1
|
Lee TH, Chen JJ, Wu CY, Lin TY, Hung SC, Yang HY. Immunosenescence, gut dysbiosis, and chronic kidney disease: Interplay and implications for clinical management. Biomed J 2024; 47:100638. [PMID: 37524304 PMCID: PMC10979181 DOI: 10.1016/j.bj.2023.100638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Immunosenescence refers to the immune system changes observed in individuals over 50 years old, characterized by diminished immune response and chronic inflammation. Recent investigations have highlighted similar immune alterations in patients with reduced kidney function. The immune system and kidney function have been found to be closely interconnected. Studies have shown that as kidney function declines, both innate and adaptive immunity are affected. Chronic kidney disease (CKD) patients exhibit decreased levels of naive and regular T cells, as well as naive and memory B cells, while memory T cell counts increase. Furthermore, research suggests that CKD and end-stage kidney disease (ESKD) patients experience early thymic dysfunction and heightened homeostatic proliferation of naive T cells. In addition to reduced thymic T cell production, CKD patients display shorter telomeres in both CD4+ and CD8+ T cells. Declining kidney function induces uremic conditions, which alter the intestinal metabolic environment and promote pathogen overgrowth while reducing diversity. This dysbiosis-driven imbalance in the gut microbiota can result in elevated production of uremic toxins, which, in turn, enter the systemic circulation due to compromised gut barrier function under uremic conditions. The accumulation of gut-derived uremic toxins exacerbates local and systemic kidney inflammation. Immune-mediated kidney damage occurs due to the activation of immune cells in the intestine as a consequence of dysbiosis, leading to the production of cytokines and soluble urokinase-type plasminogen activator receptor (suPAR), thereby contributing to kidney inflammation. In this review, we delve into the fundamental mechanisms of immunosenescence in CKD, encompassing alterations in adaptive immunity, gut dysbiosis, and an overview of the clinical findings pertaining to immunosenescence.
Collapse
Affiliation(s)
- Tao Han Lee
- Nephrology Department, Chansn Hospital, Taoyuan, Taiwan
| | - Jia-Jin Chen
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chao-Yi Wu
- Division of Allergy, Asthma, And Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ting-Yun Lin
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Buddhist Tzu Chi General Hospital, Buddhist Tzu Chi University, Taipei, Taiwan.
| | - Huang-Yu Yang
- Kidney Research Center, Nephrology Department, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Health Policy and Management, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Feng Z, Zhang Y, Lai Y, Jia C, Wu F, Chen D. Causal relationship between gut microbiota and kidney diseases: a two-sample Mendelian randomization study. Front Immunol 2024; 14:1277554. [PMID: 38283353 PMCID: PMC10811222 DOI: 10.3389/fimmu.2023.1277554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/26/2023] [Indexed: 01/30/2024] Open
Abstract
Background The interplay between gut microbiome genera and inflammatory kidney-related diseases, such as nephrotic syndrome, glomerulonephritis, tubulo-interstitial nephritis, and chronic kidney disease, has been observed. However, the causal relationships between specific bacterial genera and these renal diseases have not been fully elucidated. Objective To investigate the potential causal links between different genera of the gut microbiome and the susceptibility to various renal conditions utilizing two-sample Mendelian randomization (MR) analyses. Materials and methods Genome-wide association study (GWAS) summary statistics of gut microbiota and inflammatory kidney-related diseases were obtained from published GWASs. Two-sample MR analyses were conducted using methods including inverse-variance weighted (IVW), MR Egger, and others to identify potential causal links between gut microbial genera and renal conditions. Sensitivity analyses, including Cochran's Q test and the MR-PRESSO global test, were performed to validate the robustness of the results and detect horizontal pleiotropy. In addition, a reverse MR analysis was conducted to assess reverse causation possibilities. Results By synthesizing insights from both primary and sensitivity analyses, this study unveiled critical associations of 12 bacterial genera with nephrotic syndrome, 7 bacterial genera with membranous nephropathy, 3 bacterial genera with glomerulonephritis, 4 bacterial genera with acute tubulo-interstitial nephritis, 6 bacterial genera with chronic tubulo-interstitial nephritis, and 7 bacterial genera with chronic kidney disease. Various genera were pinpointed as having either positive or negative causal relationships with these renal conditions, as evidenced by specific ranges of IVW-OR values (all P< 0.05). The congruence of the sensitivity analyses bolstered the primary findings, displaying no marked heterogeneity or horizontal pleiotropy. Notably, the reverse MR analysis with nephritis as the exposure did not reveal any causal relationships, thereby strengthening the resilience and validity of the primary associations. Conclusion This study explored the causal associations between several gut microbial genera and the risk of several inflammatory kidney-related diseases, uncovering several associations between specific gut microbial genera and nephrotic syndrome, membranous nephropathy, glomerulonephritis, tubulo-interstitial nephritis, and chronic kidney disease. These findings enhance our understanding of the complex interplay between the gut microbiome and kidney diseases, and they will be beneficial for early diagnosis and subsequent treatment.
Collapse
Affiliation(s)
- Zhoushan Feng
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuliang Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yiyu Lai
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chunhong Jia
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Fan Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dunjin Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, Guangzhou, China
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
Chen Z, Lin Y, Wang J, Yao K, Xie Y, Chen X, Zhou T. Relationship between Compound α-Ketoacid and Microinflammation in Patients with Chronic Kidney Disease. Curr Pharm Des 2024; 30:589-596. [PMID: 38477209 DOI: 10.2174/0113816128291248240131102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024]
Abstract
Chronic kidney disease (CKD) refers to the presence of structural or functional abnormalities in the kidneys that affect health, lasting for more than 3 months. CKD is not only the direct cause of global incidence rate and mortality, but also an important risk factor for cardiovascular disease. Persistent microinflammatory state has been recognized as an important component of CKD, which can lead to renal fibrosis and loss of renal function, and plays a crucial role in the pathophysiology and progression of the disease. Simultaneously, compound α-Ketoacid can bind nitrogen-containing metabolites in the blood and accelerate their excretion from the body, thereby reducing the level of metabolic waste, alleviating gastrointestinal reactions in patients, and reducing the inflammatory response and oxidative stress state of the body. Compound α-Ketoacid contains amino acids required by CKD patients. In this review, we explore the relationship between compound α-Ketoacid and microinflammation in patients with CKD. The review indicated that compound α-Ketoacid can improve the microinflammatory state in CKD patients by improving the nutritional status of CKD patients, improving patient's acid-base balance disorder, regulating oxidative stress, improving gut microbiota, and regulating abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zaobin Chen
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yongda Lin
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Jiali Wang
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Kaijin Yao
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yina Xie
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiutian Chen
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, The Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
4
|
Liu X, Wang X, Zhang P, Fang Y, Liu Y, Ding Y, Zhang W. Intestinal homeostasis in the gut-lung-kidney axis: a prospective therapeutic target in immune-related chronic kidney diseases. Front Immunol 2023; 14:1266792. [PMID: 38022571 PMCID: PMC10646503 DOI: 10.3389/fimmu.2023.1266792] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
In recent years, the role of intestinal homeostasis in health has received increasing interest, significantly improving our understanding of the complex pathophysiological interactions of the gut with other organs. Microbiota dysbiosis, impaired intestinal barrier, and aberrant intestinal immunity appear to contribute to the pathogenesis of immune-related chronic kidney diseases (CKD). Meanwhile, the relationship between the pathological changes in the respiratory tract (e.g., infection, fibrosis, granuloma) and immune-related CKD cannot be ignored. The present review aimed to elucidate the new underlying mechanism of immune-related CKD. The lungs may affect kidney function through intestinal mediation. Communication is believed to exist between the gut and lung microbiota across long physiological distances. Following the inhalation of various pathogenic factors (e.g., particulate matter 2.5 mum or less in diameter, pathogen) in the air through the mouth and nose, considering the anatomical connection between the nasopharynx and lungs, gut microbiome regulates oxidative stress and inflammatory states in the lungs and kidneys. Meanwhile, the intestine participates in the differentiation of T cells and promotes the migration of various immune cells to specific organs. This better explain the occurrence and progression of CKD caused by upper respiratory tract precursor infection and suggests the relationship between the lungs and kidney complications in some autoimmune diseases (e.g., anti-neutrophil cytoplasm antibodies -associated vasculitis, systemic lupus erythematosus). CKD can also affect the progression of lung diseases (e.g., acute respiratory distress syndrome and chronic obstructive pulmonary disease). We conclude that damage to the gut barrier appears to contribute to the development of immune-related CKD through gut-lung-kidney interplay, leading us to establish the gut-lung-kidney axis hypothesis. Further, we discuss possible therapeutic interventions and targets. For example, using prebiotics, probiotics, and laxatives (e.g., Rhubarb officinale) to regulate the gut ecology to alleviate oxidative stress, as well as improve the local immune system of the intestine and immune communication with the lungs and kidneys.
Collapse
Affiliation(s)
- Xinyin Liu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Department of Traditional Chinese Medicine, Jiande First People’s Hospital, Jiande, Hangzhou, China
| | - Xiaoran Wang
- Department of Nephrology, The First People’s Hospital of Hangzhou Lin’an District, Hangzhou, China
| | - Peipei Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yiwen Fang
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanyan Liu
- Department of Geriatric, Zhejiang Aged Care Hospital, Hangzhou, China
| | - Yueyue Ding
- Department of Geriatric, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Wen Zhang
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
5
|
Sumida K, Pierre JF, Yuzefpolskaya M, Colombo PC, Demmer RT, Kovesdy CP. Gut Microbiota-Targeted Interventions in the Management of Chronic Kidney Disease. Semin Nephrol 2023; 43:151408. [PMID: 37619529 PMCID: PMC10783887 DOI: 10.1016/j.semnephrol.2023.151408] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Recent advances in microbiome research have informed the potential role of the gut microbiota in the regulation of metabolic, cardiovascular, and renal systems, and, when altered, in the pathogenesis of various cardiometabolic disorders, including chronic kidney disease (CKD). The improved understanding of gut dysbiosis in cardiometabolic pathologies in turn has led to a vigorous quest for developing therapeutic strategies. These therapeutic strategies aim to investigate whether interventions targeting gut dysbiosis can shift the microbiota toward eubiosis and if these shifts, in turn, translate into improvements in (or prevention of) CKD and its related complications, such as premature cardiovascular disease. Existing evidence suggests that multiple interventions (eg, plant-based diets; prebiotic, probiotic, and synbiotic supplementation; constipation treatment; fecal microbiota transplantation; and intestinal dialysis) might result in favorable modulation of the gut microbiota in patients with CKD, and thereby potentially contribute to improving clinical outcomes in these patients. In this review, we summarize the current understanding of the characteristics and roles of the gut microbiota in CKD and discuss the potential of emerging gut microbiota-targeted interventions in the management of CKD.
Collapse
Affiliation(s)
- Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN.
| | - Joseph F Pierre
- Department of Nutritional Sciences, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI
| | - Melana Yuzefpolskaya
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY
| | - Paolo C Colombo
- Division of Cardiology, Department of Medicine, New York Presbyterian Hospital, Columbia University, New York, NY
| | - Ryan T Demmer
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN; Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY
| | - Csaba P Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
6
|
Oh L, Ab Rahman S, Dubinsky K, Azanan MS, Ariffin H. Manipulating the Gut Microbiome as a Therapeutic Strategy to Mitigate Late Effects in Childhood Cancer Survivors. Technol Cancer Res Treat 2023; 22:15330338221149799. [PMID: 36624625 PMCID: PMC9834799 DOI: 10.1177/15330338221149799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Recent studies have identified causal links between altered gut microbiome, chronic inflammation, and inflammation-driven conditions such as diabetes and cardiovascular disease. Childhood cancer survivors (CCS) show late effects of therapy in the form of inflammaging-related disorders as well as microbial dysbiosis, supporting a hypothesis that the conditions are interconnected. Given the susceptibility of the gut microbiome to alteration, a number of therapeutic interventions have been investigated for the treatment of inflammatory conditions, though not within the context of cancer survivorship in children and adolescents. Here, we evaluate the potential for these interventions, which include probiotic supplementation, prebiotics/fiber-rich diet, exercise, and fecal microbiota transplantation for prevention and treatment of cancer treatment-related microbial dysbiosis in survivors. We also make recommendations to improve adherence and encourage long-term lifestyle changes for maintenance of healthy gut microbiome in CCS as a potential strategy to mitigate treatment-related late effects.
Collapse
Affiliation(s)
- Lixian Oh
- University of Malaya, Kuala Lumpur, Malaysia
| | | | | | | | - Hany Ariffin
- University of Malaya, Kuala Lumpur, Malaysia,Hany Ariffin, Department of Pediatrics,
University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
7
|
Tao P, Ji J, Wang Q, Cui M, Cao M, Xu Y. The role and mechanism of gut microbiota-derived short-chain fatty in the prevention and treatment of diabetic kidney disease. Front Immunol 2022; 13:1080456. [PMID: 36601125 PMCID: PMC9806165 DOI: 10.3389/fimmu.2022.1080456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD), an emerging global health issue, is one of the most severe microvascular complications derived from diabetes and a primary pathology contributing to end-stage renal disease. The currently available treatment provides only symptomatic relief and has failed to delay the progression of DKD into chronic kidney disease. Recently, multiple studies have proposed a strong link between intestinal dysbiosis and the occurrence of DKD. The gut microbiota-derived short-chain fatty acids (SCFAs) capable of regulating inflammation, oxidative stress, fibrosis, and energy metabolism have been considered versatile players in the prevention and treatment of DKD. However, the underlying molecular mechanism of the intervention of the gut microbiota-kidney axis in the development of DKD still remains to be explored. This review provides insight into the contributory role of gut microbiota-derived SCFAs in DKD.
Collapse
Affiliation(s)
- Pengyu Tao
- Department of Nephrology, Seventh People’s Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ji
- Department of Endocrinology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Wang
- Postdoctoral Workstation, Department of Central Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Mengmeng Cui
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Mingfeng Cao
- Department of Endocrinology, The Second Affiliated Hospital of Shandong First Medical University Taian, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, China,*Correspondence: Mingfeng Cao, ; Yuzhen Xu,
| |
Collapse
|
8
|
Homeostasis in the Gut Microbiota in Chronic Kidney Disease. Toxins (Basel) 2022; 14:toxins14100648. [PMID: 36287917 PMCID: PMC9610479 DOI: 10.3390/toxins14100648] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The gut microbiota consists of trillions of microorganisms, fulfilling important roles in metabolism, nutritional intake, physiology and maturation of the immune system, but also aiding and abetting the progression of chronic kidney disease (CKD). The human gut microbiome consists of bacterial species from five major bacterial phyla, namely Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, and Verrucomicrobia. Alterations in the members of these phyla alter the total gut microbiota, with a decline in the number of symbiotic flora and an increase in the pathogenic bacteria, causing or aggravating CKD. In addition, CKD-associated alteration of this intestinal microbiome results in metabolic changes and the accumulation of amines, indoles and phenols, among other uremic metabolites, which have a feedforward adverse effect on CKD patients, inhibiting renal functions and increasing comorbidities such as atherosclerosis and cardiovascular diseases (CVD). A classification of uremic toxins according to the degree of known toxicity based on the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence was selected to identify the representative uremic toxins from small water-soluble compounds, protein-bound compounds and middle molecules and their relation to the gut microbiota was summarized. Gut-derived uremic metabolites accumulating in CKD patients further exhibit cell-damaging properties, damage the intestinal epithelial cell wall, increase gut permeability and lead to the translocation of bacteria and endotoxins from the gut into the circulatory system. Elevated levels of endotoxins lead to endotoxemia and inflammation, further accelerating CKD progression. In recent years, the role of the gut microbiome in CKD pathophysiology has emerged as an important aspect of corrective treatment; however, the mechanisms by which the gut microbiota contributes to CKD progression are still not completely understood. Therefore, this review summarizes the current state of research regarding CKD and the gut microbiota, alterations in the microbiome, uremic toxin production, and gut epithelial barrier degradation.
Collapse
|
9
|
Bartochowski P, Gayrard N, Bornes S, Druart C, Argilés A, Cordaillat-Simmons M, Duranton F. Gut–Kidney Axis Investigations in Animal Models of Chronic Kidney Disease. Toxins (Basel) 2022; 14:toxins14090626. [PMID: 36136564 PMCID: PMC9502418 DOI: 10.3390/toxins14090626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Chronic kidney disease (CKD) is an incurable disease in which renal function gradually declines, resulting in no noticeable symptoms during the early stages and a life-threatening disorder in the latest stage. The changes that accompany renal failure are likely to influence the gut microbiota, or the ecosystem of micro-organisms resident in the intestine. Altered gut microbiota can display metabolic changes and become harmful to the host. To study the gut–kidney axis in vivo, animal models should ideally reproduce the disorders affecting both the host and the gut microbiota. Murine models of CKD, but not dog, manifest slowed gut transit, similarly to patient. Animal models of CKD also reproduce altered intestinal barrier function, as well as the resulting leaky gut syndrome and bacterial translocation. CKD animal models replicate metabolic but not compositional changes in the gut microbiota. Researchers investigating the gut–kidney axis should pay attention to the selection of the animal model (disease induction method, species) and the setting of the experimental design (control group, sterilization method, individually ventilated cages) that have been shown to influence gut microbiota.
Collapse
Affiliation(s)
- Piotr Bartochowski
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| | - Nathalie Gayrard
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
- Correspondence:
| | - Stéphanie Bornes
- Université Clermont Auvergne, Inrae, Vetagro Sup, UMRF0545, 15000 Aurillac, France
| | - Céline Druart
- Pharmabiotic Research Institute (PRI), 11100 Narbonne, France
| | - Angel Argilés
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| | | | - Flore Duranton
- RD Néphrologie SAS, 34090 Montpellier, France
- BC2M, Faculty of Pharmacy, University of Montpellier, 34090 Montpellier, France
| |
Collapse
|
10
|
Lin TY, Chang YK, Wu MY, Wu TK, Chen CH, Lim PS. Serum Lipopolysaccharide-Binding Protein Levels and Cardiovascular Events in Hemodialysis Patients: A Prospective Cohort Study. Nephrology (Carlton) 2022; 27:877-885. [PMID: 36045565 DOI: 10.1111/nep.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Patients with end-stage kidney disease (ESKD) exhibit an elevated cardiovascular risk. Chronic inflammation is one of the main mechanisms of cardiovascular disease (CVD). Lipopolysaccharide has been proposed as a link between systemic inflammation and CVD. Herein, we evaluated whether lipopolysaccharide-binding protein (LBP), a surrogate marker of lipopolysaccharide and consequent inflammation, is associated with cardiovascular events in ESKD. METHODS We performed a prospective cohort study of maintenance hemodialysis patients. Baseline serum LBP levels were categorized into tertiles and also modeled continuously for analyses. Cox regression methods were used to evaluate the association of serum LBP levels with cardiovascular events. RESULTS A total of 360 hemodialysis patients were included in this analysis. During a median follow-up of 3.1 years, 90 (25.0%) patients had cardiovascular events. Patients in the upper tertile of serum LBP levels had a significantly greater risk of cardiovascular events (hazard ratio [HR] 4.87; 95% confidence intervals [CI], 2.12-11.15) than those in the lower tertile, independent of age, sex, hypertension, diabetes, CVD, dialysis vintage, body mass index, non-high-density lipoprotein cholesterol, albumin, phosphorus, high-sensitivity C-reactive protein, and interleukin-6. The association was consistent regardless of whether competing risk of death was accounted for (subdistribution HR 4.87; 95% CI, 1.96-12.11 for upper versus lower tertiles) or serum LBP was analysed as a continuous variable (HR 1.30; 95% CI, 1.02-1.66 per 1 SD increment). CONCLUSIONS Serum LBP levels were independently associated with cardiovascular events in heomodialysis patients. LBP might serve as a novel biomarker for CVD in ESKD.
Collapse
Affiliation(s)
- Ting-Yun Lin
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu-Kang Chang
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Ming-Yin Wu
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tsai-Kun Wu
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Chang-Hsu Chen
- Department of Nursing, Jenteh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan.,Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Paik-Seong Lim
- Division of Renal Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan.,Institute of Biomedical Science, College of Life Science, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
11
|
Chen R, Zhu D, Yang R, Wu Z, Xu N, Chen F, Zhang S, Chen H, Li M, Hou K. Gut microbiota diversity in middle-aged and elderly patients with end-stage diabetic kidney disease. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:750. [PMID: 35957707 PMCID: PMC9358493 DOI: 10.21037/atm-22-2926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/05/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Diabetic kidney disease (DKD) is the most common cause of end-stage renal disease (ESRD), but the mechanism between DKD and ESRD remains unclear. Some experts have put forward the "microbial-centered ESRD development theory", believing that the bacterial load caused by gut microecological imbalance and uremia toxin transfer are the core pathogenic links. The purpose of this study was to analyze the genomic characteristics of gut microbiota in patients with ESRD, specifically DKD or non-diabetic kidney disease (NDKD). METHODS In this cross-sectional study, patients with ESRD were recruited in a community, including 22 DKD patients and 22 NDKD patients matched using gender and age. Fecal samples of patients were collected for 16S rDNA sequencing and gut microbiota analysis. The distribution structure, diversity, and abundance of microflora in DKD patients were analyzed by constructing species evolutionary trees and analyzing alpha diversity, beta diversity, and linear discriminant analysis effect size (LEfSe). RESULTS The results of our study showed that there were statistically significant differences in the richness and species of gut microbiota at the total level between DKD patients and NDKD patients. The analysis of genus level between the two groups showed significant differences in 16 bacterial genera. Among them, Oscillibacter, Bilophila, UBA1819, Ruminococcaceae UCG-004, Anaerotruncus, Ruminococcaceae, and Ruminococcaceae NK4A214 bacteria in DKD patients were higher than those in NDKD patients. CONCLUSIONS 16S rDNA sequencing technology was used in this study to analyze the characteristics of intestinal flora in ESRD patients with or without diabetes. We found that there was a significant difference in the intestinal flora of ESRD patients caused by DKD and NDKD, suggesting that these may be potential causative bacteria for the development of ERSD in DKD patients.
Collapse
Affiliation(s)
- Rongping Chen
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Dan Zhu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Rui Yang
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Zezhen Wu
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Ningning Xu
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Fengwu Chen
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Shuo Zhang
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hong Chen
- Department of Endocrine and Metabolic Diseases, Southern Medical University, Guangzhou, China
| | - Ming Li
- School of Laboratory Medical and Biotechnology, Southern Medical University, Guangzhou, China
| | - Kaijian Hou
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- Jinxia Community Health Service Centre, Shantou, China
| |
Collapse
|
12
|
Steiger S, Rossaint J, Zarbock A, Anders HJ. Secondary Immunodeficiency Related to Kidney Disease (SIDKD)-Definition, Unmet Need, and Mechanisms. J Am Soc Nephrol 2022; 33:259-278. [PMID: 34907031 PMCID: PMC8819985 DOI: 10.1681/asn.2021091257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.
Collapse
Affiliation(s)
- Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Münster, Münster, Germany
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, Ludwig Maximilians University Hospital of Munich, Munich, Germany
| |
Collapse
|
13
|
Myeloid leukocytes' diverse effects on cardiovascular and systemic inflammation in chronic kidney disease. Basic Res Cardiol 2022; 117:38. [PMID: 35896846 PMCID: PMC9329413 DOI: 10.1007/s00395-022-00945-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Chronic kidney disease's prevalence rises globally. Whereas dialysis treatment replaces the kidney's filtering function and prolongs life, dreaded consequences in remote organs develop inevitably over time. Even milder reductions in kidney function not requiring replacement therapy associate with bacterial infections, cardiovascular and heart valve disease, which markedly limit prognosis in these patients. The array of complications is diverse and engages a wide gamut of cellular and molecular mechanisms. The innate immune system is profoundly and systemically altered in chronic kidney disease and, as a unifying element, partakes in many of the disease's complications. As such, a derailed immune system fuels cardiovascular disease progression but also elevates the propensity for serious bacterial infections. Recent data further point towards a role in developing calcific aortic valve stenosis. Here, we delineate the current state of knowledge on how chronic kidney disease affects innate immunity in cardiovascular organs and on a systemic level. We review the role of circulating myeloid cells, monocytes and neutrophils, resident macrophages, dendritic cells, ligands, and cellular pathways that are activated or suppressed when renal function is chronically impaired. Finally, we discuss myeloid cells' varying responses to uremia from a systems immunology perspective.
Collapse
|
14
|
Li F, Zhang G, Liang J, Ma Y, Huang J, Wang R, Du H, Wang G, Wang Q. Protection of Intestinal Barrier in Uremic Mice by Electroacupuncture via Regulating the Cannabinoid 1 Receptor of the Intestinal Glial Cells. J Biomed Nanotechnol 2021; 17:2210-2218. [PMID: 34906281 DOI: 10.1166/jbn.2021.3186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Intestinal barrier injuries are common in uremia, which aggravates uremia. The goal of this study is to learn moreabout how electroacupuncture regulates gastrointestinal function, as well as to identify the importance of microglia in electroacupuncture regulation and the cannabinoid receptor signaling pathway in controlling the activity of intestinal glial cells. The mice were arbitrarily assigned to four groups: control, CKD, electroacupuncture stimulation, or AM251 (CB1 receptor antagonist). The mice model of uremia was established by adenine gavage. Western blotting revealed the development of tight junction proteins ZO-1, cannabinoid 1 receptor, glial specific GFAP, occludin, S100 β, claudin-1, and JNK. GFAP and CB1R protein expression and co-localization of the intestinal glial cells were observed by double-labeled fluorescence. The expression of cannabinoid 1 receptor CB1R in the intestinal glial cells was increased after electroacupuncture. The expression of tight junction protein, GFAP, S100 β, and CB1R protein was up-regulated after electroacupuncture, and the dysfunction of the intestinal barrier in uremia was corrected. Nevertheless, AM251, a CB1R antagonist, reversed the effect of electroacupuncture. Electroacupuncture can protect the intestinal barrier through the intestinal glial cell CB1R, and the effect is achieved by inhibiting the JNK pathway.
Collapse
Affiliation(s)
- Feng Li
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jing Liang
- Department of Radiotherapy, Shaanxi Provincial Tumor Hospital, Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yu Ma
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Huang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hailiang Du
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ge Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiang Wang
- Department of Anesthesiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
15
|
Schlender J, Behrens F, McParland V, Müller D, Wilck N, Bartolomaeus H, Holle J. Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Mol Cell Pediatr 2021; 8:17. [PMID: 34677718 PMCID: PMC8536815 DOI: 10.1186/s40348-021-00126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular complications are the major cause of the marked morbidity and mortality associated with chronic kidney disease (CKD). The classical cardiovascular risk factors such as diabetes and hypertension undoubtedly play a role in the development of cardiovascular disease (CVD) in adult CKD patients; however, CVD is just as prominent in children with CKD who do not have these risk factors. Hence, the CKD-specific pathophysiology of CVD remains incompletely understood. In light of this, studying children with CKD presents a unique opportunity to analyze CKD-associated mechanisms of CVD more specifically and could help to unveil novel therapeutic targets. Here, we comprehensively review the interaction of the human gut microbiome and the microbial metabolism of nutrients with host immunity and cardiovascular end-organ damage. The human gut microbiome is evolutionary conditioned and modified throughout life by endogenous factors as well as environmental factors. Chronic diseases, such as CKD, cause significant disruption to the composition and function of the gut microbiome and lead to disease-associated dysbiosis. This dysbiosis and the accompanying loss of biochemical homeostasis in the epithelial cells of the colon can be the result of poor diet (e.g., low-fiber intake), medications, and underlying disease. As a result of dysbiosis, bacteria promoting proteolytic fermentation increase and those for saccharolytic fermentation decrease and the integrity of the gut barrier is perturbed (leaky gut). These changes disrupt local metabolite homeostasis in the gut and decrease productions of the beneficial short-chain fatty acids (SCFAs). Moreover, the enhanced proteolytic fermentation generates unhealthy levels of microbially derived toxic metabolites, which further accumulate in the systemic circulation as a consequence of impaired kidney function. We describe possible mechanisms involved in the increased systemic inflammation in CKD that is associated with the combined effect of SCFA deficiency and accumulation of uremic toxins. In the future, a more comprehensive and mechanistic understanding of the gut–kidney–heart interaction, mediated largely by immune dysregulation and inflammation, might allow us to target the gut microbiome more specifically in order to attenuate CKD-associated comorbidities.
Collapse
Affiliation(s)
- Julia Schlender
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Felix Behrens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Berlin Institute of Health, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Dominik Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117, Berlin, Germany
| | - Johannes Holle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.
| |
Collapse
|
16
|
Bai Q, Guo HX, Su CY, Han QF, Wang T, Tang W. Serum Sphingosine-1-phosphate level and peritonitis in peritoneal dialysis patients. Ren Fail 2021; 42:829-835. [PMID: 32787649 PMCID: PMC7472472 DOI: 10.1080/0886022x.2020.1805763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Given the important role of Sphingosine-1-phosphate (S1P) in maintaining the hemostasis in intestinal barrier function and regulation of inflammation and immune, we hypothesize that S1P might be a biomarker to predict peritonitis in peritoneal dialysis (PD) patients. METHODS In this case-control study, 78 stable, continuous ambulatory peritoneal dialysis patients were enrolled and followed for the episode of PD associated peritonitis. Patients were divided into two groups by whether or not they had peritonitis during follow-up: non-peritonitis (n = 65) and peritonitis (n = 13) group. S1P was analyzed by enzyme-linked immunosorbent assay. Logistic regression analysis was used to assess factors associated with peritonitis. The variables identified by univariable regression models (p < 0.1) were further selected into the multivariable logistic regression model to determine whether they could independently affect peritonitis. RESULTS Patients with peritonitis had a lower level of S1P than that of patients without peritonitis (1.3 ng/mL IQ 0.8, 3.6 ng/mL vs. 2.8 ng/mL IQ 1.5, 5.4 ng/mL, p = 0.018). The peritonitis group had lower serum albumin, lower blood leukocyte, lower hemoglobin and lower platelet count as compared to the non-peritonitis group. Logistic regression analysis showed that S1P (OR = 0.381, 95% CI = 0.171-0.848, p = 0.018), blood leukocyte count (OR = 0.438, 95% CI = 0.207-0.925, p = 0.030), and serum albumin (OR = 0.732, 95% CI = 0.556-0.962, p = 0.025) were independent factors associated with peritonitis in the present PD population. CONCLUSION Our study showed that S1P was an independent determinant of subsequent peritonitis in PD patients. S1P might serve as a biomarker to predict peritonitis in PD patients.
Collapse
Affiliation(s)
- Qiong Bai
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Hong-Xia Guo
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Chun-Yan Su
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Qing-Feng Han
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Tao Wang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| | - Wen Tang
- Department of Nephrology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
17
|
Mathur A, McLean MH, Cao H, Vickers MA. Hyposplenism and Gastrointestinal Diseases: Significance and Mechanisms. Dig Dis 2021; 40:290-298. [PMID: 34034254 DOI: 10.1159/000517338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Functional hyposplenism is a recognized complication of several gastroenterological disorders, including coeliac and inflammatory bowel diseases, and is believed to contribute to the increased infection risk seen in these disorders. SUMMARY The mechanisms of hyposplenism are poorly understood. In this article, we review possible mechanisms underlying development of functional hyposplenism and discuss implications for its management. KEY MESSAGES Identifying functional hyposplenism is important, as it may permit earlier recognition and treatment of serious infections through patient education and vaccination.
Collapse
Affiliation(s)
- Abhinav Mathur
- Infection, Immunity and Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mairi H McLean
- Division of Molecular and Cellular Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Huan Cao
- Infection, Immunity and Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Mark A Vickers
- Infection, Immunity and Inflammation, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
18
|
Snelson M, Clarke RE, Nguyen TV, Penfold SA, Forbes JM, Tan SM, Coughlan MT. Long Term High Protein Diet Feeding Alters the Microbiome and Increases Intestinal Permeability, Systemic Inflammation and Kidney Injury in Mice. Mol Nutr Food Res 2021; 65:e2000851. [PMID: 33547877 DOI: 10.1002/mnfr.202000851] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/07/2021] [Indexed: 02/06/2023]
Abstract
SCOPE This study evaluates the effects of a chronic high protein diet (HPD) on kidney injury, intestinal permeability and gut microbiota perturbations in a mouse model. METHOD AND RESULTS Mice are fed a diet containing either 20% or 52% energy from protein for 24 weeks; protein displaced an equivalent amount of wheat starch. The HPD does not alter glycemic control or body weight. The HPD induces kidney injury as evidenced by increase in albuminuria, urinary kidney injury molecule-1, blood urea nitrogen, urinary isoprostanes and renal cortical NF-κB p65 gene expression. HPD decreases intestinal occludin gene expression, increases plasma endotoxin and plasma monocyte chemoattractant protein-1, indicating intestinal leakiness and systemic inflammation. Cecal microbial analysis reveals that HPD feeding does not alter alpha diversity; however, it does alter beta diversity, indicating an altered microbial community structure with HPD feeding. Predicted metagenome pathway analysis demonstrates a reduction in branched-chain amino acid synthesis and an increase of the urea cycle with consumption of a HPD. CONCLUSION These results demonstrate that long term HPD consumption in mice causes albuminuria, systemic inflammation, increase in gastrointestinal permeability and is associated with gut microbiome remodeling with an increase in the urea cycle pathway, which may contribute to renal injury.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Rachel Elise Clarke
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | | | - Sally Anne Penfold
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Josephine Maree Forbes
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
- Faculty of Medicine, The University of Queensland, St Lucia, Queensland, Australia
| | - Sih Min Tan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
| | - Melinda Therese Coughlan
- Department of Diabetes, Central Clinical School, Alfred Medical Research and Education Precinct, Monash University, Melbourne, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
19
|
Lakshmanan AP, Al Za'abi M, Ali BH, Terranegra A. The influence of the prebiotic gum acacia on the intestinal microbiome composition in rats with experimental chronic kidney disease. Biomed Pharmacother 2021; 133:110992. [PMID: 33202283 DOI: 10.1016/j.biopha.2020.110992] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is a globally common and important disease and there are evidence for a bidirectional relationship between microbiota and CKD. The aim of the study was to examine the influence of prebiotic - gum acacia (GA) on the intestinal microbiota in rats with adenine-induced CKD. Animals were randomly distributed into four equal groups (n = 6): control, adenine, GA and adenine + GA groups. CKD was induced by adenine (0.75% w/w) given in the diet daily for four weeks, and GA was administered in drinking water at a concentration of 15% w/v. The 16s rRNA analysis was performed on Illumina Miseq targeting V3-V4 region to characterize microbial composition. The abundance of Actinobacteria, Proteobacteria, Tenericutes and Verrucomicrobia bacteria was increased in adenine-induced CKD, and GA treatment successfully reversed those levels. Interestingly, alpha and beta diversity index were both reduced with GA treatment in rats with CKD. Short chain fatty acids (SCFAs) measurement and PICRUSt analysis have shown that GA treatment completely restored the depleted butyrate level and various perturbated functional pathways, respectively, in CKD rats. Taking together, our results suggest that GA supplementation has a beneficial role in treating CKD, through an increased production of butyrate, as well as its anti-inflammatory, antioxidant capacity and anti-nitrosative properties.
Collapse
Affiliation(s)
| | - Mohammed Al Za'abi
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Badreldin H Ali
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | | |
Collapse
|
20
|
Lee SH, You HS, Kang HG, Kang SS, Hyun SH. Association between Altered Blood Parameters and Gut Microbiota after Synbiotic Intake in Healthy, Elderly Korean Women. Nutrients 2020; 12:nu12103112. [PMID: 33053824 PMCID: PMC7650560 DOI: 10.3390/nu12103112] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/20/2022] Open
Abstract
Synbiotics intake can alter the composition of intestinal microbes beneficially. We aimed to detect the changes in the intestinal microbiomes of 37 healthy elderly Korean women after the intake of a synbiotic drink. This was a longitudinal study controlled with a temporal series, including a control period of 3 weeks before intake, synbiotic intake for 3 weeks, and a washout period of 3 weeks. Fecal microbiota composition was analyzed by sequencing the V3-V4 hypervariable regions of 16S rRNA. Physical fecal activity increased with improvement in fecal shape. Thirty intestinal bacterial taxa were observed to change only after the intake period. In particular, Ellagibacter appeared only after ingestion. In addition, the abundance of Terrisporobacter showed a positive correlation with C-reactive protein, triglyceride. Lachnospiraceae_uc, Eubacterium_g5, and Blautia had a positive correlation with creatinine, whereas PAC001100_g had a negative correlation with creatinine. Short-term (3 weeks) intake of symbiotic organisms changes the composition of the gut microbiota in healthy elderly Korean women.
Collapse
Affiliation(s)
- Song Hee Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea; (S.H.L.); (H.S.Y.)
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea;
| | - Hee Sang You
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea; (S.H.L.); (H.S.Y.)
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea;
| | - Hee-Gyoo Kang
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea;
- Department of Biomedical Laboratory Science, College of Health Sciences, Eulji University, Seongnam 13135, Korea
| | - Sang Sun Kang
- Department of Biology Education, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea;
| | - Sung Hee Hyun
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea; (S.H.L.); (H.S.Y.)
- Department of Senior Healthcare, BK21 Plus Program, Graduate School, Eulji University, 77 Gyeryong-ro, 771 Beon-gil, Jung-gu, Daejeon 34824, Korea;
- Correspondence: ; Tel.: +82-10-9412-8853
| |
Collapse
|
21
|
Graboski AL, Redinbo MR. Gut-Derived Protein-Bound Uremic Toxins. Toxins (Basel) 2020; 12:toxins12090590. [PMID: 32932981 PMCID: PMC7551879 DOI: 10.3390/toxins12090590] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) afflicts more than 500 million people worldwide and is one of the fastest growing global causes of mortality. When glomerular filtration rate begins to fall, uremic toxins accumulate in the serum and significantly increase the risk of death from cardiovascular disease and other causes. Several of the most harmful uremic toxins are produced by the gut microbiota. Furthermore, many such toxins are protein-bound and are therefore recalcitrant to removal by dialysis. We review the derivation and pathological mechanisms of gut-derived, protein-bound uremic toxins (PBUTs). We further outline the emerging relationship between kidney disease and gut dysbiosis, including the bacterial taxa altered, the regulation of microbial uremic toxin-producing genes, and their downstream physiological and neurological consequences. Finally, we discuss gut-targeted therapeutic strategies employed to reduce PBUTs. We conclude that targeting the gut microbiota is a promising approach for the treatment of CKD by blocking the serum accumulation of PBUTs that cannot be eliminated by dialysis.
Collapse
Affiliation(s)
- Amanda L. Graboski
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7365, USA;
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, Microbiology and Genomics, University of North Carolina, Chapel Hill, NC 27599-3290, USA
- Correspondence:
| |
Collapse
|
22
|
Singh H, Miyamoto S, Darshi M, Torralba MG, Kwon K, Sharma K, Pieper R. Gut Microbial Changes in Diabetic db/db Mice and Recovery of Microbial Diversity upon Pirfenidone Treatment. Microorganisms 2020; 8:microorganisms8091347. [PMID: 32899353 PMCID: PMC7564638 DOI: 10.3390/microorganisms8091347] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/29/2020] [Accepted: 09/02/2020] [Indexed: 12/16/2022] Open
Abstract
The leptin receptor-deficient db/db mouse model is an accepted in vivo model to study obesity, type 2 diabetes, and diabetic kidney disease. Healthy gastrointestinal (GI) microbiota has been linked to weight loss, improved glycemic control, and physiological benefits. We investigated the effect of various drugs on the GI microbiota of db/db mice as compared to control db/m mice. Treatment with long-acting pirfenidone (PFD) increased gut microbial diversity in diabetic db/db mice. Firmicutes, the most abundant phylum in db/m mice, decreased significantly in abundance in db/db mice but showed increased abundance with long-acting PFD treatment. Several bacterial taxa, including Lactobacillus and some Bacteroides, were less abundant in db/db mice and more abundant in long-acting-PFD-treated db/db mice. Long-acting PFD treatment reduced the abundance of Akkermansia muciniphila (5%) as compared to db/db mice (~15%). We conclude that gut microbial dysbiosis observed in db/db mice was partially reversed by long-acting PFD treatment and hypothesize that PFD has beneficial effects, in part, via its influence on the gut microbial metabolite profile. In quantitatively assessing urine metabolites, we observed a high abundance of diabetic ketoacidosis biomarkers, including 3-hydroxybutyric acid and acetoacetic acid in db/db mice, which were less abundant in the long-acting-PFD-treated db/db mice.
Collapse
Affiliation(s)
- Harinder Singh
- J. Craig Venter Institute, 9605 Medical Center Drive, Suite 150, Rockville, MD 20850, USA; (K.K.); (R.P.)
- Correspondence: ; Tel.: +1-301-795-7684
| | - Satoshi Miyamoto
- Department of Medicine, University of Texas Health, San Antonio, TX 77030, USA; (S.M.); (M.D.); (K.S.)
| | - Manjula Darshi
- Department of Medicine, University of Texas Health, San Antonio, TX 77030, USA; (S.M.); (M.D.); (K.S.)
| | | | - Keehwan Kwon
- J. Craig Venter Institute, 9605 Medical Center Drive, Suite 150, Rockville, MD 20850, USA; (K.K.); (R.P.)
| | - Kumar Sharma
- Department of Medicine, University of Texas Health, San Antonio, TX 77030, USA; (S.M.); (M.D.); (K.S.)
| | - Rembert Pieper
- J. Craig Venter Institute, 9605 Medical Center Drive, Suite 150, Rockville, MD 20850, USA; (K.K.); (R.P.)
| |
Collapse
|
23
|
Mehmood A, Zhao L, Ishaq M, Zad OD, Zhao L, Wang C, Usman M, Lian Y, Xu M. Renoprotective effect of stevia residue extract on adenine-induced chronic kidney disease in mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
24
|
Woldeamlak B, Yirdaw K, Biadgo B. Role of Gut Microbiota in Type 2 Diabetes Mellitus and Its Complications: Novel Insights and Potential Intervention Strategies. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2020; 74:314-320. [PMID: 31870137 DOI: 10.4166/kjg.2019.74.6.314] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/09/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Type 2 diabetes mellitus has become one of the fastest growing public health problems worldwide. The disease is believed to involve a complex process involving genetic susceptibility and environmental factors. The human intestine harbors hundreds of trillions of bacteria, as well as bacteriophage particles, viruses, fungi, and archaea, which constitute a complex and dynamic ecosystem referred to as the gut microbiota. Increasing evidence has indicated changes in the gut microbiota composition or function in type 2 diabetic patients. An analysis of 'dysbiosis' enables the detection of alterations in the specific bacteria, clusters of bacteria, or bacterial functions associated with the occurrence of type 2 diabetes. These bacteria are involved predominantly in the control of inflammation and energy homeostasis. This review attempts to show that the gut microbiota are important factors for the occurrence of type 2 diabetes and are important for the treatment of gut microbiota dysbiosis through bariatric surgery, fecal microbiota transplantation, prebiotics, and probiotics.
Collapse
Affiliation(s)
- Birhanu Woldeamlak
- Clinical Chemistry Laboratory, University of Gondar Hospital, Gondar, Ethiopia
| | - Ketsela Yirdaw
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Belete Biadgo
- Department of Clinical Chemistry, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
25
|
Vacca M, Celano G, Calabrese FM, Portincasa P, Gobbetti M, De Angelis M. The Controversial Role of Human Gut Lachnospiraceae. Microorganisms 2020; 8:E573. [PMID: 32326636 PMCID: PMC7232163 DOI: 10.3390/microorganisms8040573] [Citation(s) in RCA: 823] [Impact Index Per Article: 205.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/05/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
The complex polymicrobial composition of human gut microbiota plays a key role in health and disease. Lachnospiraceae belong to the core of gut microbiota, colonizing the intestinal lumen from birth and increasing, in terms of species richness and their relative abundances during the host's life. Although, members of Lachnospiraceae are among the main producers of short-chain fatty acids, different taxa of Lachnospiraceae are also associated with different intra- and extraintestinal diseases. Their impact on the host physiology is often inconsistent across different studies. Here, we discuss changes in Lachnospiraceae abundances according to health and disease. With the aim of harnessing Lachnospiraceae to promote human health, we also analyze how nutrients from the host diet can influence their growth and how their metabolites can, in turn, influence host physiology.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70121 Bari, Italy
| | - Marco Gobbetti
- Faculty of Science and Technology, Free University of Bozen, 39100 Bolzano, Italy;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.V.); (F.M.C.); (M.D.A.)
| |
Collapse
|
26
|
Gryp T, Huys GR, Joossens M, Van Biesen W, Glorieux G, Vaneechoutte M. Isolation and Quantification of Uremic Toxin Precursor-Generating Gut Bacteria in Chronic Kidney Disease Patients. Int J Mol Sci 2020; 21:E1986. [PMID: 32183306 PMCID: PMC7139965 DOI: 10.3390/ijms21061986] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/22/2022] Open
Abstract
In chronic kidney disease (CKD), impaired kidney function results in accumulation of uremic toxins, which exert deleterious biological effects and contribute to inflammation and cardiovascular morbidity and mortality. Protein-bound uremic toxins (PBUTs), such as p-cresyl sulfate, indoxyl sulfate and indole-3-acetic acid, originate from phenolic and indolic compounds, which are end products of gut bacterial metabolization of aromatic amino acids (AAA). This study investigates gut microbial composition at different CKD stages by isolating, identifying and quantifying PBUT precursor-generating bacteria. Fecal DNA extracts from 14 controls and 138 CKD patients were used to quantify total bacterial number and 11 bacterial taxa with qPCR. Moreover, isolated bacteria from CKD 1 and CKD 5 fecal samples were cultured in broth medium supplemented with AAA under aerobic and anaerobic conditions, and classified as PBUT precursor-generators based on their generation capacity of phenolic and indolic compounds, measured with U(H)PLC. In total, 148 different fecal bacterial species were isolated, of which 92 were PBUT precursor-generators. These bacterial species can be a potential target for reducing PBUT plasma levels in CKD. qPCR indicated lower abundance of short chain fatty acid-generating bacteria, Bifidobacterium spp. and Streptococcus spp., and higher Enterobacteriaceae and E. coli with impaired kidney function, confirming an altered gut microbial composition in CKD.
Collapse
Affiliation(s)
- Tessa Gryp
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (W.V.B.); (G.G.)
- Department of Diagnostic Sciences, Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
- Department of Microbiology, Immunology and Transplantation, Molecular Microbiology—Microbiome Research Lab, KU Leuven, 3000 Leuven, Belgium (M.J.)
| | - Geert R.B. Huys
- Department of Microbiology, Immunology and Transplantation, Molecular Microbiology—Microbiome Research Lab, KU Leuven, 3000 Leuven, Belgium (M.J.)
| | - Marie Joossens
- Department of Microbiology, Immunology and Transplantation, Molecular Microbiology—Microbiome Research Lab, KU Leuven, 3000 Leuven, Belgium (M.J.)
| | - Wim Van Biesen
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (W.V.B.); (G.G.)
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, 9000 Ghent, Belgium; (W.V.B.); (G.G.)
| | - Mario Vaneechoutte
- Department of Diagnostic Sciences, Laboratory Bacteriology Research, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
27
|
Gryp T, De Paepe K, Vanholder R, Kerckhof FM, Van Biesen W, Van de Wiele T, Verbeke F, Speeckaert M, Joossens M, Couttenye MM, Vaneechoutte M, Glorieux G. Gut microbiota generation of protein-bound uremic toxins and related metabolites is not altered at different stages of chronic kidney disease. Kidney Int 2020; 97:1230-1242. [PMID: 32317112 DOI: 10.1016/j.kint.2020.01.028] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/06/2023]
Abstract
Chronic kidney disease (CKD) is characterized by accumulation of protein-bound uremic toxins such as p-cresyl sulfate, p-cresyl glucuronide, indoxyl sulfate and indole-3-acetic acid, which originate in the gut. Intestinal bacteria metabolize aromatic amino acids into p-cresol and indole, (further conjugated in the colon mucosa and liver) and indole-3-acetic acid. Here we measured fecal, plasma and urine metabolite concentrations; the contribution of gut bacterial generation to plasma protein-bound uremic toxins accumulation; and influx into the gut of circulating protein-bound uremic toxins at different stages of CKD. Feces, blood and urine were collected from 14 control individuals and 141 patients with CKD. Solutes were quantified by ultra-high performance liquid chromatography. To assess the rate of bacterial generation of p-cresol, indole and indole-3-acetic acid, fecal samples were cultured ex vivo. With CKD progression, an increase in protein-bound uremic toxins levels was observed in plasma, whereas the levels of these toxins and their precursors remained the same in feces and urine. Anaerobic culture of fecal samples showed no difference in ex vivo p-cresol, indole and indole-3-acetic acid generation. Therefore, differences in plasma protein-bound uremic toxins levels between different CKD stages cannot be explained by differences in bacterial generation rates in the gut, suggesting retention due to impaired kidney function as the main contributor to their increased plasma levels. Thus, as fractional clearance decreased with the progression of CKD, tubular clearance appeared to be more affected than the glomerular filtration rate, and there was no net increase in protein-bound uremic toxins influx into the gut lumen with increased plasma levels.
Collapse
Affiliation(s)
- Tessa Gryp
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium; Department of Diagnostic Sciences, Laboratory Bacteriology Research, Ghent University, Ghent, Belgium; Department of Microbiology, Immunology and Transplantation, Molecular Microbiology-Microbiome Research Lab, KU Leuven, Leuven, Belgium.
| | - Kim De Paepe
- Department of Biotechnology, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Raymond Vanholder
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Frederiek-Maarten Kerckhof
- Department of Biotechnology, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Wim Van Biesen
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Tom Van de Wiele
- Department of Biotechnology, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Francis Verbeke
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Marijn Speeckaert
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Marie Joossens
- Department of Microbiology, Immunology and Transplantation, Molecular Microbiology-Microbiome Research Lab, KU Leuven, Leuven, Belgium
| | | | - Mario Vaneechoutte
- Department of Diagnostic Sciences, Laboratory Bacteriology Research, Ghent University, Ghent, Belgium
| | - Griet Glorieux
- Department of Internal Medicine and Pediatrics, Nephrology Section, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
28
|
Ren T, Xiong J, Liu G, Wang S, Tan Z, Fu B, Zhang R, Liao X, Wang Q, Guo Z. Imbalance of Th22/Treg cells causes microinflammation in uremic patients undergoing hemodialysis. Biosci Rep 2019; 39:BSR20191585. [PMID: 31427482 PMCID: PMC6822497 DOI: 10.1042/bsr20191585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/05/2019] [Accepted: 08/16/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Regulatory T (Treg) cells are of critical functionality in immune activation and inflammation in uremic patients undergoing hemodialysis (HD). A disruption in balance of Treg cells has potency to elicit infectious disease progression. Here, we examined possible association between ratio imbalance of Th22/Treg cells and microinflammation in uremic patients undergoing HD. METHODS Peripheral blood mononuclear cells (PBMCs) were isolated to allow measurement of the percentage of Th22 cells and Treg cells using flow cytometry. Subsequently, serum levels of related cytokines, interleukin (IL) 22 (IL-22) and IL-10 and inflammatory factors, C-reactive protein (CRP), (TNF-α), IL-6 were determined via enzyme-linked immunosorbent assay (ELISA). Then relationships among dialysis time, microinflammation status (CRP) and dialysis adequacy (immunoreactive parathyroid hormone (iPTH), urea clearance index (Kt/V), β2-MG, serum calcium, and serum phosphorus) were evaluated. Finally, correlation between microinflammation status and dialysis adequacy was analyzed with Pearson's correlation coefficient. RESULTS An increased percentage of Th22 and a decreased percentage of Treg cells were evident in uremic patients undergoing HD. Serum levels of IL-22, CRP, TNF-α, and IL-6 were increased, while IL-10 serum level was reduced. An imbalance of Th22/Treg cells was associated with microinflammation status in uremic patients undergoing HD. Furthermore, prolongation of the dialysis time, the microinflammation status and dialysis adequacy were changed. Increased dialysis adequacy was observed to correlate with alleviated microinflammation of uremic patients undergoing HD. CONCLUSIONS Conjointly, an imbalance of Th22/Treg cells may be a potential cause responsible for uremia occurrence, which in turn indicates that uremia could be effectively alleviated by altering the ratio of Th22/Treg cells.
Collapse
Affiliation(s)
- Tingting Ren
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Jingyuan Xiong
- West China School of Public Health and Healthy Food Evaluation Center, Sichuan University, Chengdu 610041, P.R. China
| | - Guangliang Liu
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Shaoyong Wang
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Zhongqi Tan
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Bin Fu
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Ruilin Zhang
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Xuesong Liao
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Qirong Wang
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| | - Zonglin Guo
- The Eleventh People’s Hospital of Chengdu, Chengdu 610000, P.R. China
| |
Collapse
|
29
|
Swift O, Vilar E, Farrington K. Unexplained inflammation in end‐stage kidney disease: Is the combination of enhanced gastrointestinal permeability and reticuloendothelial dysfunction its cause? Semin Dial 2019; 32:417-423. [DOI: 10.1111/sdi.12810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Oscar Swift
- Department of Renal Medicine East and North Hertfordshire NHS Trust Stevenage UK
| | - Enric Vilar
- Department of Renal Medicine East and North Hertfordshire NHS Trust Stevenage UK
- University of Hertfordshire Hatfield UK
| | - Ken Farrington
- Department of Renal Medicine East and North Hertfordshire NHS Trust Stevenage UK
- University of Hertfordshire Hatfield UK
| |
Collapse
|
30
|
Suppression of Gut Bacterial Translocation Ameliorates Vascular Calcification through Inhibiting Toll-Like Receptor 9-Mediated BMP-2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3415682. [PMID: 31007833 PMCID: PMC6441534 DOI: 10.1155/2019/3415682] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Aims Vascular calcification (VC) is a primary risk factor for cardiovascular mortality in chronic renal failure (CRF) patients; thus, effective therapeutic targets are urgently needed to be explored. Here, we identified the role of intestinal bacterial translocation in CRF-related VC. Methods and Results Antibiotic supplementation by oral gavage significantly suppressed intestinal bacterial translocation, CRF-related VC, and aortic osteogenic gene and Toll-like receptor (TLR) gene expression in CRF rats. Furthermore, TLR4 and TLR9 activation in vascular smooth muscle cells (VSMCs) aggravated inorganic phosphate- (Pi-) induced calcification. TLR9 inhibition, but not TLR4 inhibition, by both a pharmacological inhibitor and genetic methods could significantly reduce CRF rats' serum or CRF-induced VC. Interestingly, bone morphogenic protein-2 (BMP-2) levels were increased in the aorta and sera from CRF rats. Increased BMP-2 levels were also observed in VSMCs treated with TLR9 agonist, which was blocked by NF-κB inhibition. Both siRNA knockdown of BMP-2 and NF-κB inhibitor significantly blocked TLR9 agonist-induced VSMC calcification. Conclusions Gut bacterial translocation inhibited by oral antibiotic significantly reduces CRF-related VC through inhibition of TLR9/NF-κB/BMP-2 signaling.
Collapse
|
31
|
Jazani NH, Savoj J, Lustgarten M, Lau WL, Vaziri ND. Impact of Gut Dysbiosis on Neurohormonal Pathways in Chronic Kidney Disease. Diseases 2019; 7:diseases7010021. [PMID: 30781823 PMCID: PMC6473882 DOI: 10.3390/diseases7010021] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is a worldwide major health problem. Traditional risk factors for CKD are hypertension, obesity, and diabetes mellitus. Recent studies have identified gut dysbiosis as a novel risk factor for the progression CKD and its complications. Dysbiosis can worsen systemic inflammation, which plays an important role in the progression of CKD and its complications such as cardiovascular diseases. In this review, we discuss the beneficial effects of the normal gut microbiota, and then elaborate on how alterations in the biochemical environment of the gastrointestinal tract in CKD can affect gut microbiota. External factors such as dietary restrictions, medications, and dialysis further promote dysbiosis. We discuss the impact of an altered gut microbiota on neuroendocrine pathways such as the hypothalamus⁻pituitary⁻adrenal axis, the production of neurotransmitters and neuroactive compounds, tryptophan metabolism, and the cholinergic anti-inflammatory pathway. Finally, therapeutic strategies including diet modification, intestinal alpha-glucosidase inhibitors, prebiotics, probiotics and synbiotics are reviewed.
Collapse
Affiliation(s)
- Nima H Jazani
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Javad Savoj
- Department of Internal Medicine, Riverside Community Hospital, University of California-Riverside School of Medicine, Riverside, CA 92501, USA.
| | - Michael Lustgarten
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA.
| | - Wei Ling Lau
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| | - Nosratola D Vaziri
- Division of Nephrology, Department of Medicine, University of California-Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Contributory Role of Gut Microbiota and Their Metabolites Toward Cardiovascular Complications in Chronic Kidney Disease. Semin Nephrol 2019; 38:193-205. [PMID: 29602401 DOI: 10.1016/j.semnephrol.2018.01.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The gut microbiome recently has emerged as a novel risk factor that impacts health and disease. Our gut microbiota can function as an endocrine organ through its unique ability to metabolize various dietary precursors, and can fuel the systemic inflammation observed in chronic disease. This is especially important in the setting of chronic kidney disease, in which microbial metabolism can contribute directly to accumulation of circulating toxins that then can alter and shift the balance of microbiota composition and downstream functions. To study this process, advances in -omics technologies are providing opportunities to understand not only the taxonomy, but also the functional diversity of our microbiome. We also reliably can quantify en masse a wide range of uremic byproducts of microbial metabolism. Herein, we examine the bidirectional relationship between the gut microbiome and the failing kidneys. We describe potential approaches targeting gut microbiota for cardiovascular risk reduction in chronic kidney disease using an illustrative example of a novel gut-generated metabolite, trimethylamine N-oxide.
Collapse
|
33
|
Syed-Ahmed M, Narayanan M. Immune Dysfunction and Risk of Infection in Chronic Kidney Disease. Adv Chronic Kidney Dis 2019; 26:8-15. [PMID: 30876622 DOI: 10.1053/j.ackd.2019.01.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 01/16/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease and infections are directly or indirectly associated with an altered immune response, which leads to a high incidence of morbidity and mortality, and together, they account for up to 70% of all deaths among patients with chronic kidney dysfunction. Impairment of the normal reaction of the innate and adaptive immune systems in chronic kidney disease predisposes patients to an increased risk of infections, virus-associated cancers, and a diminished vaccine response. On the other hand, an abnormal, exaggerated reaction of the immune systems can also occur in this group of patients, resulting in increased production and decreased clearance of proinflammatory cytokines, which can lead to inflammation and its sequelae (eg, atherosclerotic cardiovascular disease). Epigenetically, modifications in hematopoietic stem cells involving a shift from lymphoid to myeloid cell lineage may underlie uremia-associated immunological senescence, which is not reversed by renal replacement therapy, including kidney transplantation. Measures aimed at attenuating the immune abnormalities in chronic kidney disease/end-stage renal disease should be an area of focused research as this could potentially lead to a better understanding and, thus, development of therapies that could reduce the disastrously high death rate in this patient population. The aim of the present article is to review the characteristics, causes, and mechanisms of the immune dysfunction related to chronic kidney disease.
Collapse
|
34
|
Summers SC, Quimby JM, Isaiah A, Suchodolski JS, Lunghofer PJ, Gustafson DL. The fecal microbiome and serum concentrations of indoxyl sulfate and p-cresol sulfate in cats with chronic kidney disease. J Vet Intern Med 2018; 33:662-669. [PMID: 30561098 PMCID: PMC6430892 DOI: 10.1111/jvim.15389] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/16/2018] [Indexed: 12/23/2022] Open
Abstract
Background Intestinal dysbiosis has been documented in humans with chronic kidney disease (CKD) and is thought to contribute to production of the uremic toxins indoxyl sulfate (IS) and p‐cresol sulfate (pCS). Characteristics of the fecal microbiome in cats with CKD and correlation to serum concentrations of uremic toxins are unknown. Objectives To characterize the fecal microbiome and measure serum IS and pCS concentrations of cats with CKD in comparison to healthy older cats. Animals Thirty client‐owned cats with CKD (International Renal Interest Society stages 2‐4) and 11 older (≥8 years) healthy control cats. Methods Prospective, cross‐sectional study. Fecal samples were analyzed by sequencing of 16S rRNA genes and Escherichia coli quantitative PCR (qPCR). Serum concentrations of IS and pCS measured using liquid chromatography tandem mass spectrometry. Results Cats with CKD had significantly decreased fecal bacterial diversity and richness. Escherichia coli qPCR showed no significant difference in bacteria count between control and CKD cats. Cats with stage 2 (P = .01) and stages 3 and 4 (P = .0006) CKD had significantly higher serum IS concentrations compared to control cats. No significant difference found between stage 2 and stages 3 and 4 CKD. The pCS concentrations were not significantly different between CKD cats and control cats. Conclusions and Clinical Importance Decreased fecal microbiome diversity and richness is associated with CKD in cats. Indoxyl sulfate concentration is significantly increased with CKD, and cats with stage 2 CKD may suffer from a similar uremic toxin burden as do cats with later stage disease.
Collapse
Affiliation(s)
- Stacie C Summers
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jessica M Quimby
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Anitha Isaiah
- Gastroenterology Lab, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Jan S Suchodolski
- Gastroenterology Lab, Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas
| | - Paul J Lunghofer
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
35
|
He H, Hu P, Tang Y, Xu X. Influence of colonic dialysis using Gubenxiezhuo on the distribution of gut microflora in uremia rats. J Cell Physiol 2018; 234:11882-11887. [PMID: 30536550 DOI: 10.1002/jcp.27845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 11/12/2018] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study aimed to explore the underlying function of Gubenxiezhuo dialysis on the distribution of gut microflora uremia. METHODS A uremia rat model was constructed, and the morphology of renal tissue was determined using the hematoxylin-eosin (H&E) staining. Moreover, the blood samples were collected and the expression of IL-1β, IL-6, and CRP was determined using enzyme-linked immunosorbent assay. Following these experiments, the gut tissues of rats were collected and the distribution of gut microbiota was explored using real-time PCR. RESULTS Compared with the control group, inflammatory infiltration, apoptosis, and bleeding were significantly upregulated in kidney of uremia rats, and Gubenxiezhuo dialysis could obviously ameliorate these changes. Expression of IL-1β, IL-6, and CRP were significantly elevated in uremic rats and Gubenxiezhuo could significantly attenuate these elevations (p < 0.01). In addition, Gubenxiezhuo dialysis also could attenuate the upregulations of Acinetobacter, Bacillus cereus, Proteus vulgaris, Shigella flexneri, and Escherichia coli , and the downregulation of Bifidobacterium, Lactobacillus, and Helicobacter in the uremia rats ( p < 0.05). CONCLUSION Gubenxiezhuo dialysis could significantly ameliorate the inflammatory to modulate the distribution of gut microbiota in uremia.
Collapse
Affiliation(s)
- Haidong He
- Department of Nephrology, Minhang Hospital,Fudan University, Shanghai, China
| | - Ping Hu
- Department of Nephrology, Minhang Hospital,Fudan University, Shanghai, China
| | - Yuyan Tang
- Department of Nephrology, Minhang Hospital,Fudan University, Shanghai, China
| | - Xudong Xu
- Department of Nephrology, Minhang Hospital,Fudan University, Shanghai, China
| |
Collapse
|
36
|
Onal EM, Afsar B, Covic A, Vaziri ND, Kanbay M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens Res 2018; 42:123-140. [PMID: 30504819 DOI: 10.1038/s41440-018-0144-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
The health and proper functioning of the cardiovascular and renal systems largely depend on crosstalk in the gut-kidney-heart/vessel triangle. Recent evidence suggests that the gut microbiota has an integral function in this crosstalk. Mounting evidence indicates that the development of chronic kidney and cardiovascular diseases follows chronic inflammatory processes that are affected by the gut microbiota via various immune, metabolic, endocrine, and neurologic pathways. Additionally, deterioration of the function of the cardiovascular and renal systems has been reported to disrupt the original gut microbiota composition, further contributing to the advancement of chronic cardiovascular and renal diseases. Considering the interaction between the gut microbiota and the renal and cardiovascular systems, we can infer that interventions for the gut microbiota through diet and possibly some medications can prevent/stop the vicious cycle between the gut microbiota and the cardiovascular/renal systems, leading to a decrease in chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Emine M Onal
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Adrian Covic
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, and 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, Schools of Medicine and Biological Science, University of California, California, CA, USA
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
37
|
Lau WL, Vaziri ND, Nunes ACF, Comeau AM, Langille MGI, England W, Khazaeli M, Suematsu Y, Phan J, Whiteson K. The Phosphate Binder Ferric Citrate Alters the Gut Microbiome in Rats with Chronic Kidney Disease. J Pharmacol Exp Ther 2018; 367:452-460. [DOI: 10.1124/jpet.118.251389] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 09/28/2018] [Indexed: 01/04/2023] Open
|
38
|
Tayebi Khosroshahi H, Vaziri ND, Abedi B, Asl BH, Ghojazadeh M, Jing W, Vatankhah AM. Effect of high amylose resistant starch (HAM-RS2) supplementation on biomarkers of inflammation and oxidative stress in hemodialysis patients: a randomized clinical trial. Hemodial Int 2018; 22:492-500. [DOI: 10.1111/hdi.12653] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
| | - Nosratola D. Vaziri
- Division of Nephrology and Hypertension; UC Irvine Medical Center; Irvine California USA
| | - Behzad Abedi
- Department of Nanotechnology; Tabriz University of Medical Sciences; Tabriz Iran
| | - Bahlol Habibi Asl
- Faculty of pharmacology; School of Advanced Medical Sciences, Tabriz University of Medical Sciences; Tabriz Iran
| | - Morteza Ghojazadeh
- Research Center for Evidence-Based Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Wanghui Jing
- Division of Nephrology and Hypertension; UC Irvine Medical Center; Irvine California USA
| | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Chronic kidney disease (CKD) is characterized by the accumulation of uremic retention solutes (URS) and is associated with perturbations of glucose homeostasis even in absence of diabetes. The underlying mechanisms of insulin resistance, β cell failure, and increase risk of diabetes in CKD, however, remain unclear. Metabolomic studies reported that some metabolites are similar in CKD and diabetic kidney disease (DKD) and contribute to the progression to end-stage renal disease. We attempted to discuss the mechanisms involved in the disruption of carbohydrate metabolism in CKD by focusing on the specific role of URS. RECENT FINDINGS Recent clinical data have demonstrated a defect of insulin secretion in CKD. Several studies highlighted the direct role of some URS (urea, trimethylamine N-oxide (TMAO), p-cresyl sulfate, 3-carboxylic acid 4-methyl-5-propyl-2-furan propionic (CMPF)) in glucose homeostasis abnormalities and diabetes incidence. Gut dysbiosis has been identified as a potential contributor to diabetes and to the production of URS. The complex interplay between the gut microbiota, kidney, pancreas β cell, and peripheral insulin target tissues has brought out new hypotheses for the pathogenesis of CKD and DKD. The characterization of intestinal microbiota and its associated metabolites are likely to fill fundamental knowledge gaps leading to innovative research, clinical trials, and new treatments for CKD and DKD.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department Nephrology, Centre Hospitalier Lyon Sud, 69495, Pierre-Benite, France.
- Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, 69621, Villeurbanne, France.
| | - Denis Fouque
- Department Nephrology, Centre Hospitalier Lyon Sud, 69495, Pierre-Benite, France
- Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, 69621, Villeurbanne, France
| | - Christophe O Soulage
- Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, 69621, Villeurbanne, France
| |
Collapse
|
40
|
Andrade LSD, Dalboni MA, Carvalho JTGD, Grabulosa CC, Pereira NBF, Aoike DT, Cuppari L. In vitro effect of uremic serum on barrier function and inflammation in human colonocytes. ACTA ACUST UNITED AC 2018; 40:217-224. [PMID: 29944162 PMCID: PMC6533953 DOI: 10.1590/2175-8239-jbn-3949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/24/2017] [Indexed: 12/25/2022]
Abstract
Introduction: In chronic kidney disease (CKD), it has been suggested that alterations
within the gut are associated with an inflammatory state and uremic
toxicity. Studies suggest that uremia may impair the function of the
intestinal barrier via the promotion of increased intestinal permeability.
To understand the mechanisms that are involved in intestinal barrier damage
in the setting of uremia, we evaluated the in vitro effect
of uremic serum on transepithelial electrical resistance (TER),
inflammation, and apoptosis in intestinal epithelial cells (T84). Methods: Pools of serum from healthy individuals, patients not on dialysis, and
patients on hemodialysis (Pre-HD and Post-HD) were prepared. T84 cells were
incubated for 24 h in medium, of which 10% consisted of the pooled serum
from each group. After incubation, the TER was measured and the following
parameters were determined by flow cytometry: expression of toll-like
receptors (TLRs), production of reactive oxygen species (ROS), and
apoptosis. The level of IL-6 in the culture supernatant was determined by
ELISA. Results: No difference was observed among the groups with respect to TER, apoptosis,
and ROS or the expression of TLR-2, TLR-4, and TLR-9. IL-6 secretion was
higher (p < 0.001) in cells that were incubated with
pre- and post-HD serum. Conclusion: The results that were obtained from this model suggest that uremic serum
per se does not seem to impair the integrity of
intestinal epithelial cells. The increased IL-6 secretion by cells that were
incubated with HD serum suggests a potential effect of uremia in the
intestinal inflammatory response.
Collapse
Affiliation(s)
- Laila Santos de Andrade
- Universidade Federal de São Paulo, Programa de Pós-Graduação em Nutrição, São Paulo, SP, Brasil
| | - Maria Aparecida Dalboni
- Universidade Federal de São Paulo, Departamento de medicina, Divisão de Nefrologia, São Paulo, SP, Brasil
| | | | - Caren Cristina Grabulosa
- Universidade Federal de São Paulo, Departamento de medicina, Divisão de Nefrologia, São Paulo, SP, Brasil
| | | | - Danilo Takashi Aoike
- Universidade Federal de São Paulo, Departamento de medicina, Divisão de Nefrologia, São Paulo, SP, Brasil
| | - Lilian Cuppari
- Universidade Federal de São Paulo, Programa de Pós-Graduação em Nutrição, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Departamento de medicina, Divisão de Nefrologia, São Paulo, SP, Brasil
| |
Collapse
|
41
|
Xie A, Sheng J, Zheng F. Intestinal Microbiota and Kidney Diseases. Chin J Integr Med 2018; 24:406-408. [PMID: 29651674 DOI: 10.1007/s11655-017-2927-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Indexed: 10/17/2022]
Abstract
Kidney diseases are common and the incidence rate is increasing. Gut microbiota is involved in metabolic and immune regulation of the host. Genetic, alimentary and environmental disease factors may change gut flora and increase opportunistic and pathogenic bacteria, contributing to immune or non-immune mediated kidney diseases including IgA nephropathy and diabetic nephropathy. Additionally, bacterial metabolites may be a source of uremic toxins. Thus, identification of diversity, composition, and metabolic and immunologic features of gut bacteria in chronic kidney diseases may help understand pathogenetic mechanism and develop therapy for diseases.
Collapse
Affiliation(s)
- Ao Xie
- Advanced Institute for Medical Science, The Second Hosptial, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Jie Sheng
- Advanced Institute for Medical Science, The Second Hosptial, Dalian Medical University, Dalian, Liaoning Province, 116044, China
| | - Feng Zheng
- Advanced Institute for Medical Science, The Second Hosptial, Dalian Medical University, Dalian, Liaoning Province, 116044, China.
| |
Collapse
|
42
|
The microbiome in chronic kidney disease patients undergoing hemodialysis and peritoneal dialysis. Pharmacol Res 2018; 130:143-151. [DOI: 10.1016/j.phrs.2018.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/19/2022]
|
43
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
44
|
Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol 2018; 50:289-299. [PMID: 28849345 DOI: 10.1007/s11255-017-1689-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 02/05/2023]
Abstract
The complicated communities of microbiota colonizing the human gastrointestinal tract exert a strong function in health maintenance and disease prevention. Indeed, accumulating evidence has indicated that the intestinal microbiota plays a key role in the pathogenesis and development of chronic kidney disease (CKD). Modulation of the gut microbiome composition in CKD may contribute to the accumulation of gut-derived uremic toxins, high circulating level of lipopolysaccharides and immune deregulation, all of which play a critical role in the pathogenesis of CKD and CKD-associated complications. In this review, we discuss the recent findings on the potential impact of gut microbiota in CKD and the underlying mechanisms by which microbiota can influence kidney diseases and vice versa. Additionally, the potential efficacy of pre-, pro- and synbiotics in the restoration of healthy gut microbia is described in detail to provide future directions for research.
Collapse
Affiliation(s)
- Wei Pan
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
45
|
Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, Paschetta E, Bongiovanni D, Musso G. Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacol Res 2018; 144:390-408. [PMID: 29378252 DOI: 10.1016/j.phrs.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
A large number of different microbial species populates intestine. Extensive research has studied the entire microbial population and their genes (microbiome) by using metagenomics, metatranscriptomics and metabolomic analysis. Studies suggest that the imbalances of the microbial community causes alterations in the intestinal homeostasis, leading to repercussions on other systems: metabolic, nervous, cardiovascular, immune. These studies have also shown that alterations in the structure and function of the gut microbiota play a key role in the pathogenesis and complications of Hypertension (HTN) and Chronic Kidney Disease (CKD). Increased blood pressure (BP) and CKD are two leading risk factors for cardiovascular disease and their treatment represents a challenge for the clinicians. In this Review, we discuss mechanisms whereby gut microbiota (GM) and its metabolites act on downstream cellular targets to contribute to the pathogenesis of HTN and CKD, and potential therapeutic implications.
Collapse
Affiliation(s)
- Antonio Sircana
- Unità Operativa di Cardiologia, Azienda Ospedaliero Universitaria, Sassari, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Franco De Michieli
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Daria Bongiovanni
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy.
| |
Collapse
|
46
|
Olivier V, Dunyach-Remy C, Lavigne JP, Moranne O. [Micro-inflammation and digestive bacterial translocation in chronic kidney disease]. Nephrol Ther 2018; 14:135-141. [PMID: 29295767 DOI: 10.1016/j.nephro.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
Abstract
Micro-inflammation has been recognized as a major factor associated with the poor prognosis of patients with chronic kidney disease. Those patients have an increased rate of pro-inflammatory markers like interleukin 6, C-Reactive protein, Tumor Necrosis Factor α and fibrinogen. Among multiple and complex causes of micro-inflammation the gut microbiota could be an important actor considering the dysbiosis in chronic kidney disease which would enhance the synthesis of uremic toxins with cardiovascular toxicity and the bacterial translocation. This review details the role of the gut microbiota in human pathology and in chronic kidney disease focusing on the bacterial translocation that could occur because of an impaired digestive permeability. This bacterial translocation could induce a chronic immune response and could take part in the raise of pro-inflammatory markers in chronic kidney disease. New therapeutic strategies aiming at preventing metabolic and cardiovascular complications could emerge from the understanding of the relationships between gut microbiota and host in this particular pathology.
Collapse
Affiliation(s)
- Valérie Olivier
- Service de néphrologie dialyse-aphérèse, CHU Caremeau, 30029 Nîmes cedex 09, France.
| | - Catherine Dunyach-Remy
- Inserm unité 1047, université de Montpellier, UFR de médecine, 30908 Nîmes cedex 02, France; Service de microbiologie, CHU Caremeau, 30029 Nîmes cedex 09, France
| | - Jean-Philippe Lavigne
- Inserm unité 1047, université de Montpellier, UFR de médecine, 30908 Nîmes cedex 02, France; Service de microbiologie, CHU Caremeau, 30029 Nîmes cedex 09, France
| | - Olivier Moranne
- Service de néphrologie dialyse-aphérèse, CHU Caremeau, 30029 Nîmes cedex 09, France
| |
Collapse
|
47
|
Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig 2018; 9:5-12. [PMID: 28390093 PMCID: PMC5754518 DOI: 10.1111/jdi.12673] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 02/23/2017] [Accepted: 04/05/2017] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus is a type of metabolic disorder whereby patients are unable to regulate glycemia. It is currently a worldwide public health issue, and is a burden to society because of its disabling and common complications. Diabetes is multifactorial, and also induces the onset of other diseases. In the present report, we review the labyrinth encompassing the gut microbiota and gut microbiota-derived metabolites in type 1 diabetes and type 2 diabetes pathogenesis. There have been exceptional improvements in deoxyribonucleic acid sequencing and mass spectrometry technologies throughout these past years, and these have allowed the comprehensive collection of information on our unique gut ecosystem. We would like to advocate incorporating metagenome and metabolome information for a comprehensive perspective of the complex interrelationships between the gut environment, host metabolism and diabetes pathogenesis. We hope that with this improved understanding we would be able to provide exciting novel therapeutic approaches to engineer an ideal gut ecosystem for optimal health.
Collapse
Affiliation(s)
- Wanping Aw
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
| | - Shinji Fukuda
- Institute for Advanced BiosciencesKeio UniversityTsuruokaYamagataJapan
- PRESTOJapan Science and Technology AgencySaitamaJapan
| |
Collapse
|
48
|
Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol 2017; 30:719-727. [DOI: 10.1007/s40620-017-0432-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
49
|
Ibrahim M, Behairy M, El-Ashry M, Mostafa AE. Cardiovascular risk of circulating endotoxin level in prevalent hemodialysis patients. Egypt Heart J 2017; 70:27-33. [PMID: 29622994 PMCID: PMC5883510 DOI: 10.1016/j.ehj.2017.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Accepted: 06/13/2017] [Indexed: 02/08/2023] Open
Abstract
Background Cardiovascular diseases (CVDs) are a major cause of morbidity and mortality in patients with end stage renal disease (ESRD). Circulating endotoxins may have toxic effect on myocardial functions and are speculated as pathogens of accelerated atherosclerosis and hemodialysis (HD) patients. Objective We aimed to assess the possible relation between circulating endotoxin levels and left ventricular functions parameters, common carotid artery intimal media thickness (CIMT) in prevalent HD patients. Patients and Methods Forty stable prevalent HD patients with mean age (47.97 ± 14.42) year using regular conventional hemodialysis sessions in Ain shams university hemodialysis unit, Cairo, Egypt were randomly selected. Diabetics, congestive heart failure and those with history of myocardial infarction or coronary artery disease were excluded from the study. All patients were studied by CBC and routine chemistry, as well as hs CRP, Intact PTH, lipid profile and endotoxin level by ELISA before and after the HD session, Delta change of endotoxin (pre dialysis endotoxin-post dialysis endotoxin) was calculated, resting Doppler echocardiographic and carotid duplex. Results Mean of Pre-HD session serum endotoxin level was (0.356 ± 0.090) EU/mL and the mean of post -HD endotoxin levels was (0.367 ± 0.110) EU/mL. Significant positive correlation between post dialysis endotoxin, MV E/A ratio and grades of left ventricular diastolic dysfunction (P < 0.05) and significant correlation between delta change in endotoxin and EF% (r = -0.36,P = 0.02). By stepwise linear regression analysis for determinants of MVE/A post -HD endotoxin level independently associated with MV E/A ratio (ß = 0.350, P = 0.027). We did not detect any significant correlation between CCA atherosclerosis and neither pre nor post- HD endotoxin level nor with delta change of pre and post HD endotoxin levels. Conclusion Acute increase in post dialytic circulating endotoxin level in prevalent HD patients may be associated with both left ventricular systolic and diastolic dysfunction and that attempts to reduce endotoxin level may have a positive impact on cardiovascular complications in HD Patients.
Collapse
Affiliation(s)
- Mohamed Ibrahim
- Internal Medicine and Nephrology Department - Ain Shams University, Egypt
| | - Maha Behairy
- Internal Medicine and Nephrology Department - Ain Shams University, Egypt
| | - Marwa El-Ashry
- Clinical and Chemical Pathology Department - Ain Shams University, Egypt
| | | |
Collapse
|
50
|
Wong J, Zhang Y, Patidar A, Vilar E, Finkelman M, Farrington K. Is Endotoxemia in Stable Hemodialysis Patients an Artefact? Limitations of the Limulus Amebocyte Lysate Assay and Role of (1→3)-β-D Glucan. PLoS One 2016; 11:e0164978. [PMID: 27764208 PMCID: PMC5072723 DOI: 10.1371/journal.pone.0164978] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/04/2016] [Indexed: 01/05/2023] Open
Abstract
Background Elevated blood endotoxin levels are frequently reported in the dialysis population and are strongly linked with inflammation, a major predictor of mortality. Virtually all studies have employed the Limulus Amoebocyte Lysate (LAL) assay to detect endotoxin. However this assay is not endotoxin-specific and can be activated by (1→3)-β-glucan (BG), a component of fungal cell walls leading to false positive signals. Very few studies have taken account of this. We examined the influence of BG-based activation of the LAL assay on the detection of endotoxemia in this setting. Method We measured plasma endotoxin levels in 50 hemodialysis patients with and without the use of BG-blocking buffers. These buffers inhibit BG activation of the LAL assay to ensure that any signal detected is endotoxin-specific. Blood samples were measured for BG, interleukin-6 (IL-6), tumor necrosis factor-alfa (TNF-α) to examine the association between endotoxin signals, BG and inflammation. Results Endotoxin signals were detected in 50% of patients. On repeat measurement with a BG-blocking buffer, all detected endotoxin signals were extinguished. No patient had detectable endotoxemia. Plasma BG levels were significantly elevated in 58% of patients and were higher in those with detectable endotoxin signals using the LAL assay without BG-blocking buffers (78vs.54pg/mL;p<0.001). Endotoxin signal and BG levels did not correlate with levels of TNF-α or IL-6. Conclusion Use of the LAL assay for blood endotoxin detection in dialysis patients has its limitations due to high blood BG. Endotoxemia frequently reported in non-infected hemodialysis patients may be artefactual due to BG interference.
Collapse
Affiliation(s)
- Jonathan Wong
- Lister Renal Unit, Hertfordshire, United Kingdom
- University of Hertfordshire, Hertfordshire, United Kingdom
- * E-mail:
| | - Yonglong Zhang
- Associates of Cape Cod Inc., East Falmouth, Massachusetts, United States of America
| | - Ashish Patidar
- University of Hertfordshire, Hertfordshire, United Kingdom
| | - Enric Vilar
- Lister Renal Unit, Hertfordshire, United Kingdom
- University of Hertfordshire, Hertfordshire, United Kingdom
| | - Malcolm Finkelman
- Associates of Cape Cod Inc., East Falmouth, Massachusetts, United States of America
| | - Ken Farrington
- Lister Renal Unit, Hertfordshire, United Kingdom
- University of Hertfordshire, Hertfordshire, United Kingdom
| |
Collapse
|