1
|
Jie P, Fan M, Zhang H, Wang O, Lv J, Liu Y, Zhang C, Liu Y, Zhao J. Diagnostic value of artificial intelligence-assisted CTA for the assessment of atherosclerosis plaque: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1398963. [PMID: 39290212 PMCID: PMC11405224 DOI: 10.3389/fcvm.2024.1398963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Background Artificial intelligence (AI) has increasingly been applied to computed tomography angiography (CTA) images to aid in the assessment of atherosclerotic plaque. Our aim was to explore the diagnostic accuracy of AI-assisted CTA for plaque diagnosis and classification through a systematic review and meta-analysis. Methods A systematic literature review was performed by searching PubMed, EMBASE, and the Cochrane Library according to PRISMA guidelines. Original studies evaluating the diagnostic accuracy of radiomics, machine-learning, or deep-learning techniques applied to CTA images for detecting stenosis, calcification, or plaque vulnerability were included. The quality and risk of bias of the included studies were evaluated using the QUADAS-2 tool. The meta-analysis was conducted using STATA software (version 17.0) to pool sensitivity, specificity, and area under the receiver operating characteristic curve (AUROC) to determine the overall diagnostic performance. Results A total of 11 studies comprising 1,484 patients were included. There was low risk of bias and substantial heterogeneity. The overall pooled AUROC for atherosclerotic plaque assessment was 0.96 [95% confidence interval (CI) 0.94-0.97] across 21 trials. Of these, for ≥50% stenosis detection, the AUROC was 0.95 (95% CI 0.93-0.96) in five studies. For identifying ≥70% stenosis, the AUROC was 0.96 (95% CI 0.94-0.97) in six studies. For calcium detection, the AUROC was 0.92 (95% CI 0.90-0.94) in six studies. Conclusion Our meta-analysis demonstrates that AI-assisted CTA has high diagnostic accuracy for detecting stenosis and characterizing plaque composition, with optimal performance in detecting ≥70% stenosis. Systematic Review Registration https://www.crd.york.ac.uk/, PROSPERO, identifier (CRD42023431410).
Collapse
Affiliation(s)
- Pingping Jie
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Min Fan
- Department of Radiology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Haiyi Zhang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Oucheng Wang
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jun Lv
- Department of Comprehensive Internal Medicine, The Affiliated Chinese Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Yingchun Liu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Chunyin Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Yong Liu
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jie Zhao
- Department of Magnetic Resonance Imaging, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Alasnag M, Alameer M, AlShehri A, Alosaimi H, Alqoofi F, Alzayer H, AlKashkari W, Tash A, Ahmed WH. Consensus of the National Heart Center in collaboration With the Saudi Arabian Cardiac Interventional Society on the Clinical Use of Intracoronary Imaging. J Saudi Heart Assoc 2024; 36:137-157. [PMID: 39469526 PMCID: PMC11518001 DOI: 10.37616/2212-5043.1387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/02/2024] [Accepted: 06/19/2024] [Indexed: 10/30/2024] Open
Abstract
Objectives Studies show that intracoronary imaging (ICI)-guided PCI is associated with a significantly lower risk of stroke, Q-wave myocardial infarction, and death compared to angiography-guided PCI in the management of acute coronary syndromes, complex coronary lesions and left-main interventions. Despite these well-established clinical benefits, the utilization of ICI-guided PCI in Saudi Arabia remains suboptimal. Methods The National Heart Center (NHC) and the Saudi Arabian Cardiac Interventional Society (SACIS) gathered national experts to develop a consensus document on how to integrate ICI-guided PCI in routine clinical practice in Saudi Arabia. The consensus was based on the nominal group technique, whereby a committee of interventional cardiologists affiliated with the NHS and SACIS developed and discussed a number of statements on the clinical use of intracoronary imaging based on a systematic review of the literature. Results A total of 17 statements were discussed in light of scientific evidence and agreed upon. Initiatives to improve operator skills when it comes to image acquisition and interpretation are crucial in the incorporation of ICI-imaging guided PCI in Saudi Arabia. Local data on reference diameters and measurements and epidemiological data on Saudi patients being treated in catheterization laboratories are necessary. Conclusions Herein, we provide the first national consensus on the use of ICI-guided PCI in Saudi Arabia. We anticipate that this document contributes to a more optimal and integrative use of ICI-guided PCI in the Kingdom.
Collapse
Affiliation(s)
- Mirvat Alasnag
- Cardiac Center, King Fahd Armed Forces Hospital, Jeddah,
Saudi Arabia
| | - Mognee Alameer
- King Faisal Cardiac Center, King Abdulaziz Medical City, Ministry of National Guard, Jeddah,
Saudi Arabia
| | - Ahmed AlShehri
- King Faisal Specialist Hospital & Research Center, Riyadh,
Saudi Arabia
| | - Hind Alosaimi
- King Faisal Specialist Hospital and Research Center, Jeddah,
Saudi Arabia
| | - Faisal Alqoofi
- Johns Hopkins Aramco Healthcare Dhahran, Dhahran,
Saudi Arabia
| | | | - Wail AlKashkari
- King Faisal Cardiac Center, King Abdulaziz Medical City, Ministry of National Guard, Jeddah,
Saudi Arabia
| | - Adel Tash
- National Heart Center, Ministry of Health, Riyadh,
Saudi Arabia
| | - Waqar H. Ahmed
- Cardiac Center, King Fahd Armed Forces Hospital, Jeddah,
Saudi Arabia
| |
Collapse
|
3
|
Lu MT, Ribaudo H, Foldyna B, Zanni MV, Mayrhofer T, Karady J, Taron J, Fitch KV, McCallum S, Burdo TH, Paradis K, Hedgire SS, Meyersohn NM, DeFilippi C, Malvestutto CD, Sturniolo A, Diggs M, Siminski S, Bloomfield GS, Alston-Smith B, Desvigne-Nickens P, Overton ET, Currier JS, Aberg JA, Fichtenbaum CJ, Hoffmann U, Douglas PS, Grinspoon SK. Effects of Pitavastatin on Coronary Artery Disease and Inflammatory Biomarkers in HIV: Mechanistic Substudy of the REPRIEVE Randomized Clinical Trial. JAMA Cardiol 2024; 9:323-334. [PMID: 38381407 PMCID: PMC10882511 DOI: 10.1001/jamacardio.2023.5661] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/15/2023] [Indexed: 02/22/2024]
Abstract
Importance Cardiovascular disease (CVD) is increased in people with HIV (PWH) and is characterized by premature noncalcified coronary plaque. In the Randomized Trial to Prevent Vascular Events in HIV (REPRIEVE), pitavastatin reduced major adverse cardiovascular events (MACE) by 35% over a median of 5.1 years. Objective To investigate the effects of pitavastatin on noncalcified coronary artery plaque by coronary computed tomography angiography (CTA) and on inflammatory biomarkers as potential mechanisms for MACE prevention. Design, Setting, and Participants This double-blind, placebo-controlled randomized clinical trial enrolled participants from April 2015 to February 2018 at 31 US clinical research sites. PWH without known CVD who were taking antiretroviral therapy and had low to moderate 10-year CVD risk were included. Data were analyzed from April to November 2023. Intervention Oral pitavastatin calcium, 4 mg per day. Main Outcomes and Measures Coronary CTA and inflammatory biomarkers at baseline and 24 months. The primary outcomes were change in noncalcified coronary plaque volume and progression of noncalcified plaque. Results Of 804 enrolled persons, 774 had at least 1 evaluable CTA. Plaque changes were assessed in 611 who completed both CT scans. Of 611 analyzed participants, 513 (84.0%) were male, the mean (SD) age was 51 (6) years, and the median (IQR) 10-year CVD risk was 4.5% (2.6-7.0). A total of 302 were included in the pitavastatin arm and 309 in the placebo arm. The mean noncalcified plaque volume decreased with pitavastatin compared with placebo (mean [SD] change, -1.7 [25.2] mm3 vs 2.6 [27.1] mm3; baseline adjusted difference, -4.3 mm3; 95% CI, -8.6 to -0.1; P = .04; 7% [95% CI, 1-12] greater reduction relative to placebo). A larger effect size was seen among the subgroup with plaque at baseline (-8.8 mm3 [95% CI, -17.9 to 0.4]). Progression of noncalcified plaque was 33% less likely with pitavastatin compared with placebo (relative risk, 0.67; 95% CI, 0.52-0.88; P = .003). Compared with placebo, the mean low-density lipoprotein cholesterol decreased with pitavastatin (mean change: pitavastatin, -28.5 mg/dL; 95% CI, -31.9 to -25.1; placebo, -0.8; 95% CI, -3.8 to 2.2). The pitavastatin arm had a reduction in both oxidized low-density lipoprotein (-29% [95% CI, -32 to -26] vs -13% [95% CI, -17 to -9]; P < .001) and lipoprotein-associated phospholipase A2 (-7% [95% CI, -11 to -4] vs 14% [95% CI, 10-18]; P < .001) compared with placebo at 24 months. Conclusions and Relevance In PWH at low to moderate CVD risk, 24 months of pitavastatin reduced noncalcified plaque volume and progression as well as markers of lipid oxidation and arterial inflammation. These changes may contribute to the observed MACE reduction in REPRIEVE. Trial Registration ClinicalTrials.gov Identifier: NCT02344290.
Collapse
Affiliation(s)
- Michael T. Lu
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Heather Ribaudo
- Center for Biostatistics in AIDS Research, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Borek Foldyna
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Markella V. Zanni
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Thomas Mayrhofer
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
- School of Business Studies, Stralsund University of Applied Sciences, Stralsund, Germany
| | - Julia Karady
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
- Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Jana Taron
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
- Department of Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kathleen V. Fitch
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sara McCallum
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Tricia H. Burdo
- Department of Microbiology, Immunology, and Inflammation, Center for NeuroVirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Kayla Paradis
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Sandeep S. Hedgire
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Nandini M. Meyersohn
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | | | - Audra Sturniolo
- Cardiovascular Imaging Research Center, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Marissa Diggs
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston
| | | | - Gerald S. Bloomfield
- Department of Medicine, Duke Global Health Institute, Duke Clinical Research Institute, Duke University, Durham, North Carolina
| | - Beverly Alston-Smith
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Patrice Desvigne-Nickens
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Edgar T. Overton
- Division of Infectious Diseases, University of Alabama at Birmingham
- ViiV Healthcare, Research Triangle Park, North Carolina
| | - Judith S. Currier
- Division of Infectious Diseases, David Geffen School of Medicine, University of California, Los Angeles
| | - Judith A. Aberg
- Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Carl J. Fichtenbaum
- Division of Infectious Diseases, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | - Pamela S. Douglas
- Duke University Research Institute, Duke University School of Medicine, Durham, North Carolina
| | - Steven K. Grinspoon
- Metabolism Unit, Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
4
|
Funama Y, Oda S, Teramoto F, Aoki Y, Takahashi I, Kojima S, Goto T, Tanaka K, Kidoh M, Nagayama Y, Nakaura T, Hirai T. Improving Visualization of In-stent Lumen Using Prototype Photon-counting Detector Computed Tomography with High-resolution Plaque Kernel. J Med Phys 2024; 49:127-132. [PMID: 38828063 PMCID: PMC11141743 DOI: 10.4103/jmp.jmp_163_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 06/05/2024] Open
Abstract
The study aimed to compare the performance of photon-counting detector computed tomography (PCD CT) with high-resolution (HR)-plaque kernel with that of the energy-integrating detector CT (EID CT) in terms of the visualization of the lumen size and the in-stent stenotic portion at different coronary vessel angles. The lumen sizes in PCD CT and EID CT images were 2.13 and 1.80 mm at 0°, 2.20 and 1.77 mm at 45°, and 2.27 mm and 1.67 mm at 90°, respectively. The lumen sizes in PCD CT with HR-plaque kernel were wider than those in EID CT. The mean degree of the in-stent stenotic portion at 50% was 69.7% for PCD CT and 90.4% for EID CT. PCD CT images with HR-plaque kernel enable improved visualization of lumen size and accurate measurements of the in-stent stenotic portion compared to conventional EID CT images regardless of the stent direction.
Collapse
Affiliation(s)
- Yoshinori Funama
- Department of Medical Radiation Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fuyuhiko Teramoto
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Yuko Aoki
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Isao Takahashi
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Shinichi Kojima
- Innovative Technology Laboratory, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Taiga Goto
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Kana Tanaka
- Medical System Research and Development Center, FUJIFILM Healthcare Corporation, Tokyo, Japan
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasunori Nagayama
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
5
|
Park HB, Arsanjani R, Sung JM, Heo R, Lee BK, Lin FY, Hadamitzky M, Kim YJ, Conte E, Andreini D, Pontone G, Budoff MJ, Gottlieb I, Chun EJ, Cademartiri F, Maffei E, Marques H, Gonçalves PDA, Leipsic JA, Lee SE, Shin S, Choi JH, Virmani R, Samady H, Chinnaiyan K, Stone PH, Berman DS, Narula J, Shaw LJ, Bax JJ, Min JK, Chang HJ. Impact of statins based on high-risk plaque features on coronary plaque progression in mild stenosis lesions: results from the PARADIGM study. Eur Heart J Cardiovasc Imaging 2023; 24:1536-1543. [PMID: 37232393 DOI: 10.1093/ehjci/jead110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
AIMS To investigate the impact of statins on plaque progression according to high-risk coronary atherosclerotic plaque (HRP) features and to identify predictive factors for rapid plaque progression in mild coronary artery disease (CAD) using serial coronary computed tomography angiography (CCTA). METHODS AND RESULTS We analyzed mild stenosis (25-49%) CAD, totaling 1432 lesions from 613 patients (mean age, 62.2 years, 63.9% male) and who underwent serial CCTA at a ≥2 year inter-scan interval using the Progression of AtheRosclerotic PlAque DetermIned by Computed TomoGraphic Angiography Imaging (NCT02803411) registry. The median inter-scan period was 3.5 ± 1.4 years; plaques were quantitatively assessed for annualized percent atheroma volume (PAV) and compositional plaque volume changes according to HRP features, and the rapid plaque progression was defined by the ≥90th percentile annual PAV. In mild stenotic lesions with ≥2 HRPs, statin therapy showed a 37% reduction in annual PAV (0.97 ± 2.02 vs. 1.55 ± 2.22, P = 0.038) with decreased necrotic core volume and increased dense calcium volume compared to non-statin recipient mild lesions. The key factors for rapid plaque progression were ≥2 HRPs [hazard ratio (HR), 1.89; 95% confidence interval (CI), 1.02-3.49; P = 0.042], current smoking (HR, 1.69; 95% CI 1.09-2.57; P = 0.017), and diabetes (HR, 1.55; 95% CI, 1.07-2.22; P = 0.020). CONCLUSION In mild CAD, statin treatment reduced plaque progression, particularly in lesions with a higher number of HRP features, which was also a strong predictor of rapid plaque progression. Therefore, aggressive statin therapy might be needed even in mild CAD with higher HRPs. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT02803411.
Collapse
Affiliation(s)
- Hyung-Bok Park
- Department of Cardiology, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea
- CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Reza Arsanjani
- Department of Cardiovascular Diseases, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
| | - Ji Min Sung
- CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Ran Heo
- CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Cardiology, Hanyang University Seoul Hospital, Hanyang University College of Medicine, Seoul, South Korea
| | - Byoung Kwon Lee
- Department of Cardiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Fay Y Lin
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10021, USA
| | - Martin Hadamitzky
- Department of Radiology and Nuclear Medicine, German Heart Center Munich, Munich, Germany
| | - Yong-Jin Kim
- Division of Cardiology, Seoul National University College of Medicine, Cardiovascular Center, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | - Matthew J Budoff
- Department of Medicine, Lundquist Institute at Harbor UCLA Medical Center, Torrance, CA 90502, USA
| | - Ilan Gottlieb
- Department of Radiology, Casa de Saude São Jose, Rio de Janeiro, Brazil
| | - Eun Ju Chun
- Department of Radiology, Seoul National University Bundang Hospital, Sungnam, South Korea
| | | | - Erica Maffei
- Department of Radiology, Fondazione Monasterio/CNR, Pisa, Italy
| | - Hugo Marques
- Unit of Cardiovascular Imaging, Hospital da Luz, Catolica Medical School, Lisbon, Portugal
| | - Pedro de Araújo Gonçalves
- Unit of Cardiovascular Imaging, Hospital da Luz, Catolica Medical School, Lisbon, Portugal
- Nova Medical School, Lisbon, Portugal
| | - Jonathon A Leipsic
- Department of Medicine and Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Sang-Eun Lee
- CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Sanghoon Shin
- CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Cardiology, Ewha Womans University Seoul Hospital, Seoul, South Korea
| | - Jung Hyun Choi
- Department of Cardiology, Pusan University Hospital, Busan, South Korea
| | - Renu Virmani
- Department of Pathology, CVPath Institute, Gaithersburg, MD 20878, USA
| | - Habib Samady
- Department of Cardiology, Georgia Heart Institute, Northeast Georgia Health System, Gainesville, GA 30501, USA
| | - Kavitha Chinnaiyan
- Department of Cardiology, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Peter H Stone
- Department of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel S Berman
- Department of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, Mount Sinai Heart, Zena and Michael A. Wiener Cardiovascular Institute, and Marie-Josée and Henry R. Kravis Center for Cardiovascular Health, New York, NY 10029, USA
| | - Leslee J Shaw
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10021, USA
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - James K Min
- Department of Radiology, New York-Presbyterian Hospital and Weill Cornell Medicine, New York, NY 10021, USA
| | - Hyuk-Jae Chang
- CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
- Department of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Yonsei University Health System, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
6
|
Östgren CJ, Otten J, Festin K, Angerås O, Bergström G, Cederlund K, Engström G, Eriksson MJ, Eriksson M, Fall T, Gummesson A, Hagström E, Hellman U, James SK, Jernberg T, Kihlberg J, Kylhammar D, Markstad H, Nilsson P, Persson A, Persson M, Pirazzi C, Renklint R, Rosengren A, Söderberg S, Sundström J. Prevalence of atherosclerosis in individuals with prediabetes and diabetes compared to normoglycaemic individuals-a Swedish population-based study. Cardiovasc Diabetol 2023; 22:261. [PMID: 37759237 PMCID: PMC10537533 DOI: 10.1186/s12933-023-01982-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Patients with type 2 diabetes have an increased risk of death and cardiovascular events and people with diabetes or prediabetes have been found to have increased atherosclerotic burden in the coronary and carotid arteries. This study will estimate the cross-sectional prevalence of atherosclerosis in the coronary and carotid arteries in individuals with prediabetes and diabetes, compared with normoglycaemic individuals in a large population-based cohort. METHODS The 30,154 study participants, 50-64 years, were categorized according to their fasting glycaemic status or self-reported data as normoglycaemic, prediabetes, and previously undetected or known diabetes. Prevalence of affected coronary artery segments, severity of stenosis and coronary artery calcium score (CACS) were determined by coronary computed tomography angiography. Total atherosclerotic burden was assessed in the 11 clinically most relevant segments using the Segment Involvement Score and as the presence of any coronary atherosclerosis. The presence of atherosclerotic plaque in the carotid arteries was determined by ultrasound examination. RESULTS Study participants with prediabetes (n = 4804, 16.0%) or diabetes (n = 2282, 7.6%) had greater coronary artery plaque burden, more coronary stenosis and higher CACS than normoglycaemic participants (all, p < 0.01). Among male participants with diabetes 35.3% had CACS ≥ 100 compared to 16.1% among normoglycaemic participants. For women, the corresponding figures were 8.9% vs 6.1%. The prevalence of atherosclerosis in the coronary arteries was higher in participants with previously undetected diabetes than prediabetes, but lower than in patients with known diabetes. The prevalence of any plaque in the carotid arteries was higher in participants with prediabetes or diabetes than in normoglycaemic participants. CONCLUSIONS In this large population-based cohort of currently asymptomatic people, the atherosclerotic burden in the coronary and carotid arteries increased with increasing degree of dysglycaemia. The finding that the atherosclerotic burden in the coronary arteries in the undetected diabetes category was midway between the prediabetes category and patients with known diabetes may have implications for screening strategies and tailored prevention interventions for people with dysglycaemia in the future.
Collapse
Affiliation(s)
- Carl Johan Östgren
- Department of Health, Medicine and Caring Sciences, Centre of Medical Image Science and Visualization (CMIV), Linköping University, 581 83, Linköping, SE, Sweden.
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.
| | - Julia Otten
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Karin Festin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Oskar Angerås
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Bergström
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Physiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kerstin Cederlund
- Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Gunnar Engström
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Maria J Eriksson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Mats Eriksson
- Medicine Unit Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
- Unit of Endocrinology, Department of Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology, Uppsala University, Uppsala, Sweden
| | - Anders Gummesson
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Emil Hagström
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Urban Hellman
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Stefan K James
- Department of Medical Sciences, Cardiology, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Johan Kihlberg
- Department of Health, Medicine and Caring Sciences, Centre of Medical Image Science and Visualization (CMIV), Linköping University, 581 83, Linköping, SE, Sweden
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - David Kylhammar
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences and Department of Clinical Physiology, Linköping University, Linköping, Sweden
| | - Hanna Markstad
- Center for Medical Imaging and Physiology, Skåne University Hospital and Lund University, Lund, Sweden
- Experimental Cardiovascular Research, Clinical Research Center, Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Peter Nilsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Anders Persson
- Department of Health, Medicine and Caring Sciences, Centre of Medical Image Science and Visualization (CMIV), Linköping University, 581 83, Linköping, SE, Sweden
- Department of Radiology and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
- Department of Clinical Sciences, Huddinge University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Margaretha Persson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - Carlo Pirazzi
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Rebecka Renklint
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medicine, Geriatrics and Emergency Medicine, Sahlgrenska University Hospital Östra Hospital, Gothenburg, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Section of Medicine, Umeå University, Umeå, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
7
|
On the Natural History of Coronary Artery Disease: A Longitudinal Nationwide Serial Angiography Study. J Am Heart Assoc 2022; 11:e026396. [DOI: 10.1161/jaha.122.026396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
The long‐term course of coronary atherosclerosis has not been studied in large nationwide cohorts. Understanding the natural history of coronary atherosclerosis could help identify patients at risk for future coronary events.
Methods and Results
All coronary artery segments with <50% luminal stenosis in patients with a first‐time coronary angiogram between 1989 and 2017 were identified (n=2 661 245 coronary artery segments in 248 736 patients) and followed until a clinically indicated angiography within 15 years was performed or until death or end of follow‐up (April 2018) using SCAAR (Swedish Coronary Angiography and Angioplasty Registry). The stenosis progression and incidence rates were 2.6% and 1.45 (95% CI, 1.43–1.46) per 1000 segment‐years, respectively. The greatest progression rate occurred in the proximal and middle segments of the left anterior descending artery. Male sex and diabetes were associated with a 2‐fold increase in risk, and nearly 70% of new stenoses occurred in patients with baseline single‐vessel disease (hazard ratio, 3.86 [95% CI, 3.69–4.04]). Coronary artery segments in patients with no baseline risk factors had a progression rate of 0.6% and incidence rate of 0.36 (95% CI, 0.34–0.39), increasing to 8.1% and 4.01 (95% CI, 3.89–4.14) per 1000 segment‐years, respectively, in patients with ≥4 risk factors. The prognostic impact of risk factors on stenosis progression was greatest in younger patients and women.
Conclusions
Coronary atherosclerosis progressed slowly but more frequently in the left coronary artery in men and in the presence of traditional risk factors. Coronary artery segments in patients without risk factors had little or no risk of stenosis progression, and the relative impact of risk factors appears to be of greater importance in younger patients and women. These findings help in the understanding the long‐term course of coronary atherosclerosis.
Collapse
|
8
|
Correlation of Computed Tomographic Angiography in Patients Undergoing Coronary Artery Bypass Grafting and Effect of Standardized Rehabilitation Nursing. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:6184061. [PMID: 35747727 PMCID: PMC9213157 DOI: 10.1155/2022/6184061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022]
Abstract
This study aimed to explore the clinical application of computed tomographic angiography (CTA) and standardized rehabilitation nursing in patients with coronary artery bypass grafting (CABG). CTA image was segmented by reconstruction algorithm and finally assembled into a whole image. Three-dimensional reconstruction of the coronary artery was then performed. 52 patients were selected as the research objects, and standardized rehabilitation nursing was carried out after surgery to analyze the vascular lesion rate of arterial bridge and venous bridge and compare their nursing satisfaction. The results showed that the CTA images were clearer after reconstruction. The number of male patients with venous and arterial lesions was significantly higher than that of the female patients, and the difference between the two groups was obvious (P < 0.05). The number of patients combining with risk factors and LIMA bridge vessels was 0 in grade 3 patients, accounted for the highest proportion (16.67%) in the grade 1 patients, and was 2 in the grade 2 patients (accounting for 4.17%). The satisfaction of patients who received standardized nursing was 97.25%, that of patients who received conventional nursing was 83.42%, and the difference was significant (P < 0.05). In conclusion, CTA images of patients' cardiac vessels can be clearly seen by using a block image reconstruction algorithm, which can realize clinical personalized treatment. In addition, patients were more satisfied with standardized rehabilitation nursing.
Collapse
|
9
|
van Driest FY, Bijns CM, van der Geest RJ, Broersen A, Dijkstra J, Scholte AJHA, Jukema JW. Utilizing (serial) coronary computed tomography angiography (CCTA) to predict plaque progression and major adverse cardiac events (MACE): results, merits and challenges. Eur Radiol 2022; 32:3408-3422. [PMID: 34997285 DOI: 10.1007/s00330-021-08393-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/24/2021] [Accepted: 10/07/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To present an overview of studies using serial coronary computed tomography angiography (CCTA) as a tool for finding both quantitative (changes) and qualitative plaque characteristics as well as epicardial adipose tissue (EAT) volume changes as predictors of plaque progression and/or major adverse cardiac events (MACE) and outline the challenges and advantages of using a serial non-invasive imaging approach for assessing cardiovascular prognosis. METHODS A literature search was performed in PubMed, Embase, Web of Science, Cochrane Library and Emcare. All observational cohort studies were assessed for quality using the Newcastle-Ottawa Scale (NOS). The NOS score was then converted into Agency for Healthcare Research and Quality (AHRQ) standards: good, fair and poor. RESULTS A total of 36 articles were analyzed for this review, 3 of which were meta-analyses and one was a technical paper. Quantitative baseline plaque features seem to be more predictive of MACE and/or plaque progression as compared to qualitative plaque features. CONCLUSIONS A critical review of the literature focusing on studies utilizing serial CCTA revealed that mainly quantitative baseline plaque features and quantitative plaque changes are predictive of MACE and/or plaque progression contrary to qualitative plaque features. Significant questions regarding the clinical implications of these specific quantitative and qualitative plaque features as well as the challenges of using serial CCTA have yet to be resolved in studies using this imaging technique. KEY POINTS • Use of (serial) CCTA can identify plaque characteristics and plaque changes as well as changes in EAT volume that are predictive of plaque progression and/or major adverse events (MACE) at follow-up. • Studies utilizing serial CCTA revealed that mainly quantitative baseline plaque features and quantitative plaque changes are predictive of MACE and/or plaque progression contrary to qualitative plaque features. • Ultimately, serial CCTA is a promising technique for the evaluation of cardiovascular prognosis, yet technical details remain to be refined.
Collapse
Affiliation(s)
- F Y van Driest
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - C M Bijns
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - R J van der Geest
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Broersen
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Dijkstra
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - A J H A Scholte
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - J W Jukema
- Department of Cardiology, Leiden Heart-Lung Center, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
10
|
Szilveszter B, Vattay B, Bossoussou M, Vecsey-Nagy M, Simon J, Merkely B, Maurovich-Horvat P, Kolossváry M. CAD-RADS may underestimate coronary plaque progression as detected by serial CT angiography. Eur Heart J Cardiovasc Imaging 2021; 23:1530-1539. [PMID: 34687544 PMCID: PMC9584618 DOI: 10.1093/ehjci/jeab215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/30/2022] Open
Abstract
Aims We wished to assess whether different clinical definitions of coronary artery disease (CAD) [segment stenosis and involvement score (SSS, SIS), Coronary Artery Disease—Reporting and Data System (CAD-RADS)] affect which patients are considered to progress and which risk factors affect progression. Methods and results We enrolled 115 subsequent patients (60.1 ± 9.6 years, 27% female) who underwent serial coronary computed tomography angiography (CTA) imaging with >1year between the two examinations. CAD was described using SSS, SIS, and CAD-RADS. Linear mixed models were used to investigate the effects of risk factors on the overall amount of CAD and the effect on annual progression rate of different definitions. Coronary plaque burdens were SSS 4.63 ± 4.06 vs. 5.67 ± 5.10, P < 0.001; SIS 3.43 ± 2.53 vs. 3.89 ± 2.65, P < 0.001; CAD-RADS 0:8.7% vs. 0.0% 1:44.3% vs. 40.9%, 2:34.8% vs. 40.9%, 3:7.0% vs. 9.6% 4:3.5% vs. 6.1% 5:1.7% vs. 2.6%, P < 0.001, at baseline and follow-up, respectively. Overall, 53.0%, 29.6%, and 28.7% of patients progressed over time based on SSS, SIS, and CAD-RADS, respectively. Of the patients who progressed based on SSS, only 54% showed changes in CAD-RADS. Smoking and diabetes increased the annual progression rate of SSS by 0.37/year and 0.38/year, respectively (both P < 0.05). Furthermore, each year increase in age raised SSS by 0.12 [confidence interval (CI) 0.05–0.20, P = 0.001] and SIS 0.10 (CI 0.06–0.15, P < 0.001), while female sex was associated with 2.86 lower SSS (CI −4.52 to −1.20, P < 0.001) and 1.68 SIS values (CI −2.65 to −0.77, P = 0.001). Conclusion CAD-RADS could not capture the progression of CAD in almost half of patients with serial CTA. Differences in CAD definitions may lead to significant differences in patients who are considered to progress, and which risk factors are considered to influence progression.
Collapse
Affiliation(s)
- Bálint Szilveszter
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| | - Borbála Vattay
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| | - Melinda Bossoussou
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| | - Milán Vecsey-Nagy
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| | - Judit Simon
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| | - Béla Merkely
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| | - Pál Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, 2 Korányi Sándor st, 1083 Budapest, Hungary
| | - Márton Kolossváry
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, 68 Városmajor st, 1122 Budapest, Hungary
| |
Collapse
|
11
|
Bergström G, Persson M, Adiels M, Björnson E, Bonander C, Ahlström H, Alfredsson J, Angerås O, Berglund G, Blomberg A, Brandberg J, Börjesson M, Cederlund K, de Faire U, Duvernoy O, Ekblom Ö, Engström G, Engvall JE, Fagman E, Eriksson M, Erlinge D, Fagerberg B, Flinck A, Gonçalves I, Hagström E, Hjelmgren O, Lind L, Lindberg E, Lindqvist P, Ljungberg J, Magnusson M, Mannila M, Markstad H, Mohammad MA, Nystrom FH, Ostenfeld E, Persson A, Rosengren A, Sandström A, Själander A, Sköld MC, Sundström J, Swahn E, Söderberg S, Torén K, Östgren CJ, Jernberg T. Prevalence of Subclinical Coronary Artery Atherosclerosis in the General Population. Circulation 2021; 144:916-929. [PMID: 34543072 PMCID: PMC8448414 DOI: 10.1161/circulationaha.121.055340] [Citation(s) in RCA: 215] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Background: Early detection of coronary atherosclerosis using coronary computed tomography angiography (CCTA), in addition to coronary artery calcification (CAC) scoring, may help inform prevention strategies. We used CCTA to determine the prevalence, severity, and characteristics of coronary atherosclerosis and its association with CAC scores in a general population. Methods: We recruited 30 154 randomly invited individuals age 50 to 64 years to SCAPIS (the Swedish Cardiopulmonary Bioimage Study). The study includes individuals without known coronary heart disease (ie, no previous myocardial infarctions or cardiac procedures) and with high-quality results from CCTA and CAC imaging performed using dedicated dual-source CT scanners. Noncontrast images were scored for CAC. CCTA images were visually read and scored for coronary atherosclerosis per segment (defined as no atherosclerosis, 1% to 49% stenosis, or ≥50% stenosis). External validity of prevalence estimates was evaluated using inverse probability for participation weighting and Swedish register data. Results: In total, 25 182 individuals without known coronary heart disease were included (50.6% women). Any CCTA-detected atherosclerosis was found in 42.1%; any significant stenosis (≥50%) in 5.2%; left main, proximal left anterior descending artery, or 3-vessel disease in 1.9%; and any noncalcified plaques in 8.3% of this population. Onset of atherosclerosis was delayed on average by 10 years in women. Atherosclerosis was more prevalent in older individuals and predominantly found in the proximal left anterior descending artery. Prevalence of CCTA-detected atherosclerosis increased with increasing CAC scores. Among those with a CAC score >400, all had atherosclerosis and 45.7% had significant stenosis. In those with 0 CAC, 5.5% had atherosclerosis and 0.4% had significant stenosis. In participants with 0 CAC and intermediate 10-year risk of atherosclerotic cardiovascular disease according to the pooled cohort equation, 9.2% had CCTA-verified atherosclerosis. Prevalence estimates had excellent external validity and changed marginally when adjusted to the age-matched Swedish background population. Conclusions: Using CCTA in a large, random sample of the general population without established disease, we showed that silent coronary atherosclerosis is common in this population. High CAC scores convey a significant probability of substantial stenosis, and 0 CAC does not exclude atherosclerosis, particularly in those at higher baseline risk.
Collapse
Affiliation(s)
- Göran Bergström
- Department of Molecular and Clinical Medicine (G. Bergström, E.B., O.A., B.F., O.H., A.R.), University of Gothenburg, Sweden.,Departments of Clinical Physiology (G. Bergström, O.H.), Region Västra Götaland, Gothenburg, Sweden
| | - Margaretha Persson
- Department of Clinical Sciences (M.P., G. Berglund, G.E., M. Magnusson), Lund University, Malmö, Sweden.,Departments of Internal Medicine (M.P.), Skåne University Hospital, Malmö, Sweden
| | - Martin Adiels
- Sahlgrenska Academy, and School of Public Health and Community Medicine, Institute of Medicine (M.A., C.B.), University of Gothenburg, Sweden
| | - Elias Björnson
- Department of Molecular and Clinical Medicine (G. Bergström, E.B., O.A., B.F., O.H., A.R.), University of Gothenburg, Sweden
| | - Carl Bonander
- Sahlgrenska Academy, and School of Public Health and Community Medicine, Institute of Medicine (M.A., C.B.), University of Gothenburg, Sweden
| | - Håkan Ahlström
- Section of Radiology, Department of Surgical Sciences (H.A., O.D.), Uppsala University, Sweden
| | - Joakim Alfredsson
- Departments of Cardiology (J.A., E.S.), Linköping University, Sweden.,Health, Medicine and Caring Sciences (J.A., E.S., J.E.E., F.H.N., C.J.Ö., A.P.), Linköping University, Sweden
| | - Oskar Angerås
- Department of Molecular and Clinical Medicine (G. Bergström, E.B., O.A., B.F., O.H., A.R.), University of Gothenburg, Sweden.,Cardiology (O.A.), Region Västra Götaland, Gothenburg, Sweden
| | - Göran Berglund
- Department of Clinical Sciences (M.P., G. Berglund, G.E., M. Magnusson), Lund University, Malmö, Sweden
| | - Anders Blomberg
- Department of Public Health and Clinical Medicine, Medicine and Heart Centre (A.B., J.L., A. Sandström, A. Själander, S.S.), Umeå University, Sweden
| | - John Brandberg
- Department of Radiology, Institute of Clinical Sciences (J.B., E.F., A.F.), University of Gothenburg, Sweden.,Radiology (J.B., E.F., A.F.), Region Västra Götaland, Gothenburg, Sweden
| | - Mats Börjesson
- Institute of Medicine (M.B.), University of Gothenburg, Sweden.,Center for Health and Performance (M.B.), University of Gothenburg, Sweden.,Sahlgrenska University Hospital (M.B., B.F., A.R., K.T.), Region Västra Götaland, Gothenburg, Sweden
| | - Kerstin Cederlund
- Department of Clinical Science, Intervention and Technology (K.C.), Karolinska Institutet, Stockholm, Sweden
| | - Ulf de Faire
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine (U.d.F.), Karolinska Institutet, Stockholm, Sweden
| | - Olov Duvernoy
- Section of Radiology, Department of Surgical Sciences (H.A., O.D.), Uppsala University, Sweden
| | - Örjan Ekblom
- Department of Physical Activity and Health, The Swedish School of Sport and Health Sciences (GIH), Stockholm, Sweden (Ö.E.)
| | - Gunnar Engström
- Department of Clinical Sciences (M.P., G. Berglund, G.E., M. Magnusson), Lund University, Malmö, Sweden
| | - Jan E Engvall
- Health, Medicine and Caring Sciences (J.A., E.S., J.E.E., F.H.N., C.J.Ö., A.P.), Linköping University, Sweden.,Clinical Physiology (J.E.E.), Linköping University, Sweden.,CMIV, Centre of Medical Image Science and Visualization (J.E.E., A.P., C.J.Ö.), Linköping University, Sweden
| | - Erika Fagman
- Department of Radiology, Institute of Clinical Sciences (J.B., E.F., A.F.), University of Gothenburg, Sweden.,Radiology (J.B., E.F., A.F.), Region Västra Götaland, Gothenburg, Sweden
| | - Mats Eriksson
- Department of Endocrinology, Metabolism & Diabetes and Clinical Research Center, Karolinska University Hospital Huddinge, Stockholm, Sweden (M.E.)
| | - David Erlinge
- Department of Clinical Sciences Lund, Cardiology, Lund University and Skåne University Hospital, Lund, Sweden (D.E., M.A.M.)
| | - Björn Fagerberg
- Department of Molecular and Clinical Medicine (G. Bergström, E.B., O.A., B.F., O.H., A.R.), University of Gothenburg, Sweden.,Sahlgrenska University Hospital (M.B., B.F., A.R., K.T.), Region Västra Götaland, Gothenburg, Sweden
| | - Agneta Flinck
- Department of Radiology, Institute of Clinical Sciences (J.B., E.F., A.F.), University of Gothenburg, Sweden.,Radiology (J.B., E.F., A.F.), Region Västra Götaland, Gothenburg, Sweden
| | - Isabel Gonçalves
- Department of Clinical Sciences Malmö (I.G.), Lund University and Skåne University Hospital, Lund, Sweden
| | - Emil Hagström
- Cardiology (E.H.), Uppsala University, Sweden.,Department of Medical Sciences, and Uppsala Clinical Research Center (E.H.), Uppsala University, Sweden
| | - Ola Hjelmgren
- Department of Molecular and Clinical Medicine (G. Bergström, E.B., O.A., B.F., O.H., A.R.), University of Gothenburg, Sweden.,Departments of Clinical Physiology (G. Bergström, O.H.), Region Västra Götaland, Gothenburg, Sweden
| | - Lars Lind
- Clinical Epidemiology (L.L., J.S.), Uppsala University, Sweden
| | - Eva Lindberg
- Respiratory, Allergy and Sleep Research (E.L.), Uppsala University, Sweden
| | - Per Lindqvist
- Department of Surgical and Perioperative Sciences (P.L.), Umeå University, Sweden
| | - Johan Ljungberg
- Department of Public Health and Clinical Medicine, Medicine and Heart Centre (A.B., J.L., A. Sandström, A. Själander, S.S.), Umeå University, Sweden
| | - Martin Magnusson
- Department of Clinical Sciences (M.P., G. Berglund, G.E., M. Magnusson), Lund University, Malmö, Sweden.,Cardiology (M. Magnusson), Skåne University Hospital, Malmö, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden (M. Magnusson).,North-West University, Hypertension in Africa Research Team (HART), Potchefstroom, South Africa (M. Magnusson)
| | - Maria Mannila
- Heart and Vascular Theme, Department of Cardiology, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden (M. Mannila)
| | - Hanna Markstad
- Experimental Cardiovascular Research, Clinical Research Center, Clinical Sciences Malmö (H.M.), Lund University, Malmö, Sweden.,Center for Medical Imaging and Physiology (H.M.), Lund University and Skåne University Hospital, Lund, Sweden
| | - Moman A Mohammad
- Department of Clinical Sciences Lund, Cardiology, Lund University and Skåne University Hospital, Lund, Sweden (D.E., M.A.M.)
| | - Fredrik H Nystrom
- Health, Medicine and Caring Sciences (J.A., E.S., J.E.E., F.H.N., C.J.Ö., A.P.), Linköping University, Sweden
| | - Ellen Ostenfeld
- Department of Clinical Sciences Lund, Clinical Physiology (E.O.), Lund University and Skåne University Hospital, Lund, Sweden
| | - Anders Persson
- Health, Medicine and Caring Sciences (J.A., E.S., J.E.E., F.H.N., C.J.Ö., A.P.), Linköping University, Sweden.,Radiology (A.P.), Linköping University, Sweden.,CMIV, Centre of Medical Image Science and Visualization (J.E.E., A.P., C.J.Ö.), Linköping University, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine (G. Bergström, E.B., O.A., B.F., O.H., A.R.), University of Gothenburg, Sweden.,Sahlgrenska University Hospital (M.B., B.F., A.R., K.T.), Region Västra Götaland, Gothenburg, Sweden
| | - Anette Sandström
- Department of Public Health and Clinical Medicine, Medicine and Heart Centre (A.B., J.L., A. Sandström, A. Själander, S.S.), Umeå University, Sweden
| | - Anders Själander
- Department of Public Health and Clinical Medicine, Medicine and Heart Centre (A.B., J.L., A. Sandström, A. Själander, S.S.), Umeå University, Sweden
| | - Magnus C Sköld
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine (M.C.S.), Karolinska Institutet, Stockholm, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden (M.C.S.)
| | - Johan Sundström
- Clinical Epidemiology (L.L., J.S.), Uppsala University, Sweden.,The George Institute for Global Health, University of New South Wales, Sydney, Australia (J.S.)
| | - Eva Swahn
- Departments of Cardiology (J.A., E.S.), Linköping University, Sweden.,Health, Medicine and Caring Sciences (J.A., E.S., J.E.E., F.H.N., C.J.Ö., A.P.), Linköping University, Sweden
| | - Stefan Söderberg
- Department of Public Health and Clinical Medicine, Medicine and Heart Centre (A.B., J.L., A. Sandström, A. Själander, S.S.), Umeå University, Sweden
| | - Kjell Torén
- Occupational and Environmental Medicine/School of Public Health and Community Medicine (K.T.), University of Gothenburg, Sweden.,Sahlgrenska University Hospital (M.B., B.F., A.R., K.T.), Region Västra Götaland, Gothenburg, Sweden
| | - Carl Johan Östgren
- Health, Medicine and Caring Sciences (J.A., E.S., J.E.E., F.H.N., C.J.Ö., A.P.), Linköping University, Sweden.,CMIV, Centre of Medical Image Science and Visualization (J.E.E., A.P., C.J.Ö.), Linköping University, Sweden
| | - Tomas Jernberg
- Department of Clinical Sciences, Danderyd University Hospital (T.J.), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
12
|
Reiber JHC. Introduction topical issue on CT plaque burden. Int J Cardiovasc Imaging 2021; 36:2301-2303. [PMID: 33037519 DOI: 10.1007/s10554-020-02055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|