1
|
Wang Z, Li Z, Lou Q, Pan J, Wang J, Men S, Yan Z. Ecological risk assessment of 50 emerging contaminants in surface water of the Greater Bay Area, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168105. [PMID: 37884156 DOI: 10.1016/j.scitotenv.2023.168105] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Ecological risk assessment of emerging contaminants (ECs) is an international research hotspot and is also the focus of China's "14th Five-Year Plan". The Greater Bay Area (GBA) is one of the four major bay areas in the world and the most dynamic region in China. However, there are few studies on the risk assessment of ECs in the GBA, and there needs to be a systematic and comprehensive assessment of the ecological risk of ECs. We selectively collected environmental concentration and toxicity data reported in the literature before 2022 for 50 representative ECs. We use risk quotient (RQ), semi-probability, Margin of Safety (MOS), and joint Probability curve (JPC) methods for multiple-level risk assessment. The RQ results showed that there were primary ecological risks in 20 ECs. Nine ECs were screened by the semi-probability, MOS, and JPC methods. The total risk probability of nonylphenol (NP) to the GBA was 12.11 %, and the risk to the aquatic ecological environment was the highest, followed by α-endosulfan (α-END) and erythromycin (ERY). At the same time, a comprehensive assessment method was adopted to screen the list of medium and high-risk priority pollutants in the GBA. According to the comprehensive evaluation results, although the risk is low, perfluorooctanoic acid (PFOA) still deserves widespread attention. The results showed that NP, α-END, ERY, and PFOA may be the most concerned ECs in the GBA. This research fills the gap on the ECs ecological risk assessment of the GBA and can provide a theoretical reference for managers in the follow-up of ECs regulatory governance.
Collapse
Affiliation(s)
- Ziye Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhengyan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qi Lou
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinfen Pan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jie Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuhui Men
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
2
|
Oliva AL, Girones L, Recabarren-Villalón TV, Ronda AC, Marcovecchio JE, Arias AH. Occurrence, behavior and the associated health risk of organochlorine pesticides in sediments and fish from Bahía Blanca Estuary, Argentina. MARINE POLLUTION BULLETIN 2022; 185:114247. [PMID: 36274559 DOI: 10.1016/j.marpolbul.2022.114247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/19/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Organochlorine pesticides (OCPs) were assessed for their occurrence, behavior and the associated human health and ecological risks in four fish species (Micropogonias furnieri, Cynoscion guatucupa, Mustelus schmitti, and Ramnogaster arcuata) and sediments from the Bahía Blanca estuary, Argentina, an important coastal environment of South America. Total OCPs values ranged from 0.86 to 6.23 ng/g dry weight in sediments and from <LOD (method detection limits) to 0.74 ng/g wet weight in fish. While lindane and α-endosulfan were the dominant congeners in sediments, β-endosulfan and p,p'-DDE were dominant in fish. OCP levels and residues patterns varied within the fish species and life stage. Finally, after cancer and non-cancer risk analysis, results concluded that the consumption of fish from the estuary would pose no health threats associated with these pollutants.
Collapse
Affiliation(s)
- Ana L Oliva
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina.
| | - Lautaro Girones
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina
| | - Tatiana V Recabarren-Villalón
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina
| | - Ana C Ronda
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Av. Alem 1253, B8000DIC Bahía Blanca, Argentina
| | - Jorge E Marcovecchio
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina; Universidad de la Fraternidad de Agrupaciones Santo Tomás de Aquino, Gascón 3145, 7600 Mar del Plata, Argentina; Universidad Tecnológica Nacional - FRBB, 11 de Abril 445, 8000 Bahía Blanca, Argentina; Academia Nacional de Ciencias Exactas, Físicas y Naturales (ANCEFN), Av. Alvear 1711, 1014 Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrés H Arias
- Instituto Argentino de Oceanografía (IADO - CONICET/UNS), Camino La Carrindanga km 7.5, B8000FWB Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, B8000DIC Bahía Blanca, Argentina
| |
Collapse
|
3
|
Hwang JI, Kim JE. Uptake of endosulfan isomers from soils by leafy vegetable lettuce: A comparative study between model-predicted and field-experimented results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157056. [PMID: 35780874 DOI: 10.1016/j.scitotenv.2022.157056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The organochlorine insecticide endosulfan has been classified as a persistent organic pollutant due to its long persistence and high toxicity, and banned in most countries. However, endosulfan residues are still detected in various environmental sites (even in non-agricultural areas) and have a likelihood to return to agricultural soils through various routes. In this study, time-dependent uptake of α- and β-isomers of endosulfan by lettuce from soils was estimated using theoretical models which include parameters describing sorption/dissipation in soil and plants, plant transpiration, root-soil transfer, and plant growth. A chemical-specific residue (CSR) model developed in a previous study was used as a sub-model to estimate the portion of endosulfan residues in soils ready to be absorbed by lettuce, and the accuracy of the CSR model was verified by properly estimating concentrations of endosulfan isomers in soils with different organic matters; a low mean deviation (18.8 %) was observed between the modeled and measured values. Modeled results of β-endosulfan using a soil-lettuce uptake model satisfactorily matched the experimentally measured results, with a moderate correlation (R2 > 0.79) and a low residual error (0.42) against a mean factor of -1.04. However, the uptake model showed the low potential to predict the soil-lettuce uptake of α-endosulfan (176.3 % mean deviation), probably due to not considering an intrinsic trait of β-isomer converting to α-isomer. Although the improvement with more sophisticated parameters is needed, the plant uptake model developed in this study could be utilized to predict soil-lettuce uptake of at least β-endosulfan and as a model template that may apply for other types of plants and contaminants.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jang-Eok Kim
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
4
|
Spataro F, Patrolecco L, Ademollo N, Præbel K, Rauseo J, Pescatore T, Corsolini S. Multiple exposure of the Boreogadus saida from bessel fjord (NE Greenland) to legacy and emerging pollutants. CHEMOSPHERE 2021; 279:130477. [PMID: 33857648 DOI: 10.1016/j.chemosphere.2021.130477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This work investigates the occurrence of OCPs, such as hexachlorocyclohexane (α-, β-, γ- and δ-HCH) isomers, dichlorodiphenyltrichloroethane (p,p'-DDT) and its metabolite dichlorodiphenyldichloroethylene (p,p'-DDE), endosulfan (α- and β-EDS) isomers, chlorpyrifos (CPF), dacthal (DAC) and phenolic compounds, such as 4-nonylphenol (4-NP) and its precursors nonylphenol polyethoxylates (NP1EO and NP2EO) and bisphenol A (BPA), in polar cod sampled in and outside Bessel Fjord (NE Greenland). Linear regressions between target contaminants and morphological parameters (age, length, weight, gonad- and hepato-somatic indices and Fulton K) have been also evaluated. Polar cod collected at shelf had higher average concentrations of BPA, NP1EO, NP2EO and 4-NP (muscle: 6.2, 13.2, 8.9 and 1.9 ng/g w.w., respectively; liver: 5.8, 7.5, 5.2 and 0.9 ng/g w.w. respectively), than fjord's specimens (muscle: 3.5, 9.1, 3.9 and 1.0 ng/g w.w., respectively; liver: 2.4, 5.3, 2.9 and 1.1 ng/g w.w. respectively). ΣHCHs, ΣEDSs, ΣDDTs, CPF and DAC, were more accumulated in the polar cod from the fjord (average amount in muscle: 9.1, 4.8, 7.9, 3.8 and 2.8 ng/g w.w., respectively; average amount in the liver: 11.2, 9.0, 3.8, 5.9 and 4.9 ng/g w.w., respectively) than shelf's ones (average amount in muscle 3.9, 4.5, 4.2, 0.9 and 1.2 ng/g w.w., respectively; average amount in liver 7.8, 6.3, 2.1, 3.4 and 2.5 ng/g w.w., respectively). The comparison between the concentration of target contaminants and morphologic parameters suggested a different exposure of polar cod occupying the fjord and shelf habitats, due to a combination of genetic and dietary differences, climate change effects and increased human activities.
Collapse
Affiliation(s)
- F Spataro
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - L Patrolecco
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - N Ademollo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy.
| | - K Præbel
- Norwegian College of Fishery Science, UiT the Arctic University of Norway, 9037, Tromsø, Norway; Department of Forestry and Wildlife Management, Campus Evenstad, Inland Norway University of Applied Science, 2418, Elverum, Norway
| | - J Rauseo
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy
| | - T Pescatore
- Water Research Institute- National Research Council (IRSA-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy; Department of Ecological and Biological Science, Tuscia University, 01100, Viterbo, Italy
| | - S Corsolini
- Institute of Polar Sciences-National Research Council (ISP-CNR), Strada Provinciale 35d, Km 0,700, 00010, Montelibretti, Rome, Italy; Department of Physical, Earth and Environmental Sciences, Via P.A. Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
5
|
Lao W. Fiproles as a proxy for ecological risk assessment of mixture of fipronil and its degradates in effluent-dominated surface waters. WATER RESEARCH 2021; 188:116510. [PMID: 33068908 DOI: 10.1016/j.watres.2020.116510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Environmental risk assessment of complex chemical mixtures has increasingly been prioritized as a management goal, especially in the regulatory sector. Although fipronil and its three degradates (-sulfone, -sulfide and -desulfinyl) have been frequently quantified in waterways, little information is available about the likelihood and magnitude of ecological risk posed by these chemical mixtures - collectively known as fiproles - in surface water. In the present study, a probabilistic risk assessment of mixtures of fipronil and its three degradates was conducted for three effluent-dominated southern California rivers: Los Angeles River (LAR), San Gabriel River (SGR) and Santa Clara River (SCR), California, USA. The assessments, which used fiproles as an integrated proxy, were based on three levels of toxicity endpoints: median lethal concentration (LC50), half-maximal effective concentration (EC50), and lowest observed effect concentration (LOEC), to gain comprehensive assessment information. Probabilistic approaches based on species sensitivity distribution (SSD) and exposure concentration distribution (ECD) were developed with the log-logistic model by pooling the toxicity and occurrence data, respectively. The 5th percentile hazardous concentrations (HC5s) were calculated to be at low parts per billion levels, enabling these values to be used to estimate the chemical-specific benchmarks for components that lack ecotoxicity data. The single substance potentially affected fraction (ssPAF) of fiproles revealed risk levels for the three rivers in descending order: LAR ≥ SGR > SCR. The overall risk probability estimated from the joint probability curve (JPC) by Monte Carlo simulation was 1.13 ± 0.20% (LC50), 9.31 ± 1.46% (EC50), and 6.58 ± 1.43% (LOEC) for the three rivers collectively. These results derived from the fiproles indicates that fipronil and its degradates pose risks to the aquatic organisms in the surface water of the three rivers. The present study provides a methodology for the use of a proxy in the risk assessment of chemical mixtures.
Collapse
Affiliation(s)
- Wenjian Lao
- Southern California Coastal Water Research Project Authority, Costa Mesa, CA, USA, 92626.
| |
Collapse
|
6
|
Sharma A, John P, Bhatnagar P. Fluoride and endosulfan together potentiate cytogenetic effects in Swiss albino mice bone marrow cells. Toxicol Ind Health 2020; 37:68-76. [PMID: 33325330 DOI: 10.1177/0748233720979423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, the cytotoxic potential of fluoride and endosulfan in combination was investigated in Swiss albino mice bone marrow cells using the chromosomal aberration (CA) and micronucleus (MN) test systems. Fluoride (25.1 mg kg-1 body weight [bw] in water) and endosulfan (1.8 mg kg-1 bw by oral intubation) were administered orally alone and in combination (fluoride 25.1 mg kg-1 bw + endosulfan 1.8 mg kg-1 bw) to male Swiss albino mice daily for 30 days. A significant (p < 0.01) increase in micronuclei (MNs) induction and decreased ratio (p < 0.01) of polychromatic to normonochromatic erythrocytes (indicators of cytotoxicity) were observed compared with saline controls when animals were given the combination of fluoride and endosulfan. A significant (p < 0.01) increase in MNs induction and no change in the polychromatic erythrocytes to erythrocyte ratio were also observed when endosulfan was given alone. CAs such as gaps, breaks, fragments, rings, exchanges, and polyploidy were recorded in the bone marrow cells. The mean percent frequency of CAs was increased (p < 0.01) in all the treated groups compared with the control saline group. In the combination group (F + E), the percent frequencies of CAs were significantly higher (13.875%) compared with those in the individual treatment groups of fluoride (4.375%) and endosulfan (6.25%). The mitotic index was calculated as percentage of dividing cells. A significant (p < 0.01) decrease in mitotic index was observed in all treated groups compared with controls. In the combination group (F + E), mitotic index was significantly less than (p < 0.01; 4.1 ± 0.49) the saline control (10.8 ± 0.98). These results indicated that repeated intake of endosulfan through various sources in fluoride affected areas resulted in increased cytotoxic effects. The greater effect in the combination group indicated additive interaction of fluoride and endosulfan in inducing cytotoxicity in Swiss albino mice.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Zoology, 195703IIS University, Jaipur, Rajasthan, India
| | - Placheril John
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, 29780University of Rajasthan, Jaipur, Rajasthan, India
| | - Pradeep Bhatnagar
- Department of Zoology, 195703IIS University, Jaipur, Rajasthan, India
| |
Collapse
|
7
|
Lee HK, Kim K, Lee J, Lee J, Lee J, Kim S, Lee SE, Kim JH. Targeted toxicometabolomics of endosulfan sulfate in adult zebrafish (Danio rerio) using GC-MS/MS in multiple reaction monitoring mode. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:122056. [PMID: 32000124 DOI: 10.1016/j.jhazmat.2020.122056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Endosulfan sulfate is a major oxidative metabolite of the chlorinated insecticide endosulfan. In this study, a targeted metabolomics approach was used to investigate the toxic mechanisms of endosulfan sulfate in adult zebrafish using the multiple reaction monitoring mode of a GC-MS/MS. The LC50 of endosulfan sulfate in adult zebrafish was determined and then zebrafish were exposed to endosulfan sulfate at one-tenth the LC50 (0.1LC50) or the LC50 for 24 and 48 h. After exposure, the fish were extracted, derivatized and analyzed by GC-MS/MS for 379 metabolites to identify 170 metabolites. Three experimental groups (control, 0.1LC50 and LC50) were clearly separated in PLS-DA score plots. Based on the VIP, ANOVA, and fold change results, 40 metabolites were selected as biomarkers. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 4.0 as follows: aminoacyl-tRNA biosynthesis, valine/leucine/isoleucine biosynthesis, citrate cycle, glycerolipid metabolism, and arginine/proline metabolism. Gene expression studies confirmed the activation of citrate cycle and glycerolipids metabolism. MDA levels of the exposed group significantly increased in oxidative toxicity assay tests. Such significant perturbations of important metabolites within key biochemical pathways must result in biologically hazardous effects in zebrafish.
Collapse
Affiliation(s)
- Hwa-Kyung Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyeongnam Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Junghak Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jonghwa Lee
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jiho Lee
- Environmental Medical Center, Korea Conformity Laboratories, Incheon, 21999, Republic of Korea
| | - Sooyeon Kim
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology, Gyeongsangnam-do, 52834, Republic of Korea
| | - Sung-Eun Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Jeong-Han Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Sharma A, John PJ, Bhatnagar P. Combination of fluoride and endosulfan induced teratogenicity and developmental toxicity in Swiss albino mice exposed during organogenesis. Toxicol Ind Health 2019; 35:604-613. [PMID: 31594477 DOI: 10.1177/0748233719879312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present investigation was conducted to evaluate the teratogenic and developmental toxicity of fluoride and endosulfan alone and in combination in pregnant Swiss albino mice exposed during the organogenetic period (5-14 days) of gestation. Fluoride (25.1 mg/kg body weight in water) and endosulfan (1.8 mg/kg bw by oral intubation) when administered alone and in combination (fluoride 25.1 mg/kg bw + endosulfan 1.8 mg/kg bw) to pregnant mice caused significant teratogenic effects in developing fetuses. There was no maternal mortality but significant decreases in maternal weight gain and numbers of live fetuses and significant increases in numbers of fetal resorption were recorded in the treated groups. The fetal body weight and litter size also decreased significantly in all treated groups. No external malformations were observed in any of the fetuses. The percent of visceral and skeletal anomalies increased in the fetuses of all treated groups. The fetal malformations observed were internal hydrocephaly, microphthalmia, anophthalmia, pulmonary edema, subcutaneous edema, reduced ossification of skull bones, widened cranial sutures, rib anomalies (short, wavy, partially ossified, or absent ribs), and reduced ossification of phalanges. The occurrence of visceral and skeletal malformations was more severe in the combination group, suggesting additive interaction of fluoride and endosulfan in inducing developmental toxicity in Swiss albino mice.
Collapse
Affiliation(s)
- Anju Sharma
- Department of Zoology, IIS University, Jaipur, Rajasthan, India
| | - P J John
- Environmental Toxicology Laboratory, Centre for Advanced Studies, Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | | |
Collapse
|
9
|
Hussein MMA, Elsadaawy HA, El-Murr A, Ahmed MM, Bedawy AM, Tukur HA, Swelum AAA, Saadeldin IM. Endosulfan toxicity in Nile tilapia (Oreochromis niloticus) and the use of lycopene as an ameliorative agent. Comp Biochem Physiol C Toxicol Pharmacol 2019; 224:108573. [PMID: 31306802 DOI: 10.1016/j.cbpc.2019.108573] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Endosulfan is a broad-spectrum organochlorine insecticide that has been commercially in use for decades to control insect pests and has been found to pollute the aquatic environment. The current study was carried out to investigate the toxic effects of endosulfan, an organochlorine pesticide, on Nile tilapia (Oreochromis niloticus), a freshwater fish, and the alleviating effects of lycopene on the induced toxicity. METHODS Four treatment groups of fish were investigated (3 replicates of 15 fish for each group): (1) a control group, (2) a group exposed to endosulfan, (3) a group that was fed on a basal diet supplemented with lycopene, and (4) a group that was fed on a basal diet supplemented with lycopene and exposed to endosulfan. The experiment was carried out over a 4-week period. RESULTS Endosulfan negatively affected liver function, including liver enzymes and plasma proteins. Endosulfan affected blood parameters of fish and reduced the counts of red blood cells (RBCs) and white blood cells (WBCs), as well as affected immunological parameters. Endosulfan caused oxidative stress, as it decreased the values of antioxidants catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), and glutathione (GSH), and increased the level of lipid peroxide malondialdehyde (MDA). Additionally, endosulfan increased cytochrome P450 (CYP450) levels, while it decreased glutathione S-transferase (GST) mRNA transcript levels and distorted the normal histological structure of the liver, gills, and spleen of affected fish. Conversely, lycopene partially restored the aforementioned parameters when administered concomitantly with endosulfan. CONCLUSION The results showed the beneficial effects of supplementing fish diets with lycopene as a natural antioxidant for ameliorating the toxicity caused by endosulfan.
Collapse
Affiliation(s)
- Mohamed M A Hussein
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Hamad A Elsadaawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Abdelhakeem El-Murr
- Department of Fish Diseases and Management, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Mona M Ahmed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Aya M Bedawy
- Department of Biochemistry, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Hammed A Tukur
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt
| | - Islam M Saadeldin
- Department of Animal Production, College of Food and Agricultural Sciences, King Saud University, 11451 Riyadh, Saudi Arabia; Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, 44519 Zagazig, Egypt.
| |
Collapse
|
10
|
Xu X, Wang T, Sun M, Bai Y, Fu C, Zhang L, Hu X, Hagist S. Management principles for heavy metal contaminated farmland based on ecological risk-A case study in the pilot area of Hunan province, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:537-547. [PMID: 31154226 DOI: 10.1016/j.scitotenv.2019.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/23/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
A pilot project for farmland soil remediation was carried out in the Changsha-Zhuzhou-Xiangtan (CZX) area of Hunan province, China. However, the pilot project focused mainly on the risk of exposure to heavy metals on grain safety, and little attention was paid to the risk to ecosystem quality. The study selected three areas in counties of in the CZX, and focused on five high toxicity heavy metals-Cd (cadmium), Cr (chromium), Pb (lead), As (arsenic), Hg (mercury) to explore the potential ecological risks of the soil. Probabilistic ecological risk assessment (new method) and traditional methods were introduced to quantitatively evaluate the ecological risk. Two target criteria levels (LC/EC/IC50 and NOEC/LOEC) were employed. Through constructing species sensitivity distribution (SSD) models and joint probability curves (JPC), the predicted no effect concentrations (PNECs) derived from the SSD models were 0.21, 1.57, 3.05, 0.86 and 0.16 mg/kg for Cd, Cr, Pb, As and Hg, respectively. Compared with the ecological risk assessment results of the traditional methods, the new method reached a different conclusion, Cr showed the highest risk, at 84.3%, which signified that there was an 84.3% probability that 5% of the species with their NOEC/LOECs exceeded in County C. Despite differences among the risk assessment approaches, all methods indicated that County C was the most contaminated. The case study signifies that traditional methods underestimated the soil ecological risk of exposure to heavy metals and there should be a strong focus on farmland ecosystem security. At the same time, this study provided a scientific basis for goal-setting in species protection and prioritizing ecosystem protection as a management principle for heavy metal contaminated farmland from the perspective of ecological risk.
Collapse
Affiliation(s)
- Xiangbo Xu
- Key laboratory of ecosystem network observation and modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; International Ecosystem Management Partnership, United Nations Environment Programme, Beijing 100101, China
| | - Ting Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Mingxing Sun
- Key laboratory of ecosystem network observation and modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; International Ecosystem Management Partnership, United Nations Environment Programme, Beijing 100101, China.
| | - Yunli Bai
- Key laboratory of ecosystem network observation and modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; International Ecosystem Management Partnership, United Nations Environment Programme, Beijing 100101, China
| | - Chao Fu
- Key laboratory of ecosystem network observation and modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; International Ecosystem Management Partnership, United Nations Environment Programme, Beijing 100101, China
| | - Linxiu Zhang
- Key laboratory of ecosystem network observation and modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; International Ecosystem Management Partnership, United Nations Environment Programme, Beijing 100101, China
| | - Xiaoyan Hu
- Renmin University of China, School of Environment and Natural Resources, Beijing 100872, China.
| | - Spencer Hagist
- Key laboratory of ecosystem network observation and modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; International Ecosystem Management Partnership, United Nations Environment Programme, Beijing 100101, China
| |
Collapse
|
11
|
Dilna C, Prasanth GK, Kanade SR. Molecular interaction studies of endosulfan with the cholinergic pathway targets – An insilico approach. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.comtox.2017.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Zhang L, Wei C, Zhang H, Song M. Criteria for assessing the ecological risk of nonylphenol for aquatic life in Chinese surface fresh water. CHEMOSPHERE 2017; 184:569-574. [PMID: 28623829 DOI: 10.1016/j.chemosphere.2017.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/24/2017] [Accepted: 06/09/2017] [Indexed: 05/20/2023]
Abstract
The typical environmental endocrine disruptor nonylphenol is becoming an increasingly common pollutant in both fresh and salt water; it compromises the growth and development of many aquatic organisms. As yet, water quality criteria with respect to nonylphenol pollution have not been established in China. Here, the predicted "no effect concentration" of nonylphenol was derived from an analysis of species sensitivity distribution covering a range of species mainly native to China, as a means of quantifying the ecological risk of nonylphenol in surface fresh water. The resulting model, based on the log-logistic distribution, proved to be robust; the minimum sample sizes required for generating a stable estimate of HC5 were 12 for acute toxicity and 13 for chronic toxicity. The criteria maximum concentration and criteria continuous concentration were, respectively 18.49 μg L-1 and 1.85 μg L-1. Among the 24 sites surveyed, two were associated with a high ecological risk (risk quotient >1) and 12 with a moderate ecological risk (risk quotient >0.1). The potentially affected fraction ranged from 0.008% to 24.600%. The analysis provides a theoretical basis for both short- and long-term risk assessments with respect to nonylphenol, and also a means to quantify the risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Liangmao Zhang
- Laboratory of Environmental Planning and Management of Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Caidi Wei
- Laboratory of Environmental Planning and Management of Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Hui Zhang
- Smart City Research Institute, College of Civil Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Mingwei Song
- Laboratory of Environmental Planning and Management of Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China.
| |
Collapse
|
13
|
Supreeth M, Raju NS. Biotransformation of chlorpyrifos and endosulfan by bacteria and fungi. Appl Microbiol Biotechnol 2017; 101:5961-5971. [DOI: 10.1007/s00253-017-8401-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/15/2017] [Accepted: 06/20/2017] [Indexed: 12/23/2022]
|
14
|
Naja M, Childers DL, Gaiser EE. Water quality implications of hydrologic restoration alternatives in the Florida Everglades, United States. Restor Ecol 2017. [DOI: 10.1111/rec.12513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Melodie Naja
- Science Department Everglades Foundation Palmetto Bay FL 33157 U.S.A
| | | | - Evelyn E. Gaiser
- School of Environment, Arts and Society Florida International University Miami FL 33199 U.S.A
| |
Collapse
|
15
|
Wang J, Li L, Liu J, Ti B. Distribution mode and environmental risk of POP pesticides such as endosulfan under the agricultural practice of straw incorporating. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1394-1399. [PMID: 27825844 DOI: 10.1016/j.envpol.2016.10.095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/30/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
The practice of incorporating post-harvest crop waste is widely used because it maintains soil fertility and avoids environmental pollution from straw burning. However, the practice of straw incorporation may also retain the pesticides that are applied to crop plants, which may pose a potential long term risk to local and regional environments if the applied pesticide is a Persistent, Bioaccumulative, and Toxic (PBT) substance or a Persistent Organic Pollutant (POP). Here we investigate the influence of the "receiving-retention-release" route on the distribution of a POP pesticide (endosulfan) and the associated environmental risk among different environmental compartments. Our study indicates that most endosulfan enters the atmosphere (φatmosphere = 64.5-72.5%), which is dominated by the indirect route of volatilization from crop plants (φatmosphere, indirect = 54.7-70.3%). In contrast, soil releases are minor (φsoil = 10.8-20.5%), and are dominated by direct release during application (φsoil, direct = 8.0-18.0%). Under the practice of straw incorporation, the use of endosulfan posed an environmental risk to agricultural soil. In addition, the atmospheric deposition of endosulfan also posed an environmental risk to sediment. The study highlights the significance of the "receiving-retention-release" route by crop plants in determining the fate of POP pesticides associated with straw incorporation; hence complementing the current methodology for assessing the environmental risk of these compounds.
Collapse
Affiliation(s)
- Jie Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Li Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianguo Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Bowen Ti
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Impact and Mitigation of Nutrient Pollution and Overland Water Flow Change on the Florida Everglades, USA. SUSTAINABILITY 2016. [DOI: 10.3390/su8090940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Del Signore A, Hendriks AJ, Lenders HJR, Leuven RSEW, Breure AM. Development and application of the SSD approach in scientific case studies for ecological risk assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:2149-2161. [PMID: 27144499 DOI: 10.1002/etc.3474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/07/2015] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Species sensitivity distributions (SSDs) are used in ecological risk assessment for extrapolation of the results of toxicity tests with single species to a toxicity threshold considered protective of ecosystem structure and functioning. The attention to and importance of the SSD approach has increased in scientific and regulatory communities since the 1990s. Discussion and criticism have been triggered on the concept of the approach as well as its technical aspects (e.g., distribution type, number of toxicity endpoints). Various questions remain unanswered, especially with regard to different endpoints, statistical methods, and protectiveness of threshold levels, for example. In the present literature review (covering the period 2002-2013), case studies are explored in which the SSD approach was applied, as well as how endpoint types, species choice, and data availability affect SSDs. How statistical methods may be used to construct reliable SSDs and whether the lower 5th percentile hazard concentrations (HC5s) from a generic SSD can be protective for a specific local community are also investigated. It is shown that estimated protective concentrations were determined by taxonomic groups rather than the statistical method used to construct the distribution. Based on comparisons between semifield and laboratory-based SSDs, the output from a laboratory SSD was protective of semifield communities in the majority of studies. Environ Toxicol Chem 2016;35:2149-2161. © 2016 SETAC.
Collapse
Affiliation(s)
- Anastasia Del Signore
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - H J Rob Lenders
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Rob S E W Leuven
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - A M Breure
- Department of Environmental Science, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The Netherlands
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
18
|
Shi Y, Wang R, Lu Y, Song S, Johnson AC, Sweetman A, Jones K. Regional multi-compartment ecological risk assessment: Establishing cadmium pollution risk in the northern Bohai Rim, China. ENVIRONMENT INTERNATIONAL 2016; 94:283-291. [PMID: 27286039 DOI: 10.1016/j.envint.2016.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Ecological risk assessment (ERA) has been widely applied in characterizing the risk of chemicals to organisms and ecosystems. The paucity of toxicity data on local biota living in the different compartments of an ecosystem and the absence of a suitable methodology for multi-compartment spatial risk assessment at the regional scale has held back this field. The major objective of this study was to develop a methodology to quantify and distinguish the spatial distribution of risk to ecosystems at a regional scale. A framework for regional multi-compartment probabilistic ecological risk assessment (RMPERA) was constructed and corroborated using a bioassay of a local species. The risks from cadmium (Cd) pollution in river water, river sediment, coastal water, coastal surface sediment and soil in northern Bohai Rim were examined. The results indicated that the local organisms in soil, river, coastal water, and coastal sediment were affected by Cd. The greatest impacts from Cd were identified in the Tianjin and Huludao areas. The overall multi-compartment risk was 31.4% in the region. The methodology provides a new approach for regional multi-compartment ecological risk assessment.
Collapse
Affiliation(s)
- Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruoshi Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonglong Lu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andrew C Johnson
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK
| | - Andrew Sweetman
- Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford Wallingford, Oxon, OX 10 8BB, UK; Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Kevin Jones
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| |
Collapse
|
19
|
Da Cuña RH, Rey Vázquez G, Dorelle L, Rodríguez EM, Guimarães Moreira R, Lo Nostro FL. Mechanism of action of endosulfan as disruptor of gonadal steroidogenesis in the cichlid fish Cichlasoma dimerus. Comp Biochem Physiol C Toxicol Pharmacol 2016; 187:74-80. [PMID: 27235598 DOI: 10.1016/j.cbpc.2016.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 02/02/2023]
Abstract
The organochlorine pesticide endosulfan (ES) is used in several countries as a wide spectrum insecticide on crops with high commercial value. Due to its high toxicity to non-target animals, its persistence in the environment and its ability to act as an endocrine disrupting compound in fish, ES use is currently banned or restricted in many other countries. Previous studies on the cichlid fish Cichlasoma dimerus have shown that waterborne exposure to ES can lead to both decreased pituitary FSH content and histological alterations of testes. As gonadotropin-stimulated sex steroids release from gonads was inhibited by ES in vitro, the aim of the present study was to elucidate possible mechanisms of disruption of ES on gonadal steroidogenesis in C. dimerus, as well as compare the action of the active ingredient (AI) with that of currently used commercial formulations (CF). Testis and ovary fragments were incubated with ES (AI or CF) and/or steroidogenesis activators or precursors. Testosterone and estradiol levels were measured in the incubation media. By itself, ES did not affect hormone levels. Co-incubation with LH and the adenylate cyclase activator forskolin caused a decrease of the stimulated sex steroids release. When co-incubated with precursors dehydroandrostenedione and 17αhydroxyprogesterone, ES did not affect the increase caused by their addition alone. No differences were observed between the AI and CFs, suggesting that the effect on steroidogenesis disruption is mainly caused by the AI. Results indicate that action of ES takes place downstream of LH-receptor activation and upstream of the studied steroidogenic enzymes.
Collapse
Affiliation(s)
- Rodrigo H Da Cuña
- Laboratorio de Ecotoxicología Acuática. DBBE, FCEyN, Universidad de Buenos Aires, Argentina; IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Graciela Rey Vázquez
- Laboratorio de Ecotoxicología Acuática. DBBE, FCEyN, Universidad de Buenos Aires, Argentina; IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Luciana Dorelle
- Laboratorio de Ecotoxicología Acuática. DBBE, FCEyN, Universidad de Buenos Aires, Argentina; IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | - Enrique M Rodríguez
- Laboratorio de Fisiología de Crustáceos, DBBE, FCEyN, Universidad de Buenos Aires, Argentina; IBBEA, CONICET-UBA, Buenos Aires, Argentina
| | | | - Fabiana L Lo Nostro
- Laboratorio de Ecotoxicología Acuática. DBBE, FCEyN, Universidad de Buenos Aires, Argentina; IBBEA, CONICET-UBA, Buenos Aires, Argentina.
| |
Collapse
|
20
|
Evaluation of various soaking agents as a novel tool for pesticide residues mitigation from cauliflower ( Brassica oleracea var. botrytis). Journal of Food Science and Technology 2016; 53:3312-3319. [PMID: 27784925 DOI: 10.1007/s13197-016-2307-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/24/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The increasing use of pesticides for boosting the yield of agricultural crops also impart toxic residues which ultimately extend to numerous physiological disorders upon consumption. The present study was designed as an effort to assess the reduction potential of various chemical solutions and to minimize the pesticide residues in cauliflower (Brassica oleracea var. botrytis). The samples were soaked in various solutions along with tap water to mitigate pesticide residues. Afterwards, the extracted supernatant was passed through column containing anhydrous sodium sulfate trailed by activated carbon for clean-up. Eluents were first evaporated and then completely dried under gentle stream of Nitrogen. Finally, the residues were determined using gas chromatography equipped with electron capture detector (GC-ECD). Results revealed the highest reduction of endosulfan, bifenthrin and cypermethrin residues with acetic acid (10 %) was 1.133 ± 0.007 (41 %), 0.870 ± 0.022 (60 %) and 0.403 ± 0.003 (75 %), respectively among the tested solutions. However, simple tap water treatment also resulted in 0.990 ± 0.02 (12 %), 1.323 ± 0.015 (14 %) and 1.274 ± 0.002 (21 %) elimination of endosulfan, bifenthrin and cypermethrin residues, respectively. Moreover, among various solutions, acetic acid depicted maximum reduction potential followed by citric acid, hydrogen peroxide, sodium chloride and sodium carbonate solutions. The percent reduction by various solutions ranged from 12 to 41, 14 to 60 and 21 to 75 % for the elimination of endosulfan, bifenthrin and cypermethrin residues, respectively.
Collapse
|
21
|
Téllez-Bañuelos MC, Haramati J, Franco-Topete K, Peregrina-Sandoval J, Franco-Topete R, Zaitseva GP. Chronic exposure to endosulfan induces inflammation in murine colon via β-catenin expression and IL-6 production. J Immunotoxicol 2016; 13:842-849. [PMID: 27494533 DOI: 10.1080/1547691x.2016.1206998] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Endosulfan (ENDO) is a widely used organochlorine (OC) pesticide and persistent organo-pollutant. Epidemiological studies have shown that high levels of OC exposure were related to colorectal cancer (CRC) incidence. The objectives of the present study were to evaluate histological changes in the colon, as well as in in situ expression of β-catenin and P-selectin, and serum levels of select pro-inflammatory cytokines in mice administered ENDO; there is a relationship between increased serum IL-6 and P-selectin levels in CRC patients and aberrant β-catenin signaling is important in initiation/maintenance of most CRCs. Mice were exposed to ENDO (at dose < LD50) orally once a week for up to 24 weeks, and monitored (inclusive) for a total of 42 weeks. The experiment was comprised of three groups, one that did not receive ENDO (olive oil vehicle), one administered 2 mg ENDO/kg/week and a positive control (for induction of CRC) given a weekly 20 mg 1,2-dimethylhydrazine (DMH)/kg injection. The results indicated that oral administration of ENDO provoked moderate inflammation starting at six weeks, and severe colonic inflammation with an appearance of dysplastic formations (aberrant crypts) in mice treated with ENDO (or DMH) for 12 weeks or longer. Serum IL-6 levels significantly increased starting at six weeks and rose to a peak of 15-fold higher than in controls at 42 weeks; TNFα levels likewise significantly increased, with a later peak (≈four-fold higher than controls) at 30-42 weeks. Immunohistochemical analysis of the colon also showed that expression of β-catenin and P-selectin increased with length of exposure to ENDO. Taken together, the results indicate that continued repeated oral exposure to ENDO induces increased expression of β-catenin and P-selectin, inflammation in the colon, and, ultimately, local tissue dysplasia.
Collapse
Affiliation(s)
- Martha Cecilia Téllez-Bañuelos
- a Departamento de Biologia Celular y Molecular , Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara , Jalisco , Mexico
| | - Jesse Haramati
- a Departamento de Biologia Celular y Molecular , Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara , Jalisco , Mexico
| | - Karina Franco-Topete
- a Departamento de Biologia Celular y Molecular , Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara , Jalisco , Mexico
| | - Jorge Peregrina-Sandoval
- a Departamento de Biologia Celular y Molecular , Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara , Jalisco , Mexico
| | - Ramon Franco-Topete
- b Departamento de Microbiologia y Patologia , Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara , Jalisco , Mexico
| | - Galina P Zaitseva
- a Departamento de Biologia Celular y Molecular , Centro Universitario de Ciencias Biologicas y Agropecuarias, Universidad de Guadalajara , Jalisco , Mexico
| |
Collapse
|
22
|
Patra RW, Chapman JC, Lim RP, Gehrke PC, Sunderam RM. Interactions between water temperature and contaminant toxicity to freshwater fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:1809-1817. [PMID: 26033197 DOI: 10.1002/etc.2990] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 12/17/2014] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Warming of freshwaters as a result of climate change is expected to have complex interactions with the toxicity of contaminants to aquatic organisms. The present study evaluated the effects of temperature on the acute toxicity of endosulfan, chlorpyrifos, and phenol to 3 warm water species of fish-silver perch, rainbowfish, and western carp gudgeon-and 1 cold water species, rainbow trout. Endosulfan was more toxic to silver perch at 30 °C and 35 °C than at 15 °C, 20 °C and 25 °C during short exposures of 24 h, but at 96 h, temperature had no effect on toxicity. Toxicity to rainbow trout increased with increasing temperature, whereas warm water species exhibited maximum toxicity at around 30 °C, decreasing again toward 35 °C. Chlorpyrifos became more toxic to all species with increasing temperature. Phenol toxicity to all species decreased at low to intermediate temperatures; but as temperatures increased further toward the upper thermal limit, phenol became more toxic. Increasing toxicity in the upper thermal range of cold water species may contribute to upstream range contraction in rivers with high toxicant loads. In contrast, warm water species may not exhibit a range shift within rivers as a result of interactions between temperature and toxicity. Catchment management to offset global warming at local scales may present opportunities to mitigate increased toxicity of contaminants to fish.
Collapse
Affiliation(s)
- Ronald W Patra
- Office of Environment & Heritage, Department of Planning and Environment, Lidcombe, New South Wales, Australia
- School of the Environment, University of Technology Sydney, Broadway, New South Wales, Australia
- Centre for Ecotoxicology, Office of Environment & Heritage, and University of Technology Sydney, Australia
- Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
| | - John C Chapman
- Office of Environment & Heritage, Department of Planning and Environment, Lidcombe, New South Wales, Australia
- Centre for Ecotoxicology, Office of Environment & Heritage, and University of Technology Sydney, Australia
| | - Richard P Lim
- School of the Environment, University of Technology Sydney, Broadway, New South Wales, Australia
- Centre for Ecotoxicology, Office of Environment & Heritage, and University of Technology Sydney, Australia
| | - Peter C Gehrke
- Narrandera Fisheries Centre, Narrandera, New South Wales, Australia
- Opus International Consultants (Australia), Spring Hill, Queensland, Australia
| | | |
Collapse
|
23
|
Wu J, Lu J, Lu H, Lin Y, Wilson PC. Occurrence and ecological risks from fipronil in aquatic environments located within residential landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 518-519:139-147. [PMID: 25747373 DOI: 10.1016/j.scitotenv.2014.12.103] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 06/04/2023]
Abstract
This study investigated the occurrence of fipronil and its metabolites in aquatic environments in residentially-developed landscapes, including five canals and three retention ponds. Fipronil was detected at four of the sites, with concentrations of 0.5-207.3 ng L(-1). Fipronil sulfone and fipronil sulfide were detected at three sampling sites, with concentrations ranging from 0.46 to 57.75 and 0.40-26.92 ng L(-1), respectively. Multiple risk assessment methods were performed to characterize potential ecological risks, including deterministic screening and probabilistic risk assessment techniques. The deterministic method indicated no risk to certain biotic groups (i.e. aquatic plants, fish, molluscs, and algae-moss-fungi), but did indicate risks to larval insects and crustaceans. Results from the probabilistic risk assessment indicated significant ecological risks (acute and chronic) ranging from 0.75 to 58.9% and 3.9-35.0% when organisms were exposed to the maximum and median concentrations detected, respectively. The potentially affected fraction of species (PAF) likely to be acutely impacted ranged from 4.6 to 8.1% (fipronil), 0.2-1.6% (fipronil sulfone), and 1.9-3.1% (fipronil sulfide) in the ponds with frequent detectable concentrations. The PAF likely to be impacted at chronic toxicity levels ranged from 16.5 to 23.8% for fipronil. Joint probability curve analysis indicated that concentrations exceeded the LC50 of the most sensitive 5% of species 8.5-18.8% of the time at two of the sites with the most frequent detections. Using the more conservative NOEC/LOEC values, there was a 75-78% probability that concentrations were high enough to negatively affect the most sensitive 5% of species at the same two sites, indicating significant risks for chronic toxicity. JPCs indicated a ≤2.6% probability of fipronil sulfone exceeding the LC50 concentrations for the most sensitive 5% of species at the same two sites; and a 4.3-6.8% probability of fipronil sulfide exceeding the LC50 concentrations at the same sites. Results indicate that fipronil and its sulfone and sulfide degradation products may present significant risks to aquatic organisms in some residentially-developed areas.
Collapse
Affiliation(s)
- Jun Wu
- Indian River Research and Education Center, University of Florida/IFAS, 2199 South Rock Road, Fort Pierce, FL 34945-3138, USA
| | - Jian Lu
- Indian River Research and Education Center, University of Florida/IFAS, 2199 South Rock Road, Fort Pierce, FL 34945-3138, USA
| | - Hai Lu
- Indian River Research and Education Center, University of Florida/IFAS, 2199 South Rock Road, Fort Pierce, FL 34945-3138, USA
| | - Youjian Lin
- Indian River Research and Education Center, University of Florida/IFAS, 2199 South Rock Road, Fort Pierce, FL 34945-3138, USA
| | - P Chris Wilson
- Soil and Water Science Department, University of Florida/IFAS, P.O. Box 110290, Gainesville, FL 32611-0290, USA.
| |
Collapse
|
24
|
Chourasiya S, Khillare PS, Jyethi DS. Health risk assessment of organochlorine pesticide exposure through dietary intake of vegetables grown in the periurban sites of Delhi, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5793-5806. [PMID: 25384696 DOI: 10.1007/s11356-014-3791-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
The study investigated the levels of organochlorine pesticides (OCPs) in different types of vegetables grown in periurban area of National Capital Region (NCR), India. Vegetable sampling was carried out in winter and summer season of 2012. A total of 20 different OCPs were determined using gas chromatography (GC) assembled with electron capture detector (ECD). Obtained results showed that average levels of ∑(20)OCP ranged from 83.8 ± 25.5 ng g(-1) in smooth gourd to 222.4 ± 90.0 ng g(-1) in cauliflower. The mean concentrations of different OCPs were observed in order of ∑HCH > ∑CHLs > drins > ∑endosulfan > ∑DDT in all vegetables except in brinjal and smooth gourd. Most of the OCP residues recorded in vegetable samples exceeded the maximum residue levels (MRLs) set by international and national regulatory agencies. Health risk assessment suggests that daily dietary OCP exposure via vegetable consumption was higher for children (mean value 4.25E-05) than adults (mean value 2.19E-05). The hazard quotient (HQ) and lifetime cancer risk (LCR) estimated from dietary exposure of these vegetables were above the acceptable limit and can be considered as a serious concern for Delhi population.
Collapse
Affiliation(s)
- Sapna Chourasiya
- Environmental Monitoring and Assessment Laboratory, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | | |
Collapse
|
25
|
Hoang TC, Rand GM. Acute toxicity and risk assessment of permethrin, naled, and dichlorvos to larval butterflies via ingestion of contaminated foliage. CHEMOSPHERE 2015; 120:714-721. [PMID: 25462317 DOI: 10.1016/j.chemosphere.2014.10.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
Three Florida native larval butterflies (Junonia coenia, Anartia jatrophae, Eumaeus atala) were used in the present study to determine the acute toxicity, hazard, and risk of a 24h ingestion of leaves contaminated with the adult mosquito control insecticides permethrin, naled, and dichlorvos to late 4th and early 5th in-star caterpillars. Based on 24-h LD50s for ingestion, naled was more acutely toxic than permethrin and dichlorvos to caterpillars. Hazard quotients using the ratio of the highest doses and the 90th percentile doses from field measurements in host plant foliage following actual mosquito control applications to the toxicological benchmarks from laboratory toxicity tests indicate potential high acute hazard for naled compared to permethrin and dichlorvos. Based on probabilistic ecological risk methods, naled exposure doses in the environment also presented a higher acute risk to caterpillars than permethrin and dichlorvos. The acute toxicity laboratory results and ecological risk assessment are based only on dietary ingestion and single chemical doses. It does not include other typical exposure scenarios that may occur in the environment. It is thus plausible to state that the ecological risk assessment presented here underestimates the potential risks in the field to caterpillars. However, one assumption that is scientifically feasible and certainly real from the results - if the environmental exposure doses of mosquito control operations are similar or higher to those presented here in leaves from the field, after applications, there will likely be significant mortalities and other adverse effects on caterpillar populations.
Collapse
Affiliation(s)
- Tham C Hoang
- Florida International University, Southeast Environmental Research Center, Earth & Environment Department, North Miami, FL, USA; Institute of Environmental Sustainability, Loyola University Chicago, Chicago, IL, USA
| | - Gary M Rand
- Florida International University, Southeast Environmental Research Center, Earth & Environment Department, North Miami, FL, USA.
| |
Collapse
|
26
|
Hoang TC, Rand GM. Mosquito control insecticides: a probabilistic ecological risk assessment on drift exposures of naled, dichlorvos (naled metabolite) and permethrin to adult butterflies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:252-265. [PMID: 25261815 DOI: 10.1016/j.scitotenv.2014.09.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/06/2014] [Accepted: 09/09/2014] [Indexed: 06/03/2023]
Abstract
A comprehensive probabilistic terrestrial ecological risk assessment (ERA) was conducted to characterize the potential risk of mosquito control insecticide (i.e., naled, it's metabolite dichlorvos, and permethrin) usage to adult butterflies in south Florida by comparing the probability distributions of environmental exposure concentrations following actual mosquito control applications at labeled rates from ten field monitoring studies with the probability distributions of butterfly species response (effects) data from our laboratory acute toxicity studies. The overlap of these distributions was used as a measure of risk to butterflies. The long-term viability (survival) of adult butterflies, following topical (thorax/wings) exposures was the environmental value we wanted to protect. Laboratory acute toxicity studies (24-h LD50) included topical exposures (thorax and wings) to five adult butterfly species and preparation of species sensitivity distributions (SSDs). The ERA indicated that the assessment endpoint of protection, of at least 90% of the species, 90% of the time (or the 10th percentile from the acute SSDs) from acute naled and permethrin exposures, is most likely not occurring when considering topical exposures to adults. Although the surface areas for adulticide exposures are greater for the wings, exposures to the thorax provide the highest potential for risk (i.e., SSD 10th percentile is lowest) for adult butterflies. Dichlorvos appeared to present no risk. The results of this ERA can be applied to other areas of the world, where these insecticides are used and where butterflies may be exposed. Since there are other sources (e.g., agriculture) of pesticides in the environment, where butterfly exposures will occur, the ERA may under-estimate the potential risks under real-world conditions.
Collapse
Affiliation(s)
- T C Hoang
- Ecotoxicology and Risk Assessment, Southeast Environmental Research Center, Department of Earth and Environmental Sciences, Florida International University, Biscayne Bay Campus, 3000 N.E. 151st Street, N. Miami, FL 33181, United States; Department of Environmental Sciences, Institute of Environmental Sustainability, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60626, United States
| | - G M Rand
- Ecotoxicology and Risk Assessment, Southeast Environmental Research Center, Department of Earth and Environmental Sciences, Florida International University, Biscayne Bay Campus, 3000 N.E. 151st Street, N. Miami, FL 33181, United States.
| |
Collapse
|
27
|
Vorkamp K, Rigét FF. A review of new and current-use contaminants in the Arctic environment: evidence of long-range transport and indications of bioaccumulation. CHEMOSPHERE 2014; 111:379-395. [PMID: 24997943 DOI: 10.1016/j.chemosphere.2014.04.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 06/03/2023]
Abstract
Systematic monitoring of persistent organic pollutants (POPs) in the Arctic has been conducted for several years, in combination with assessments of POP levels in the Arctic, POP exposure and biological effects. Meanwhile, environmental research continues to detect new contaminants some of which could be potential new Arctic pollutants. This study summarizes the empirical evidence that is currently available of those compounds in the Arctic that are not commonly included in chemical monitoring programmes. The study has focused on novel flame retardants, e.g. alternatives to the banned polybrominated diphenyl ethers (PBDEs), current-use pesticides and various other compounds, i.e. synthetic musk compounds, siloxanes, phthalic acid esters and halogenated compounds like hexachlorobutadiene, octachlorostyrene, pentachlorobenzene and polychlorinated naphthalenes. For a number of novel brominated flame retardants, e.g. 2,3-bibromopropyl-2,4,6-tribromophenyl ether (DPTE), bis(2-ethylhexyl)tetrabromophthalate (TBPH), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB), 1,2-bis(2,4,6-tribromophenoxy)-ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB) and hexabromobenzene (HBBz), transport to the Arctic has been documented, but evidence of bioaccumulation is sparse and ambiguous. For short-chain chlorinated paraffins and dechlorane plus, however, increasing evidence shows both long-range transport and bioaccumulation. Ice cores have documented increasing concentrations of some current-use pesticides, e.g. chlorpyrifos, endosulfan and trifluralin, and bioaccumulation has been observed for pentachloroanisole, chorpyrifos, endosulfan and metoxychlor, however, the question of biomagnification remains unanswered.
Collapse
Affiliation(s)
- Katrin Vorkamp
- Aarhus University, Arctic Research Centre, Department of Environmental Science, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| | - Frank F Rigét
- Aarhus University, Arctic Research Centre, Department of Bioscience, Frederiksborgvej 399, 4000 Roskilde, Denmark.
| |
Collapse
|
28
|
Shi Y, Burns M, Ritchie RJ, Crossan A, Kennedy IR. Probabilistic risk assessment of diuron and prometryn in the Gwydir River catchment, Australia, with the input of a novel bioassay based on algal growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 106:213-219. [PMID: 24859706 DOI: 10.1016/j.ecoenv.2014.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 04/08/2014] [Accepted: 04/20/2014] [Indexed: 06/03/2023]
Abstract
A probabilistic risk assessment of the selected herbicides (diuron and prometryn) in the Gwydir River catchment was conducted, with the input of the EC₅₀ values derived from both literature and a novel bioassay. Laboratory test based on growth of algae exposed to herbicides assayed with a microplate reader was used to examine the toxicity of diuron and prometryn on the growth of Chlorella vulgaris. Both herbicides showed concentration dependent toxicity in inhibiting the growth of Chlorella during the exposure period of 18-72 h. Diuron caused more toxicity as judged by growth rates than prometryn. Thalaba Creek at Merrywinebone was identified as the 'hotspot' for diuron and prometryn risk in the Gwydir catchment. The use of microplate assays coupled with probabilistic risk assessment is recommended for rapid assessment of ecotoxicity of indigenous species, allowing identification of locations in river catchments requiring environmental management.
Collapse
Affiliation(s)
- Yajuan Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mitchell Burns
- Faculty of Agriculture and Environment, University of Sydney, NSW 2000, Australia; Prince of Songkla University-Phuket, Kathu, Phuket 83120, Thailand
| | | | - Angus Crossan
- Faculty of Agriculture and Environment, University of Sydney, NSW 2000, Australia
| | - Ivan R Kennedy
- Faculty of Agriculture and Environment, University of Sydney, NSW 2000, Australia
| |
Collapse
|
29
|
Téllez-Bañuelos MC, Ortiz-Lazareno PC, Jave-Suárez LF, Siordia-Sánchez VH, Bravo-Cuellar A, Santerre A, Zaitseva GP. Endosulfan decreases cytotoxic activity of nonspecific cytotoxic cells and expression of granzyme gene in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2014; 38:196-203. [PMID: 24657320 DOI: 10.1016/j.fsi.2014.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 02/23/2014] [Accepted: 03/07/2014] [Indexed: 06/03/2023]
Abstract
The effect of the organochlorinated insecticide endosulfan, on the cytotoxic activity of Nile tilapia nonspecific cytotoxic cells (NCC) was assessed. Juvenile Nile tilapia were exposed to endosulfan (7 ppb) for 96 h and splenic NCC were isolated. Flow cytometric phenotyping of NCC was based on the detection of the NCC specific membrane signaling protein NCCRP-1 by using the monoclonal antibody Mab 5C6; granzyme expression was evaluated by quantitative RT-PCR. The cytotoxic activity of sorted NCC on HL-60 tumoral cells was assessed using propidium iodide (PI) staining of DNA in HL-60 nuclei, indicating dead cells. Nile tilapia splenic NCC had the ability to kill HL-60 tumoral cells, however, the exposure to endosulfan significantly reduced, by a 65%, their cytotoxic activity when using the effector:target ratio of 40:1. Additionally, the exposure to endosulfan tended to increase the expression of NCCRP-1, which is involved in NCC antigen recognition and signaling. Moreover, it decreased the expression of the granzyme gene in exposed group as compared with non-exposed group; however significant differences between groups were not detected. In summary, the acute exposure of Nile tilapia to sublethal concentration of endosulfan induces alteration in function of NCC: significant decrease of cytotoxic activity and a tendency to lower granzyme expression, severe enough to compromise the immunity of this species.
Collapse
Affiliation(s)
- Martha Cecilia Téllez-Bañuelos
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico.
| | - Pablo Cesar Ortiz-Lazareno
- Centro de Investigación Biomédica de Occidente, IMSS, Sierra Mojada 800, Col. Independencia, 44340 Guadalajara, Jalisco, Mexico
| | - Luis Felipe Jave-Suárez
- Centro de Investigación Biomédica de Occidente, IMSS, Sierra Mojada 800, Col. Independencia, 44340 Guadalajara, Jalisco, Mexico
| | - Victor Hugo Siordia-Sánchez
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico
| | - Alejandro Bravo-Cuellar
- Centro de Investigación Biomédica de Occidente, IMSS, Sierra Mojada 800, Col. Independencia, 44340 Guadalajara, Jalisco, Mexico
| | - Anne Santerre
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico
| | - Galina P Zaitseva
- Departamento de Biología Celular y Molecular, Universidad de Guadalajara, Carretera a Nogales Km 15.5, Las Agujas, 45110 Zapopan, Jalisco, Mexico
| |
Collapse
|
30
|
Potter TL, Hapeman CJ, McConnell LL, Harman-Fetcho JA, Schmidt WF, Rice CP, Schaffer B. Endosulfan wet deposition in Southern Florida (USA). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 468-469:505-13. [PMID: 24055666 DOI: 10.1016/j.scitotenv.2013.08.070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 05/06/2023]
Abstract
The atmosphere is an important transport route for semi-volatile pesticides like endosulfan. Deposition, which depends on physical-chemical properties, use patterns, and climatic conditions, can occur at local, regional, and global scales. Adverse human and ecological impact may result. We measured endosulfan wet deposition in precipitation over a 4-year period within an area of high agricultural use in Southern Florida (USA) and in nearby Biscayne and Everglades National Parks. Endosulfan's two isomers and degradate, endosulfan sulfate, were detected at high frequency with the order of detection and concentration being β-endosulfan>α-endosulfan>endosulfan sulfate. Within the agricultural area, detection frequency (55 to 98%) mean concentrations (5 to 87 ng L(-1)) and total daily deposition (200 ng m(-2) day(-1)) exceeded values at other sites by 5 to 30-fold. Strong seasonal trends were also observed with values at all monitored sites significantly higher during peak endosulfan use periods when vegetable crops were produced. Relatively high deposition in the crop production area and observations that concentrations exceeded aquatic life toxicity thresholds at all sites indicated that endosulfan volatilization and wet deposition are of ecotoxicological concern to the region. This study emphasizes the need to include localized volatilization and deposition of endosulfan and other semi-volatile pesticides in risk assessments in Southern Florida and other areas with similar climatic and crop production profiles.
Collapse
Affiliation(s)
- Thomas L Potter
- USDA Agricultural Research Service, Southeast Watershed Laboratory, Tifton, GA 31793, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Quinete N, Castro J, Fernandez A, Zamora-Ley IM, Rand GM, Gardinali PR. Occurrence and distribution of endosulfan in water, sediment, and fish tissue: an ecological assessment of protected lands in south Florida. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11881-11892. [PMID: 24111802 DOI: 10.1021/jf403140z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Over the past 30 years, endosulfan, one of the last polychlorinated pesticides still in use, has received considerable attention and has been the subject of a number of international regulations and restriction action plans worldwide. This study aimed to monitor the presence and to assess the potential transport of endosulfan within the protected areas of Everglades National Park, Biscayne National Park, and Big Cypress National Preserve, South Florida, USA. Endosulfan sulfate was the major metabolite detected in all matrices in areas along the C-111 and C-111E canals, which drain the Homestead agricultural area and discharge to either Florida or Biscayne Bays, both of which are critical wildlife habitats. Endosulfan concentrations of up to 158 ng L(-1) and 57 ng g(-1) were observed in surface water and sediments, respectively, which exceeded the U.S. EPA's chronic water quality criteria (56 ng L(-1)). Elevated levels of up to 371 ng g(-1) of endosulfan sulfate were detected in whole fish tissue.
Collapse
Affiliation(s)
- Natalia Quinete
- Southeast Environmental Research Center (SERC), Florida International University , 3000 N.E. 151 Street, Biscayne Bay Campus, North Miami, Florida 33181, United States
| | | | | | | | | | | |
Collapse
|
32
|
Zhao Z, Zhang L, Wu J, Fan C. Residual levels, tissue distribution and risk assessment of organochlorine pesticides (OCPs) in edible fishes from Taihu Lake, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:9265-9277. [PMID: 23729160 DOI: 10.1007/s10661-013-3249-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Tissue distribution and bioaccumulation of organochlorine pesticides (OCPs) in edible fishes collected from Taihu Lake, Cyprinus carpio (C. carpio) and Ctenopharyngodon idellus (C. idellus), were studied. OCPs were detected in all samples with hexachlorocyclohexanes (HCHs), aldrins (including aldrin, dieldrin, endrin, endrin aldehyde, and endrin ketone), heptachlors (heptachlor and heptachlor epoxide) and dichlorodiphenyltrichloroethanes (DDTs) being the predominant compounds for both fish species. Gill and gonad were found to be the dominant tissues for OCP bioaccumulation followed by liver, while muscle showed the least affinity of OCPs for both fishes. Tissue distribution indicated the exchange of contaminants between water and gill, as well as the food intake from environment were the dominant pathways for OCP bioaccumulation in gill-breathing fish, and the following tissue distribution was affected by both the physiological properties of target tissues and physicochemical characteristics of pesticides. OCP residues in fish were species-specific (45.63-1575.26 ng/g dry weight (dw) for C. idellus; 8.40-60.23 ng/g dw for C. carpio) mainly due to the growth rate of individuals as well as the metabolic capacity difference among species. HCHs and DDTs observed in fishes from Taihu Lake were comparable and moderate with other reported places in China. Human exposure risk assessment performed with the estimated daily intake values demonstrated the consumption of target fish species in Taihu Lake at present was safe.
Collapse
Affiliation(s)
- Zhonghua Zhao
- State Key Laboratory of Lake Science and Environment Research, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | | | | |
Collapse
|
33
|
Bhattacharjee K, Banerjee S, Bawitlung L, Krishnappa D, Joshi SR. A Study on Parameters Optimization for Degradation of Endosulfan by Bacterial Consortia Isolated from Contaminated Soil. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s40011-013-0223-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Yuk J, Simpson MJ, Simpson AJ. 1-D and 2-D NMR-based metabolomics of earthworms exposed to endosulfan and endosulfan sulfate in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 175:35-44. [PMID: 23333485 DOI: 10.1016/j.envpol.2012.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 11/29/2012] [Accepted: 12/14/2012] [Indexed: 06/01/2023]
Abstract
One-dimensional (1-D) and two-dimensional (2-D) nuclear magnetic resonance (NMR)-based metabolomics was used to investigate the toxic mode of action (MOA) of endosulfan, an organochlorine pesticide, and its degradation product, endosulfan sulfate, to Eisenia fetida earthworms in soil. Three soil concentrations (0.1, 1.0 and 10.0 mg/kg) were used for both endosulfan and endosulfan sulfate. Both earthworm coelomic fluid (CF) and tissues were extracted and then analyzed using (1)H and (1)H-(13)C NMR techniques. A similar separation trajectory was observed for endosulfan and endosulfan sulfate-exposed earthworms in the mean principal component analysis (PCA) scores plot for both the earthworm CF and tissue extracts. A neurotoxic and apoptotic MOA was postulated for both endosulfan and endosulfan sulfate exposed earthworms as significant fluctuations in glutamine/GABA-glutamate cycle metabolites and spermidine were detected respectively. This study highlights the application of NMR-based metabolomics to understand molecular-level toxicity of persistent organochlorine pesticides and their degradation products directly in soil.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, University of Toronto, Scarborough College, 1265 Military Trail, Toronto, Ontario M1C1A4, Canada
| | | | | |
Collapse
|
35
|
Gonzalez M, Miglioranza KSB, Grondona SI, Silva Barni MF, Martinez DE, Peña A. Organic pollutant levels in an agricultural watershed: the importance of analyzing multiple matrices for assessing stream water pollution. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2013; 15:739-750. [PMID: 23653907 DOI: 10.1039/c3em30882k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study is aimed at analyzing the occurrence and transport of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in the Quequén Grande river basin, as representative of a catchment under diffuse pollution sources. Pollutant levels in soils, river bottom sediments (RBS), streamwater (Sw), suspended particle materials (SPMs), macrophytes and muscle of silverside were determined by GC-ECD. Soil K(d) values for the current-used insecticides, endosulfans and cypermethrin, were established. Total levels (ng g(-1) dry weight) in soil ranged between 0.07–0.9 for OCPs, 0.03–0.37 for PCBs and 0.01–0.05 for PBDEs. Endosulfan insecticide (α- + b- + sulfate metabolite) represented up to 72.5% of OCPs. The low soil retention for α-endosulfan (K(d): 77) and endosulfan sulfate (K(d): 100) allows their transport to Sw, SPM and RBS. Levels of endosulfan in Sw in some cases exceeded the value postulated by international guidelines for aquatic biota protection (3 ng L(-1)). PCB and PBDE pollution was related to harbour, dumping sites and pile tire burning. Tri and hexa PCB congeners predominated in all matrices and exceeded the quality guideline value of 0.04 ng L(-1) in Sw. Considering levels in silverside muscle, none of the oral reference doses were exceeded, however, PCBs accounted for 18.6% of the total daily allowed ingest for a 70 kg individual. Although the levels of PCBs and OCPs in soil and RBS were low and did not go beyond quality guidelines, these compounds could still represent a risk to aquatic biota and humanbeings, and thus actions towards preventing this situation should be undertaken.
Collapse
Affiliation(s)
- Mariana Gonzalez
- Laboratorio de Ecotoxicología y Contaminacíon Ambiental, Instituto de Investigaciones Marinas y Costeras (IIMyC), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP) – Consejo Nacional de Investigaciones Científícas y Técnicas (CONICET), Mar del Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
36
|
Outcompeting GC for the detection of legacy chlorinated pesticides: online-SPE UPLC APCI/MSMS detection of endosulfans at part per trillion levels. Anal Bioanal Chem 2013; 405:5887-99. [DOI: 10.1007/s00216-013-6764-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/08/2013] [Accepted: 01/17/2013] [Indexed: 11/27/2022]
|
37
|
Wang DQ, Yu YX, Zhang XY, Zhang SH, Pang YP, Zhang XL, Yu ZQ, Wu MH, Fu JM. Polycyclic aromatic hydrocarbons and organochlorine pesticides in fish from Taihu Lake: their levels, sources, and biomagnification. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 82:63-70. [PMID: 22673124 DOI: 10.1016/j.ecoenv.2012.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 05/16/2012] [Accepted: 05/17/2012] [Indexed: 06/01/2023]
Abstract
The investigation of biomagnification of polycyclic aromatic hydrocarbons (PAHs) and endosulfan, an organochlorine pesticide (OCP) and a new persistent organic pollutant, has been limited in freshwater food chains. The objective of the present study was to investigate the levels with focus on the sources and biomagnification of PAHs and OCPs in fish from Taihu Lake, China. In 193 samples of 24 species investigated, the concentrations ranged from 289 to 9 500 ng/g lipid weight (lw) for PAHs, and from 121 to 904 ng/g lw for OCPs, indicating that the fish in the lake was moderately contaminated. The PAHs mainly originated from both unburned petroleum and combustion of fossil fuels, and the OCPs from aged residues. It was unlikely that most of the PAHs and OCPs were biodiluted through the food chain because their trophic magnification factors were higher than one nevertheless the P-values >0.05. Aldrin, dieldrin, p,p'-DDE, p,p'-DDD, and endosulfan sulfate were significantly biomagnified through the food chain.
Collapse
Affiliation(s)
- De-Qing Wang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Pereira VM, Bortolotto JW, Kist LW, Azevedo MBD, Fritsch RS, Oliveira RDL, Pereira TCB, Bonan CD, Vianna MR, Bogo MR. Endosulfan exposure inhibits brain AChE activity and impairs swimming performance in adult zebrafish (Danio rerio). Neurotoxicology 2012; 33:469-75. [DOI: 10.1016/j.neuro.2012.03.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/09/2012] [Accepted: 03/11/2012] [Indexed: 11/29/2022]
|
39
|
Beyger L, Orrego R, Guchardi J, Holdway D. The acute and chronic effects of endosulfan pulse-exposure on Jordanella floridae (Florida flagfish) over one complete life-cycle. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 76:71-78. [PMID: 22018545 DOI: 10.1016/j.ecoenv.2011.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 09/21/2011] [Accepted: 09/26/2011] [Indexed: 05/31/2023]
Abstract
Endosulfan is an organochlorine pesticide, which is used worldwide and has known toxic effects on non-target organisms including fish. This research investigated the acute and chronic effects of pulse-exposed endosulfan on Florida flagfish (Jordanella floridae). A 4-h pulse-exposure of endosulfan to larval flagfish caused a significant increase in mortality after 96 h at nominal concentrations equal to or greater than 100 μg/L. Some of the acute sub-lethal observations included hyperactivity, convulsions, and axis malformation. Seven-eight day old post-hatch flagfish were pulse-exposed for 4h to endosulfan and then monitored over one full life-cycle for chronic effects on growth, reproduction, and survivability. There were no growth or reproductive effects of endosulfan pulse-exposure up to the highest exposure concentration of 10.8 μg/L. Thus, the life-cycle 4-h pulse-exposure no observed effect concentration (NOEC) and lowest observed effect concentration (LOEC) were 3.3 and 10.8 μg/L endosulfan, respectively, based on significantly higher larval and juvenile mortality.
Collapse
Affiliation(s)
- Lindsay Beyger
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa Ontario, Canada L1H 7K4.
| | | | | | | |
Collapse
|
40
|
Hoang TC, Rand GM, Gardinali PR, Castro J. Bioconcentration and depuration of endosulfan sulfate in mosquito fish (Gambusia affinis). CHEMOSPHERE 2011; 84:538-543. [PMID: 21550631 DOI: 10.1016/j.chemosphere.2011.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/28/2011] [Accepted: 04/07/2011] [Indexed: 05/30/2023]
Abstract
Endosulfan is an insecticide which has been widely used in agriculture. The technical grade material consists of two isomers (alpha and beta). Under natural environmental conditions, endosulfan is metabolized through oxidation and the main metabolite in the environment is endosulfan sulfate. Most ecotoxicology research has been conducted with technical grade endosulfan to determine effects on non-target aquatic organisms. Little data on the effects of endosulfan sulfate on aquatic organisms are available in the literature. This study characterizes endosulfan sulfate bioconcentration and depuration in mosquito fish (Gambusia affinis). During the study, G. affinis was exposed to an environmentally relevant endosulfan sulfate concentration of 0.25 μg L(-1) for 5 weeks (uptake phase) followed by a 3-week period (depuration phase) in clean water. This study found that G. affinis bioconcentrated endosulfan sulfate. During the exposure phase, fish tissue concentrations of endosulfan sulfate increased with time up to 730 μg kg(-1) dw or 215 μg kg(-1) ww. The bioconcentration data followed Michaelis-Menten kinetics better than the one-compartment first order kinetics (1-CFOK). Using these models, the bioconcentration factors for endosulfan sulfate-exposed G. affinis were from 687 to 888 L kg(-1) in wet weight or 2263 to 2936 L kg(-1) in dry weight. During the depuration phase, endosulfan sulfate concentrations in tissue significantly decreased and the data followed first order kinetics. The half-life of endosulfan sulfate in G. affinis was about 9 d. There was no significant difference in standard length or weight between control and exposed fish. The growth data followed the von Bertalanffy growth model. However, the condition factor of exposed fish increased with time during the exposure phase.
Collapse
Affiliation(s)
- Tham C Hoang
- Southeast Environmental Research Center, Department of Earth and Environment, Florida International University, Biscayne Bay Campus, North Miami, FL 33181, USA
| | | | | | | |
Collapse
|
41
|
Escher BI, Fenner K. Recent advances in environmental risk assessment of transformation products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3835-47. [PMID: 21473617 DOI: 10.1021/es1030799] [Citation(s) in RCA: 281] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
When micropollutants degrade in the environment, they may form persistent and toxic transformation products, which should be accounted for in the environmental risk assessment of the parent compounds. Transformation products have become a topic of interest not only with regard to their formation in the environment, but also during advanced water treatment processes, where disinfection byproducts can form from benign precursors. In addition, environmental risk assessment of human and veterinary pharmaceuticals requires inclusion of human metabolites as most pharmaceuticals are not excreted into wastewater in their original form, but are extensively metabolized. All three areas have developed their independent approaches to assess the risk associated with transformation product formation including hazard identification, exposure assessment, hazard assessment including dose-response characterization, and risk characterization. This review provides an overview and defines a link among those areas, emphasizing commonalities and encouraging a common approach. We distinguish among approaches to assess transformation products of individual pollutants that are undergoing a particular transformation process, e.g., biotransformation or (photo)oxidation, and approaches with the goal of prioritizing transformation products in terms of their contribution to environmental risk. We classify existing approaches for transformation product assessment in degradation studies as exposure- or effect-driven. In the exposure-driven approach, transformation products are identified and quantified by chemical analysis followed by effect assessment. In the effect-driven approach, a reaction mixture undergoes toxicity testing. If the decrease in toxicity parallels the decrease of parent compound concentration, the transformation products are considered to be irrelevant, and only when toxicity increases or the decrease is not proportional to the parent compound concentration are the TPs identified. For prioritization of transformation products in terms of their contribution to overall environmental risk, we integrate existing research into a coherent model-based, risk-driven framework. In the proposed framework, read-across from data of the parent compound to the transformation products is emphasized, but limitations to this approach are also discussed. Most prominently, we demonstrate how effect data for parent compounds can be used in combination with analysis of toxicophore structures and bioconcentration potential to facilitate transformation product effect assessment.
Collapse
Affiliation(s)
- Beate I Escher
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, Qld 4108, Australia.
| | | |
Collapse
|
42
|
Carriger JF, Hoang TC, Rand GM, Gardinali PR, Castro J. Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2011; 60:281-9. [PMID: 21127850 DOI: 10.1007/s00244-010-9623-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 10/25/2010] [Indexed: 05/22/2023]
Abstract
Endosulfan sulfate is a persistent environmental metabolite of endosulfan, an organochlorine insecticide-acaricide presently registered by the United States Environmental Protection Agency. There is, however, limited acute fish toxicity data for endosulfan sulfate. This study determines the acute toxicity (LC₅₀s and LC₁₀s) of endosulfan sulfate to three inland Florida native fish species (mosquitofish [Gambusia affinis]; least killifish [Heterandria formosa]; and sailfin mollies [Poecilia latipinna]) as well as fathead minnows (Pimephales promelas). Ninety-six-h acute toxicity tests were conducted with each fish species under flow-through conditions. For all of the above-mentioned fish species, 96-h LC₅₀ estimates ranged from 2.1 to 3.5 μg/L endosulfan sulfate. The 96-h LC₁₀ estimates ranged from 0.8 to 2.1 μg/L endosulfan sulfate. Of all of the fish tested, the least killifish appeared to be the most sensitive to endosulfan sulfate exposure. The above-mentioned data were combined with previous acute toxicity data for endosulfan sulfate and freshwater fish for an effects analysis. The effects analysis estimated hazardous concentrations expected to exceed 5, 10, and 50% of the fish species' acute LC₅₀ or LC₁₀ values (HC₅, HC₁₀, and HC₅₀). The endosulfan sulfate freshwater-fish acute tests were also compared with the available freshwater-fish acute toxicity data for technical endosulfan. Technical endosulfan is a mixture of α- and β-endosulfan. The LC₅₀s had a wider range for technical endosulfan, and their distribution produced a lower HC₁₀ than for endosulfan sulfate. The number of freshwater-fish LC₅₀s for endosulfan sulfate is much smaller than the number available for technical endosulfan, reflecting priorities in examining the toxicity of the parent compounds of pesticides. The toxicity test results and effects analyses provided acute effect values for endosulfan sulfate and freshwater fish that might be applied in future screening level ecologic risk assessments. The effects analyses also discussed several deficiencies in conventional methods for setting water-quality criteria and determining ecologic effects from acute toxicity tests.
Collapse
Affiliation(s)
- John F Carriger
- Department of Earth and Environment, Southeast Environmental Research Center, Florida International University, North Miami, 33181, USA
| | | | | | | | | |
Collapse
|