1
|
Kobisi ANA, Balah MA, Hassan AR. Bioactivity of silverleaf nightshade (Solanum elaeagnifolium Cav.) berries parts against Galleria mellonella and Erwinia carotovora and LC-MS chemical profile of its potential extract. Sci Rep 2024; 14:18747. [PMID: 39138246 PMCID: PMC11322330 DOI: 10.1038/s41598-024-68961-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/30/2024] [Indexed: 08/15/2024] Open
Abstract
Natural products received much attention as an environmentally beneficial solution for pest management. Therefore, the extracts of invasive silverleaf nightshade (Solanum elaeagnifolium Cav.) weeds using their berries parts (seeds, peels and mucilage) supported by bioassay-guided fractionation were tested against both the greater wax moth (Galleria mellonella) and Erwinia carotovora pv. carotovora causes of the blackleg of potatoes. The seeds and peels of S. elaeagnifolium were successively extracted by maceration using dichloromethane (DCM), ethyl acetate (EtOAc), and ethanol (EtOH), respectively. While, its mucilage was extracted using EtOAc. The successive EtOH extract of the plant seeds had promising inhibition efficacy and the best minimal inhibition concentration (MIC) of 50 µg/ml against E. Carotovora amongst other extracts (DCM and EtOAc of the plant berries parts). Depending on dose response activity, EtOH extract had G. mellonella larval mortality and pupal duration rates (LC50; 198.30 and LC95; 1294.73 µg/ml), respectively. Additionally, this EtOH extract of seeds was fractionated using preparative TLC to three characteristic bands. The insecticidal and bacterial activities of these isolated bands (SEA, SEB, and SEC) were evaluated at a dose of 100 µg/ml, causing mortality by 48.48, 62.63 and 92.93% (G. mellonella larvae) and inhibition by 15.22, 0.00 and 31.66 mm (E. carotovora), respectively. Moreover, the separated major three bands were tentatively identified using LC-ESI-MS analysis revealing the presence of two phenolic acids; chlorogenic acid (SEA) and dicaffeoyl quinic acid (SEB) in addition to one steroidal saponin (SEC) annotated as borassoside E or yamoscin. Finally, the plant seeds' successive EtOH extract as well as its active constituents, exhibited potential broad-spectrum activity and the ability to participate in future pest management initiatives. A field study is also recommended to validate its bio-efficacy against selected pests and to develop its formulations.
Collapse
Affiliation(s)
| | - Mohamed A Balah
- Plants Protection Department, Desert Research Center, Cairo, Egypt.
| | - Ahmed R Hassan
- Medicinal and Aromatic Plants Department, Desert Research Center, Cairo, Egypt
| |
Collapse
|
2
|
Luo LL, Gui SH, Guo ZP, Feng JW, Smagghe G, Liu TX, Liu M, Yi TC. Efficient CRISPR/Cas9-mediated ebony gene editing in the greater wax moth Galleria mellonella. INSECT SCIENCE 2024. [PMID: 39121464 DOI: 10.1111/1744-7917.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 08/11/2024]
Abstract
The greater wax moth, Galleria mellonella (Lepidoptera, Pyralidae), is a major bee pest that inflicts considerable harm on beehives, leading to economic losses. It also serves as a valuable resource insect and a model organism. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system plays a crucial role in improving economic insect breeding and developing efficient agricultural pest management systems in Lepidoptera. However, the CRISPR/Cas9 protocols have not been developed for G. mellonella. Here, the Gmebony knockout (KO) strain was established using the CRISPR/Cas9 genome editing system. We obtained Gmebony KO strain in the G4 generation, which took approximately 10 months. When compared with wild-type, the head, notum, and the terminal abdominal surface of 1st to 4th instar larvae in the KO strain changed from yellow to brown, and these regions of the KO strain gradually transformed into a black color from the 5th instar larvae, and the body color of the adult moth in the KO strain changed to black. The developmental period of the early larval and the following larval instars extended. The embryonic hatchability of the Gmebony KO strain was significantly decreased. The pupal body weight of the Gmebony KO strain was not affected. The feasibility of the CRISPR/Cas9 methodology was validated by single-target editing of Gmebony. Our findings provide the first evidence that the ebony gene can serve as a pigmentation reference gene for genetic modifications of G. mellonella. Meanwhile, it can be utilized in the development of genome editing control strategies and for gene function analyses in G. mellonella.
Collapse
Affiliation(s)
- Li-Lin Luo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Shun-Hua Gui
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Zhen-Ping Guo
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Jia-Wei Feng
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Guy Smagghe
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
- Institute of Plant Health and Medicine, Guizhou University, Guiyang, China
| | - Man Liu
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang, China
| | - Tian-Ci Yi
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Gutierrez CDO, Almeida LHDO, Sardi JDCO, Almeida CV, de Oliveira CFR, Marchetto R, Crusca E, Buccini DF, Franco OL, Cardoso MH, Macedo MLR. Boosting the antibacterial potential of a linear encrypted peptide in a Kunitz-type inhibitor (ApTI) through physicochemical-guided approaches. Biochimie 2024:S0300-9084(24)00168-8. [PMID: 39029576 DOI: 10.1016/j.biochi.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/26/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Bacterial resistance has become a serious public health problem in recent years, thus encouraging the search for new antimicrobial agents. Here, we report an antimicrobial peptide (AMP), called PEPAD, which was designed based on an encrypted peptide from a Kunitz-type plant peptidase inhibitor. PEPAD was capable of rapidly inhibiting and eliminating numerous bacterial species at micromolar concentrations (from 4μM to 10 μM), with direct membrane activity. It was also observed that the peptide can act synergistically with ciprofloxacin and showed no toxicity in the G. mellonella in vivo assay. Circular dichroism assays revealed that the peptide's secondary structure adopts different scaffolds depending on the environment in which it is inserted. In lipids mimicking bacterial cell membranes, PEPAD adopts a more stable α-helical structure, which is consistent with its membrane-associated mechanism of action. When in contact with lipids mimicking mammalian cells, PEPAD adopts a disordered structure, losing its function and suggesting cellular selectivity. Therefore, these findings make PEPAD a promising candidate for future antimicrobial therapies with low toxicity to the host.
Collapse
Affiliation(s)
- Camila de Oliveira Gutierrez
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Luís Henrique de Oliveira Almeida
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Janaina de Cássia Orlandi Sardi
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Claudiane Vilharroel Almeida
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Caio Fernando Ramalho de Oliveira
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil
| | - Reinaldo Marchetto
- Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, São Paulo, Brazil
| | - Edson Crusca
- Universidade Estadual Paulista (UNESP), Instituto de Química, Araraquara, São Paulo, Brazil
| | | | - Octavio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil; S-Inova Biotech, Universidade Católica Dom Bosco, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Maria Lígia Rodrigues Macedo
- Laboratório de Purificação de Proteínas e Suas Funções Biológicas, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso Do Sul, Campo Grande, MS, Brazil.
| |
Collapse
|
4
|
Concilio M, Garcia Maset R, Lemonche LP, Kontrimas V, Song J, Rajendrakumar SK, Harrison F, Becer CR, Perrier S. Mechanism of Action of Oxazoline-Based Antimicrobial Polymers Against Staphylococcus aureus: In Vivo Antimicrobial Activity Evaluation. Adv Healthc Mater 2023; 12:e2301961. [PMID: 37522292 PMCID: PMC11468764 DOI: 10.1002/adhm.202301961] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Indexed: 08/01/2023]
Abstract
Antimicrobial-resistant pathogens have reached alarming levels, becoming one of the most pressing global health issues. Hence, new treatments are necessary for the fight against antimicrobial resistance. Synthetic nanoengineered antimicrobial polymers (SNAPs) have emerged as a promising alternative to antimicrobial peptides, overcoming some of their limitations while keeping their key features. Herein, a library of amphiphilic oxazoline-based SNAPs using cationic ring-opening polymerization (CROP) is designed. Amphipathic compounds with 70% cationic content exhibit the highest activity against clinically relevant Staphylococcus aureus isolates, maintaining good biocompatibility in vitro and in vivo. The mechanism of action of the lead compounds against S. aureus is assessed using various microscopy techniques, indicating cell membrane disruption, while the cell wall remains unaffected. Furthermore, a potential interaction of the compounds with bacterial DNA is shown, with possible implications on bacterial division. Finally, one of the compounds exhibits high efficacy in vivo in an insect infection model.
Collapse
Affiliation(s)
| | - Ramón Garcia Maset
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | | | - Vito Kontrimas
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
| | - Ji‐Inn Song
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | | | - Freya Harrison
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - C. Remzi Becer
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Sébastien Perrier
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Medical SchoolUniversity of WarwickCoventryCV4 7ALUK
- Faculty of Pharmacy and Pharmaceutical SciencesMonash UniversityParkvilleVictoria3052Australia
| |
Collapse
|
5
|
Hu C, Yang W. Alternatives to animal models to study bacterial infections. Folia Microbiol (Praha) 2023; 68:703-739. [PMID: 37632640 DOI: 10.1007/s12223-023-01084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/02/2023] [Indexed: 08/28/2023]
Abstract
Animal testing has made a significant and unequalled contribution to important discoveries and advancements in the fields of research, medicine, vaccine development, and drug discovery. Each year, millions of animals are sacrificed for various experiments, and this is an ongoing process. However, the debate on the ethical and sensible usage of animals in in vivo experimentation is equally important. The need to explore and adopt newer alternatives to animals so as to comply with the goal of reduce, refine, and replace needs attention. Besides the ever-increasing debate on ethical issues, animal research has additional drawbacks (need of trained labour, requirement of breeding area, lengthy protocols, high expenses, transport barriers, difficulty to extrapolate data from animals to humans, etc.). With this scenario, the present review has been framed to give a comprehensive insight into the possible alternative options worth exploring in this direction especially targeting replacements for animal models of bacterial infections. There have been some excellent reviews discussing on the alternate methods for replacing and reducing animals in drug research. However, reviews that discuss the replacements in the field of medical bacteriology with emphasis on animal bacterial infection models are purely limited. The present review discusses on the use of (a) non-mammalian models and (b) alternative systems such as microfluidic chip-based models and microdosing aiming to give a detailed insight into the prospects of these alternative platforms to reduce the number of animals being used in infection studies. This would enlighten the scientific community working in this direction to be well acquainted with the available new approaches and alternatives so that the 3R strategy can be successfully implemented in the field of antibacterial drug research and testing.
Collapse
Affiliation(s)
- Chengming Hu
- Queen Mary College, Nanchang University, Nanchang, China
| | - Wenlong Yang
- Department of Infectious Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
6
|
Kenyon C, Gestels Z, Vanbaelen T, Abdellati S, Van Den Bossche D, De Baetselier I, Xavier BB, Manoharan-Basil SS. Doxycycline PEP can induce doxycycline resistance in Klebsiella pneumoniae in a Galleria mellonella model of PEP. Front Microbiol 2023; 14:1208014. [PMID: 37711686 PMCID: PMC10498386 DOI: 10.3389/fmicb.2023.1208014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Background Four randomized controlled trials have now established that doxycycline post exposure (sex) prophylaxis (PEP) can reduce the incidence of chlamydia and syphilis in men who have sex with men. These studies have concluded that the risk of selecting for antimicrobial resistance is low. We evaluated this risk in vitro and in vivo using a Galleria mellonella infection model. Methods We evaluated how long it took for doxycycline resistance to emerge during passage on doxycycline containing agar plates in 4 species - Escherichia coli, Klebsiella pneumoniae, Neisseria gonorrhoeae and Neisseria subflava. We then assessed if K. pneumoniae could acquire resistance to doxycycline (and cross resistance to other antimicrobials) during intermittent exposure to doxycycline in a Galleria mellonella model of doxycycline PEP. Results In our passage experiments, we found that resistance first emerged in K. pneumoniae. By day 7 the K. pneumoniae MIC had increased from 2 mg/L to a median of 96 mg/L (IQR 64-96). Under various simulations of doxycycline PEP in the G. mellonella model, the doxycycline MIC of K. pneumoniae increased from 2 mg/L to 48 mg/L (IQR 48-84). Ceftriaxone and ciprofloxacin MICs increased over ten-fold. Whole genome sequencing revealed acquired mutations in ramR which regulates the expression of the AcrAB-TolC efflux pump. Conclusion Doxycycline PEP can select for doxycycline, ceftriaxone and ciprofloxacin resistance in K. pneumoniae in a G. mellonella model. The emergent ramR mutations were similar to those seen in circulating strains of K. pneumoniae. These findings suggest that we need to assess the effect of doxycycline PEP on resistance induction on a broader range of bacterial species than has hitherto been the case.
Collapse
Affiliation(s)
- Chris Kenyon
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Cape Town, South Africa
| | - Zina Gestels
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Thibaut Vanbaelen
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Said Abdellati
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Dorien Van Den Bossche
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Irith De Baetselier
- Clinical Reference Laboratory, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Basil Britto Xavier
- STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, Ziekenhuis Netwerk Antwerpen Middelheim, Antwerp, Belgium
| | | |
Collapse
|
7
|
Ferreira de Miranda J, Martins Pereira Belo G, Silva de Lima L, Alencar Silva K, Matsue Uekane T, Gonçalves Martins Gonzalez A, Naciuk Castelo Branco V, Souza Pitangui N, Freitas Fernandes F, Ribeiro Lima A. Arabic coffee infusion based kombucha: Characterization and biological activity during fermentation, and in vivo toxicity. Food Chem 2023; 412:135556. [PMID: 36708672 DOI: 10.1016/j.foodchem.2023.135556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/25/2023]
Abstract
In this study, arabic coffee infusion was used to produce a fermented beverage known as kombucha. The physicochemical, antioxidant and antimicrobial activities, as well as in vivo toxicity were evaluate throughout 21 days of fermentation. Reduction in pH and sugar levels were observed throughout the fermentation period. There was no significant difference in the content of total phenolic compounds between the unfermented and fermented beverage, nor between the fermentation times, as well as in the antioxidant activity. The 5-caffeoylquinic acid was identified at all fermentation times evaluated, and no significant difference was observed regarding its concentration. It showed antibacterial and antifungal activity against all strains tested. No toxic effect of the beverages was observed in the in vivo model (Galleria mellonella) studied. These results demonstrated that coffee infusion is a possible alternative for kombucha production since the physicochemical changes prove the metabolic activity of Symbiotic Culture of Bacteria and Yeast.
Collapse
Affiliation(s)
| | | | - Laís Silva de Lima
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil
| | - Kelly Alencar Silva
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil
| | - Thais Matsue Uekane
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil
| | | | | | - Nayla Souza Pitangui
- Department of Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, SP, Brazil
| | - Fabrício Freitas Fernandes
- Federal Institute of Education, Science and Technology of Mato Grosso (IFMT), Juína Campus, Linha J, s/n, Setor de Chácaras, CEP: 78320-000, Juína, MT, Brazil
| | - Adriene Ribeiro Lima
- Department of Bromatology, Pharmacy School, Fluminense Federal University, Niterói, RJ, Brazil.
| |
Collapse
|
8
|
Tonk-Rügen M, Vilcinskas A, Wagner AE. Insect Models in Nutrition Research. Biomolecules 2022; 12:1668. [PMID: 36421682 PMCID: PMC9687203 DOI: 10.3390/biom12111668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 09/08/2024] Open
Abstract
Insects are the most diverse organisms on earth, accounting for ~80% of all animals. They are valuable as model organisms, particularly in the context of genetics, development, behavior, neurobiology and evolutionary biology. Compared to other laboratory animals, insects are advantageous because they are inexpensive to house and breed in large numbers, making them suitable for high-throughput testing. They also have a short life cycle, facilitating the analysis of generational effects, and they fulfil the 3R principle (replacement, reduction and refinement). Many insect genomes have now been sequenced, highlighting their genetic and physiological similarities with humans. These factors also make insects favorable as whole-animal high-throughput models in nutritional research. In this review, we discuss the impact of insect models in nutritional science, focusing on studies investigating the role of nutrition in metabolic diseases and aging/longevity. We also consider food toxicology and the use of insects to study the gut microbiome. The benefits of insects as models to study the relationship between nutrition and biological markers of fitness and longevity can be exploited to improve human health.
Collapse
Affiliation(s)
- Miray Tonk-Rügen
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Andreas Vilcinskas
- Institute for Insect Biotechnology, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325 Frankfurt, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Branch of Bioresources, Ohlebergsweg 12, 35392 Giessen, Germany
| | - Anika E. Wagner
- Institute of Nutritional Science, Justus Liebig University, Wilhelmstrasse 20, 35392 Giessen, Germany
| |
Collapse
|
9
|
Garcia Maset R, Hapeshi A, Hall S, Dalgliesh RM, Harrison F, Perrier S. Evaluation of the Antimicrobial Activity in Host-Mimicking Media and In Vivo Toxicity of Antimicrobial Polymers as Functional Mimics of AMPs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32855-32868. [PMID: 35819416 PMCID: PMC9335526 DOI: 10.1021/acsami.2c05979] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Activity tests for synthetic antimicrobial compounds are often limited to the minimal inhibitory concentration assay using standard media and bacterial strains. In this study, a family of acrylamide copolymers that act as synthetic mimics of antimicrobial peptides were synthesized and shown to have a disruptive effect on bacterial membranes and structural integrity through microscopy techniques and membrane polarization experiments. The polymers were tested for their antimicrobial properties using media that mimic clinically relevant conditions. Additionally, their activity was compared in two different strains of the Gram-positive bacterium Staphylococcus aureus and the Gram-negative bacterium Pseudomonas aeruginosa. We showed that the medium composition can have an important influence on the polymer activity as there was a considerable reduction in minimal inhibitory concentrations against S. aureus grown in synthetic wound fluid (SWF), and against P. aeruginosa grown in synthetic cystic fibrosis sputum media (SCFM), compared to the concentrations in standard testing media. In contrast, we observed a complete loss of activity against P. aeruginosa in the serum-containing SWF. Finally, we made use of an emerging invertebrate in vivo model, using Galleria mellonella larvae, to assess toxicity of the polymeric antimicrobials, showing a good correlation with cell line toxicity measurements and demonstrating its potential in the evaluation of novel antimicrobial materials.
Collapse
Affiliation(s)
| | - Alexia Hapeshi
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Stephen Hall
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0DE, U.K.
| | - Robert M. Dalgliesh
- ISIS
Neutron and Muon Source, Rutherford Appleton
Laboratory, Didcot OX11 0DE, U.K.
| | - Freya Harrison
- School
of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K.
| | - Sébastien Perrier
- Warwick
Medical School, University of Warwick, Coventry CV4 7AL, U.K.
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
- Faculty
of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| |
Collapse
|
10
|
Duman Erbaş E, Gwokyalya R, Altuntaş H, Kutrup B. Screening the immunotoxicity of different food preservative agents on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae. Drug Chem Toxicol 2022:1-11. [PMID: 35758106 DOI: 10.1080/01480545.2022.2091589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Immunotoxic effects of sodium benzoate (SB, E211), sodium nitrate (SNa, E251), and sodium nitrite (SNi, E250), a few of the most common food preservatives, on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae) larvae were investigated in this study. The last instar larvae were used for all experimental analyses. For this purpose, median lethal doses of SB, SNa, and SNi were applied to the larvae by the force-feeding method. We found that force-feeding G. mellonella larvae with SB, SNa, and SNi significantly reduced the larval total hemocyte counts, prohemocyte, and granulocyte ratios but increased plasmatocyte, spherulocyte, and oenocyte ratios, as well as the hemocyte mitotic indices and micronucleus frequency. The spreading ability of hemocytes and hemocyte-mediated immune responses were lower in the SB, SNa-, and SNi-treated larval groups compared to controls. Apoptotic indices were higher in all larval groups treated with food preservatives, but increments in necrotic indices were only significantly higher in SNi-treated larvae compared to controls. Our research shows that SB, SNa, and SNi have immunotoxic and cytotoxic potential on G. mellonella larvae. Thus, we suggest that G. mellonella larvae can be used as preliminary in vivo models to screen the immunotoxic effects of food preservative agents.
Collapse
Affiliation(s)
- Emine Duman Erbaş
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| | - Rehemah Gwokyalya
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Hülya Altuntaş
- Department of Biology, Faculty of Science, Eskisehir Technical University, Eskişehir, Turkey
| | - Bilal Kutrup
- Department of Biology, Faculty of Science, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
11
|
Pegorin Brasil GS, de Barros PP, Miranda MCR, de Barros NR, Junqueira JC, Gomez A, Herculano RD, de Mendonça RJ. Natural latex serum: characterization and biocompatibility assessment using Galleria mellonella as an alternative in vivo model. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:705-726. [PMID: 34927570 DOI: 10.1080/09205063.2021.2014027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Natural latex serum (NLS) is one of the natural rubber latex fractions from Hevea brasiliensis tree, which is formed by centrifuged serum and is composed of proteins, acids, nucleotides, salts and carbohydrates. The proteins present in NLS have demonstrated several interesting biological properties, including angiogenic, healing, osteogenic, anti-inflammatory, antimicrobial, in addition to inducing neovascularization, bone formation and osseointegration. Thus, we proposed to characterize NLS by physicochemical techniques and to investigate the biocompatibility by toxicological assays and safety test in Galleria mellonella. Infrared spectrum showed vibrational bands characteristic of amide I, II and III that are linked to the protein content, which was confirmed by the High Performance Liquid Chromatography profile and by the Electrophoresis analysis. This material did not exhibit hemolytic (rate <0.5%) and cytotoxic effects (viability >70%) and was able to enhance the proliferation of fibroblasts (>600%) after 3 days. The pronounced proliferative effect observed in fibroblast cells can be explained by the presence of the fibroblast growth factor (FGF) like protein revealed by the Western blot test. Moreover, NLS did not provoke toxic effects (survival ∼ 80%) on the G. mellonella model, indicating that it is a biocompatible and safe material.
Collapse
Affiliation(s)
- Giovana Sant'Ana Pegorin Brasil
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
- Department of Biotechnology and Bioprocess Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
- Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte (UFRN), Caico, Rio Grande do Norte, Brazil
| | | | | | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos, São Paulo, Brazil
| | - Alejandro Gomez
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Rondinelli Donizetti Herculano
- Department of Biotechnology and Bioprocess Engineering, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ricardo José de Mendonça
- Department of Biochemistry, Pharmacology and Physiology, Federal University of Triangulo Mineiro (UFTM), Uberaba, Minas Gerais, Brazil
| |
Collapse
|
12
|
Singulani JL, Scorzoni L, da Silva PB, Nazaré AC, Polaquini CR, Baveloni FG, Chorilli M, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJ. Antifungal activity and toxicity of an octyl gallate-loaded nanostructured lipid system on cells and nonmammalian animals. Future Microbiol 2022; 17:281-291. [PMID: 35152707 DOI: 10.2217/fmb-2021-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Octyl gallate (OG) loaded into a nanostructured lipid system (NLS) was tested for antifungal activity and in vitro and in vivo toxicity. Methods & Results: The features of NLS-OG were analyzed by dynamic light scattering and showed adequate size (132.1 nm) and homogeneity (polydispersity index = 0.200). OG was active against Paraccoccidioides spp., and NLS-OG did not affect antifungal activity. NLS-OG demonstrated reduced toxicity to lung cells and zebrafish embryos compared with OG, whereas NLS was toxic to hepatic cells. OG and NLS-OG did not show toxicity in a Galleria mellonella model at 20 mg/kg. All toxic concentrations were superior to MIC (antifungal activity). Conclusion: These results indicate good anti-Paracoccidioides activity and low toxicity of NLS-OG.
Collapse
Affiliation(s)
- Junya L Singulani
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, 31270-901, Brazil
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil.,Programa de Pós-Graduação em Enfermagem, Guarulhos University, Guarulhos, São Paulo, 07023-070, Brazil
| | - Patricia B da Silva
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Ana C Nazaré
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Carlos R Polaquini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Franciele G Baveloni
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Luis O Regasini
- Humanities and Exact Sciences, Institute of Biosciences, São Paulo State University, São José do Rio Preto, São Paulo, 15054-000, Brazil
| | - Ana M Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| | - Maria Js Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, São Paulo, 14800-903, Brazil
| |
Collapse
|
13
|
O’Shaughnessy M, Piatek M, McCarron P, McCann M, Devereux M, Kavanagh K, Howe O. In Vivo Activity of Metal Complexes Containing 1,10-Phenanthroline and 3,6,9-Trioxaundecanedioate Ligands against Pseudomonas aeruginosa Infection in Galleria mellonella Larvae. Biomedicines 2022; 10:biomedicines10020222. [PMID: 35203432 PMCID: PMC8869450 DOI: 10.3390/biomedicines10020222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-resistant Pseudomonas aeruginosa is rapidly developing resulting in a serious global threat. Immunocompromised patients are specifically at risk, especially those with cystic fibrosis (CF). Novel metal complexes incorporating 1,10-phenanthroline (phen) ligands have previously demonstrated antibacterial and anti-biofilm effects against resistant P. aeruginosa from CF patients in vitro. Herein, we present the in vivo efficacy of {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Cu-tdda-phen), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (Mn-tdda-phen) and [Ag2(3,6,9-tdda)(phen)4]·EtOH (Ag-tdda-phen) (tddaH2 = 3,6,9-trioxaundecanedioic acid). Individual treatments of these metal-tdda-phen complexes and in combination with the established antibiotic gentamicin were evaluated in vivo in larvae of Galleria mellonella infected with clinical isolates and laboratory strains of P. aeruginosa. G. mellonella were able to tolerate all test complexes up to 10 µg/larva. In addition, the immune response was affected by stimulation of immune cells (hemocytes) and genes that encode for immune-related peptides, specifically transferrin and inducible metallo-proteinase inhibitor. The amalgamation of metal-tdda-phen complexes and gentamicin further intensified this response at lower concentrations, clearing a P. aeruginosa infection that were previously resistant to gentamicin alone. Therefore this work highlights the anti-pseudomonal capabilities of metal-tdda-phen complexes alone and combined with gentamicin in an in vivo model.
Collapse
Affiliation(s)
- Megan O’Shaughnessy
- School of Biological and Health Sciences, Technological University Dublin-City Campus, D07 ADY7 Dublin, Ireland;
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - Pauraic McCarron
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Malachy McCann
- Chemistry Department, Maynooth University, W23 F2H6 Kildare, Ireland;
| | - Michael Devereux
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, W23 F2H6 Kildare, Ireland;
- Correspondence: (K.K.); (O.H.)
| | - Orla Howe
- School of Biological and Health Sciences, Technological University Dublin-City Campus, D07 ADY7 Dublin, Ireland;
- Centre for Biomimetic and Therapeutic Research, FOCAS Research Institute, Technological University Dublin-City Campus, D08 CKP1 Dublin, Ireland; (P.M.); (M.D.)
- Correspondence: (K.K.); (O.H.)
| |
Collapse
|
14
|
Cebrián R, Belmonte-Reche E, Pirota V, de Jong A, Morales JC, Freccero M, Doria F, Kuipers OP. G-Quadruplex DNA as a Target in Pathogenic Bacteria: Efficacy of an Extended Naphthalene Diimide Ligand and Its Mode of Action. J Med Chem 2021; 65:4752-4766. [PMID: 34928608 PMCID: PMC8958502 DOI: 10.1021/acs.jmedchem.1c01905] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Guanidine DNA quadruplex
(G4-DNA) structures convey a distinctive
layer of epigenetic information that is critical for regulating key
biological activities and processes as transcription, replication,
and repair in living cells. The information regarding their role and
use as therapeutic drug targets in bacteria is still scarce. Here,
we tested the biological activity of a G4-DNA ligand library, based
on the naphthalene diimide (NDI) pharmacophore, against both Gram-positive
and Gram-negative bacteria. For the best compound identified, NDI-10, a different action mechanism was described for Gram-positive
or negative bacteria. This asymmetric activity profile could be related
to the different prevalence of putative G4-DNA structures in each
group, the influence that they can exert on gene expression, and the
different roles of the G4 structures in these bacteria, which seem
to promote transcription in Gram-positive bacteria and repress transcription
in Gram-negatives.
Collapse
Affiliation(s)
- Rubén Cebrián
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Efres Belmonte-Reche
- Advanced (magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Nanomedicine unit, Avenida Mestre José Veiga, s/n 4715-310 Braga, Portugal
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia (PV), Italy
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| | - Juan Carlos Morales
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina, CSIC, PTS Granada, Avda. del Conocimiento, 17, 18016 Armilla, Granada, Spain
| | - Mauro Freccero
- Department of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia (PV), Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, via Taramelli 10, I-27100 Pavia (PV), Italy
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747AG Groningen, The Netherlands
| |
Collapse
|
15
|
Piatek M, Sheehan G, Kavanagh K. Galleria mellonella: The Versatile Host for Drug Discovery, In Vivo Toxicity Testing and Characterising Host-Pathogen Interactions. Antibiotics (Basel) 2021; 10:antibiotics10121545. [PMID: 34943757 PMCID: PMC8698334 DOI: 10.3390/antibiotics10121545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Larvae of the greater wax moth, Galleria mellonella, are a convenient in vivo model for assessing the activity and toxicity of antimicrobial agents and for studying the immune response to pathogens and provide results similar to those from mammals. G. mellonella larvae are now widely used in academia and industry and their use can assist in the identification and evaluation of novel antimicrobial agents. Galleria larvae are inexpensive to purchase and house, easy to inoculate, generate results within 24–48 h and their use is not restricted by legal or ethical considerations. This review will highlight how Galleria larvae can be used to assess the efficacy of novel antimicrobial therapies (photodynamic therapy, phage therapy, metal-based drugs, triazole-amino acid hybrids) and for determining the in vivo toxicity of compounds (e.g., food preservatives, ionic liquids) and/or solvents (polysorbate 80). In addition, the disease development processes are associated with a variety of pathogens (e.g., Staphylococcus aureus, Listeria monocytogenes, Aspergillus fumigatus, Madurella mycotomatis) in mammals are also present in Galleria larvae thus providing a simple in vivo model for characterising disease progression. The use of Galleria larvae offers many advantages and can lead to an acceleration in the development of novel antimicrobials and may be a prerequisite to mammalian testing.
Collapse
|
16
|
Emery H, Traves W, Rowley AF, Coates CJ. The diarrhetic shellfish-poisoning toxin, okadaic acid, provokes gastropathy, dysbiosis and susceptibility to bacterial infection in a non-rodent bioassay, Galleria mellonella. Arch Toxicol 2021; 95:3361-3376. [PMID: 34374792 PMCID: PMC8448676 DOI: 10.1007/s00204-021-03132-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Diarrhetic shellfish-poisoning (DSP) toxins such as okadaic acid and dinophysistoxins harm the human gastrointestinal tract, and therefore, their levels are regulated to an upper limit of 160 μg per kg tissue to protect consumers. Rodents are used routinely for risk assessment and studies concerning mechanisms of toxicity, but there is a general move toward reducing and replacing vertebrates for these bioassays. We have adopted insect larvae of the wax moth Galleria mellonella as a surrogate toxicology model. We treated larvae with environmentally relevant doses of okadaic acid (80–400 μg/kg) via intrahaemocoelic injection or gavage to determine marine toxin-related health decline: (1) whether pre-exposure to a sub-lethal dose of toxin (80 μg/kg) enhances susceptibility to bacterial infection, or (2) alters tissue pathology and bacterial community (microbiome) composition of the midgut. A sub-lethal dose of okadaic acid (80 μg/kg) followed 24 h later by bacterial inoculation (2 × 105Escherichia coli) reduced larval survival levels to 47%, when compared to toxin (90%) or microbial challenge (73%) alone. Histological analysis of the midgut depicted varying levels of tissue disruption, including nuclear aberrations associated with cell death (karyorrhexis, pyknosis), loss of organ architecture, and gross epithelial displacement into the lumen. Moreover, okadaic acid presence in the midgut coincided with a shift in the resident bacterial population over time in that substantial reductions in diversity (Shannon) and richness (Chao-1) indices were observed at 240 μg toxin per kg. Okadaic acid-induced deterioration of the insect alimentary canal resembles those changes reported for rodent bioassays.
Collapse
Affiliation(s)
- Helena Emery
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - William Traves
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Andrew F Rowley
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, Wales, SA2 8PP, UK.
| |
Collapse
|
17
|
Morka KD, Wernecki M, Kędziora A, Książczyk M, Dudek B, Gerasymchuk Y, Lukowiak A, Bystroń J, Bugla-Płoskońska G. The Impact of Graphite Oxide Nanocomposites on the Antibacterial Activity of Serum. Int J Mol Sci 2021; 22:7386. [PMID: 34299005 PMCID: PMC8304721 DOI: 10.3390/ijms22147386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/21/2022] Open
Abstract
Nanoparticles can interact with the complement system and modulate the inflammatory response. The effect of these interactions on the complement activity strongly depends on physicochemical properties of nanoparticles. The interactions of silver nanoparticles with serum proteins (particularly with the complement system components) have the potential to significantly affect the antibacterial activity of serum, with serious implications for human health. The aim of the study was to assess the influence of graphite oxide (GO) nanocomposites (GO, GO-PcZr(Lys)2-Ag, GO-Ag, GO-PcZr(Lys)2) on the antibacterial activity of normal human serum (NHS), serum activity against bacteria isolated from alveoli treated with nanocomposites, and nanocomposite sensitivity of bacteria exposed to serum in vitro (using normal human serum). Additionally, the in vivo cytotoxic effect of the GO compounds was determined with application of a Galleria mellonella larvae model. GO-PcZr(Lys)2, without IR irradiation enhance the antimicrobial efficacy of the human serum. IR irradiation enhances bactericidal activity of serum in the case of the GO-PcZr(Lys)2-Ag sample. Bacteria exposed to nanocomposites become more sensitive to the action of serum. Bacteria exposed to serum become more sensitive to the GO-Ag sample. None of the tested GO nanocomposites displayed a cytotoxicity towards larvae.
Collapse
Affiliation(s)
- Katarzyna Dorota Morka
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Maciej Wernecki
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Anna Kędziora
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Marta Książczyk
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Bartłomiej Dudek
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| | - Yuriy Gerasymchuk
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wrocław, Poland; (Y.G.); (A.L.)
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-422 Wrocław, Poland; (Y.G.); (A.L.)
| | - Jarosław Bystroń
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, University of Environmental and Life Sciences, C. K. Norwida 31, 50-375 Wrocław, Poland;
| | - Gabriela Bugla-Płoskońska
- Department of Microbiology, Faculty of Biological Sciences, University of Wroclaw, S. Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (M.W.); (A.K.); (M.K.); (B.D.)
| |
Collapse
|
18
|
Kombucha beverage from non-conventional edible plant infusion and green tea: Characterization, toxicity, antioxidant activities and antimicrobial properties. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102032] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Emery H, Butt TM, Coates CJ. Nutraceutical intervention protects against bacterial and chemical-induced gastrotoxicity in a non-mammalian model, Galleria mellonella. Food Chem Toxicol 2021; 154:112354. [PMID: 34146620 DOI: 10.1016/j.fct.2021.112354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/18/2022]
Abstract
Preparations of the fungus Cordyceps sinensis and bovine colostrum are considered nutraceuticals due to their anti-inflammatory, repair and gut alimentation properties in mammalian models. To reduce the reliance on rodents in routine experimentation, we gauged the capacity of nutraceuticals to alleviate gastric damage in an insect surrogate, Galleria mellonella. Larvae were reared on standard or supplemented diets - 10% (w/w) colostrum, 10% (w/w) C. sinensis, or 5% + 5% each - prior to receiving an oral dose of the NSAID indomethacin (30 mg/kg) or challenged with the bacterial pathogen Campylobacter jejuni (1-3 x106) via two inoculation routes. Insects reared on a cordyceps-supplemented diet proved most resistant to indomethacin-induced gut leakiness, and displayed stable health indices after C. jejuni challenge (~77% survival). Insects reared on a colostrum-supplemented diet also showed recalcitrance in the gut, but were more sensitive to C. jejuni when injected directly into the body cavity (50% survival). The nutraceutical blend yielded improved health outcomes when compared to the standard diet, but was not as effective as either nutraceutical alone. Our findings represent clear evidence that insects were more resistant to known chemical and microbial agitators when reared on nutraceutical-supplemented diets - toxicological endpoints that are shared with vertebrate studies.
Collapse
Affiliation(s)
- Helena Emery
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Tariq M Butt
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Christopher J Coates
- Department of Biosciences, Faculty of Science and Engineering, Swansea University, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
20
|
Mannix-Fisher E, McLean S. The antimicrobial activity of silver acetate against Acinetobacter baumannii in a Galleria mellonella infection model. PeerJ 2021; 9:e11196. [PMID: 33981496 PMCID: PMC8071075 DOI: 10.7717/peerj.11196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background The increasing prevalence of bacterial infections that are resistant to antibiotic treatment has caused the scientific and medical communities to look for alternate remedies aimed at prevention and treatment. In addition to researching novel antimicrobials, there has also been much interest in revisiting some of the earliest therapies used by man. One such antimicrobial is silver; its use stretches back to the ancient Greeks but interest in its medicinal properties has increased in recent years due to the rise in antibiotic resistance. Currently antimicrobial silver is found in everything from lunch boxes to medical device implants. Though much is claimed about the antimicrobial efficacy of silver salts the research in this area is mixed. Methods Herein we investigated the efficacy of silver acetate against a carbapenem resistant strain of Acinetobacter baumannii to determine the in vitro activity of this silver salt against a World Health Organisation designated category I critical pathogen. Furthermore, we use the Galleria mellonella larvae model to assess toxicity of the compound and its efficacy in treating infections in a live host. Results We found that silver acetate can be delivered safely to Galleria at medically relevant and antimicrobial levels without detriment to the larvae and that administration of silver acetate to an infection model significantly improved survival. This demonstrates the selective toxicity of silver acetate for bacterial pathogens but also highlights the need for administration of well-defined doses of the antimicrobial to provide an efficacious treatment.
Collapse
Affiliation(s)
- Eden Mannix-Fisher
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
21
|
Moya-Andérico L, Vukomanovic M, Cendra MDM, Segura-Feliu M, Gil V, Del Río JA, Torrents E. Utility of Galleria mellonella larvae for evaluating nanoparticle toxicology. CHEMOSPHERE 2021; 266:129235. [PMID: 33316472 DOI: 10.1016/j.chemosphere.2020.129235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 05/27/2023]
Abstract
The use of nanoparticles in consumer products is currently on the rise, so it is important to have reliable methods to predict any associated toxicity effects. Traditional in vitro assays fail to mimic true physiological responses of living organisms against nanoparticles whereas murine in vivo models are costly and ethically controversial. For these reasons, this study aimed to evaluate the efficacy of Galleria mellonella as an alternative, non-rodent in vivo model for examining nanoparticle toxicity. Silver, selenium, and functionalized gold nanoparticles were synthesized, and their toxicity was assessed in G. mellonella larvae. The degree of acute toxicity effects caused by each type of NP was efficiently detected by an array of indicators within the larvae: LD50 calculation, hemocyte proliferation, NP distribution, behavioral changes, and histological alterations. G. mellonella larvae are proposed as a nanotoxicological model that can be used as a bridge between in vitro and in vivo murine assays in order to obtain better predictions of NP toxicity.
Collapse
Affiliation(s)
- Laura Moya-Andérico
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marija Vukomanovic
- Advanced Materials Department, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Maria Del Mar Cendra
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Miriam Segura-Feliu
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Vanessa Gil
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - José A Del Río
- Molecular and Cellular Neurobiotechnology, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Department of Cell Biology, Physiology and Immunology, Universitat de Barcelona, Barcelona, Spain; Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections: Antimicrobial Therapies group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Microbiology Section, Department of Genetics, Microbiology, and Statistics, Biology Faculty, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
22
|
Hesketh-Best PJ, Mouritzen MV, Shandley-Edwards K, Billington RA, Upton M. Galleria mellonella larvae exhibit a weight-dependent lethal median dose when infected with methicillin-resistant Staphylococcus aureus. Pathog Dis 2021; 79:6121426. [PMID: 33503238 DOI: 10.1093/femspd/ftab003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Galleria mellonella is a recognised model to study antimicrobial efficacy; however, standardisation across the scientific field and investigations of methodological components are needed. Here, we investigate the impact of weight on mortality following infection with Methicillin-resistant Staphylococcus aureus (MRSA). Larvae were separated into six weight groups (180-300 mg at 20 mg intervals) and infected with a range of doses of MRSA to determine the 50% lethal dose (LD50), and the 'lipid weight' of larvae post-infection was quantified. A model of LD50 values correlated with weight was developed. The LD50 values, as estimated by our model, were further tested in vivo to prove our model. We establish a weight-dependent LD50 in larvae against MRSA and demonstrate that G. mellonella is a stable model within 180-260 mg. We present multiple linear models correlating weight with: LD50, lipid weight, and larval length. We demonstrate that the lipid weight is reduced as a result of MRSA infection, identifying a potentially new measure in which to understand the immune response. Finally, we demonstrate that larval length can be a reasonable proxy for weight. Refining the methodologies in which to handle and design experiments involving G. mellonella, we can improve the reliability of this powerful model.
Collapse
Affiliation(s)
- Poppy J Hesketh-Best
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Michelle V Mouritzen
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| | - Kayleigh Shandley-Edwards
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Richard A Billington
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, University of Plymouth, Derriford Research Facility, Plymouth Science Park, Plymouth, PL6 8BT, UK
| |
Collapse
|
23
|
Almeida TSD, Lopes Neto JJ, Almeida Filho LCP, Marques DM, Gonçalves de Lima RDC, Nunes RGDS, Silva JRDL, Kamdem JP, Almeida LLD, Souza JADCR, Farias DF, Carvalho AFU. Toxicological assessment of a bioactive extract from Triplaris gardneriana Wedd. seeds using alternative models. Drug Chem Toxicol 2020; 45:1687-1697. [PMID: 33334193 DOI: 10.1080/01480545.2020.1856863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The Triplaris gardneriana Wedd. seeds extract has great therapeutic potential due to numerous biological activities such as antioxidant, antibacterial and anti-inflammatory, which are associated with phenolic content. Although this herbal preparation has shown many benefits, recently their toxicity profile has begun to be explored. In this present study, the toxic effects of T. gardneriana seeds ethanolic extract (EETg) on biological systems of different taxonomical groups and levels of complexity (from cell culture to lower vertebrates) were assessed, through a variety of viability and toxicological assays. It was found that EETg did not impair the Saccharomyces cerevisiae growth at the highest tested concentration (200 µg/mL), and no toxicant evidence was observed in Aedes aegypti larvae or in Drosophila melanogaster adult stage. Contrarily, the extract reduced the viability of undifferentiated Caco-2 cells (250 µg/mL, 40% of viable cells), but did not affect differentiated ones. The embryotoxicity in Danio rerio model showed a LC50 of 7.41 mg/L (95% confidence interval, 4.78 - 11.49 mg/L). EETg did not show signs of toxicity in the majority of the models used, but lethality and malformations in zebrafish embryos occurred. Further analyses are needed to better understand the selective toxicity mechanism of EETg on zebrafish, as well as whether the toxic effects happen in higher vertebrates.
Collapse
Affiliation(s)
- Thiago Silva de Almeida
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | - José Joaquim Lopes Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil
| | | | | | | | | | | | - Jean Paul Kamdem
- Department of Biological Sciences, Regional University of Cariri, Crato, Brazil
| | | | | | - Davi Felipe Farias
- Department of Molecular Biology, Federal University of Paraiba, João Pessoa, Brazil
| | - Ana Fontenele Urano Carvalho
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Fortaleza, Brazil.,Department of Biology, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
24
|
Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence 2020; 11:238-246. [PMID: 32079502 PMCID: PMC7051127 DOI: 10.1080/21505594.2020.1731137] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Insects are a highly successful group of animals that inhabit almost every habitat and environment on Earth. Part of their success is due to a rapid and highly effective immune response that identifies, inactivates, and eliminates pathogens. Insects possess an immune system that shows many similarities to the innate immune system of vertebrates, but they do not possess an equivalent system to the antibody-mediated adaptive immune response of vertebrates. However, some insect do display a process known as immune priming in which prior exposure to a sublethal dose of a pathogen, or pathogen-derived material, leads to an elevation in the immune response rendering the insect resistant to a subsequent lethal infection a short time later. This process is mediated by an increase in the density of circulating hemocytes and increased production of antimicrobial peptides. Immune priming is an important survival strategy for certain insects while other insects that do not show this response may have colony-level behaviors that may serve to limit the success of pathogens. Insects are now widely used as in vivo models for studying microbial pathogens of humans and for assessing the in vivo efficacy of antimicrobial agents. Knowledge of the process of immune priming in insects is essential in these applications as it may operate and augment the perceived in vivo antimicrobial activity of novel compounds.Abbreviations: 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate; SBC3: antimicrobial peptides; AMPs: dorsal-related immunity factor; DIF: Down syndrome cell adhesion molecule; Dscam: Lipopolysaccharide; LPS: Pathogen-associated molecular patterns; PAMPS: Patterns recognition receptors; PRR: Prophenoloxidase; PO: Toll-like receptors; TLRs: Toll/IL-1R; TIR, Transgenerational Immune Priming; TgIP: Tumor necrosis factor-α; TNF-α.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gemma Farrell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
25
|
A toxin complex protein from Photorhabdus akhurstii conferred oral insecticidal activity against Galleria mellonella by targeting the midgut epithelium. Microbiol Res 2020; 242:126642. [PMID: 33191102 DOI: 10.1016/j.micres.2020.126642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/16/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
The nematode-bacterium pair Heterorhabditis indica-Photorhabdus akhurstii is a malleable model system to investigate mutualistic relations. A number of toxins produced by P. akhurstii allow the bacterium to kill the insect host. However, a few of these heterologously expressed toxins are orally active against different insects which possibly caused neglected attention to Photorhabdus toxins compared to Bt (Bacillus thuringiensis). In the current study, a functional subunit of orally active toxin complex (Tc) protein, TcaB (63 kDa), isolated from two strains of P. akhurstii namely IARI-SGHR2 and IARI-SGMS1, was tested for biological activity against Galleria mellonella. A force feeding-based administration of the toxin translated into LD50 values of 45.63-58.90 ng/g which was even lower compared to injection LD50 values (51.48-64.30 ng/g) at 48 h after inoculation. An oral uptake of 500 ng toxin caused extensive gut damage in G. mellonella during 6-24 h incubation period coupled with a gradual disruption of gut integrity leading to escape of TcaB into the hemocoel. This finding was supported by the cytotoxic and immune-stimulatory effect of TcaB in the insect hemocoel at 6-24 h after force feeding. The circulatory hemocyte numbers and cell viability was markedly reduced to 0.66-0.68 × 106 ml-1 and 49-52 %, respectively, in TcaB force fed insect at 24 h, compared to control (2.55 × 106 ml-1; 100 %). The hemolymph phenoloxidase (PO) activity was elevated by 10.2-fold in force fed larvae than control at 24 h. An in silico docking study revealed that TcaB putatively interacts with a number of G. mellonella receptor proteins in order to become a gut-active toxin. Present research reinforces the potential of gut-active Photorhabdus toxins for their inclusion in sustainable insect management tactics and strengthens the existing Bt-dominated management repository.
Collapse
|
26
|
Piatek M, Sheehan G, Kavanagh K. UtilisingGalleria mellonella larvae for studying in vivo activity of conventional and novel antimicrobial agents. Pathog Dis 2020; 78:5917982. [DOI: 10.1093/femspd/ftaa059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/02/2020] [Indexed: 12/15/2022] Open
Abstract
ABSTRACTThe immune response of insects displays many structural and functional similarities to the innate immune response of mammals. As a result of these conserved features, insects may be used for evaluating microbial virulence or for testing the in vivo efficacy and toxicity of antimicrobial compounds and results show strong similarities to those from mammals. Galleria mellonella larvae are widely used in this capacity and have the advantage of being easy to use, inexpensive to purchase and house, and being free from the ethical and legal restrictions that relate to the use of mammals in these tests. Galleria mellonella larvae may be used to assess the in vivo toxicity and efficacy of novel antimicrobial compounds. A wide range of antibacterial and antifungal therapies have been evaluated in G. mellonella larvae and results have informed subsequent experiments in mammals. While insect larvae are a convenient and reproducible model to use, care must be taken in their use to ensure accuracy of results. The objective of this review is to provide a comprehensive account of the use of G. mellonella larvae for assessing the in vivo toxicity and efficacy of a wide range of antibacterial and antifungal agents.
Collapse
Affiliation(s)
- Magdalena Piatek
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| | - Gerard Sheehan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Kevin Kavanagh
- SSPC Pharma Research Centre, Department of Biology, Maynooth University, Co. Kildare W23 F2H6, Ireland
| |
Collapse
|
27
|
Reis SVD, Ribeiro NS, Rocha DA, Fortes IS, Trentin DDS, Andrade SFD, Macedo AJ. N 4 -benzyl-N 2 -phenylquinazoline-2,4-diamine compound presents antibacterial and antibiofilm effect against Staphylococcus aureus and Staphylococcus epidermidis. Chem Biol Drug Des 2020; 96:1372-1379. [PMID: 32542979 DOI: 10.1111/cbdd.13745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 05/16/2020] [Accepted: 05/31/2020] [Indexed: 01/09/2023]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are the main agents involved with implant-related infections. Their ability to adhere to medical devices with subsequent biofilm formation is crucial to the development of these infections. Herein, we described the antibacterial and antibiofilm activities of a quinazoline-based compound, N4 -benzyl-N2 -phenylquinazoline-2,4-diamine, against both biofilm-forming pathogens. The minimum inhibitory concentrations (MIC) were determined as 25 µM for S. aureus and 15 µM for S. epidermidis. At sub-MIC concentrations (20 µM for S. aureus and 10 µM for S. epidermidis), the compound was able to inhibit biofilm formation without interfere with bacterial growth, confirmed by scanning electron microscopy. Moreover, surfaces coated with the quinazoline-based compound were able to prevent bacterial adherence. In addition, this compound presented no toxicity to human red blood cells at highest MIC 25 µM and in vivo toxicity assay using Galleria mellonella larvae resulted in 82% survival with a high dose of 500 mg/kg body weight. These features evidence quinazoline-based compound as interesting entities to promising applications in biomedical fields, such as antimicrobial and in anti-infective approaches.
Collapse
Affiliation(s)
- Sharon Vieira Dos Reis
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Nicole Sartori Ribeiro
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Danielle da Silva Trentin
- Departamento de Ciências Básicas da Saúde, Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Alexandre José Macedo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
28
|
Siriyong T, Ontong JC, Leejae S, Suwalak S, Coote PJ, Voravuthikunchai SP. In vivo safety assessment of rhodomyrtone, a potent compound, from Rhodomyrtus tomentosa leaf extract. Toxicol Rep 2020; 7:919-924. [PMID: 32793420 PMCID: PMC7406972 DOI: 10.1016/j.toxrep.2020.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Rhodomyrtus tomentosa (Aiton) Hassk. has been traditionally used to relieve various diseases. Rhodomyrtone, a bioactive acylphloroglucinol compound isolated from the leaves of Rhodomyrtus tomentosa, has been scientifically evidenced as a potential antibacterial agent. This study aimed to assess safety of rhodomyrtone in both invertebrate and vertebrate models. MATERIAL AND METHODS Safety of rhodomyrtone was determined in an invertebrate model, Galleria mellonella as well as vertebrate models including zebrafish (Danio rerio) and murine. In addition, toxicity to human erythrocytes was also measured. RESULTS Treatment of Galleria mellonella with rhodomyrtone at 100 mg/kg body weight up to four days showed no visible toxic effects (100 % survival). In zebrafish embryo model, at least 80 % survival of embryos was demonstrated when treated with rhodomyrtone at 0.5 μg/mL for three days. Prior to clinical trial, it is a prerequisite that rhodomyrtone has to be evaluated for its biocompatibility with human blood components. The results displayed that rhodomyrtone at 256 μg/mL did not cause any observable human erythrocyte haemolysis. Furthermore, preclinical assessment of rhodomyrtone formulation justified potential applications of rhodomyrtone in humans. Oral toxicity testing in a mouse model indicated the absence of systemic toxicity when the animals received up to 5000 mg/kg body weight of rhodomyrtone formulation for a period of fourteen days. CONCLUSIONS As the minimal inhibitory concentration of rhodomyrtone against most Gram-positive pathogens is 0.5-1 μg/mL, the results suggest that it should produce no toxic effects at concentrations used in human, thus support further development in pharmaceutical industries and public health applications.
Collapse
Affiliation(s)
- Thanyaluck Siriyong
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Julalak Chorachoo Ontong
- Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- Cosmetic Technology and Dietary Supplement Products Program, Faculty of Agro and Bio Industry, Thaksin University, Ban Pa Phayom, Phatthalung, 93210, Thailand
| | - Sukanlaya Leejae
- Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Sakol Suwalak
- Electron Microscopy Unit, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Peter John Coote
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, The North Haugh, St Andrews, Fife, United Kingdom
| | - Supayang Piyawan Voravuthikunchai
- Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science, and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| |
Collapse
|
29
|
Passos JS, Martino LCD, Dartora VFC, Araujo GLBD, Ishida K, Lopes LB. Development, skin targeting and antifungal efficacy of topical lipid nanoparticles containing itraconazole. Eur J Pharm Sci 2020; 149:105296. [PMID: 32151706 DOI: 10.1016/j.ejps.2020.105296] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 11/20/2022]
Abstract
Considering the increased incidence of sporotrichosis and other fungal infections in rural and urban areas, and the limitations and adverse effects of oral itraconazole therapy, we studied nanostructured lipid carriers (NLC) as topical delivery systems to increase itraconazole localization in skin lesions and associate efficacy with reduced systemic exposure. Unloaded and itraconazole-loaded NLC showed nanometric size (~216-340 nm), negative zeta potential (~ -17 mV), and high entrapment efficiency (~97%). NLC treatment decreased transepidermal water loss, an index of cutaneous barrier function, in intact skin and in tissues damaged with a linear incision (to mimic lesions) by 23-36%, and reduced drug transdermal delivery by ~2-fold, demonstrating its ability to localize itraconazole within the skin. The unloaded and itraconazole-loaded NLC were considered safe, as indicated by scores of 0.5 and 0.6 in HET-CAM models, respectively, and lack of toxicity (measured by survival and health index) on the Galleria mellonella larvae. The values obtained for minimum inhibitory concentration and minimum fungicidal concentration on Sporothrix brasiliensis yeasts were 0.25 and 32 μg/mL, respectively. The drug in solution displayed similar values, indicating that encapsulation does not hinder itraconazole antifungal effect. NLC treatment improved the survival rate and health index of G. mellonella larvae infected with S. brasiliensis yeasts and C. albicans, demonstrating antifungal efficacy. Taken together, itraconazole encapsulation in NLC represents a viable strategy to optimize cutaneous localization without compromising its efficacy against fungal infections.
Collapse
Affiliation(s)
- Julia Sapienza Passos
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Luiza Capello de Martino
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | | | - Gabriel L B de Araujo
- School of Pharmaceutical Sciences of São Paulo, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Luciana B Lopes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
30
|
|
31
|
Szymczak M, Grygorcewicz B, Karczewska-Golec J, Decewicz P, Pankowski JA, Országh-Szturo H, Bącal P, Dołęgowska B, Golec P. Characterization of a Unique Bordetella bronchiseptica vB_BbrP_BB8 Bacteriophage and Its Application as an Antibacterial Agent. Int J Mol Sci 2020; 21:ijms21041403. [PMID: 32093105 PMCID: PMC7073063 DOI: 10.3390/ijms21041403] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
Bordetella bronchiseptica, an emerging zoonotic pathogen, infects a broad range of mammalian hosts. B. bronchiseptica-associated atrophic rhinitis incurs substantial losses to the pig breeding industry. The true burden of human disease caused by B. bronchiseptica is unknown, but it has been postulated that some hypervirulent B. bronchiseptica isolates may be responsible for undiagnosed respiratory infections in humans. B. bronchiseptica was shown to acquire antibiotic resistance genes from other bacterial genera, especially Escherichia coli. Here, we present a new B. bronchiseptica lytic bacteriophage—vB_BbrP_BB8—of the Podoviridae family, which offers a safe alternative to antibiotic treatment of B. bronchiseptica infections. We explored the phage at the level of genome, physiology, morphology, and infection kinetics. Its therapeutic potential was investigated in biofilms and in an in vivoGalleria mellonella model, both of which mimic the natural environment of infection. The BB8 is a unique phage with a genome structure resembling that of T7-like phages. Its latent period is 75 ± 5 min and its burst size is 88 ± 10 phages. The BB8 infection causes complete lysis of B. bronchiseptica cultures irrespective of the MOI used. The phage efficiently removes bacterial biofilm and prevents the lethality induced by B. bronchiseptica in G. mellonella honeycomb moth larvae.
Collapse
Affiliation(s)
- Mateusz Szymczak
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Bartłomiej Grygorcewicz
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Joanna Karczewska-Golec
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.D.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (J.K.-G.); (P.D.)
| | - Jarosław Adam Pankowski
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Hanna Országh-Szturo
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
| | - Paweł Bącal
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ksiecia Trojdena 4, 02-109 Warsaw, Poland;
- Laboratory of Theory and Applications of Electrodes, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (B.G.); (B.D.)
| | - Piotr Golec
- Department of Molecular Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (M.S.); (J.A.P.); (H.O.-S.)
- Correspondence: ; Tel.: +48-225-541-414
| |
Collapse
|
32
|
da Cunha MG, de Cássia Orlandi Sardi J, Freires IA, Franchin M, Rosalen PL. Antimicrobial, anti-adherence and antibiofilm activity against Staphylococcus aureus of a 4-phenyl coumarin derivative isolated from Brazilian geopropolis. Microb Pathog 2020; 139:103855. [DOI: 10.1016/j.micpath.2019.103855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022]
|
33
|
Nemes D, Kovács R, Nagy F, Tóth Z, Herczegh P, Borbás A, Kelemen V, Pfliegler WP, Rebenku I, Hajdu PB, Fehér P, Ujhelyi Z, Fenyvesi F, Váradi J, Vecsernyés M, Bácskay I. Comparative biocompatibility and antimicrobial studies of sorbic acid derivates. Eur J Pharm Sci 2020; 143:105162. [DOI: 10.1016/j.ejps.2019.105162] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/24/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
|
34
|
Eskin A, Öztürk Ş, Körükçü M. Determination of the acute toxic effects of zinc oxide nanoparticles (ZnO NPs) in total hemocytes counts of Galleria mellonella (Lepidoptera: Pyralidae) with two different methods. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:801-808. [PMID: 31317358 DOI: 10.1007/s10646-019-02078-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) are now commonly used in many consumer products (detergents, antibacterial products, protective creams). The aim of the study is to determine the ecotoxicological effects of ZnO NPs on the survival and in the total hemocyte counts of Galleria mellonella L. 1758 (Lepidoptera: Pyralidae) with two different methods (automated cell counter and hemocytometer). A toxicity test was performed to determine the lethal concentrations of ZnO NPs on larvae by force feeding method. After 24 h the treatment, LC50 was 6.03 μg/10 µl and LC99 was 12.86 μg/10 µl for force fed larvae according to probit assay. The NP that induced changes in the total hemocytes counts were counted by optical microscopy (larvae exposed to four different doses of ZnO NPs) and by automated cell counter. Analyses of total hemocyte counts of the insect were performed with four doses (0.5, 1, 2.5, 5 μg/10 µl) <LC50 at 24 h upon feeding larvae revealed that a number of hemocytes did not show significant changes in all treatments compared with control in the optical microscopy counting. The similar statistically insignificant counting results were also seen in the automated cell counting results. The percentage of the dead cells (10.01%) in the 5 μg/10 µl group was significantly higher than the control group (3.03%) and showed a statistically significant difference at 24 h in the optical microscopy count with trypan blue viability test.
Collapse
Affiliation(s)
- Ata Eskin
- Avanos Vocational School, Crop Animal Production Department, Nevşehir Hacı Bektaş Veli University, Avanos, Nevşehir, Turkey.
| | - Şahlan Öztürk
- Environmental Engineering Department, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Murat Körükçü
- Avanos Vocational School, Crop Animal Production Department, Nevşehir Hacı Bektaş Veli University, Avanos, Nevşehir, Turkey
| |
Collapse
|
35
|
Suay-García B, Alemán-López PA, Bueso-Bordils JI, Falcó A, Antón-Fos G, Pérez-Gracia MT. New solvent options for in vivo assays in the Galleria mellonella larvae model. Virulence 2019; 10:776-782. [PMID: 31451073 PMCID: PMC6735471 DOI: 10.1080/21505594.2019.1659663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Experimentation in mammals is a long and expensive process in which ethical aspects must be considered, which has led the scientific community to develop alternative models such as that of Galleria mellonella. This model is a cost and time effective option to act as a filter in the drug discovery process. The main limitation of this model is the lack of variety in the solvents used to administer compounds, which limits the compounds that can be studied using this model. Five aqueous (DMSO, MeOH, acetic acid, HCl and NaOH) and four non-aqueous (olive oil, isopropyl myristate, benzyl benzoate and ethyl oleate) solvents was assessed to be used as vehicles for toxicity and antimicrobial activity in vivo assays. All the tested solvents were innocuous at the tested concentrations except for NaOH, which can be used at a maximum concentration of 0.5 M. The toxicity of two additional compounds, 5-aminosalicylic acid and DDT, was also assessed. The results obtained allow for the testing of a broader range of compounds using wax moth larvae. This model appears as an alternative to mammal models, by acting as a filter in the drug development process and reducing costs and time invested in new drugs.
Collapse
Affiliation(s)
- Beatriz Suay-García
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Pedro A Alemán-López
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - José Ignacio Bueso-Bordils
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Antonio Falcó
- ESI International Chair@CEU-UCH. Departamento de Matemáticas, Física y Ciencias Tecnológicas. Universidad Cardenal Herrera-CEU , Valencia , España
| | - Gerardo Antón-Fos
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| | - María Teresa Pérez-Gracia
- Departamento de Farmacia, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud. Universidad Cardenal Herrera-CEU , Valencia , España
| |
Collapse
|
36
|
Indomethacin-induced gut damage in a surrogate insect model, Galleria mellonella. Arch Toxicol 2019; 93:2347-2360. [PMID: 31270586 DOI: 10.1007/s00204-019-02508-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
Abstract
Indomethacin is a non-steroidal anti-inflammatory drug that causes gastric ulceration and increased 'leakiness' in rat models, and is used routinely as a toxicology assay to screen novel compounds for repair and restitution properties. We set out to establish conditions for indomethacin-induced gut damage in wax-moth (Galleria mellonella) larvae with a view to reducing the need for rodents in such experimentation. We administered indomethacin (0.5-7.5 µg/larva; 2-30 mg/kg) to G. mellonella via intrahaemocoelic injection and gavage (force-feeding) and monitored survival and development, blood cell (haemocyte) numbers, and changes in gut permeability. Increased levels of gut leakiness were observed within the first 4- to 24 h by tracking fluorescent microspheres in the faeces and haemolymph (blood equivalent). Additionally, we recorded varying levels of tissue damage in histological sections of the insect midgut, including epithelial sloughing and cell necrosis. Degeneration of the midgut was accompanied by significant increases in detoxification-associated activities (superoxide dismutase and glutathione-S-transferase). Herein, we present the first evidence that G. mellonella larvae force-fed indomethacin display broad symptoms of gastric damage similar to their rodent counterparts.
Collapse
|
37
|
Antifungal Metabolites from Marine-Derived Streptomyces sp. AMA49 against Pyricularia oryzae. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.2.02] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Smitten KL, Southam HM, de la Serna JB, Gill MR, Jarman PJ, Smythe CGW, Poole RK, Thomas JA. Using Nanoscopy To Probe the Biological Activity of Antimicrobial Leads That Display Potent Activity against Pathogenic, Multidrug Resistant, Gram-Negative Bacteria. ACS NANO 2019; 13:5133-5146. [PMID: 30964642 DOI: 10.1021/acsnano.8b08440] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Medicinal leads that are also compatible with imaging technologies are attractive, as they facilitate the development of therapeutics through direct mechanistic observations at the molecular level. In this context, the uptake and antimicrobial activities of several luminescent dinuclear RuII complexes against E. coli were assessed and compared to results obtained for another ESKAPE pathogen, the Gram-positive major opportunistic pathogen Enterococcus faecalis, V583. The most promising lead displays potent activity, particularly against the Gram-negative bacteria, and potency is retained in the uropathogenic multidrug resistant EC958 ST131 strain. Exploiting the inherent luminescent properties of this complex, super-resolution STED nanoscopy was used to image its initial localization at/in cellular membranes and its subsequent transfer to the cell poles. Membrane damage assays confirm that the complex disrupts the bacterial membrane structure before internalization. Mammalian cell culture and animal model studies indicate that the complex is not toxic to eukaryotes, even at concentrations that are several orders of magnitude higher than its minimum inhibitory concentration (MIC). Taken together, these results have identified a lead molecular architecture for hard-to-treat, multiresistant, Gram-negative bacteria, which displays activities that are already comparable to optimized natural product-based leads.
Collapse
Affiliation(s)
- Kirsty L Smitten
- Department of Chemistry , The University of Sheffield , Western Bank , Sheffield S3 7HF , U.K
| | - Hannah M Southam
- Department of Molecular Biology and Biotechnology , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Jorge Bernardino de la Serna
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex at Harwell , Science and Technology Facilities Council , Harwell-Oxford , Didcot OX11 0QX , U.K
- Department of Physics , King's College London , London WC2R 2LS , U.K
| | - Martin R Gill
- Department of Chemistry , The University of Sheffield , Western Bank , Sheffield S3 7HF , U.K
| | - Paul J Jarman
- Department of Biomedical Science , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Carl G W Smythe
- Department of Biomedical Science , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology , The University of Sheffield , Western Bank , Sheffield S10 2TN , U.K
| | - Jim A Thomas
- Department of Chemistry , The University of Sheffield , Western Bank , Sheffield S3 7HF , U.K
| |
Collapse
|
39
|
Frawley KL, Praekunatham H, Cronican AA, Peterson J, Pearce LL. Assessing modulators of cytochrome c oxidase activity in Galleria mellonella larvae. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:77-86. [PMID: 30802621 DOI: 10.1016/j.cbpc.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/18/2019] [Accepted: 02/20/2019] [Indexed: 12/16/2022]
Abstract
Caterpillars of the greater wax moth, Galleria mellonella, are shown to be a useful invertebrate organism for examining mitochondrial toxicants (inhibitors of electron transport) and testing putative antidotes. Administration of sodium azide, sodium cyanide, or sodium (hydro)sulfide by intra-haemocoel injection (through a proleg) results in a dose-dependent paralysed state in the larvae lasting from <1 to ~40 min. The duration of paralysis is easily monitored, because if turned onto their backs, the larvae right themselves onto their prolegs once they are able to move again. The efficacy of putative antidotes to the three toxicants can routinely be assessed by observing shortened periods of paralysis with larvae given toxicant and antidote compared to larvae administered only the same dose of toxicant. The validity of the approach is demonstrated with agents previously shown to be antidotal towards cyanide intoxication in mice; namely, sodium nitrite and CoN4[11.3.1] (cobalt(II/III) 2,12-dimethyl-3,7,11,17-tetraazabicyclo-[11.3.1]-heptadeca-1(7)2,11,13,15-pentaenyl cation). These same compounds are shown to be antidotal towards all three toxicants in the G. mellonella caterpillars; findings that may prove important in relation to azide and sulfide poisonings, for which there are currently no effective antidotes available. The observation that sodium nitrite ameliorates cyanide toxicity in the larvae is additionally interesting because it unambiguously demonstrates that the antidotal action of nitrites does not require the involvement of methemoglobin, contributing to the resolution of an ongoing controversy.
Collapse
Affiliation(s)
- Kristin L Frawley
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15219, USA
| | - Hirunwut Praekunatham
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15219, USA
| | - Andrea A Cronican
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15219, USA
| | - Jim Peterson
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15219, USA.
| | - Linda L Pearce
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15219, USA.
| |
Collapse
|
40
|
Altuntaş H, Dere B, Nurullahoğlu ZU. Effects of Azadirachtin on Development of Model Insect Galleria mellonella L. (Lepidoptera: Pyralidae). ANADOLU UNIVERSITY JOURNAL OF SCIENCE AND TECHNOLOGY –C LIFE SCIENCES AND BIOTECHNOLOGY 2019. [DOI: 10.18036/aubtdc.467647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Immune Response of Galleria mellonella against Human Fungal Pathogens. J Fungi (Basel) 2018; 5:jof5010003. [PMID: 30587801 PMCID: PMC6463112 DOI: 10.3390/jof5010003] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/14/2018] [Accepted: 12/20/2018] [Indexed: 01/20/2023] Open
Abstract
In many aspects, the immune response against pathogens in insects is similar to the innate immunity in mammals. This has caused a strong interest in the scientific community for the use of this model in research of host⁻pathogen interactions. In recent years, the use of Galleria mellonella larvae, an insect belonging to the Lepidoptera order, has emerged as an excellent model to study the virulence of human pathogens. It is a model that offers many advantages; for example, it is easy to handle and establish in every laboratory, the larvae have a low cost, and they tolerate a wide range of temperatures, including human temperature 37 °C. The immune response of G. mellonella is innate and is divided into a cellular component (hemocytes) and humoral component (antimicrobial peptides, lytic enzymes, and peptides and melanin) that work together against different intruders. It has been shown that the immune response of this insect has a great specificity and has the ability to distinguish between different classes of microorganisms. In this review, we delve into the different components of the innate immune response of Galleria mellonella, and how these components manifest in the infection of fungal pathogens including Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, and Histoplasma capsulatum.
Collapse
|
42
|
Rodrigues MS, de Oliveira CFR, Almeida LHO, Neto SM, Boleti APA, dos Santos EL, Cardoso MH, Ribeiro SM, Franco OL, Rodrigues FS, Macedo AJ, Brust FR, Macedo MLR. Adevonin, a novel synthetic antimicrobial peptide designed from the Adenanthera pavonina trypsin inhibitor (ApTI) sequence. Pathog Glob Health 2018; 112:438-447. [PMID: 30570384 PMCID: PMC6327600 DOI: 10.1080/20477724.2018.1559489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The biological activities and the structural arrangement of adevonin, a novel antimicrobial peptide, were investigated. The trypsin inhibitor ApTI, isolated from Adenanthera pavonina seeds, was used as a template for screening 18-amino acid peptides with predicted antimicrobial activity. Adevonin presented antimicrobial activity and minimum inhibitory concentrations (MIC) ranging from 1.86 to 7.35 µM against both Gram-positive and - negative bacterial strains. Moreover, adevonin exerted time-kill effects within 10 min and both susceptible and drug-resistant bacterial strains were affected by the peptide. In vitro and in vivo assays showed that, at MIC concentration, adevonin did not affect human fibroblasts (MRC-5) viability or Galleria mellonella survival, respectively. Hemolytic activity was observed only at high peptide concentrations. Additionally, nucleic acid efflux assays, gentian violet uptake and time-kill kinetics indicate that the antimicrobial activity of adevonin may be mediated by bacterial membrane damage. Furthermore, molecular dynamic simulation in the presence of SDS micelles and anionic membrane bilayers showed that adevonin acquired a stable α-helix secondary structure. Further studies are encouraged to better understand the mechanism of action of adevonin, as well as to investigate the anti-infective activity of this peptide.
Collapse
Affiliation(s)
- Mayara S. Rodrigues
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Caio F. R. de Oliveira
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Luís H. O. Almeida
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Simone M. Neto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| | - Ana Paula A. Boleti
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Edson L. dos Santos
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Marlon H. Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Suzana M. Ribeiro
- Faculdade de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, Dourados, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Octávio L. Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Fernando S. Rodrigues
- Programa de Pós Graduação em Medicina Veterinária, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Alexandre J. Macedo
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Flávia R. Brust
- Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Lígia R. Macedo
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil
| |
Collapse
|
43
|
Vidal E, Lorenzetti AS, Lista AG, Domini CE. Micropaper-based analytical device (μPAD) for the simultaneous determination of nitrite and fluoride using a smartphone. Microchem J 2018. [DOI: 10.1016/j.microc.2018.08.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Coates CJ, Lim J, Harman K, Rowley AF, Griffiths DJ, Emery H, Layton W. The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biol Toxicol 2018; 35:219-232. [PMID: 30426330 PMCID: PMC6556153 DOI: 10.1007/s10565-018-09448-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/04/2018] [Indexed: 02/08/2023]
Abstract
The polyether toxin, okadaic acid, causes diarrhetic shellfish poisoning in humans. Despite extensive research into its cellular targets using rodent models, we know little about its putative effect(s) on innate immunity. We inoculated larvae of the greater wax moth, Galleria mellonella, with physiologically relevant doses of okadaic acid by direct injection into the haemocoel (body cavity) and/or gavage (force-feeding). We monitored larval survival and employed a range of cellular and biochemical assays to assess the potential harmful effects of okadaic acid. Okadaic acid at concentrations ≥ 75 ng/larva (≥ 242 μg/kg) led to significant reductions in larval survival (> 65%) and circulating haemocyte (blood cell) numbers (> 50%) within 24 h post-inoculation. In the haemolymph, okadaic acid reduced haemocyte viability and increased phenoloxidase activities. In the midgut, okadaic acid induced oxidative damage as determined by increases in superoxide dismutase activity and levels of malondialdehyde (i.e. lipid peroxidation). Our observations of insect larvae correspond broadly to data published using rodent models of shellfish-poisoning toxidrome, including complementary LD50 values: 206–242 μg/kg in mice, ~ 239 μg/kg in G. mellonella. These data support the use of this insect as a surrogate model for the investigation of marine toxins, which offers distinct ethical and financial incentives.
Collapse
Affiliation(s)
- Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK.
| | - Jenson Lim
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, Scotland, FK9 4LA, UK
| | - Katie Harman
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - David J Griffiths
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Helena Emery
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - Will Layton
- Department of Biosciences, College of Science, Swansea University, Swansea, Wales, SA2 8PP, UK
| |
Collapse
|
45
|
Chupácová J, Borghi E, Morace G, Los A, Bujdáková H. Anti-biofilm activity of antibody directed against surface antigen complement receptor 3-related protein-comparison of Candida albicans and Candida dubliniensis. Pathog Dis 2018; 76:4791528. [PMID: 29315379 DOI: 10.1093/femspd/ftx127] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/27/2017] [Indexed: 11/13/2022] Open
Abstract
Candida albicans and C. dubliniensis are related yeasts that differ in the expression of virulence-associated proteins involved in adherence and biofilm development. CR3-RP (complement receptor 3-related protein) is one of the surface antigens expressed by Candida species. The main objective of this research was to elucidate the effect of the polyclonal anti-CR3-RP antibody (Ab) on adherence and the biofilm formed by C. albicans SC5314 and C. dubliniensis CBS 7987 and two clinical isolates in vitro, ex vivo and in vivo. A comparison of species, and of treated vs. non-treated with the anti-CR3-RP Ab showed a reduction in adherence (22%-41%) that was dependent on the time point of evaluation (60, 90 or 120 min), but did not prove to be species-dependent. Confocal microscopy revealed a decreased thickness in biofilms formed by both species after pre-treatment with the anti-CR3-RP Ab. This observation was confirmed ex vivo by immunohistochemistry analysis of biofilms formed on mouse tongues. Moreover, anti-CR3-RP Ab administration, 1 h post-infection, has been shown to promote larval survival compared to the control group in a Galleria mellonella infection model. Our data suggest a potential activity of the anti-CR3-RP Ab relevant to immunotherapy or vaccine development against biofilm-associated Candida infections.
Collapse
Affiliation(s)
- Jaroslava Chupácová
- Department of Microbiology and Virology, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Elisa Borghi
- Università degli Studi di Milano, Department of Health Sciences, San Paolo Medical School, Via A. di Rudini 8, 20142 Milan, Italy
| | - Giulia Morace
- Università degli Studi di Milano, Department of Health Sciences, San Paolo Medical School, Via A. di Rudini 8, 20142 Milan, Italy
| | - Agata Los
- Department of Microbiology and Virology, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Helena Bujdáková
- Department of Microbiology and Virology, Comenius University in Bratislava, Faculty of Natural Sciences, Ilkovicova 6, 84215 Bratislava, Slovakia
| |
Collapse
|
46
|
Kavanagh K, Sheehan G. The Use of Galleria mellonella Larvae to Identify Novel Antimicrobial Agents against Fungal Species of Medical Interest. J Fungi (Basel) 2018; 4:jof4030113. [PMID: 30235800 PMCID: PMC6162640 DOI: 10.3390/jof4030113] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/24/2022] Open
Abstract
The immune system of insects and the innate immune response of mammals share many similarities and, as a result, insects may be used to assess the virulence of fungal pathogens and give results similar to those from mammals. Larvae of the greater wax moth Galleria mellonella are widely used in this capacity and also for assessing the toxicity and in vivo efficacy of antifungal drugs. G. mellonella larvae are easy to use, inexpensive to purchase and house, and have none of the legal/ethical restrictions that are associated with use of mammals. Larvae may be inoculated by intra-hemocoel injection or by force-feeding. Larvae can be used to assess the in vivo toxicity of antifungal drugs using a variety of cellular, proteomic, and molecular techniques. Larvae have also been used to identify the optimum combinations of antifungal drugs for use in the treatment of recalcitrant fungal infections in mammals. The introduction of foreign material into the hemocoel of larvae can induce an immune priming effect which may operate independently with the activity of the antifungal drug. Procedures to identify this effect and limit its action are required.
Collapse
Affiliation(s)
- Kevin Kavanagh
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| | - Gerard Sheehan
- Medical Mycology Laboratory, Department of Biology, Maynooth University, Maynooth, Co. Kildare W23F2H6, Ireland.
| |
Collapse
|
47
|
Inui Kishi RN, Stach-Machado D, Singulani JDL, dos Santos CT, Fusco-Almeida AM, Cilli EM, Freitas-Astúa J, Picchi SC, Machado MA. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One 2018; 13:e0203451. [PMID: 30192822 PMCID: PMC6128562 DOI: 10.1371/journal.pone.0203451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 08/21/2018] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial peptides (AMPs) can be found in various organisms, and could be considered an alternative for pesticides used to control plant pathogens, including those affecting citrus. Brazil is the largest producer and exporter of frozen concentrated orange juice in the world. However, the citrus industry has been affected by several diseases such as citrus canker and huanglongbing (HLB), caused by the bacteria Xanthomonas citri subsp. citri (X.citri) and Candidatus Liberibacter asiaticus (CaLas), respectively. In order to control these pathogens, putative AMPs were prospected in databases containing citrus sequences. Furthermore, AMPs already reported in the literature were also used for in vitro and in vivo assays against X.citri. Since CaLas cannot be cultivated in vitro, surrogates as Sinorhizobium meliloti and Agrobacterium tumefaciens were used. This study reports the evaluation of six AMPs obtained from different sources, two of them from Citrus spp. (citrus-amp1 and citrus-amp2), three from amphibians (Hylin-a1, K0-W6-Hy-a1 and Ocellatin 4-analogue) and one from porcine (Tritrpticin). Peptides K0-W6-Hy-a1, Ocellatin 4-analogue, and citrus-amp1 showed bactericidal activity against X.citri and S. meliloti and bacteriostatic effect on A. tumefaciens. These results were confirmed for X.citri in planta. In addition cytotoxicity evaluations of these molecules were performed. The AMPs that showed the lowest hemolytic activities were Triptrpticin, citrus-amp1 and citrus-amp2. Citrus-amp1 and citrus-amp2 not presented toxicity in experiments using in vivo model, G. mellonella and U87 MG cells. To verify the interaction of these AMPs with bacteria and erythrocyte cell membranes, vesicles mimicking these cells were built. Citrus-amp1 and Tritrpticin exhibited higher affinity to bacterial membranes, while Ocellatin 4-analogue and Hylin-a1 showed higher affinity to erythrocyte membranes; exclude their use in citrus. This work demonstrates an essential alternative, trough AMPs obtained from Citrus spp., which can be feasibly used to control bacterial pathogens.
Collapse
Affiliation(s)
- Rosangela Naomi Inui Kishi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
- * E-mail:
| | - Dagmar Stach-Machado
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Junya de Lacorte Singulani
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Claudia Tavares dos Santos
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Ana Marisa Fusco-Almeida
- Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | - Eduardo Maffud Cilli
- Instituto de Química de Araraquara, Departamento de Bioquímica e tecnologia química, Universidade Estadual Paulista Julio de Mesquita Filho, Araraquara, São Paulo, Brazil
| | | | - Simone Cristina Picchi
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| | - Marcos Antonio Machado
- Centro de Citricultura Sylvio Moreira, Instituto Agronômico, Cordeirópolis, São Paulo, Brazil
| |
Collapse
|
48
|
Migotto A, Carvalho VFM, Salata GC, da Silva FWM, Yan CYI, Ishida K, Costa-Lotufo LV, Steiner AA, Lopes LB. Multifunctional nanoemulsions for intraductal delivery as a new platform for local treatment of breast cancer. Drug Deliv 2018; 25:654-667. [PMID: 29495885 PMCID: PMC7011997 DOI: 10.1080/10717544.2018.1440665] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Considering that breast cancer usually begins in the lining of the ducts, local drug administration into the ducts could target cancers and pre-tumor lesions locally while reducing systemic adverse effects. In this study, a cationic bioadhesive nanoemulsion was developed for intraductal administration of C6 ceramide, a sphingolipid that mediates apoptotic and non-apoptotic cell death. Bioadhesive properties were obtained by surface modification with chitosan. The optimized nanoemulsion displayed size of 46.3 nm and positive charge, properties that were not affected by ceramide encapsulation (0.4%, w/w). C6 ceramide concentration necessary to reduce MCF-7 cells viability to 50% (EC50) decreased by 4.5-fold with its nanoencapsulation compared to its solution; a further decrease (2.6-fold) was observed when tributyrin (a pro-drug of butyric acid) was part of the oil phase of the nanocarrier, a phenomenon attributed to synergism. The unloaded nanocarrier was considered safe, as indicated by a score <0.1 in HET-CAM models, by the high survival rates of Galleria mellonella larvae exposed to concentrations ≤500 mg/mL, and absence of histological changes when intraductally administered in rats. Intraductal administration of the nanoemulsion prolonged drug localization for more than 120 h in the mammary tissue compared to its solution. These results support the advantage of the optimized nanoemulsion to enable mammary tissue localization of C6 ceramide.
Collapse
Affiliation(s)
- Amanda Migotto
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Vanessa F M Carvalho
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Giovanna C Salata
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Fernanda W M da Silva
- b Department of Microbiology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Chao Yun Irene Yan
- c Department of Cell and Developmental Biology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Kelly Ishida
- b Department of Microbiology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Leticia V Costa-Lotufo
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Alexandre A Steiner
- d Department of Immunology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| | - Luciana B Lopes
- a Department of Pharmacology , Institute of Biomedical Sciences, University of Sao Paulo , Sao Paulo , Brazil
| |
Collapse
|
49
|
Barrett S, Delaney S, Kavanagh K, Montagner D. Evaluation of in vitro and in vivo antibacterial activity of novel Cu(II)-steroid complexes. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Allegra E, Titball RW, Carter J, Champion OL. Galleria mellonella larvae allow the discrimination of toxic and non-toxic chemicals. CHEMOSPHERE 2018; 198:469-472. [PMID: 29425947 DOI: 10.1016/j.chemosphere.2018.01.175] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/22/2018] [Accepted: 01/31/2018] [Indexed: 05/27/2023]
Abstract
The acute toxicities of 19 chemicals were assessed using G. mellonella larvae. The results obtained were compared against LD50 values derived from in vitro cytotoxicity tests and against in vivo acute oral LD50 values. In general, cell culture systems overestimated the toxicity of chemicals, especially low toxicity chemicals. In contrast, toxicity testing in G. mellonella larvae was found to be a reliable predictor for low toxicity chemicals. For the 9 chemicals tested which were assigned to Globally Harmonised System (GHS) category 5, the toxicity measured in G. mellonella larvae was consistent with their GHS categorisation but cytotoxicity measured in 3T3 or NHK cells predicted 4 out of 9 chemicals as having low toxicity. A more robust assessment of the likely toxicity of chemicals in mammals could be made by taking into account their toxicities in both cell cultures and in G. mellonella larvae.
Collapse
|