1
|
Meijnikman AS, Nieuwdorp M, Schnabl B. Endogenous ethanol production in health and disease. Nat Rev Gastroenterol Hepatol 2024; 21:556-571. [PMID: 38831008 DOI: 10.1038/s41575-024-00937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 06/05/2024]
Abstract
The gut microbiome exerts metabolic actions on distal tissues and organs outside the intestine, partly through microbial metabolites that diffuse into the circulation. The disruption of gut homeostasis results in changes to microbial metabolites, and more than half of the variance in the plasma metabolome can be explained by the gut microbiome. Ethanol is a major microbial metabolite that is produced in the intestine of nearly all individuals; however, elevated ethanol production is associated with pathological conditions such as metabolic dysfunction-associated steatotic liver disease and auto-brewery syndrome, in which the liver's capacity to metabolize ethanol is surpassed. In this Review, we describe the mechanisms underlying excessive ethanol production in the gut and the role of ethanol catabolism in mediating pathogenic effects of ethanol on the liver and host metabolism. We conclude by discussing approaches to target excessive ethanol production by gut bacteria.
Collapse
Affiliation(s)
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, Netherlands
- Diabeter Centrum Amsterdam, Amsterdam, Netherlands
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
- Center for Innovative Phage Applications and Therapeutics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Yao T, Fu L, Wu Y, Li L. Christensenella minuta Alleviates Acetaminophen-Induced Hepatotoxicity by Regulating Phenylalanine Metabolism. Nutrients 2024; 16:2314. [PMID: 39064757 PMCID: PMC11280030 DOI: 10.3390/nu16142314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI), even liver failure, is a significant challenge due to the limited availability of therapeutic medicine. Christensenella minuta (C. minuta), as a probiotic therapy, has shown promising prospects in metabolism and inflammatory diseases. Our research aimed to examine the influence of C. minuta on AILI and explore the molecular pathways underlying it. We found that administration of C. minuta remarkably alleviated AILI in a mouse model, as evidenced by decreased levels of alanine transaminase (ALT) and aspartate aminotransferase (AST) and improvements in the histopathological features of liver sections. Additionally, there was a notable decrease in malondialdehyde (MDA), accompanied by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, and superoxide dismutase (SOD) activity. Furthermore, there was a significant reduction in inflammatory markers (IL6, IL1β, TNF-α). C. minuta regulated phenylalanine metabolism. No significant difference in intestinal permeability was observed in either the model group or the treatment group. High levels of phenylalanine aggravated liver damage, which may be linked to phenylalanine-induced dysbiosis and dysregulation in cytochrome P450 metabolism, sphingolipid metabolism, the PI3K-AKT pathway, and the Integrin pathway. Furthermore, C. minuta restored the diversity of the microbiota, modulated metabolic pathways and MAPK pathway. Overall, this research demonstrates that supplementing with C. minuta offers both preventive and remedial benefits against AILI by modulating the gut microbiota, phenylalanine metabolism, oxidative stress, and the MAPK pathway, with high phenylalanine supplementation being identified as a risk factor exacerbating liver injury.
Collapse
Affiliation(s)
| | | | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou City 310003, China
| |
Collapse
|
3
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
4
|
Abuqwider J, Di Porzio A, Barrella V, Gatto C, Sequino G, De Filippis F, Crescenzo R, Spagnuolo MS, Cigliano L, Mauriello G, Iossa S, Mazzoli A. Limosilactobacillus reuteri DSM 17938 reverses gut metabolic dysfunction induced by Western diet in adult rats. Front Nutr 2023; 10:1236417. [PMID: 37908302 PMCID: PMC10613642 DOI: 10.3389/fnut.2023.1236417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in the Mediterranean Environment, National Research Council Naples (CNR-ISPAAM), Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
5
|
Abstract
The medical disorders of alcoholism rank among the leading public health problems worldwide and the need for predictive and prognostic risk markers for assessing alcohol use disorders (AUD) has been widely acknowledged. Early-phase detection of problem drinking and associated tissue toxicity are important prerequisites for timely initiations of appropriate treatments and improving patient's committing to the objective of reducing drinking. Recent advances in clinical chemistry have provided novel approaches for a specific detection of heavy drinking through assays of unique ethanol metabolites, phosphatidylethanol (PEth) or ethyl glucuronide (EtG). Carbohydrate-deficient transferrin (CDT) measurements can be used to indicate severe alcohol problems. Hazardous drinking frequently manifests as heavy episodic drinking or in combinations with other unfavorable lifestyle factors, such as smoking, physical inactivity, poor diet or adiposity, which aggravate the metabolic consequences of alcohol intake in a supra-additive manner. Such interactions are also reflected in multiple disease outcomes and distinct abnormalities in biomarkers of liver function, inflammation and oxidative stress. Use of predictive biomarkers either alone or as part of specifically designed biological algorithms helps to predict both hepatic and extrahepatic morbidity in individuals with such risk factors. Novel approaches for assessing progression of fibrosis, a major determinant of prognosis in AUD, have also been made available. Predictive algorithms based on the combined use of biomarkers and clinical observations may prove to have a major impact on clinical decisions to detect AUD in early pre-symptomatic stages, stratify patients according to their substantially different disease risks and predict individual responses to treatment.
Collapse
Affiliation(s)
- Onni Niemelä
- Department of Laboratory Medicine and Medical Research Unit, Seinäjoki Central Hospital and Tampere University, Seinäjoki, Finland.
| |
Collapse
|
6
|
Chen L, Yang P, Hu L, Yang L, Chu H, Hou X. Modulating phenylalanine metabolism by L. acidophilus alleviates alcohol-related liver disease through enhancing intestinal barrier function. Cell Biosci 2023; 13:24. [PMID: 36739426 PMCID: PMC9899391 DOI: 10.1186/s13578-023-00974-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/27/2023] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Impaired metabolic functions of gut microbiota have been demonstrated in alcohol-related liver disease (ALD), but little is known about changes in phenylalanine metabolism. METHODS Bacterial genomics and fecal metabolomics analysis were used to recognize the changes of phenylalanine metabolism and its relationship with intestinal flora. Intestinal barrier function was detected by intestinal alkaline phosphatase (IAP) activity, levels of tight junction protein expression, colonic inflammation and levels of serum LPS. Lactobacillus acidophilus was chosen to correct phenylalanine metabolism of ALD mice by redundancy analysis and Pearson correlation analysis. RESULTS Using 16S rRNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods, we identified elevated levels of phenylalanine and its' metabolites in the gut of alcohol-fed mice compared to control mice and were negatively correlated with the abundance of Lactobacillus, which mainly metabolized phenylalanine. The intestinal phenylalanine level was positively correlated with the colon inflammatory factors TNF-α and IL-6, and negatively correlated with ZO-1 and Occludin. While intestinal alkaline phosphatase (IAP) activity was negatively correlated with the colon inflammatory factors TNF-α, IL-6 and MCP-1, and positively correlated with ZO-1 and Occludin. Increased phenylalanine inhibited IAP activity, blocked LPS dephosphorylation, increased colonic inflammation and bacterial translocation. Phenylalanine supplementation aggravated alcohol-induced liver injury and intestinal barrier dysfunction. Among the 37 Lactobacillus species, the abundance of Lactobacillus acidophilus was most significantly decreased in ALD mice. Supplementation with L. acidophilus recovered phenylalanine metabolism and protected mice from alcohol-induced steatohepatitis. CONCLUSIONS Recovery of phenylalanine metabolism through the oral supplementation of L. acidophilus boosted intestinal barrier integrity and ameliorated experimental ALD.
Collapse
Affiliation(s)
- Liuying Chen
- grid.33199.310000 0004 0368 7223Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Pengcheng Yang
- grid.33199.310000 0004 0368 7223Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Lilin Hu
- grid.33199.310000 0004 0368 7223Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Ling Yang
- grid.33199.310000 0004 0368 7223Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Huikuan Chu
- grid.33199.310000 0004 0368 7223Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| | - Xiaohua Hou
- grid.33199.310000 0004 0368 7223Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 China
| |
Collapse
|
7
|
Hou X, Rong C, Zhang Q, Song S, Cong Y, Zhang HT. Cyclic Nucleotide Phosphodiesterases in Alcohol Use Disorders: Involving Gut Microbiota. Int J Neuropsychopharmacol 2022; 26:70-79. [PMID: 36087271 PMCID: PMC9850663 DOI: 10.1093/ijnp/pyac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 01/22/2023] Open
Abstract
Alcohol abuse is 1 of the most significant public health problems in the world. Chronic, excessive alcohol consumption not only causes alcohol use disorder (AUD) but also changes the gut and lung microbiota, including bacterial and nonbacterial types. Both types of microbiota can release toxins, further damaging the gastrointestinal and respiratory tracts; causing inflammation; and impairing the functions of the liver, lung, and brain, which in turn deteriorate AUD. Phosphodiesterases (PDEs) are critical in the control of intracellular cyclic nucleotides, including cyclic adenosine monophosphate and cyclic guanosine monophosphate. Inhibition of certain host PDEs reduces alcohol consumption and attenuates alcohol-related impairment. These PDEs are also expressed in the microbiota and may play a role in controlling microbiota-associated inflammation. Here, we summarize the influences of alcohol on gut/lung bacterial and nonbacterial microbiota as well as on the gut-liver/brain/lung axis. We then discuss the relationship between gut and lung microbiota-mediated PDE signaling and AUD consequences in addition to highlighting PDEs as potential targets for treatment of AUD.
Collapse
Affiliation(s)
- Xueqin Hou
- Correspondence: Xueqin Hou, PhD, Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China ()
| | | | - Qiwei Zhang
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Shuangshuang Song
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Yifan Cong
- Institute of Pharmacology, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong 271016, P.R. China
| | - Han-Ting Zhang
- Han-Ting Zhang, MD, PhD, Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong 266073, P.R. China ()
| |
Collapse
|
8
|
Singh SB, Coffman CN, Varga MG, Carroll-Portillo A, Braun CA, Lin HC. Intestinal Alkaline Phosphatase Prevents Sulfate Reducing Bacteria-Induced Increased Tight Junction Permeability by Inhibiting Snail Pathway. Front Cell Infect Microbiol 2022; 12:882498. [PMID: 35694541 PMCID: PMC9177943 DOI: 10.3389/fcimb.2022.882498] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tight junctions (TJs) are essential components of intestinal barrier integrity and protect the epithelium against passive paracellular flux and microbial translocation. Dysfunctional TJ leads to leaky gut, a condition associated with diseases including inflammatory bowel disease (IBD). Sulfate-Reducing Bacteria (SRB) are minor residents of the gut. An increased number of Desulfovibrio, the most predominant SRB, is observed in IBD and other diseases associated with leaky gut. However, it is not known whether Desulfovibrio contributes to leaky gut. We tested the hypothesis that Desulfovibrio vulgaris (DSV) may induce intestinal permeability in vitro. Snail, a transcription factor, disrupts barrier function by affecting TJ proteins such as occludin. Intestinal alkaline phosphatase (IAP), a host defense protein, protects epithelial barrier integrity. We tested whether DSV induced permeability in polarized Caco-2 cells via snail and if this effect was inhibited by IAP. Barrier integrity was assessed by measuring transepithelial electric resistance (TEER) and by 4kDa FITC-Dextran flux to determine paracellular permeability. We found that DSV reduced TEER, increased FITC-flux, upregulated snail protein expression, caused nuclear translocation of snail, and disrupted occludin staining at the junctions. DSV-induced permeability effects were inhibited in cells knocked down for snail. Pre-treatment of cells with IAP inhibited DSV-induced FITC flux and snail expression and DSV-mediated disruption of occludin staining. These data show that DSV, a resident commensal bacterium, can contribute to leaky gut and that snail may serve as a novel therapeutic target to mitigate DSV-induced effects. Taken together, our study suggests a novel underlying mechanism of association of Desulfovibrio bloom with diseases with increased intestinal permeability. Our study also underscores IAP as a novel therapeutic intervention for correcting SRB-induced leaky gut via inhibition of snail.
Collapse
Affiliation(s)
- Sudha B. Singh
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Cristina N. Coffman
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Matthew G. Varga
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Amanda Carroll-Portillo
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Cody A. Braun
- Biomedical Research Institute of New Mexico, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
| | - Henry C. Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, University of New Mexico, Albuquerque, NM, United States
- Medicine Service, New Mexico Veterans Affairs (VA) Health Care System, Albuquerque, NM, United States
- *Correspondence: Henry C. Lin,
| |
Collapse
|
9
|
Xu Q, Zhang R, Mu Y, Song Y, Hao N, Wei Y, Wang Q, Mackay CR. Propionate Ameliorates Alcohol-Induced Liver Injury in Mice via the Gut-Liver Axis: Focus on the Improvement of Intestinal Permeability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6084-6096. [PMID: 35549256 DOI: 10.1021/acs.jafc.2c00633] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alcohol-related liver disease (ALD) is a major cause of chronic liver disease worldwide with limited therapeutic options. Here, we first revealed the promising beneficial effect of gut microbiota-derived propionate on alcoholic liver injury in mice. This effect was dependent on the modulation of homeostasis of the gut-liver axis, especially the improvement of intestinal permeability. Dietary supplementation with propionate protected against ethanol-induced loss of hepatic function and hepatic steatosis in mice. Meanwhile, propionate treatment attenuated intestinal epithelial barrier dysfunction, restored the expression of intestinal mucus layer components, suppressed intestinal inflammation, and altered intestinal microbiota dysbiosis, which inhibited the intestinal hyperpermeability and subsequently reduced lipopolysaccharide leakage in ALD mice. Furthermore, as a consequence of endotoxemia amelioration, the liver inflammation-related TLR4-NF-κB pathway was inhibited. Collectively, our results suggested that propionate supplementation may be a promising option for the prevention and treatment of ALD.
Collapse
Affiliation(s)
- Qi Xu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yan Mu
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yue Song
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Na Hao
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yunbo Wei
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| |
Collapse
|
10
|
Wu H, Wang Y, Li H, Meng L, Zheng N, Wang J. Protective Effect of Alkaline Phosphatase Supplementation on Infant Health. Foods 2022; 11:foods11091212. [PMID: 35563935 PMCID: PMC9101100 DOI: 10.3390/foods11091212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Alkaline phosphatase (ALP) is abundant in raw milk. Because of its high heat resistance, ALP negative is used as an indicator of successful sterilization. However, pasteurized milk loses its immune protection against allergy. Clinically, ALP is also used as an indicator of organ diseases. When the activity of ALP in blood increases, it is considered that diseases occur in viscera and organs. Oral administration or injecting ALP will not cause harm to the body and has a variety of probiotic effects. For infants with low immunity, ALP intake is a good prebiotic for protecting the infant’s intestine from potential pathogenic bacteria. In addition, ALP has a variety of probiotic effects for any age group, including prevention and treatment intestinal diseases, allergies, hepatitis, acute kidney injury (AKI), diabetes, and even the prevention of aging. The prebiotic effects of alkaline phosphatase on the health of infants and consumers and the content of ALP in different mammalian raw milk are summarized. The review calls on consumers and manufacturers to pay more attention to ALP, especially for infants with incomplete immune development. ALP supplementation is conducive to the healthy growth of infants.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China;
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-62816069
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.W.); (H.L.); (L.M.); (J.W.)
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022; 33:247-265. [PMID: 35151560 DOI: 10.1016/j.tem.2022.01.002] [Citation(s) in RCA: 187] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
The intestinal barrier protects the host against gut microbes, food antigens, and toxins present in the gastrointestinal tract. However, gut barrier integrity can be affected by intrinsic and extrinsic factors, including genetic predisposition, the Western diet, antibiotics, alcohol, circadian rhythm disruption, psychological stress, and aging. Chronic disruption of the gut barrier can lead to translocation of microbial components into the body, producing systemic, low-grade inflammation. While the association between gut barrier integrity and inflammation in intestinal diseases is well established, we review here recent studies indicating that the gut barrier and microbiota dysbiosis may contribute to the development of metabolic, autoimmune, and aging-related disorders. Emerging interventions to improve gut barrier integrity and microbiota composition are also described.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Shih-Hsin Chang
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Chang Gung Biotechnology Corporation, Taipei, Taiwan; Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - John D Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan.
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Biomedical Sciences, Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA, USA.
| |
Collapse
|
12
|
Intestinal Alkaline Phosphatase: A Review of This Enzyme Role in the Intestinal Barrier Function. Microorganisms 2022; 10:microorganisms10040746. [PMID: 35456797 PMCID: PMC9026380 DOI: 10.3390/microorganisms10040746] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/06/2023] Open
Abstract
Intestinal alkaline phosphatase (IALP) has recently assumed a special relevance, being the subject of study in the prevention and treatment of certain diseases related to leaky gut. This brush border enzyme (ecto-enzyme) plays an important role in the maintenance of intestinal microbial homeostasis and intestinal barrier function through its ability to dephosphorylate lipopolysaccharide (LPS). This review addresses how IALP and intestinal barrier dysfunction may be implicated in the pathophysiology of specific diseases such as inflammatory bowel disease, necrotizing enterocolitis, and metabolic syndrome. The use of IALP as a possible biomarker to assess intestinal barrier function and strategies to modulate IALP activity are also discussed.
Collapse
|
13
|
Su X, Yao B. Exploiting enzymes as a powerful tool to modulate the gut microbiota. Trends Microbiol 2022; 30:314-317. [PMID: 35120774 DOI: 10.1016/j.tim.2022.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/23/2021] [Accepted: 01/10/2022] [Indexed: 10/19/2022]
Abstract
Orally administered enzymes can have profound effects on the composition of the gut microbiota and may serve as an appealing alternative modulating agent. We summarize the three ways through which enzymes can influence the gut microbiota and discuss the challenges in choosing the right enzyme to modulate the gut microbiota.
Collapse
Affiliation(s)
- Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian District, Beijing 100193, China.
| |
Collapse
|
14
|
Malo J, Alam MJ, Islam S, Mottalib MA, Rocki MMH, Barmon G, Tinni SA, Barman SK, Sarker T, Khan MNI, Kaliannan K, Hasanat MA, Rahman S, Pathan MF, Khan AKA, Malo MS. Intestinal alkaline phosphatase deficiency increases the risk of diabetes. BMJ Open Diabetes Res Care 2022; 10:10/1/e002643. [PMID: 35082135 PMCID: PMC8796214 DOI: 10.1136/bmjdrc-2021-002643] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/06/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Our previous case-control study demonstrated that a high level of intestinal alkaline phosphatase (IAP), an endotoxin-detoxifying anti-inflammatory enzyme secreted by villus-associated enterocytes and excreted with stool, plays a protective role against type 2 diabetes mellitus (T2DM) irrespective of obesity. In the current study, we investigated the long-term effect of IAP deficiency (IAPD) on the pathogenesis of T2DM. RESEARCH DESIGN AND METHODS A healthy cohort of participants without diabetes (30-60 years old), comprising 188 without IAPD (IAP level: ≥65 U/g stool) and 386 with IAPD (IAP level: <65 U/g stool), were followed up for 5 years. We measured stool IAP (STAP) and fasting plasma glucose, and calculated the risk ratio (RR) using log-binomial regression model. RESULTS T2DM incidence rates were 8.0%, 11.7%, 25.6%, and 33.3% in participants with 'persistent no IAPD' (IAP level: always ≥65 U/g stool), 'remittent IAPD' (IAP level: increased from <65 U/g stool to ≥65 U/g stool), 'persistent IAPD' (IAP level: always <65 U/g stool), and 'incident IAPD' (IAP level: decreased from ≥65 U/g stool to <65 U/g stool), respectively. Compared with 'persistent no IAPD' the risk of developing T2DM with 'incident IAPD' was 270% higher (RR: 3.69 (95% CI 1.76 to 7.71), χ2 p<0.001). With 'persistent IAPD' the risk was 230% higher (RR: 3.27 (95% CI 1.64 to 6.50), p<0.001). 'Remittent IAPD' showed insignificant risk (RR: 2.24 (95% CI 0.99 to 5.11), p=0.0541). Sensitivity analyses of persistent IAP levels revealed that, compared with participants of the highest persistent IAP pentile (always >115 U/g stool), the rate of increase of fasting glycemia was double and the risk of developing T2DM was 1280% higher (RR: 13.80 (95% CI 1.87 to 101.3), p=0.0099) in participants of the lowest persistent IAP pentile (always <15 U/g stool). A diabetes pathogenesis model is presented. CONCLUSIONS IAPD increases the risk of developing T2DM, and regular STAP tests would predict individual vulnerability to T2DM. Oral IAP supplementation might prevent T2DM.
Collapse
Affiliation(s)
| | - Md Jahangir Alam
- Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Bangladesh
| | - Md Abdul Mottalib
- Department of Biochemistry and Molecular Biology, BIRDEM, Dhaka, Bangladesh
| | | | - Ginok Barmon
- Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | | | | | - Tapas Sarker
- Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | | | - Kanakaraju Kaliannan
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Muhammad Abul Hasanat
- Department of Endocrinology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Salimur Rahman
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | | | - A K Azad Khan
- Diabetic Association of Bangladesh, Dhaka, Bangladesh
| | - Madhu S Malo
- Diabetic Association of Bangladesh, Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, BIRDEM, Dhaka, Bangladesh
- Centre for Global Health Research, Diabetic Association of Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
15
|
The Role of Gut-Derived Lipopolysaccharides and the Intestinal Barrier in Fatty Liver Diseases. J Gastrointest Surg 2022; 26:671-683. [PMID: 34734369 PMCID: PMC8926958 DOI: 10.1007/s11605-021-05188-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepatosteatosis is the earliest stage in the pathogenesis of nonalcoholic fatty (NAFLD) and alcoholic liver disease (ALD). As NAFLD is affecting 10-24% of the general population and approximately 70% of obese patients, it carries a large economic burden and is becoming a major reason for liver transplantation worldwide. ALD is a major cause of morbidity and mortality causing 50% of liver cirrhosis and 10% of liver cancer related death. Increasing evidence has accumulated that gut-derived factors play a crucial role in the development and progression of chronic liver diseases. METHODS A selective literature search was conducted in Medline and PubMed, using the terms "nonalcoholic fatty liver disease," "alcoholic liver disease," "lipopolysaccharide," "gut barrier," and "microbiome." RESULTS Gut dysbiosis and gut barrier dysfunction both contribute to chronic liver disease by abnormal regulation of the gut-liver axis. Thereby, gut-derived lipopolysaccharides (LPS) are a key factor in inducing the inflammatory response of liver tissue. The review further underlines that endotoxemia is observed in both NAFLD and ALD patients. LPS plays an important role in conducting liver damage through the LPS-TLR4 signaling pathway. Treatments targeting the gut microbiome and the gut barrier such as fecal microbiota transplantation (FMT), probiotics, prebiotics, synbiotics, and intestinal alkaline phosphatase (IAP) represent potential treatment modalities for NAFLD and ALD. CONCLUSIONS The gut-liver axis plays an important role in the development of liver disease. Treatments targeting the gut microbiome and the gut barrier have shown beneficial effects in attenuating liver inflammation and need to be further investigated.
Collapse
|
16
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
17
|
Singh SB, Lin HC. Role of Intestinal Alkaline Phosphatase in Innate Immunity. Biomolecules 2021; 11:biom11121784. [PMID: 34944428 PMCID: PMC8698947 DOI: 10.3390/biom11121784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal alkaline phosphatase (IAP) is a multi-functional protein that has been demonstrated to primarily protect the gut. The role of IAP in maintaining intestinal homeostasis is underscored by the observation that IAP expression is defective in many gastrointestinal-related disorders such as inflammatory bowel disease IBD, necrotizing enterocolitis, and metabolic syndrome and that exogenous IAP supplementation improves the outcomes associated with these disorders. Additionally, studies using transgenic IAP-knock out (IAP-KO) mouse models further support the importance of the defensive role of IAP in the intestine. Supplementation of exogenous IAP and cellular overexpression of IAP have also been used in vitro to dissect out the downstream mechanisms of this protein in mammalian cell lines. Some of the innate immune functions of IAP include lipopolysaccharide (LPS) detoxification, protection of gut barrier integrity, regulation of gut microbial communities and its anti-inflammatory roles. A novel function of IAP recently identified is the induction of autophagy. Due to its critical role in the gut physiology and its excellent safety profile, IAP has been used in phase 2a clinical trials for treating conditions such as sepsis-associated acute kidney injury. Many excellent reviews discuss the role of IAP in physiology and pathophysiology and here we extend these to include recent updates on this important host defense protein and discuss its role in innate immunity via its effects on bacteria as well as on host cells. We will also discuss the relationship between IAP and autophagy and how these two pathways may act in concert to protect the gut.
Collapse
Affiliation(s)
- Sudha B. Singh
- Biomedical Research Institute of New Mexico, Albuquerque, NM 87108, USA;
| | - Henry C. Lin
- Medicine Service, New Mexico VA Health Care System, Albuquerque, NM 87108, USA
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
18
|
Kühn F, Duan R, Ilmer M, Wirth U, Adiliaghdam F, Schiergens TS, Andrassy J, Bazhin AV, Werner J. Targeting the Intestinal Barrier to Prevent Gut-Derived Inflammation and Disease: A Role for Intestinal Alkaline Phosphatase. Visc Med 2021; 37:383-393. [PMID: 34722721 DOI: 10.1159/000515910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
Background Intestinal alkaline phosphatase (IAP) as a tissue-specific isozyme of alkaline phosphatases is predominantly produced by enterocytes in the proximal small intestine. In recent years, an increasing number of pathologies have been identified to be associated with an IAP deficiency, making it very worthwhile to review the various roles, biological functions, and potential therapeutic aspects of IAP. Summary IAP primarily originates and acts in the intestinal tract but affects other organs through specific biological axes related to its fundamental roles such as promoting gut barrier function, dephosphorylation/detoxification of lipopolysaccharides (LPS), and regulation of gut microbiota. Key Messages Numerous studies reporting on the different roles and the potential therapeutic value of IAP across species have been published during the last decade. While IAP deficiency is linked to varying degrees of physiological dysfunctions across multiple organ systems, the supplementation of IAP has been proven to be beneficial in several translational and clinical studies. The increasing evidence of the salutary functions of IAP underlines the significance of the naturally occurring brush border enzyme.
Collapse
Affiliation(s)
- Florian Kühn
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Ruifeng Duan
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Matthias Ilmer
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Ulrich Wirth
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tobias S Schiergens
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Joachim Andrassy
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, University Hospital of LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Wu H, Wang Y, Yao Q, Fan L, Meng L, Zheng N, Li H, Wang J. Alkaline phosphatase attenuates LPS-induced liver injury by regulating the miR-146a-related inflammatory pathway. Int Immunopharmacol 2021; 101:108149. [PMID: 34634739 DOI: 10.1016/j.intimp.2021.108149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/09/2021] [Accepted: 09/07/2021] [Indexed: 11/27/2022]
Abstract
Lipopolysaccharide (LPS) can remain in dairy products after the sterilization of milk powder and may pose a threat to the health of infants and young children. There is a large amount of alkaline phosphatase (ALP) in raw milk, which can remove the phosphate bond of LPS, thus, detoxifying it. ALP is regarded as an indicator of the success of milk sterilization due to its strong heat resistance. ALP can alleviate the toxicity of LPS in enteritis and nephritis models, but the mechanism by which oral-intake of ALP protects liver tissue from LPS stimulation is unclear. In this study, an in vivo acute mouse liver injury model was induced by C. sakazakii LPS (200 μg/kg) and used to verify the protective mechanism of ALP (200 U/kg) on mice livers. The related pathways were also verified by in vitro cell culture. Enzyme linked immunosorbent assays (ELISAs), quantitative reverse transcription PCR (RT-qPCR) and western blotting were used to detect the levels of inflammatory factors at the protein level and RNA level, and to confirm the inflammation of liver tissue caused by LPS. ALP was found to alleviate acute liver injury in vitro by activating miR-146a. We found that ALP could up-regulate the level of miR146a and subsequently alleviates the expression of TLR4, TNF-α, matured IL-1β, and NF-κB in mouse liver tissue and hepatocytes; thus, reducing liver inflammation. Herein, we demonstrated for the first time that oral-intake of ALP protected liver tissue by up-regulating the expression of miR-146a and alleviating inflammatory reactions; thus, providing a research basis for the proper processing of milk. This study also suggests that producers should improve the awareness of the protective effects of bioactive proteins in raw milk.
Collapse
Affiliation(s)
- Haoming Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qianqian Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Linlin Fan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lu Meng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
20
|
Horst EA, Kvidera SK, Baumgard LH. Invited review: The influence of immune activation on transition cow health and performance-A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104:8380-8410. [PMID: 34053763 DOI: 10.3168/jds.2021-20330] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
The progression from gestation into lactation represents the transition period, and it is accompanied by marked physiological, metabolic, and inflammatory adjustments. The entire lactation and a cow's opportunity to have an additional lactation are heavily dependent on how successfully she adapts during the periparturient period. Additionally, a disproportionate amount of health care and culling occurs early following parturition. Thus, lactation maladaptation has been a heavily researched area of dairy science for more than 50 yr. It was traditionally thought that excessive adipose tissue mobilization in large part dictated transition period success. Further, the magnitude of hypocalcemia has also been assumed to partly control whether a cow effectively navigates the first few months of lactation. The canon became that adipose tissue released nonesterified fatty acids (NEFA) and the resulting hepatic-derived ketones coupled with hypocalcemia lead to immune suppression, which is responsible for transition disorders (e.g., mastitis, metritis, retained placenta, poor fertility). In other words, the dogma evolved that these metabolites and hypocalcemia were causal to transition cow problems and that large efforts should be enlisted to prevent increased NEFA, hyperketonemia, and subclinical hypocalcemia. However, despite intensive academic and industry focus, the periparturient period remains a large hurdle to animal welfare, farm profitability, and dairy sustainability. Thus, it stands to reason that there are alternative explanations to periparturient failures. Recently, it has become firmly established that immune activation and the ipso facto inflammatory response are a normal component of transition cow biology. The origin of immune activation likely stems from the mammary gland, tissue trauma during parturition, and the gastrointestinal tract. If inflammation becomes pathological, it reduces feed intake and causes hypocalcemia. Our tenet is that immune system utilization of glucose and its induction of hypophagia are responsible for the extensive increase in NEFA and ketones, and this explains why they (and the severity of hypocalcemia) are correlated with poor health, production, and reproduction outcomes. In this review, we argue that changes in circulating NEFA, ketones, and calcium are simply reflective of either (1) normal homeorhetic adjustments that healthy, high-producing cows use to prioritize milk synthesis or (2) the consequence of immune activation and its sequelae.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
21
|
Li R, Mao Z, Ye X, Zuo T. Human Gut Microbiome and Liver Diseases: From Correlation to Causation. Microorganisms 2021; 9:1017. [PMID: 34066850 PMCID: PMC8151257 DOI: 10.3390/microorganisms9051017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
The important role of human gut microbiota in liver diseases has long been recognized as dysbiosis and the translocation of certain microbes from the gut to liver. With the development of high-throughput DNA sequencing, the complexity and integrity of the gut microbiome in the whole spectrum of liver diseases is emerging. Specific patterns of gut microbiota have been identified in liver diseases with different causes, including alcoholic, non-alcoholic, and virus induced liver diseases, or even at different stages, ranging from steatohepatitis, fibrosis, cirrhosis, to hepatocellular carcinoma. At the same time, the mechanism of how microbiota contributes to liver diseases goes beyond the traditional function of the gut-liver axis which could lead to liver injury and inflammation. With the application of proteomics, metabolomics, and modern molecular technologies, more microbial metabolites and the complicated interaction of microbiota with host immunity come into our understanding in the liver pathogenesis. Germ-free animal models serve as a workhorse to test the function of microbiota and their derivatives in liver disease models. Here, we review the current evidence on the relationship between gut microbiota and liver diseases, and the mechanisms underlying this phenotype. In addition to original liver diseases, gut microbiota might also affect liver injury in systemic disorders involving multiple organs, as in the case of COVID-19 at a severe state. A better understanding of the gut microbial contribution to liver diseases might help us better benefit from this guest-host relationship and pave the way for novel therapies.
Collapse
Affiliation(s)
- Rui Li
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Zhengsheng Mao
- Department of Neurology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China;
| | - Xujun Ye
- Department of Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan 430070, China;
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou 510000, China
| |
Collapse
|
22
|
Khan A, Ding Z, Ishaq M, Bacha AS, Khan I, Hanif A, Li W, Guo X. Understanding the Effects of Gut Microbiota Dysbiosis on Nonalcoholic Fatty Liver Disease and the Possible Probiotics Role: Recent Updates. Int J Biol Sci 2021; 17:818-833. [PMID: 33767591 PMCID: PMC7975705 DOI: 10.7150/ijbs.56214] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 12/24/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is leading chronic liver syndrome worldwide. Gut microbiota dysbiosis significantly contributes to the pathogenesis and severity of NAFLD. However, its role is complex and even unclear. Treatment of NAFLD through chemotherapeutic agents have been questioned because of their side effects on health. In this review, we highlighted and discussed the current understanding on the importance of gut microbiota, its dysbiosis and its effects on the gut-liver axis and gut mucosa. Further, we discussed key mechanisms involved in gut dysbiosis to provide an outline of its role in progression to NAFLD and liver cirrhosis. In addition, we also explored the potential role of probiotics as a treatment approach for the prevention and treatment of NAFLD. Based on the latest findings, it is evident that microbiota targeted interventions mostly the use of probiotics have shown promising effects and can possibly alleviate the gut microbiota dysbiosis, regulate the metabolic pathways which in turn inhibit the progression of NAFLD through the gut-liver axis. However, very limited studies in humans are available on this issue and suggest further research work to identify a specific core microbiome association with NAFLD and to discover its mechanism of pathogenesis, which will help to enhance the therapeutic potential of probiotics to NAFLD.
Collapse
Affiliation(s)
- Ashiq Khan
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
- Department of Microbiology, Balochistan University of Information Technology Engineering & Management Sciences Quetta 87300, Pakistan
| | - Zitong Ding
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Muhammad Ishaq
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Ali Sher Bacha
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Israr Khan
- School of Life Sciences, Institute of Microbiology Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hanif
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Wenyuan Li
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- School of Life Sciences, Probiotics and Biological Feed Research Centre, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
23
|
Liu Y, Cavallaro PM, Kim BM, Liu T, Wang H, Kühn F, Adiliaghdam F, Liu E, Vasan R, Samarbafzadeh E, Farber MZ, Li J, Xu M, Mohad V, Choi M, Hodin RA. A role for intestinal alkaline phosphatase in preventing liver fibrosis. Theranostics 2021; 11:14-26. [PMID: 33391458 PMCID: PMC7681079 DOI: 10.7150/thno.48468] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Liver fibrosis is frequently associated with gut barrier dysfunction, and the lipopolysaccharides (LPS) -TLR4 pathway is common to the development of both. Intestinal alkaline phosphatase (IAP) has the ability to detoxify LPS, as well as maintain intestinal tight junction proteins and gut barrier integrity. Therefore, we hypothesized that IAP may function as a novel therapy to prevent liver fibrosis. Methods: Stool IAP activity from cirrhotic patients were determined. Common bile duct ligation (CBDL) and Carbon Tetrachloride-4 (CCl4)-induced liver fibrosis models were used in WT, IAP knockout (KO), and TLR4 KO mice supplemented with or without exogenous IAP in their drinking water. The gut barrier function and liver fibrosis markers were tested. Results: Human stool IAP activity was decreased in the setting of liver cirrhosis. In mice, IAP activity and genes expression decreased after CBDL and CCl4 exposure. Intestinal tight junction related genes and gut barrier function were impaired in both models of liver fibrosis. Oral IAP supplementation attenuated the decrease in small intestine tight junction protein gene expression and gut barrier function. Liver fibrosis markers were significantly higher in IAP KO compared to WT mice in both models, while oral IAP rescued liver fibrosis in both WT and IAP KO mice. In contrast, IAP supplementation did not attenuate fibrosis in TLR4 KO mice in either model. Conclusions: Endogenous IAP is decreased during liver fibrosis, perhaps contributing to the gut barrier dysfunction and worsening fibrosis. Oral IAP protects the gut barrier and further prevents the development of liver fibrosis via a TLR4-mediated mechanism.
Collapse
Affiliation(s)
- Yang Liu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Paul M. Cavallaro
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Byeong-Moo Kim
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Tao Liu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Gastroenterological Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Gastroenterological Surgery, People's Hospital of Liaoning Province, Shenyang, China
| | - Florian Kühn
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Enyu Liu
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Hepatobiliary Surgery, Qilu Hospital of Shandong University, Jian, China
| | - Robin Vasan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
- Department of Surgery, University-Pittsburgh Medical Center, Pittsburgh, PA, US
| | - Ehsan Samarbafzadeh
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Matthew Z. Farber
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Junhui Li
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Meng Xu
- Department of General Surgery, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Vidisha Mohad
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Michael Choi
- Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, US
| |
Collapse
|
24
|
Alpízar-Rodríguez D, Finckh A, Gilbert B. The Role of Nutritional Factors and Intestinal Microbiota in Rheumatoid Arthritis Development. Nutrients 2020; 13:nu13010096. [PMID: 33396685 PMCID: PMC7823566 DOI: 10.3390/nu13010096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence about the role of nutritional factors and microbiota in autoimmune diseases, and in rheumatoid arthritis (RA) in particular, has grown in recent years, however many controversies remain. The aim of this review is to summarize the role of nutrition and of the intestinal microbiota in the development of RA. We will focus on selected dietary patterns, individual foods and beverages that have been most consistently associated with RA or with the occurrence of systemic autoimmunity associated with RA. We will also review the evidence for a role of the intestinal microbiota in RA development. We propose that diet and digestive microbiota should be considered together in research, as they interact and may both be the target for future preventive interventions in RA.
Collapse
Affiliation(s)
- Deshiré Alpízar-Rodríguez
- Research Unit, Colegio Mexicano de Reumatología, Mexico City 04318, Mexico
- Correspondence: ; Tel.: +52-55-2525-1853
| | - Axel Finckh
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| | - Benoît Gilbert
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| |
Collapse
|
25
|
Schippers M, Post E, Eichhorn I, Langeland J, Beljaars L, Malo MS, Hodin RA, Millán JL, Popov Y, Schuppan D, Poelstra K. Phosphate Groups in the Lipid A Moiety Determine the Effects of LPS on Hepatic Stellate Cells: A Role for LPS-Dephosphorylating Activity in Liver Fibrosis. Cells 2020; 9:E2708. [PMID: 33348845 PMCID: PMC7766276 DOI: 10.3390/cells9122708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Alkaline phosphatase (AP) activity is highly upregulated in plasma during liver diseases. Previously, we demonstrated that AP is able to detoxify lipopolysaccharide (LPS) by dephosphorylating its lipid A moiety. Because a role of gut-derived LPS in liver fibrogenesis has become evident, we now examined the relevance of phosphate groups in the lipid A moiety in this process. The effects of mono-phosphoryl and di-phosphoryl lipid A (MPLA and DPLA, respectively) were studied in vitro and LPS-dephosphorylating activity was studied in normal and fibrotic mouse and human livers. The effects of intestinal AP were studied in mice with CCL4-induced liver fibrosis. DPLA strongly stimulated fibrogenic and inflammatory activities in primary rat hepatic stellate cells (rHSCs) and RAW264.7 macrophages with similar potency as full length LPS. However, MPLA did not affect any of the parameters. LPS-dephosphorylating activity was found in mouse and human livers and was strongly increased during fibrogenesis. Treatment of fibrotic mice with intravenous intestinal-AP significantly attenuated intrahepatic desmin+- and αSMA+ -HSC and CD68+- macrophage accumulation. In conclusion, the lack of biological activity of MPLA, contrasting with the profound activities of DPLA, shows the relevance of LPS-dephosphorylating activity. The upregulation of LPS-dephosphorylating activity in fibrotic livers and the protective effects of exogenous AP during fibrogenesis indicate an important physiological role of intestinal-derived AP during liver fibrosis.
Collapse
Affiliation(s)
- Marlies Schippers
- Department of Nanomedice and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (M.S.); (E.P.); (I.E.); (J.L.); (L.B.)
| | - Eduard Post
- Department of Nanomedice and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (M.S.); (E.P.); (I.E.); (J.L.); (L.B.)
| | - Ilse Eichhorn
- Department of Nanomedice and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (M.S.); (E.P.); (I.E.); (J.L.); (L.B.)
| | - Jitske Langeland
- Department of Nanomedice and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (M.S.); (E.P.); (I.E.); (J.L.); (L.B.)
| | - Leonie Beljaars
- Department of Nanomedice and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (M.S.); (E.P.); (I.E.); (J.L.); (L.B.)
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.S.M.); (R.A.H.)
- Bangladesh Institute of Research and Rehabilitation for Diabetes, Endocrine and Metabolic Disorders (BIRDEM), Dhaka 1000, Bangladesh
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (M.S.M.); (R.A.H.)
| | - José Luis Millán
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA;
| | - Yury Popov
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (Y.P.); (D.S.)
| | - Detlef Schuppan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; (Y.P.); (D.S.)
- Medical Center of the Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
| | - Klaas Poelstra
- Department of Nanomedice and Drug Targeting, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (M.S.); (E.P.); (I.E.); (J.L.); (L.B.)
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The gut barrier serves as the primary interface between the environment and host in terms of surface area and complexity. Luminal chemosensing is a term used to describe how small molecules in the gut lumen interact with the host through surface receptors or via transport into the subepithelial space. In this review, we have summarized recent advances in the understanding of the luminal chemosensory system in the gastroduodenal epithelium consisting of enterocytes, enteroendocrine, and tuft cells, with particular emphasis on how chemosensing affects mucosal protective responses and the metabolic syndrome. RECENT FINDINGS Recent single-cell RNA sequencing provides detailed cell type-specific expression of chemosensory receptors and other bioactive molecules as well as cell lineages; some are similar to lingual taste cells whereas some are gut specific. Gut luminal chemosensing is not only important for the local or remote regulation of gut function, but also contributes to the systemic regulation of metabolism, energy balance, and food intake. We will discuss the chemosensory mechanisms of the proximal intestine, in particular to gastric acid, with a focus on the cell types and receptors involved in chemosensing, with emphasis on the rare chemosensory cells termed tuft cells. We will also discuss the chemosensory functions of intestinal ectoenzymes and bacterial components (e.g., lipopolysaccharide) as well as how they affect mucosal function through altering the gut-hormonal-neural axis. SUMMARY Recent updates in luminal chemosensing by different chemosensory cells have provided new possibilities for identifying novel molecular targets for the treatment of mucosal injury, metabolic disorders, and abnormal visceral sensation.
Collapse
|
27
|
Di Ciaula A, Baj J, Garruti G, Celano G, De Angelis M, Wang HH, Di Palo DM, Bonfrate L, Wang DQH, Portincasa P. Liver Steatosis, Gut-Liver Axis, Microbiome and Environmental Factors. A Never-Ending Bidirectional Cross-Talk. J Clin Med 2020; 9:E2648. [PMID: 32823983 PMCID: PMC7465294 DOI: 10.3390/jcm9082648] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing worldwide and parallels comorbidities such as obesity, metabolic syndrome, dyslipidemia, and diabetes. Recent studies describe the presence of NAFLD in non-obese individuals, with mechanisms partially independent from excessive caloric intake. Increasing evidences, in particular, point towards a close interaction between dietary and environmental factors (including food contaminants), gut, blood flow, and liver metabolism, with pathways involving intestinal permeability, the composition of gut microbiota, bacterial products, immunity, local, and systemic inflammation. These factors play a critical role in the maintenance of intestinal, liver, and metabolic homeostasis. An anomalous or imbalanced gut microbial composition may favor an increased intestinal permeability, predisposing to portal translocation of microorganisms, microbial products, and cell wall components. These components form microbial-associated molecular patterns (MAMPs) or pathogen-associated molecular patterns (PAMPs), with potentials to interact in the intestine lamina propria enriched in immune cells, and in the liver at the level of the immune cells, i.e., Kupffer cells and stellate cells. The resulting inflammatory environment ultimately leads to liver fibrosis with potentials to progression towards necrotic and fibrotic changes, cirrhosis. and hepatocellular carcinoma. By contrast, measures able to modulate the composition of gut microbiota and to preserve gut vascular barrier might prevent or reverse NAFLD.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - Jacek Baj
- Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Gabriella Garruti
- Section of Endocrinology, Department of Emergency and Organ Transplantations, University of Bari “Aldo Moro” Medical School, Piazza G. Cesare 11, 70124 Bari, Italy;
| | - Giuseppe Celano
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Helen H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Domenica Maria Di Palo
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
- Dipartimento di Scienze del Suolo, della Pianta e Degli Alimenti, Università degli Studi di Bari Aldo Moro, 70124 Bari, Italy; (G.C.); (M.D.A.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| | - David Q-H Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.H.W.); (D.Q.-H.W.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (A.D.C.); (D.M.D.P.); (L.B.)
| |
Collapse
|
28
|
Horst EA, van den Brink LM, Mayorga EJ, Al-Qaisi M, Rodriguez-Jimenez S, Goetz BM, Abeyta MA, Kvidera SK, Caixeta LS, Rhoads RP, Baumgard LH. Evaluating acute inflammation's effects on hepatic triglyceride content in experimentally induced hyperlipidemic dairy cows in late lactation. J Dairy Sci 2020; 103:9620-9633. [PMID: 32773314 DOI: 10.3168/jds.2020-18686] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
Inflammation appears to be a predisposing factor and key component of hepatic steatosis in a variety of species. Objectives were to evaluate effects of inflammation [induced via intravenous lipopolysaccharide (LPS) infusion] on metabolism and liver lipid content in experimentally induced hyperlipidemic lactating cows. Cows (765 ± 32 kg of body weight; 273 ± 35 d in milk) were enrolled in 2 experimental periods (P); during P1 (5 d), baseline data were obtained. At the start of P2 (2 d), cows were assigned to 1 of 2 treatments: (1) intralipid plus control (IL-CON; 3 mL of saline; n = 5) or (2) intralipid plus LPS (IL-LPS; 0.375 μg of LPS/kg of body weight; n = 5). Directly following intravenous bolus (saline or LPS) administration, intralipid (20% fat emulsion) was intravenously infused continuously (200 mL/h) for 16 h to induce hyperlipidemia during which feed was removed. Blood samples were collected at -0.5, 0, 4, 8, 12, 16, 24, and 48 h relative to bolus administration, and liver biopsies were obtained on d 1 of P1 and at 16 and 48 h after the bolus. By experimental design (feed was removed during the first 16 h of d 1), dry matter intake decreased in both treatments on d 1 of P2, but the magnitude of reduction was greater in LPS cows. Dry matter intake of IL-LPS remained decreased on d 2 of P2, whereas IL-CON cows returned to baseline. Milk yield decreased in both treatments during P2, but the extent and duration was longer in LPS-infused cows. Administering LPS increased circulating LPS-binding protein (2-fold) at 8 h after bolus, after which it markedly decreased (84%) below baseline for the remainder of P2. Serum amyloid A concentrations progressively increased throughout P2 in IL-LPS cows (3-fold, relative to controls). Lipid infusion gradually increased nonesterified fatty acids and triglycerides in both treatments relative to baseline (3- and 2.5-fold, respectively). Interestingly, LPS infusion blunted the peak in nonesterified fatty acids, such that concentrations peaked (43%) higher in IL-CON compared with IL-LPS cows and heightened the increase in serum triglycerides (1.5-fold greater relative to controls). Liver fat content remained similar in IL-LPS relative to P1 at 16 h; however, hyperlipidemia alone (IL-CON) increased liver fat (36% relative to P1). No treatment differences in liver fat were observed at 48 h. In IL-LPS cows, circulating insulin increased markedly at 4 h after bolus (2-fold relative to IL-CON), and then gradually decreased during the 16 h of lipid infusion. Inducing inflammation with simultaneous hyperlipidemia altered the characteristic patterns of insulin and LPS-binding protein but did not cause fatty liver.
Collapse
Affiliation(s)
- E A Horst
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - E J Mayorga
- Department of Animal Science, Iowa State University, Ames 50011
| | - M Al-Qaisi
- Department of Animal Science, Iowa State University, Ames 50011
| | | | - B M Goetz
- Department of Animal Science, Iowa State University, Ames 50011
| | - M A Abeyta
- Department of Animal Science, Iowa State University, Ames 50011
| | - S K Kvidera
- Department of Animal Science, Iowa State University, Ames 50011
| | - L S Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul 55108
| | - R P Rhoads
- Department of Animal and Poultry Sciences, Virginia Tech University, Blacksburg 24061
| | - L H Baumgard
- Department of Animal Science, Iowa State University, Ames 50011.
| |
Collapse
|
29
|
Akiba Y, Maruta K, Takajo T, Narimatsu K, Said H, Kato I, Kuwahara A, Kaunitz JD. Lipopolysaccharides transport during fat absorption in rodent small intestine. Am J Physiol Gastrointest Liver Physiol 2020; 318:G1070-G1087. [PMID: 32390462 PMCID: PMC7311662 DOI: 10.1152/ajpgi.00079.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/07/2023]
Abstract
Lipopolysaccharides (LPS) are potent pro-inflammatory molecules that enter the systemic circulation from the intestinal lumen by uncertain mechanisms. We investigated these mechanisms and the effect of exogenous glucagon-like peptide-2 (GLP-2) on LPS transport in the rodent small intestine. Transmucosal LPS transport was measured in Ussing-chambered rat jejunal mucosa. In anesthetized rats, the appearance of fluorescein isothiocyanate (FITC)-LPS into the portal vein (PV) and the mesenteric lymph was simultaneously monitored after intraduodenal perfusion of FITC-LPS with oleic acid and taurocholate (OA/TCA). In vitro, luminally applied LPS rapidly appeared in the serosal solution only with luminal OA/TCA present, inhibited by the lipid raft inhibitor methyl-β-cyclodextrin (MβCD) and the CD36 inhibitor sulfosuccinimidyl oleate (SSO), or by serosal GLP-2. In vivo, perfusion of FITC-LPS with OA/TCA rapidly increased FITC-LPS appearance into the PV, followed by a gradual increase of FITC-LPS into the lymph. Rapid PV transport was inhibited by the addition of MβCD or by SSO, whereas transport into the lymph was inhibited by chylomicron synthesis inhibition. Intraveous injection of the stable GLP-2 analog teduglutide acutely inhibited FITC-LPS transport into the PV, yet accelerated FITC-LPS transport into the lymph via Nω-nitro-l-arginine methyl ester (l-NAME)- and PG97-269-sensitive mechanisms. In vivo confocal microscopy in mouse jejunum confirmed intracellular FITC-LPS uptake with no evidence of paracellular localization. This is the first direct demonstration in vivo that luminal LPS may cross the small intestinal barrier physiologically during fat absorption via lipid raft- and CD36-mediated mechanisms, followed by predominant transport into the PV, and that teduglutide inhibits LPS uptake into the PV in vivo.NEW & NOTEWORTHY We report direct in vivo confirmation of transcellular lipopolysaccharides (LPS) uptake from the intestine into the portal vein (PV) involving CD36 and lipid rafts, with minor uptake via the canonical chylomicron pathway. The gut hormone glucagon-like peptide-2 (GLP-2) inhibited uptake into the PV. These data suggest that the bulk of LPS absorption is via the PV to the liver, helping clarify the mechanism of LPS transport into the PV as part of the "gut-liver" axis. These data do not support the paracellular transport of LPS, which has been implicated in the pathogenesis of the "leaky gut" syndrome.
Collapse
Affiliation(s)
- Yasutada Akiba
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
- Brentwood Biomedical Research Institute, Los Angeles, California
| | - Koji Maruta
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Takeshi Takajo
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Kazuyuki Narimatsu
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Hyder Said
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
| | - Ikuo Kato
- Department of Medical Biochemistry, Kobe Pharmaceutical University, Kobe, Japan
| | - Atsukazu Kuwahara
- Research Unit for Epithelial Physiology, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Jonathan D Kaunitz
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, California
- Department of Medicine, University of California, School of Medicine, Los Angeles, California
- Department of Surgery, University of California, School of Medicine, Los Angeles, California
- Brentwood Biomedical Research Institute, Los Angeles, California
| |
Collapse
|
30
|
Cao Q, Lu X, Azad BB, Pomper M, Smith M, He J, Pi L, Ren B, Ying Z, Sichani BS, Morris M, Dilsizian V. cis-4-[ 18F]fluoro-L-proline Molecular Imaging Experimental Liver Fibrosis. Front Mol Biosci 2020; 7:90. [PMID: 32500081 PMCID: PMC7243806 DOI: 10.3389/fmolb.2020.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction: Early-stage liver fibrosis is potentially reversible, but difficult to diagnose. Clinical management would be enhanced by the development of a non-invasive imaging technique able to identify hepatic injury early, before end-stage fibrosis ensues. The analog of the amino acid proline, cis-4-[18F]fluoro-L-proline ([18F]fluoro-proline), which targets collagenogenesis in hepatic stellate cells (HSC), was used to detect fibrosis. Methods: Acute steatohepatitis was induced in experimental animals by liquid ethanol diet for 8 weeks, intra-gastric binge feedings every 10th day along with lipopolysaccharide (LPS) injection. The control animals received control diet for 8 weeks and an equivalent volume of saline on the same schedule as the acute steatohepatitis model. First, in vitro cellular experiments were carried out to assess [3H]proline uptake by HSC, hepatocytes and Kupffer cells derived from rats with acute steatohepatitis (n = 14) and controls (n = 14). Next, ex vivo liver experiments were done to investigate unlabeled proline-mediated collagen synthesis and its associated proline transporter expression in acute steatohepatitis (n = 5) and controls (n = 5). Last, in vivo dynamic and static [18F]fluoro-proline micro-PET/CT imaging was performed in animal models of acute steatohepatitis (n = 7) and control (n = 7) mice. Results: [3H]proline uptake was 5-fold higher in the HSCs of steatohepatitis rats than controls after incubation of up to 60 min. There was an excellent correlation between [3H]proline uptake and liver collagen expression (r-value > 0.90, p < 0.05). Subsequent liver tissue studies demonstrated 2–3-fold higher proline transporter expression in acute steatohepatitis animals than in controls, and proline-related collagen synthesis was blocked by this transporter inhibitor. In vivo micro-PET/CT studies with [18F]fluoro-proline showed 2–3-fold higher uptake in the livers of acute steatohepatitis mice than in controls. There was an excellent correlation between [18F]fluoro-proline uptake and liver collagen expression in the livers of acute steatohepatitis mice (r-value = 0.97, p < 0.001). Conclusion: [18F]fluoro-proline localizes in the liver and correlates with collagenogenesis in acute steatohepatitis with a signal intensity that is sufficiently high to allow imaging with micro-PET/CT. Thus, [18F]fluoro-proline could serve as a PET imaging biomarker for detecting early-stage liver fibrosis.
Collapse
Affiliation(s)
- Qi Cao
- The Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xin Lu
- The Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Babak Behnam Azad
- Division of Nuclear Medicine and Molecular Imaging, The Johns Hopkins PET Center, Baltimore, MD, United States
| | - Martin Pomper
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Mark Smith
- The Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jiang He
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Liya Pi
- The Department of Pediatrics in the College of Medicine, University of Florida, Gainesville, FL, United States
| | - Bin Ren
- The Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Zhekang Ying
- The Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Babak Saboury Sichani
- The Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Michael Morris
- The Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vasken Dilsizian
- The Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
31
|
Şensoy E, Öznurlu Y. Determination of the changes on the small intestine of pregnant mice by histological, enzyme histochemical, and immunohistochemical methods. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 30:917-924. [PMID: 31625934 DOI: 10.5152/tjg.2019.18681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS The aim of the present study was to determine the changes on the small intestine in mice during pregnancy using histological, enzyme histochemical, and immunohistochemical methods. MATERIALS AND METHODS A total of 24 Swiss albino female mice were divided as non-pregnant/control, first week, second week, and third week of pregnancy (n=6). Tissue samples obtained from the duodenum, jejunum, and ileum were processed by means of routine histological techniques and stained with Crossmon's triple staining. Alkaline phosphatase (ALP) was demonstrated with the simultaneous azo-coupling method. Proliferating cell nuclear antigen (PCNA) was demonstrated with the streptavidin-biotin-peroxidase complex method. The numerical data of the parameters were obtained and analyzed statistically. RESULTS Villus height, villus width, and the rate of villus height/crypt depth were decreased in the duodenum, jejunum, and ileum in the last week of pregnancy compared with the control group. Changes in the crypt depth of the duodenum, jejunum, and ileum in pregnancy were found. The muscle width increased in pregnancy. It was identified that the ALP reactivity statistically significantly increased in the duodenum, jejunum, and ileum in pregnancy. The percentage of PCNA-positive cells in the duodenum, jejunum, and ileum increased in the first and second weeks of pregnancy, whereas it decreased in the third week of pregnancy compared with non-pregnant control animals. CONCLUSION In conclusion, villus parameters, ALP reactivity, and percentage of PCNA-positive cells in the small intestine were affected during pregnancy.
Collapse
Affiliation(s)
- Erhan Şensoy
- Department of Midwifery, Karamanoğlu Mehmetbey University School of Health Sciences, Karaman, Turkey
| | - Yasemin Öznurlu
- Department of Histology and Embryology, Selçuk University School of Veterinary, Konya, Turkey
| |
Collapse
|
32
|
Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol-related liver disease: Current concepts and perspectives. Hepatol Res 2020; 50:407-418. [PMID: 31840358 PMCID: PMC7187400 DOI: 10.1111/hepr.13473] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
The term, gut-liver axis, is used to highlight the close anatomical and functional relationship between the intestine and the liver. It has been increasingly recognized that the gut-liver axis plays an essential role in the development and progression of liver disease. In particular, in non-alcoholic fatty liver disease and alcohol-related liver disease, the two most common causes of chronic liver disease, a dysbiotic gut microbiota can influence intestinal permeability, allowing some pathogens or bacteria-derived factors from the gut reaching the liver through the enterohepatic circulation contributing to liver injury, steatohepatitis, and fibrosis progression. Pathways involved are multiple, including changes in bile acid metabolism, intestinal ethanol production, generation of short-chain fatty acids, and other by-products. Bile acids act through dedicated bile acid receptors, farnesoid X receptor and TGR5, in both the ileum and the liver, influencing lipid metabolism, inflammation, and fibrogenesis. Currently, both non-alcoholic fatty liver disease and alcohol-related liver disease lack effective therapies, and therapeutic targeting of gut microbiota and bile acids enterohepatic circulation holds promise. In this review, we summarize current knowledge about the role of gut microbiota in the pathogenesis of non-alcoholic fatty liver disease and alcohol-related liver disease, as well as the relevance of microbiota or bile acid-based approaches in the management of those liver diseases.
Collapse
Affiliation(s)
- Juan P. Arab
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
33
|
Kühn F, Adiliaghdam F, Cavallaro PM, Hamarneh SR, Tsurumi A, Hoda RS, Munoz AR, Dhole Y, Ramirez JM, Liu E, Vasan R, Liu Y, Samarbafzadeh E, Nunez RA, Farber MZ, Chopra V, Malo MS, Rahme LG, Hodin RA. Intestinal alkaline phosphatase targets the gut barrier to prevent aging. JCI Insight 2020; 5:134049. [PMID: 32213701 PMCID: PMC7213802 DOI: 10.1172/jci.insight.134049] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/20/2020] [Indexed: 12/16/2022] Open
Abstract
Gut barrier dysfunction and gut-derived chronic inflammation play crucial roles in human aging. The gut brush border enzyme intestinal alkaline phosphatase (IAP) functions to inhibit inflammatory mediators and also appears to be an important positive regulator of gut barrier function and microbial homeostasis. We hypothesized that this enzyme could play a critical role in regulating the aging process. We tested the role of several IAP functions for prevention of age-dependent alterations in intestinal homeostasis by employing different loss-of-function and supplementation approaches. In mice, there is an age-related increase in gut permeability that is accompanied by increases in gut-derived portal venous and systemic inflammation. All these phenotypes were significantly more pronounced in IAP-deficient animals. Oral IAP supplementation significantly decreased age-related gut permeability and gut-derived systemic inflammation, resulted in less frailty, and extended lifespan. Furthermore, IAP supplementation was associated with preserving the homeostasis of gut microbiota during aging. These effects of IAP were also evident in a second model system, Drosophilae melanogaster. IAP appears to preserve intestinal homeostasis in aging by targeting crucial intestinal alterations, including gut barrier dysfunction, dysbiosis, and endotoxemia. Oral IAP supplementation may represent a novel therapy to counteract the chronic inflammatory state leading to frailty and age-related diseases in humans.
Collapse
Affiliation(s)
- Florian Kühn
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
- Department of General, Visceral and Transplant Surgery, Hospital of the University of Munich, Munich, Germany
| | - Fatemeh Adiliaghdam
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Paul M. Cavallaro
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Sulaiman R. Hamarneh
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | | | - Alexander R. Munoz
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Yashoda Dhole
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Juan M. Ramirez
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Enyu Liu
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Robin Vasan
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Yang Liu
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Ehsan Samarbafzadeh
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Rocio A. Nunez
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew Z. Farber
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Vanita Chopra
- Department of Neurology,, MGH, Harvard Medical School, Boston, Massachusetts, USA
| | - Madhu S. Malo
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence G. Rahme
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospital for Children, Boston, Massachusetts, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard A. Hodin
- Department of Surgery, Massachusetts General Hospital (MGH), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Lallès JP. Recent advances in intestinal alkaline phosphatase, inflammation, and nutrition. Nutr Rev 2020; 77:710-724. [PMID: 31086953 DOI: 10.1093/nutrit/nuz015] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In recent years, much new data on intestinal alkaline phosphatase (IAP) have been published, and major breakthroughs have been disclosed. The aim of the present review is to critically analyze the publications released over the last 5 years. These breakthroughs include, for example, the direct implication of IAP in intestinal tight junction integrity and barrier function maintenance; chronic intestinal challenge with low concentrations of Salmonella generating long-lasting depletion of IAP and increased susceptibility to inflammation; the suggestion that genetic mutations in the IAP gene in humans contribute to some forms of chronic inflammatory diseases and loss of functional IAP along the gut and in stools; stool IAP as an early biomarker of incipient diabetes in humans; and omega-3 fatty acids as direct inducers of IAP in intestinal tissue. Many recent papers have also explored the prophylactic and therapeutic potential of IAP and other alkaline phosphatase (AP) isoforms in various experimental settings and diseases. Remarkably, nearly all data confirm the potent anti-inflammatory properties of (I)AP and the negative consequences of its inhibition on health. A simplified model of the body AP system integrating the IAP compartment is provided. Finally, the list of nutrients and food components stimulating IAP has continued to grow, thus emphasizing nutrition as a potent lever for limiting inflammation.
Collapse
Affiliation(s)
- Jean-Paul Lallès
- Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France, and the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| |
Collapse
|
35
|
Zhang Y, Jiang M, Cui BW, Jin CH, Wu YL, Shang Y, Yang HX, Wu M, Liu J, Qiao CY, Zhan ZY, Ye H, Zheng GH, Jin Q, Lian LH, Nan JX. P2X7 receptor-targeted regulation by tetrahydroxystilbene glucoside in alcoholic hepatosteatosis: A new strategy towards macrophage-hepatocyte crosstalk. Br J Pharmacol 2020; 177:2793-2811. [PMID: 32022249 DOI: 10.1111/bph.15007] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/26/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Regulating macrophage-hepatocyte crosstalk through P2X7 receptors has led to new pharmacological strategies to reverse alcoholic hepatosteatosis. We investigated how tetrahydroxystilbene glucoside (2354glu), isolated from Polygonum multiflorum, modulates macrophage-hepatocyte crosstalk during alcoholic hepatosteatosis. EXPERIMENTAL APPROACH A model of alcoholic hepatosteatosis was established by giving ethanol intragastrically to C57BL/6 mice. HepG2 cells were incubated in conditioned medium from LPS+ATP-activated THP-1 human macrophages with silenced or overexpressed P2X7 receptors. THP-1 macrophages or mouse peritoneal macrophages were pretreated with 2354glu for 1 hr prior to LPS+ATP stimulation. Western blots, RT-PCR and immunohistochemical analysis were used, along with over-expression and silencing of P2X7 receptors. KEY RESULTS Knockdown or overexpression of P2X7 receptors in THP-1 macrophages affected release of mature IL-1β and, subsequently, modulated lipid metabolism in HepG2 cells via the LKB-AMPK pathway. 2354glu ameliorated alcoholic hepatosteatosis in mice by regulating LKB1-AMPK-SREBP1 pathway and its target genes. Suppression of P2X7 receptor activation by 2354glu inhibited IL-1β release and reduced macrophage and neutrophil infiltration. In macrophages stimulated with LPS+ATP, expression of P2X7 receptors, caspase-1 and NF-κB, release of IL-1β, calcium influx and PI uptake were reduced by 2354glu. SIRT1-LKB1-AMPK-SREBP1 axis-mediated lipid accumulation in HepG2 cells was reduced when they were cultured with conditioned media from LPS+ATP-activated THP-1 macrophages pretreated with 2354glu. CONCLUSION AND IMPLICATIONS Modulation of P2X7 receptors in macrophages regulated lipid accumulation in hepatocytes during alcoholic hepatosteatosis. 2354glu might be a promising candidate that targets P2X7 receptors in macrophages interacting with hepatocytes during alcoholic hepatosteatosis.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Min Jiang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ben-Wen Cui
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Cheng Hua Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Yue Shang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Hong-Xu Yang
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Mei Wu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Jian Liu
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Chun-Ying Qiao
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Zi-Ying Zhan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Huan Ye
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Guang-Hao Zheng
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Quan Jin
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine of Jilin Province, College of Pharmacy, Yanbian University, Yanji, China.,Clinical Research Center, Yanbian University Hospital, Yanji, China
| |
Collapse
|
36
|
Ghosh SS, Wang J, Yannie PJ, Ghosh S. Intestinal Barrier Dysfunction, LPS Translocation, and Disease Development. J Endocr Soc 2020; 4:bvz039. [PMID: 32099951 PMCID: PMC7033038 DOI: 10.1210/jendso/bvz039] [Citation(s) in RCA: 316] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/05/2020] [Indexed: 12/24/2022] Open
Abstract
The intestinal barrier is complex and consists of multiple layers, and it provides a physical and functional barrier to the transport of luminal contents to systemic circulation. While the epithelial cell layer and the outer/inner mucin layer constitute the physical barrier and are often referred to as the intestinal barrier, intestinal alkaline phosphatase (IAP) produced by epithelial cells and antibacterial proteins secreted by Panneth cells represent the functional barrier. While antibacterial proteins play an important role in the host defense against gut microbes, IAP detoxifies bacterial endotoxin lipopolysaccharide (LPS) by catalyzing the dephosphorylation of the active/toxic Lipid A moiety, preventing local inflammation as well as the translocation of active LPS into systemic circulation. The causal relationship between circulating LPS levels and the development of multiple diseases underscores the importance of detailed examination of changes in the “layers” of the intestinal barrier associated with disease development and how this dysfunction can be attenuated by targeted interventions. To develop targeted therapies for improving intestinal barrier function, it is imperative to have a deeper understanding of the intestinal barrier itself, the mechanisms underlying the development of diseases due to barrier dysfunction (eg, high circulating LPS levels), the assessment of intestinal barrier function under diseased conditions, and of how individual layers of the intestinal barrier can be beneficially modulated to potentially attenuate the development of associated diseases. This review summarizes the current knowledge of the composition of the intestinal barrier and its assessment and modulation for the development of potential therapies for barrier dysfunction-associated diseases.
Collapse
Affiliation(s)
| | - Jing Wang
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia
| | - Paul J Yannie
- Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, VCU Medical Center, Richmond, Virginia.,Hunter Homes McGuire VA Medical Center, Richmond, Virginia
| |
Collapse
|
37
|
Singh SB, Carroll-Portillo A, Coffman C, Ritz NL, Lin HC. Intestinal Alkaline Phosphatase Exerts Anti-Inflammatory Effects Against Lipopolysaccharide by Inducing Autophagy. Sci Rep 2020; 10:3107. [PMID: 32080230 PMCID: PMC7033233 DOI: 10.1038/s41598-020-59474-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/23/2020] [Indexed: 12/21/2022] Open
Abstract
Intestinal alkaline phosphatase (IAP) regulates bicarbonate secretion, detoxifies lipopolysaccharide (LPS), regulates gut microbes, and dephosphorylates proinflammatory nucleotides. IAP also exhibits anti-inflammatory effects in a Toll-like Receptor-4 (TLR-4) dependent manner. However, it is not known whether IAP induces autophagy. We tested the hypothesis that IAP may induce autophagy which may mediate the anti-inflammatory effects of IAP. We found that exogenous IAP induced autophagy in intestinal epithelial cells and in macrophages. TLR4INC34 (C34), a TLR4 signaling inhibitor, suppressed IAP-induced autophagy. IAP also inhibited LPS-induced IL-1β mRNA expression and activation of NF-κB. When autophagy was blocked by 3-methyladenine (3MA) or by Atg5 siRNA, IAP failed to block LPS-mediated effects. IAP also upregulated autophagy-related gene expression in small intestine in mice. We administered either vehicle or IAP (100 U/ml) in drinking water for 14 days in C57BL/6 mice. Mice were sacrificed and ileal tissues collected. Increased expression of Atg5, Atg16, Irgm1, Tlr4, and Lyz genes was observed in the IAP treated group compared to the vehicle treated group. Increase in Atg16 protein expression and fluorescence intensity of LC3 was also observed in IAP-treated tissues compared to the vehicle-treated tissues. Thus, our study lays the framework for investigating how IAP and autophagy may act together to control inflammatory conditions.
Collapse
Affiliation(s)
- Sudha B Singh
- Biomedical Research Institute of New Mexico, VA Health Care System, Albuquerque, New Mexico, USA, 87108
| | - Amanda Carroll-Portillo
- Biomedical Research Institute of New Mexico, VA Health Care System, Albuquerque, New Mexico, USA, 87108
| | - Cristina Coffman
- Biomedical Research Institute of New Mexico, VA Health Care System, Albuquerque, New Mexico, USA, 87108
| | - Nathaniel L Ritz
- Biomedical Research Institute of New Mexico, VA Health Care System, Albuquerque, New Mexico, USA, 87108.,Department of Anatomy & Neuroscience, University College Cork; APC Microbiome institute, University College Cork, Cork, Ireland
| | - Henry C Lin
- Section of Gastroenterology, Medicine Service, New Mexico VA Health Care System, Albuquerque, New Mexico, USA, 87108. .,Division of Gastroenterology and Hepatology, Department of Medicine, the University of New M5052651711exico, Albuquerque, New Mexico, 87131, USA.
| |
Collapse
|
38
|
Intestinal Alkaline Phosphatase Deficiency Is Associated with Ischemic Heart Disease. DISEASE MARKERS 2019; 2019:8473565. [PMID: 31915470 PMCID: PMC6930721 DOI: 10.1155/2019/8473565] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 12/15/2022]
Abstract
Background We have previously shown that the deficiency of the gut enzyme intestinal alkaline phosphatase (IAP) is associated with type 2 diabetes mellitus (T2DM) in humans, and mice deficient in IAP develop the metabolic syndrome, a precipitant of T2DM and ischemic heart disease (IHD). We hypothesized that IAP deficiency might also be associated with IHD in humans. We aimed to determine the correlation between the IAP level and IHD in humans. Methods and Results The IHD patients were recruited from the National Institute of Cardiovascular Diseases (NICVD), Dhaka, Bangladesh, and the control healthy participants were recruited from a suburban community of Dhaka. We determined the IAP level in the stools of 292 IHD patients (187 males, 105 females) and 331 healthy control people (84 males, 247 females). We found that compared to controls, IHD patients have approx. 30% less IAP (mean ± SEM: 63.7 ± 3.5 vs. 44.9 ± 2.1 U/g stool, respectively; p < 0.000001), which indicates that IAP deficiency is associated with IHD, and a high level of IAP is probably protective against IHD in humans. The adjusted generalized linear model (GLM) of regression analysis predicted a strong association of IAP with IHD (p = 0.0035). Multiple logistic regression analysis showed an independent inverse relationship between the IAP level and the IHD status (odds ratio, OR = 0.993 with 95% CI 0.987-0.998; p < 0.01). Conclusions IAP deficiency is associated with IHD, and a high level of IAP might be protective against IHD.
Collapse
|
39
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. Publisher Correction: The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:785. [PMID: 29785003 PMCID: PMC7133393 DOI: 10.1038/s41575-018-0031-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the original version of Table 1 published online, upward arrows to indicate increased translocation of PAMPs were missing from the row entitled 'Translocation' for both the column on alcoholic liver disease and nonalcoholic fatty liver disease. This error has now been updated in the PDF and HTML version of the article.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Luminal chemosensing is a term used to describe how small molecules in the gut lumen interact with the host through surface receptors or via transport into the submucosa. In this review, we have summarized recent advances of understanding luminal chemosensing in the gastroduodenal mucosa, with a particular emphasis on how chemosensing affects mucosal protective responses and the metabolic syndrome. RECENT FINDINGS In the past decade, data have supported the hypothesis that gut luminal chemosensing not only is important for the local or remote regulation of gut function but also contributes to the systemic regulation of metabolism, energy balance and food intake. We have provided examples of how luminal nutrients such as long-chain fatty acids (LCFAs), endogenous compounds such as bile acids, bacterial metabolites such as short-chain fatty acids (SCFAs) and bacterial components such as lipopolysaccharide (LPS) activate cognate receptors expressed on key effector cells such as enteroendocrine cells and inflammatory cells in order to profoundly affect organ function through the initiation or suppression of inflammatory pathways, altering gut barrier function and nutrient uptake, altering gut motility and visceral pain pathways, and preventing mucosal injury. SUMMARY These recent discoveries in this area have provided new possibilities for identifying novel molecular targets for the treatment of mucosal injury, metabolic disorders and abnormal visceral sensation. Understanding luminal chemosensory mechanisms may help to identify novel molecular targets for the treatment and prevention of mucosal injury, metabolic disorders and abnormal visceral sensation.
Collapse
|
41
|
Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15:397-411. [PMID: 29748586 PMCID: PMC6319369 DOI: 10.1038/s41575-018-0011-z] [Citation(s) in RCA: 831] [Impact Index Per Article: 138.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, an exciting realization has been that diverse liver diseases - ranging from nonalcoholic steatohepatitis, alcoholic steatohepatitis and cirrhosis to hepatocellular carcinoma - fall along a spectrum. Work on the biology of the gut-liver axis has assisted in understanding the basic biology of both alcoholic fatty liver disease and nonalcoholic fatty liver disease (NAFLD). Of immense importance is the advancement in understanding the role of the microbiome, driven by high-throughput DNA sequencing and improved computational techniques that enable the complexity of the microbiome to be interrogated, together with improved experimental designs. Here, we review gut-liver communications in liver disease, exploring the molecular, genetic and microbiome relationships and discussing prospects for exploiting the microbiome to determine liver disease stage and to predict the effects of pharmaceutical, dietary and other interventions at a population and individual level. Although much work remains to be done in understanding the relationship between the microbiome and liver disease, rapid progress towards clinical applications is being made, especially in study designs that complement human intervention studies with mechanistic work in mice that have been humanized in multiple respects, including the genetic, immunological and microbiome characteristics of individual patients. These 'avatar mice' could be especially useful for guiding new microbiome-based or microbiome-informed therapies.
Collapse
Affiliation(s)
- Anupriya Tripathi
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California, San Diego, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, USA
| | - Justine Debelius
- Department of Pediatrics, University of California, San Diego, CA, USA
| | - David A Brenner
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
| | - Michael Karin
- Department of Pediatrics, University of California, San Diego, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, CA, USA.
- Department of Computer Science and Engineering, University of California, San Diego, CA, USA.
- Center for Microbiome Innovation, University of California, San Diego, CA, USA.
| |
Collapse
|