1
|
Sharma G, Chaurasia SS, Carlson MA, Mishra PK. Recent advances associated with cardiometabolic remodeling in diabetes-induced heart failure. Am J Physiol Heart Circ Physiol 2024; 327:H1327-H1342. [PMID: 39453429 DOI: 10.1152/ajpheart.00539.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/11/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024]
Abstract
Diabetes mellitus (DM) is characterized by chronic hyperglycemia, and despite intensive glycemic control, the risk of heart failure in patients with diabetes remains high. Diabetes-induced heart failure (DHF) presents a unique metabolic challenge, driven by significant alterations in cardiac substrate metabolism, including increased reliance on fatty acid oxidation, reduced glucose utilization, and impaired mitochondrial function. These metabolic alterations lead to oxidative stress, lipotoxicity, and energy deficits, contributing to the progression of heart failure. Emerging research has identified novel mechanisms involved in the metabolic remodeling of diabetic hearts, such as autophagy dysregulation, epigenetic modifications, polyamine regulation, and branched-chain amino acid (BCAA) metabolism. These processes exacerbate mitochondrial dysfunction and metabolic inflexibility, further impairing cardiac function. Therapeutic interventions targeting these pathways-such as enhancing glucose oxidation, modulating fatty acid metabolism, and optimizing ketone body utilization-show promise in restoring metabolic homeostasis and improving cardiac outcomes. This review explores the key molecular mechanisms driving metabolic remodeling in diabetic hearts, highlights advanced methodologies, and presents the latest therapeutic strategies for mitigating the progression of DHF. Understanding these emerging pathways offers new opportunities to develop targeted therapies that address the root metabolic causes of heart failure in diabetes.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Cardiovascular and Thoracic Surgery, UT Southwestern Medical Center, Dallas, Texas, United States
- Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, United States
- Department of Biomedical Engineering, UT Southwestern Medical Center, Dallas, Texas, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department Ophthalmology & Visual Sciences, Milwaukee, Wisconsin, United States
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Mark A Carlson
- Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska, United States
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska, United States
| |
Collapse
|
2
|
Wang T, Li N, Zeng Y. Protective effects of spermidine levels against cardiovascular risk factors: An exploration of causality based on a bi-directional Mendelian randomization analysis. Nutrition 2024; 127:112549. [PMID: 39243489 DOI: 10.1016/j.nut.2024.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/28/2024] [Indexed: 09/09/2024]
Abstract
The study investigated the causal relationships between spermidine levels and CVD risk factors using a bi-directional MR approach. Employing genetic variants from extensive GWAS datasets as IVs, the study aimed to determine whether spermidine levels can influence CVD risk factors such as blood pressure, blood glucose, and lipid profiles, and vice versa. The findings suggest a protective role of elevated spermidine levels against hypertension, elevated blood glucose, and lipid profiles (LDL-C and HDL-C). Specifically, increased spermidine levels were significantly associated with lower risk of hypertension (IVW beta = -0.0013453913, p = 0.01597648) and suppression risk of elevated blood glucose (IVW beta = -0.08061330, p = 0.02450205). Additionally, there was a notable association with lipid modulation, showing a decrease in LDL-C (IVW beta = -0.01849161, p = 0.01086728) and an increase in HDL-C (IVW beta = 0.0044608332, P = 0.01760051). Conversely, the influence of CVD risk factors on spermidine levels was minimal, with the exception that elevated blood glucose levels resulted in reduced spermidine levels. (IVW beta = -0.06714391, P = 0.01096123). These results underline the potential of spermidine as a modifiable dietary target for the prevention and management of cardiovascular diseases. Further investigations are warranted to explore the underlying biological mechanisms and the applicability of these findings in broader and diverse populations.
Collapse
Affiliation(s)
- Tianyi Wang
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Na Li
- Mass Spectrometry Research Institute, Beijing Gobroad Healthcare Group, Beijing, China.
| | - Yong Zeng
- Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Wu H, Huo H, Li H, Zhang H, Li X, Han Q, Liao J, Tang Z, Guo J. N-acetylcysteine combined with insulin therapy can reduce myocardial injury induced by type 1 diabetes through the endoplasmic reticulum pathway. Tissue Cell 2024; 90:102515. [PMID: 39146674 DOI: 10.1016/j.tice.2024.102515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
With the development of Type 1 diabetes mellitus (T1DM), various complications can be caused. Hyperglycemia affects the microenvironment of cardiomyocytes, changes endoplasmic reticulum homeostasis, triggers unfolding protein response and eventually promotes myocardial apoptosis. However, insulin therapy alone cannot effectively combat the complications caused by T1DM. Forty adult beagles were randomly divided into five groups: control group, diabetes mellitus group, insulin group, insulin combined with NAC group, and NAC group. 24-hour blood glucose, 120-day blood glucose, 120-day body weight, and serum FMN content were observed, furthermore, hematoxylin-eosin staining, Periodic acid Schiff reagent staining, and Sirius red staining of the myocardium were evaluated. The protein expressions of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase 3, Bcl2, and Bax were detected. Results of the pathological section of myocardial tissue indicated that insulin combined with NAC therapy could improve myocardial pathological injury and glycogen deposition. Additionally, insulin combined with NAC therapy down-regulates the expression of GRP78, ATF6, IRE1, PERK, JNK, CHOP, caspase3, and Bax. These findings suggest that NAC has a phylactic effect on myocardial injury in beagles with T1DM, and the mechanism may be related to the improvement of endoplasmic reticulum stress-induced apoptosis.
Collapse
Affiliation(s)
- Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Haoye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Hongyan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
4
|
Li C, Wu Y, Chen K, Chen R, Xu S, Yang B, Lian Z, Wang X, Wang K, Xie H, Zheng S, Liu Z, Wang D, Xu X. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis. Cell Death Dis 2023; 14:810. [PMID: 38065978 PMCID: PMC10709349 DOI: 10.1038/s41419-023-06294-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Ferroptosis, which is driven by iron-dependent lipid peroxidation, plays an essential role in liver ischemia-reperfusion injury (IRI) during liver transplantation (LT). Gp78, an E3 ligase, has been implicated in lipid metabolism and inflammation. However, its role in liver IRI and ferroptosis remains unknown. Here, hepatocyte-specific gp78 knockout (HKO) or overexpressed (OE) mice were generated to examine the effect of gp78 on liver IRI, and a multi-omics approach (transcriptomics, proteomics, and metabolomics) was performed to explore the potential mechanism. Gp78 expression decreased after reperfusion in LT patients and mice with IRI, and gp78 expression was positively correlated with liver damage. Gp78 absence from hepatocytes alleviated liver damage in mice with IRI, ameliorating inflammation. However, mice with hepatic gp78 overexpression showed the opposite phenotype. Mechanistically, gp78 overexpression disturbed lipid homeostasis, remodeling polyunsaturated fatty acid (PUFA) metabolism, causing oxidized lipids accumulation and ferroptosis, partly by promoting ACSL4 expression. Chemical inhibition of ferroptosis or ACSL4 abrogated the effects of gp78 on ferroptosis and liver IRI. Our findings reveal a role of gp78 in liver IRI pathogenesis and uncover a mechanism by which gp78 promotes hepatocyte ferroptosis by ACSL4, suggesting the gp78-ACSL4 axis as a feasible target for the treatment of IRI-associated liver damage.
Collapse
Affiliation(s)
- Changbiao Li
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Yichao Wu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Kangchen Chen
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shengjun Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Beng Yang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhengxing Lian
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Xiaodong Wang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China
| | - Haiyang Xie
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 311112, China
| | - Zhikun Liu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| | - Di Wang
- Institute of Immunology and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, 310058, China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, 310006, China.
| |
Collapse
|
5
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
6
|
An L, Gao H, Zhong Y, Liu Y, Cao Y, Yi J, Huang X, Wen C, Tong R, Pan Z, Yan X, Liu M, Wang S, Bai X, Wu H, Hu T. Molecular chaperones HSP40, HSP70, STIP1, and HSP90 are involved in stabilization of Cx43. Cytotechnology 2023; 75:207-217. [PMID: 37187948 PMCID: PMC10167082 DOI: 10.1007/s10616-023-00570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
To investigate the involvement of stress induced phosphoprotein 1 (STIP1), heat shock protein (HSP) 70, and HSP90 in ubiquitination of connexin 43 (Cx43) in rat H9c2 cardiomyocytes. Co-immunoprecipitation was used to detect protein-protein interactions and Cx43 ubiquitination. Immunofluorescence was used for protein co-localization. The protein binding, Cx43 protein expression, and Cx43 ubiquitination were reanalyzed in H9c2 cells with modified STIP1 and/or HSP90 expression. STIP1 bound to HSP70 and HSP90, and Cx43 bound to HSP40, HSP70, and HSP90 in normal H9c2 cardiomyocytes. Overexpression of STIP1 promoted the transition of Cx43-HSP70 to Cx43-HSP90 and inhibited Cx43 ubiquitination; knockdown of STIP1 resulted in the opposite effects. Inhibition of HSP90 counteracted the inhibitory effect of STIP1 overexpression on Cx43 ubiquitination. STIP1 suppresses Cx43 ubiquitination in H9c2 cardiomyocytes by promoting the transition of Cx43-HSP70 to Cx43-HSP90.
Collapse
Affiliation(s)
- Li An
- Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
- Translational Medicine Research Center of Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Hong Gao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
| | - Yi Zhong
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
| | - Yanqiu Liu
- Department of Anesthesiology, Guiyang Fourth People’s Hospital, Guiyang, 550002 Guizhou People’s Republic of China
| | - Ying Cao
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
- Guiyang Second People’s Hospital, Guiyang, 550001 Guizhou People’s Republic of China
| | - Jing Yi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, No. 28 Guiyi St, Yunyan District, Guiyang, 550004 Guizhou People’s Republic of China
| | - Xiang Huang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Chunlei Wen
- Children’s Hospital of Guiyang Maternal and Child Health Hospital, Guiyang, 550001 Guizhou People’s Republic of China
| | - Rui Tong
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Zhijun Pan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Xu Yan
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Meiyan Liu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Shengzhao Wang
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Xue Bai
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Hao Wu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| | - Tingju Hu
- School of Anesthesiology, Guizhou Medical University, Guiyang, 550004 Guizhou People’s Republic of China
| |
Collapse
|
7
|
Balatskyi VV, Sowka A, Dobrzyn P, Piven OO. WNT/β-catenin pathway is a key regulator of cardiac function and energetic metabolism. Acta Physiol (Oxf) 2023; 237:e13912. [PMID: 36599355 DOI: 10.1111/apha.13912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/24/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
The WNT/β-catenin pathway is a master regulator of cardiac development and growth, and its activity is low in healthy adult hearts. However, even this low activity is essential for maintaining normal heart function. Acute activation of the WNT/β-catenin signaling cascade is considered to be cardioprotective after infarction through the upregulation of prosurvival genes and reprogramming of metabolism. Chronically high WNT/β-catenin pathway activity causes profibrotic and hypertrophic effects in the adult heart. New data suggest more complex functions of β-catenin in metabolic maturation of the perinatal heart, establishing an adult pattern of glucose and fatty acid utilization. Additionally, low basal activity of the WNT/β-catenin cascade maintains oxidative metabolism in the adult heart, and this pathway is reactivated by physiological or pathological stimuli to meet the higher energy needs of the heart. This review summarizes the current state of knowledge of the organization of canonical WNT signaling and its function in cardiogenesis, heart maturation, adult heart function, and remodeling. We also discuss the role of the WNT/β-catenin pathway in cardiac glucose, lipid metabolism, and mitochondrial physiology.
Collapse
Affiliation(s)
- Volodymyr V Balatskyi
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Adrian Sowka
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Dobrzyn
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Oksana O Piven
- Laboratory of Molecular Medical Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Department of Human Genetics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
8
|
Elevation of spermine remodels immunosuppressive microenvironment through driving the modification of PD-L1 in hepatocellular carcinoma. Cell Commun Signal 2022; 20:175. [DOI: 10.1186/s12964-022-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism.
Methods
Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, β-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells.
Results
Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent β-catenin stabilization and nuclear translocation. Nuclear β-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells.
Conclusions
This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma.
Collapse
|
9
|
Sun J, Xu J, Liu Y, Xu X, Zhang S, Hao Y, Lin Y, Han Y, Li F, Yuan H. Proteomic and metabolomic analyses reveal the novel targets of spermine for alleviating diabetic cardiomyopathy in type II diabetic mice. Front Cardiovasc Med 2022; 9:1022861. [PMID: 36312255 PMCID: PMC9614018 DOI: 10.3389/fcvm.2022.1022861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is one of the most serious complications of diabetes. Recent cardiology studies suggest that spermine has a cardioprotective effect. Here, we used proteomic and metabolomic analyses to reveal the underlying research targets in a type II diabetic (T2D) mouse model treated with spermine. Left ventricular tissues from nine mice (Control group, three; T2D group, three; T2D+SP group, three) were excised and analyzed. Quantitative analysis of the global proteome and metabolome was performed using the 4D label-free technique and untargeted metabolomics, respectively, and differentially expressed proteins (DEPs) and metabolites were used to perform bioinformatic analyses. A total of 169 DEPs were identified in T2D/Control group, including 115 upregulated and 54 downregulated proteins. Furthermore, 16 DEPs were identified in T2D+SP/T2D group, where these DEPs were found highly enriched in the cellular, metabolic processes, biological regulation, response to stimulus, and immune system process. The results of association analysis between proteomics and metabolomics showed that SP could affect the production of 51 metabolites by regulating the expression of 16 DEPs in the T2D+SP/T2D group. We also found that PRKG1 was closely related to the expressions of 10 overlapping metabolites between db/db and SP-treated mice. Our findings provide insights into the underlying mechanisms for DCM and suggest the potential applicability of utilizing spermine on protecting against DCM-associated cardiac function deterioration.
Collapse
Affiliation(s)
- Jian Sun
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Jiyu Xu
- School of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Yong Liu
- Research Department, Animal Research Institute, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaoyi Xu
- The First Clinical School of Medicine, Mudanjiang Medical University, Mudanjiang, China
| | - Shumin Zhang
- School of Stomatology, Mudanjiang Medical University, Mudanjiang, China
| | - Yankun Hao
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yitong Lin
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Yue Han
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China
| | - Feiya Li
- Department of Laboratory Medicine and Pathobiology, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Hui Yuan
- School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, China,School of Stomatology, Mudanjiang Medical University, Mudanjiang, China,*Correspondence: Hui Yuan
| |
Collapse
|
10
|
Calcium-Sensing Receptor (CaSR)-Mediated Intracellular Communication in Cardiovascular Diseases. Cells 2022; 11:cells11193075. [PMID: 36231037 PMCID: PMC9562006 DOI: 10.3390/cells11193075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The calcium-sensing receptor (CaSR), a G-protein-coupled receptor (GPCR), is a cell-surface-located receptor that can induce highly diffusible messengers (IP3, Ca2+, cAMP) in the cytoplasm to activate various cellular responses. Recently, it has also been suggested that the CaSR mediates the intracellular communications between the endoplasmic reticulum (ER), mitochondria, nucleus, protease/proteasome, and autophagy-lysosome, which are involved in related cardiovascular diseases. The complex intracellular signaling of this receptor challenges it as a valuable therapeutic target. It is, therefore, necessary to understand the mechanisms behind the signaling characteristics of this receptor in intracellular communication. This review provides an overview of the recent research progress on the various regulatory mechanisms of the CaSR in related cardiovascular diseases and the heart-kidney interaction; the associated common causes are also discussed.
Collapse
|
11
|
Xiong X, Li J, Zhang S, Jia X, Xiao C. Involvement of Polyamines From Cardiac Mast Cells in Myocardial Remodeling Induced by Pressure Overload Through Mitochondrial Permeability Transition Pore Opening. Front Cardiovasc Med 2022; 9:850688. [PMID: 35479269 PMCID: PMC9035547 DOI: 10.3389/fcvm.2022.850688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Polyamines mainly contain spermine (SPM), spermidine (SPD), and putrescine (PUT). Many research results suggest that polyamines participate in cell proliferation, differentiation, and the regulation of gene expression, and have a close relationship with the occurrence and development of many diseases. However, the role and possible mechanisms of action of polyamines from cardiac mast cells in myocardial remodeling induced by pressure overload remain to be elucidated. Methods Pressure overload was induced by abdominal aortic constriction (AAC). Toluidine blue staining was used to visualize mast cells in cardiac tissue. The polyamine content of cardiac tissue was analyzed using high-performance liquid chromatography. Opening of the mitochondrial permeability transition pore (MPTP) was determined by the Ca2+-induced swelling of isolated cardiac mitochondria, measured as a reduction in A520. Results Compared with sham rats, the cardiac mast cell density, the polyamine content (PUT, SPB, and SPM), and myocardial MPTP opening in rats with AAC were significantly increased (P < 0.05), and were accompanied by increased myocardial fibrosis and heart weight/body weight ratio. Intraperitoneal injection of polyamines mimicked these results, and these effects were reversed by cromolyn sodium, a mast cell stabilizer (P < 0.05). Myocardial MPTP opening increased in rats with AAC (P < 0.05), and the three polyamines also increased myocardial MPTP opening (P < 0.05). Conclusion Mast cell-derived polyamines are involved in pressure overload-induced myocardial remodeling by increasing opening of the MPTP.
Collapse
Affiliation(s)
- Xiaolan Xiong
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
- The Second People’s Hospital of Yichang, Yichang, China
| | - Junming Li
- The First People’s Hospital of Yichang, Yichang, China
| | - Shizhong Zhang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
- *Correspondence: Shizhong Zhang,
| | - Xiaoli Jia
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
| | - Chao Xiao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine China Three Gorges University, Yichang, China
- Medical College, China Three Gorges University, Yichang, China
| |
Collapse
|
12
|
Transcriptomics Coupled to Proteomics Reveals Novel Targets for the Protective Role of Spermine in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5909378. [PMID: 35437457 PMCID: PMC9013312 DOI: 10.1155/2022/5909378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022]
Abstract
Background Diabetic cardiomyopathy (DbCM) is the main complication and the cause of high mortality of diabetes. Exploring the transcriptomics and proteomics of DbCM is of great significance for understanding the biology of the disease and for guiding new therapeutic targets for the potential therapeutic effect of spermine (SPM). Methods and Results By using a mouse DbCM model, we analyzed the overall transcriptome and proteome of the myocardium, before/after treatment with SPM. The general state and cardiac structure and function changes of each group were also compared. Diabetes induced an increased blood glucose and serum triglyceride content, a decreased body weight, serum insulin level, and cardiac function-related indexes, accompanied by disrupted myocardial tissue morphology and ultrastructure damage. Using RNA sequencing (RNA-seq), we identified thousands of differentially expressed genes (DEGs) in DbCM with or without SPM treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that the DEGs were significantly enriched in lipid metabolism and amino acid metabolism pathways. Specifically, quantitative real-time PCR (qRT-PCR) confirmed that SPM protected DbCM by reversing the expressions of lipid metabolism and amino acid metabolism-related genes, including Alox15, Gm13033, pla2g12a, Ptges, Pnpla2, and Acot1. To further reveal the pathogenesis of DbCM, we used proteome-based data-independent acquisition (DIA) and identified 139 differentially expressed proteins (DEPs) with 67 being upregulated and 72 being downregulated in DbCM. Venn intersection analysis showed 37 coexpressed genes and proteins in DbCM, including 29 upregulation and 8 downregulation in DbCM. In the protein-protein interaction (PPI) network constructed by the STRING database, the metabolism-related coexpressed genes and proteins, such as Acot2, Ephx2, Cyp1a1, Comt, Acox1, Hadhb, Hmgcs2, Acot1, Inmt, and Cat, can interact with the identified DEGs and DEPs. Conclusion The biomarkers and canonical pathways identified in this study may hold the key to understand the mechanisms of DbCM pathobiology and provide new targets for the therapeutic effect of SPM against DbCM by targeting lipid and amino acid metabolism pathways.
Collapse
|
13
|
Kambis TN, Tofilau HMN, Gawargi FI, Chandra S, Mishra PK. Regulating Polyamine Metabolism by miRNAs in Diabetic Cardiomyopathy. Curr Diab Rep 2021; 21:52. [PMID: 34902085 PMCID: PMC8668854 DOI: 10.1007/s11892-021-01429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE OF REVIEW Insulin is at the heart of diabetes mellitus (DM). DM alters cardiac metabolism causing cardiomyopathy, ultimately leading to heart failure. Polyamines, organic compounds synthesized by cardiomyocytes, have an insulin-like activity and effect on glucose metabolism, making them metabolites of interest in the DM heart. This review sheds light on the disrupted microRNA network in the DM heart in relation to developing novel therapeutics targeting polyamine biosynthesis to prevent/mitigate diabetic cardiomyopathy. RECENT FINDINGS Polyamines prevent DM-induced upregulation of glucose and ketone body levels similar to insulin. Polyamines also enhance mitochondrial respiration and thereby regulate all major metabolic pathways. Non-coding microRNAs regulate a majority of the biological pathways in our body by modulating gene expression via mRNA degradation or translational repression. However, the role of miRNA in polyamine biosynthesis in the DM heart remains unclear. This review discusses the regulation of polyamine synthesis and metabolism, and its impact on cardiac metabolism and circulating levels of glucose, insulin, and ketone bodies. We provide insights on potential roles of polyamines in diabetic cardiomyopathy and putative miRNAs that could regulate polyamine biosynthesis in the DM heart. Future studies will unravel the regulatory roles these miRNAs play in polyamine biosynthesis and will open new doors in the prevention/treatment of adverse cardiac remodeling in diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Tyler N Kambis
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | | | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surabhi Chandra
- Department of Biology, University of Nebraska-Kearney, Kearney, NE, 68845, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
SFRP2 Improves Mitochondrial Dynamics and Mitochondrial Biogenesis, Oxidative Stress, and Apoptosis in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9265016. [PMID: 34790288 PMCID: PMC8592716 DOI: 10.1155/2021/9265016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/26/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
Background The mitochondrial dynamics and mitochondrial biogenesis are essential for maintaining the bioenergy function of mitochondria in diabetic cardiomyopathy (DCM). Previous studies have revealed that secreted frizzled-related protein 2 (SFRP2) is beneficial against apoptosis and oxidative stress. However, no research has confirmed whether SFRP2 regulates oxidative stress and apoptosis through mitochondrial function in DCM. Methods Exposure of H9C2 cardiomyocytes in high glucose (HG) 25 mM and palmitic acid (PAL) 0.2 mM was used to simulate DCM in vitro. H9C2 cells with SFRP2 overexpression or SFRP2 knockdown were constructed and cultured under glucolipotoxicity or normal glucose conditions. An SD rat model of type 2 diabetes mellitus (T2DM) was generated using a high-fat diet combined with a low-dose STZ injection. Overexpression of SFRP2 in the rat model was generated by using an adeno-associated virus approach. CCK-8, TUNEL assay, and DHE staining were used to detect cell viability, and MitoTracker Red CMXRos was used to detect changes in mitochondrial membrane potential. We used qRT-PCR and western blot to further explore the mechanisms of SFRP2 regulating mitochondrial dynamics through the AMPK/PGC1-α pathway to improve diabetic cardiomyocyte injury. Results Our results indicated that SFRP2 was significantly downregulated in H9C2 cells and cardiac tissues in T2DM conditions, accompanied by decreased expression of mitochondrial dysfunction. The mitochondrial membrane potential was reduced, and the cells were led to oxidative stress injury and apoptosis. Furthermore, the overexpression of SFRP2 could reverse apoptosis and promote mitochondrial function in T2DM conditions in vitro and in vivo. We also found that silencing endogenous SFRP2 could further promote glucolipotoxicity-induced mitochondrial dysfunction and apoptosis in cardiomyocytes, accompanied by downregulation of p-AMPK. Conclusion SFRP2 exerted cardioprotective effects by salvaging mitochondrial function in an AMPK-PGC1-α-dependent manner, which modulates mitochondrial dynamics and mitochondrial biogenesis, reducing oxidative stress and apoptosis. SFRP2 may be a promising therapeutic biomarker in DCM.
Collapse
|
15
|
Wei C, Sun M, Liang X, Che B, Wang N, Shi L, Fan Y. Spermine Regulates Immune and Signal Transduction Dysfunction in Diabetic Cardiomyopathy. Front Endocrinol (Lausanne) 2021; 12:740493. [PMID: 35173678 PMCID: PMC8842652 DOI: 10.3389/fendo.2021.740493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/30/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Exploring the transcriptomics of DCM is of great significance for understanding the biology of the disease and for guiding new therapeutic targets for the potential therapeutic effect of spermine (SPM). METHODS AND RESULTS By using a mouse DCM model, we analyzed the transcriptome of the myocardium, before/after treatment with SPM. Using RNA sequencing (RNA-seq), we identified 1,318 differentially expressed genes (DEGs), with 636 being upregulated and 682 being downregulated in DCM compared to control check (CK). We then identified 1,393 DEGs, with 887 being upregulated and 506 being downregulated in SPM compared to DCM. Kyoto Encyclopedia of Genes And Genomes (KEGG) analysis demonstrated that the DEGs were significantly enriched in the immune system and signal transduction-related pathways. UpSet Venn analysis showed that 174 DEGs in DCM could be reversed by SPM, with 45 candidates related to immune system and related signal transduction pathways. Trend analysis demonstrated the dynamic changes in gene levels in DCM and SPM treatment, shown as 49 immune and signal transduction-related candidates were significantly enriched in some classical pathways, such as complement and coagulation cascades and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-protein kinase B (Akt) signaling pathway. To further reveal the protective mechanism of SPM to DCM, we predicted 14 overlapped transcription factors (TFs) and their co-factors involved in gene transcription regulation and showed gene interaction with Cytoscape. CONCLUSION The biomarkers and canonical pathways identified in this study may hold the key to understanding the mechanisms of DCM pathobiology and providing new targets for the therapeutic effect of SPM against DCM by targeting abnormal immune response and signal transduction.
Collapse
Affiliation(s)
- Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Mengting Sun
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiao Liang
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bingbing Che
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Ningning Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lili Shi, ; Ying Fan,
| | - Ying Fan
- Department of Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Lili Shi, ; Ying Fan,
| |
Collapse
|