitate protein folding and target misfolded proteins for degradation via the ubiquitin-proteasome or autophagy pathway. Stress response pathway induction is also important for cancer cell survival. Indeed, validated targets for anti-cancer treatments include molecular chaperones, components of the unfolded protein response, the ubiquitin-proteasome system, and autophagy. We will focus on links between breast cancer and these processes, as well as the development of drug resistance, relapse, and treatment.
Collapse
Affiliation(s)
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, A320 Langley Hall, 4249 Fifth Ave, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
45
|
Abstract
Afatinib is an oral, irreversible ErbB family blocker that covalently binds to the kinase domains of epidermal growth factor receptor (EGFR), human EGFRs (HER) 2, and HER4, resulting in irreversible inhibition of tyrosine kinase autophosphorylation. Studies in healthy volunteers and patients with advanced solid tumours have shown that once-daily afatinib has time-independent pharmacokinetic characteristics. Maximum plasma concentrations of afatinib are reached approximately 2–5 h after oral administration and thereafter decline, at least bi-exponentially. Food reduces total exposure to afatinib. Over the clinical dose range of 20–50 mg, afatinib exposure increases slightly more than dose proportional. Afatinib metabolism is minimal, with unchanged drug predominantly excreted in the faeces and approximately 5 % in urine. Apart from the parent drug afatinib, the major circulation species in human plasma are the covalently bound adducts to plasma protein. The effective elimination half-life is approximately 37 h, consistent with an accumulation of drug exposure by 2.5- to 3.4-fold based on area under the plasma concentration–time curve (AUC) after multiple dosing. The pharmacokinetic profile of afatinib is consistent across a range of patient populations. Age, ethnicity, smoking status and hepatic function had no influence on afatinib pharmacokinetics, while females and patients with low body weight had increased exposure to afatinib. Renal function is correlated with afatinib exposure, but, as for sex and body weight, the effect size for patients with severe renal impairment (approximately 50 % increase in AUC) is only mildly relative to the extent of unexplained interpatient variability in afatinib exposure. Afatinib has a low potential as a victim or perpetrator of drug–drug interactions, especially with cytochrome P450-modulating agents. However, concomitant treatment with potent inhibitors or inducers of the P-glycoprotein transporter can affect the pharmacokinetics of afatinib. At a dose of 50 mg, afatinib does not have proarrhythmic potential.
Collapse
|
46
|
New anti-HER2 agents: from second-generation tyrosine kinases inhibitors to bifunctional antibodies. Curr Opin Oncol 2017; 29:405-410. [DOI: 10.1097/cco.0000000000000412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
47
|
Zhou W, Zhao Z, Wang R, Han Y, Wang C, Yang F, Han Y, Liang H, Qi L, Wang C, Guo Z, Gu Y. Identification of driver copy number alterations in diverse cancer types and application in drug repositioning. Mol Oncol 2017; 11:1459-1474. [PMID: 28719033 PMCID: PMC5623819 DOI: 10.1002/1878-0261.12112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 06/01/2017] [Accepted: 07/06/2017] [Indexed: 01/03/2023] Open
Abstract
Results from numerous studies suggest an important role for somatic copy number alterations (SCNAs) in cancer progression. Our work aimed to identify the drivers (oncogenes or tumor suppressor genes) that reside in recurrently aberrant genomic regions, including a large number of genes or non-coding genes, which remain a challenge for decoding the SCNAs involved in carcinogenesis. Here, we propose a new approach to comprehensively identify drivers, using 8740 cancer samples involving 18 cancer types from The Cancer Genome Atlas (TCGA). On average, 84 drivers were revealed for each cancer type, including protein-coding genes, long non-coding RNAs (lncRNA) and microRNAs (miRNAs). We demonstrated that the drivers showed significant attributes of cancer genes, and significantly overlapped with known cancer genes, including MYC, CCND1 and ERBB2 in breast cancer, and the lncRNA PVT1 in multiple cancer types. Pan-cancer analyses of drivers revealed specificity and commonality across cancer types, and the non-coding drivers showed a higher cancer-type specificity than that of coding drivers. Some cancer types from different tissue origins were found to converge to a high similarity because of the significant overlap of drivers, such as head and neck squamous cell carcinoma (HNSC) and lung squamous cell carcinoma (LUSC). The lncRNA SOX2-OT, a common driver of HNSC and LUSC, showed significant expression correlation with the oncogene SOX2. In addition, because some drivers are common in multiple cancer types and have been targeted by known drugs, we found that some drugs could be successfully repositioned, as validated by the datasets of drug response assays in cell lines. Our work reported a new method to comprehensively identify drivers in SCNAs across diverse cancer types, providing a feasible strategy for cancer drug repositioning as well as novel findings regarding cancer-associated non-coding RNA discovery.
Collapse
Affiliation(s)
- Wenbin Zhou
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Zhangxiang Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Training Center for Student Innovation and Entrepreneurship Education, Harbin Medical University, China
| | - Ruiping Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yue Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Chengyu Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Training Center for Student Innovation and Entrepreneurship Education, Harbin Medical University, China
| | - Fan Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Training Center for Student Innovation and Entrepreneurship Education, Harbin Medical University, China
| | - Ya Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Training Center for Student Innovation and Entrepreneurship Education, Harbin Medical University, China
| | - Haihai Liang
- Department of Pharmacology, Harbin Medical University, China
| | - Lishuang Qi
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Chenguang Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China.,Training Center for Student Innovation and Entrepreneurship Education, Harbin Medical University, China
| |
Collapse
|
48
|
Martel S, Maurer C, Lambertini M, Pondé N, De Azambuja E. Breast cancer treatment-induced cardiotoxicity. Expert Opin Drug Saf 2017; 16:1021-1038. [PMID: 28697311 DOI: 10.1080/14740338.2017.1351541] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Breast cancer is the most frequent cancer affecting women worldwide. In every setting, the majority of women are treated with an evergrowing arsenal of therapeutic agents that have greatly improved their outcomes. However, these therapies can also be associated with significant adverse events. Areas covered: This review aims to thoroughly describe the current state of the evidence regarding the potential cardiotoxicity of agents commonly used in the treatment of breast cancer. These include chemotherapeutic agents, anti-HER2 therapies and CDK4/6 and mTOR inhibitors. Furthermore, issues related to the risk stratification and monitoring tools are explored. Expert opinion: Anthracycline- and trastuzumab-related cardiac toxicities have been extensively studied. Substantial evidence is now available concerning additional anti-HER2 agents such as pertuzumab, T-DM1 and tyrosine kinase inhibitors; overall, the cardiotoxicity profile is reassuring. Cardiac events due to endocrine therapy are mostly ischemic and, in the context of prolonged therapy, need specific attention. Novel agents implicated in the treatment of hormone receptor-positive disease are potentially arrhythmogenic and the exact risk will need to be further refined. As for today, assessment of baseline risk factors prior to treatment initiation and cardiac imaging before and during treatment remains the optimal way to prevent cardiac dysfunction. Cardioprotective therapy in primary prevention is still a matter of debate.
Collapse
Affiliation(s)
- Samuel Martel
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium.,b Département d'hémato-oncologie , CISSS Montérégie centre/Hôpital Charles Lemoyne, centre affilié de l'Université de Sherbrooke , Greenfield Park , Qc , Canada
| | - Christian Maurer
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium.,c Department I of Internal Medicine and Center of Integrated Oncology Cologne Bonn , University of Cologne , Cologne , Germany
| | - Matteo Lambertini
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium.,d Breast Cancer Translational Research Laboratory, Institut Jules Bordet , Université Libre de Bruxelles (U.L.B) , Brussels , Belgium
| | - Noam Pondé
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium
| | - Evandro De Azambuja
- a Clinique d'Oncologie Médicale, Institut Jules Bordet , Université Libre de Bruxelles (U.LB) , Brussels , Belgium
| |
Collapse
|
49
|
Huang L, Cai M, Zhang X, Wang F, Chen L, Xu M, Yang K, Chen Z, Wang X, Fu L. Combinational therapy of crizotinib and afatinib for malignant pleural mesothelioma. Am J Cancer Res 2017; 7:203-217. [PMID: 28337371 PMCID: PMC5336496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/30/2017] [Indexed: 06/06/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a relative rare but highly aggressive neoplasm which is associated with asbestos exposure in most patients. The majority of patients are diagnosed in advanced stages so patients neither benefit from chemotherapy (e.g. pemetrexed-platinum combination) nor from surgery. It has been reported that cellular-mesenchymal to epithelial transition factor (MET) and epidermal growth factor receptor (EGFR) were critical for MPM cell proliferation. Moreover, targeting MET and EGFR drugs have gained promising results on anti-tumor therapy. Here, a striking difference in overall survival was observed between the MET and EGFR co-expression group (median survival time = 13.5 months) and non-co-expression group (median survival time = 20.5 months). In addition, treatment with combination of crizotinib and afatinib showed stronger inhibition on cell proliferation of MPM than the treatment by either one in vitro and in vivo. In conclusion, our data illustrated that crizotinib combined with afatinib may be a potentially effective strategy for treating MPM patients with over-expression of MET and EGFR.
Collapse
Affiliation(s)
- Liyan Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
- Guangdong Esophageal Cancer InstituteGuangzhou 510060, China
| | - Muyan Cai
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
| | - Xu Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
| | - Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
- Guangdong Esophageal Cancer InstituteGuangzhou 510060, China
| | - Likun Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
| | - Meng Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
| | - Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
| | - Zhen Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
- Guangdong Esophageal Cancer InstituteGuangzhou 510060, China
| | - Xiaokun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer CenterGuangzhou 510060, China
- Guangdong Esophageal Cancer InstituteGuangzhou 510060, China
| |
Collapse
|
50
|
Anti-HER2 Therapies in the Adjuvant and Advanced Disease Settings. Breast Cancer 2017. [DOI: 10.1007/978-3-319-48848-6_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|