1
|
Courtene-Jones W, De Falco F, Burgevin F, Handy RD, Thompson RC. Are Biobased Microfibers Less Harmful than Conventional Plastic Microfibers: Evidence from Earthworms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20366-20377. [PMID: 39498562 PMCID: PMC11580163 DOI: 10.1021/acs.est.4c05856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024]
Abstract
Biobased plastics are sometimes promoted as "environmentally friendly" compared to their conventional petrochemical-based counterparts, but their ecotoxicity is only partially understood. Biobased fibers are widely used in clothing and wet wipes and can accumulate in soils through the application of biosolid fertilizers. This study examined the lethal thresholds and sublethal toxicity of chemically characterized, additive-free, biobased (viscose and lyocell) compared to petrochemical-based (polyester) fibers on the key ecosystem engineer, Esenia fetida. Viscose and lyocell had LC20 values of 14.00 and 22.66 mg·L-1, respectively, and no observed effect concentrations (NOEC) of 0-2.8 mg·L-1 (72 h, OECD TG207 filter paper method), while for polyester these were LC20 15.6-31.3 mg·L-1 and NOEC 0-15.6 mg·L-1. Following 28 days of exposure to soils (OECD TG222) contaminated with environmentally relevant concentrations (100 mg kg-1), viscose significantly reduced the mass of progeny compared to polyester. Earthworms exposed to lyocell had a marginal growth reduction (-18%; compared to -11% to -13% in other treatments) linked to increased bioturbation activity. The biobased fibers examined here have greater acute toxicity at high concentrations and broadly similar sublethal effects on E. fetida compared to polyester. Our study highlights the importance of detailed testing before advocating specific materials as plastic alternatives/substitutes to conventional plastics.
Collapse
Affiliation(s)
- W. Courtene-Jones
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
- School
of Ocean Science, Bangor University, Anglesey LL59 5AB, U.K.
| | - F. De Falco
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
- School
of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
| | - F. Burgevin
- Institute
for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.
| | - R. D. Handy
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
| | - R. C. Thompson
- School
of Biological and Marine Sciences, University
of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, U.K.
| |
Collapse
|
2
|
Courtene-Jones W, Cheung SWH, Thompson RC, Hanley ME. Effect of biodegradable and conventional microplastic exposure in combination with seawater inundation on the coastal terrestrial plant Plantago coronopus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124573. [PMID: 39029863 DOI: 10.1016/j.envpol.2024.124573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Coastal ecosystems face a multitude of pressures including plastic pollution and increased flood risk due to sea level rise and the frequency and severity of storms. Experiments seldom examine multiple stressors such as these, but here we quantified the effect of microplastics (polyethylene terephthalate (PET): a durable plastic and polybutylene adipate terephthalate (PBAT): a biodegradable polymer), in combination with simulated seawater inundation on the coastal species Plantago coronopus. After 35-days exposure to plastic (0.02 g.Kg-1, <300 μm diameter), P. coronopus were flooded to pot height with artificial seawater for 72-h, drained and grown for a further 24-days. Plant mortality, necrosis and photosynthetic efficiency (Fv/Fm) were recorded throughout, with root:shoot biomass and scape production (flower stalks) quantified at harvest. There were significant interactions between microplastics and seawater on the root:shoot ratio; a measure of resource allocation. The allocation to belowground biomass increased significantly under the PET + inundation treatment compared to the PBAT + inundation and the no plastic + inundation treatments, with potential consequences on the capture of water, nutrients and sunlight, which can affect plant performance. Plant necrosis significantly increased, and Fv/Fm declined as a result of seawater inundation. While not significant, plant Fv/Fm responses were influenced by microplastics (17% and 7% reduction in PBAT and PET exposure respectively compared to the no plastic control). Plants mediated this stress response with no discernible treatment-specific effects detected in Fv/Fm 14-days after seawater introduction. Plastic exposure significantly influenced potential reproductive output, with lower average scape numbers across PBAT treatments, but higher in PET treatments. This study highlights the complex interactions and potential for microplastics to present an elevated risk when in combination with additional stressors like seawater flooding; establishing the threat presented to ecosystem resilience in a changing world is a priority.
Collapse
Affiliation(s)
- W Courtene-Jones
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK.
| | - S W H Cheung
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - R C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon, PL4 8AA, UK
| |
Collapse
|
3
|
Leppanen MT, Sourisseau S, Burgess RM, Simpson SL, Sibley P, Jonker MTO. Sediment Toxicity Tests: A Critical Review of Their use in Environmental Regulations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1697-1716. [PMID: 38597781 PMCID: PMC11326746 DOI: 10.1002/etc.5861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Sediments are an integral component of aquatic systems, linking multiple water uses, functions, and services. Contamination of sediments by chemicals is a worldwide problem, with many jurisdictions trying to prevent future pollution (prospective) and manage existing contamination (retrospective). The present review assesses the implementation of sediment toxicity testing in environmental regulations globally. Currently, the incorporation of sediment toxicity testing in regulations is most common in the European Union (EU), North America, and Australasian regions, with some expansion in Asia and non-EU Europe. Employing sediment toxicity testing in prospective assessments (i.e., before chemicals are allowed on the market) is most advanced and harmonized with pesticides. In the retrospective assessment of environmental risks (i.e., chemicals already contaminating sediments), regulatory sediment toxicity testing practices are applied inconsistently on the global scale. International harmonization of sediment toxicity tests is considered an asset and has been successful through the widespread adoption and deployment of Organisation for Economic Co-operation and Development guidelines. On the other hand, retrospective sediment assessments benefit from incorporating regional species and protocols. Currently used toxicity testing species are diverse, with temperate species being applied most often, whereas test protocols are insufficiently flexible to appropriately address the range of environmental contaminants, including nanomaterials, highly hydrophobic contaminants, and ionized chemicals. The ever-increasing and -changing pressures placed on aquatic resources are a challenge for protection and management efforts, calling for continuous sediment toxicity test method improvement to insure effective use in regulatory frameworks. Future developments should focus on including more subtle and specific toxicity endpoints (e.g., incorporating bioavailability-based in vitro tests) and genomic techniques, extending sediment toxicity testing from single to multispecies approaches, and providing a better link with ecological protection goals. Environ Toxicol Chem 2024;43:1697-1716. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
| | | | - Robert M Burgess
- Atlantic Coastal Environmental Science Division, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | | | - Paul Sibley
- School of Environmental Sciences, Ontario Agricultural College, University of Guelph, Guelph, Ontario, Canada
| | - Michiel T O Jonker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
4
|
Courtene-Jones W, Burgevin F, Munns L, Shillam MBT, De Falco F, Buchard A, Handy RD, Thompson RC, Hanley ME. Deterioration of bio-based polylactic acid plastic teabags under environmental conditions and their associated effects on earthworms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172806. [PMID: 38772795 DOI: 10.1016/j.scitotenv.2024.172806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/23/2024]
Abstract
In response to the plastic waste crisis, teabag producers have substituted the petrochemical-plastic content of their products with bio-based, biodegradable polymers such as polylactic acid (PLA). Despite widespread use, the degradation rate of PLA/PLA-blended materials in natural soil and their effects on soil biota are poorly understood. This study examined the percentage mass deterioration of teabags with differing cellulose:PLA compositions following burial (-10 cm depth) in an arable field margin for 7-months, using a suite of analytical techniques, such as size exclusion chromatography, 1H nuclear magnetic resonance, dynamic scanning calorimetry, and scanning electron microscopy. The effect of 28-d exposure to teabag discs at environmentally relevant concentrations (0.02 %, 0.04 % and 0.07 % w/w) on the survival, growth and reproduction (OECD TG 222 protocol) of the key soil detritivore Eisenia fetida was assessed in laboratory trials. After 7-month burial, Tbag-A (2.4:1 blend) and Tbag-B (3.5:1 cellulose:PLA blend) lost 66 ± 5 % and 78 ± 4 % of their total mass, primarily attributed to degradation of cellulose as identified by FTIR spectroscopy and a reduction in the cellulose:PLA mass ratio, while Tbag-C (PLA) remained unchanged. There were clear treatment and dose-specific effects on the growth and reproductive output of E. fetida. At 0.07 % w/w of Tbag-A adult mortality marginally increased (15 %) and both the quantity of egg cocoons and the average mass of juveniles also increased, while at concentrations ≥0.04 % w/w of Tbag-C, the quantity of cocoons was suppressed. Adverse effects are comparable to those reported for non-biodegradable petrochemical-based plastic, demonstrating that bio-based PLA does not offer a more 'environmentally friendly' alternative. Our study emphasises the necessity to better understand the environmental fate and ecotoxicity of PLA/PLA-blends to ensure interventions developed through the UN Plastic Pollution Treaty to use alternatives and substitutes to conventional plastics do not result in unintended negative consequences.
Collapse
Affiliation(s)
- W Courtene-Jones
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK.
| | - F Burgevin
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - L Munns
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - M B T Shillam
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - F De Falco
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK; School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, PL4 8AA Plymouth, Devon, UK
| | - A Buchard
- Institute for Sustainability, Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - R D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - R C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| | - M E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, Devon PL4 8AA, UK
| |
Collapse
|
5
|
Brunelli A, Cazzagon V, Faraggiana E, Bettiol C, Picone M, Marcomini A, Badetti E. An overview on dispersion procedures and testing methods for the ecotoxicity testing of nanomaterials in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171132. [PMID: 38395161 DOI: 10.1016/j.scitotenv.2024.171132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
Considerable efforts have been devoted to develop or adapt existing guidelines and protocols, to obtain robust and reproducible results from (eco)toxicological assays on engineered nanomaterials (NMs). However, while many studies investigated adverse effects of NMs on freshwater species, less attention was posed to the marine environment, a major sink for these contaminants. This review discusses the procedures used to assess the ecotoxicity of NMs in the marine environment, focusing on the use of protocols and methods for preparing NMs dispersions and on the NMs physicochemical characterization in exposure media. To this purpose, a critical analysis of the literature since 2010 was carried out, based on the publication of the first NMs dispersion protocols. Among the 89 selected studies, only <5 % followed a standardized dispersion protocol combined with NMs characterization in ecotoxicological media, while more than half used a non-standardized dispersion method but performed NMs characterization. In the remaining studies, only partial or no information on dispersion procedures or on physicochemical characterization was provided. This literature review also highlighted that metal oxides NMs were the most studied (42 %), but with an increasing interest in last years towards nanoplastics (14 %) and multicomponent nanomaterials (MCNMs, 7 %), in line with the growing attention on these emerging contaminants. For all these NMs, primary producers as algae and bacteria were the most studied groups of marine species, in addition to mollusca, while organisms at higher trophic levels were less represented, likely due to challenges in evaluating adverse effects on more complex organisms. Thus, despite the wide use of NMs in different applications, standard dispersion protocols are not often used for ecotoxicity testing with marine species. However, the efforts to characterize NMs in ecotoxicological media recognize the importance of following conditions that are as standardized as possible to support the ecological hazard assessment of NMs.
Collapse
Affiliation(s)
- Andrea Brunelli
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| | - Virginia Cazzagon
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Eleonora Faraggiana
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Cinzia Bettiol
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Marco Picone
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Antonio Marcomini
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy
| | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE), 30172, Italy.
| |
Collapse
|
6
|
Tafti F, Savant S, Saraf T, Pinge S, Thorat R, Sharma V. Hazards Associated With Nanotechnology in Clinical Dentistry. Cureus 2023; 15:e46978. [PMID: 38021801 PMCID: PMC10640876 DOI: 10.7759/cureus.46978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Nanotechnology has transformed the field of dentistry with immense potential to provide comprehensive oral health care using nanomaterials, advanced clinical tools, and devices. New materials with superior properties can be developed using nanotechnology by making use of their atomic or molecular properties. Although there are numerous ways in which nanomaterials impact our health, the primary cause is that they comprise chemicals that may have an inadvertent reaction in the body. Moreover, they are used on a daily basis, increasing human contact with them. It is observed to be smaller in size than the physiological barrier in our bodies, making it much simpler for them to pass through and enter the body and they are being used more frequently. It is observed to be smaller in size than the physiological barrier in our bodies, making it much simpler for them to pass through and enter the body and being used more frequently. Although there are numerous ways in which nanomaterials impact our health, the primary cause is they comprise chemicals that may have an inadvertent reaction in the body. The review discusses various types of toxicity, including the cytotoxicity of composites, carbon nanoparticles, silver nanoparticles (SNPs), and quantum dots. It also covers genotoxicity, the effect of nanoparticles on salivary secretion, oral and gastrointestinal mucosa passage of nanoparticles, the tooth surface microenvironment, and interactions with engineered nanomaterials (ENMs). It is concluded that there is scarce information regarding the presence of chemicals that are released from nanoparticles used in dental materials. Nanotechnology is at an infant stage, although it has progressed by leaps and bounds, hailing a new age that provides better treatment modalities in various branches of dentistry. Although the development and application of nanodentistry are of considerable interest, knowledge regarding the possible toxicity of such materials must be meticulously evaluated, and potential benefits must be weighed against the risks to identify potential gaps in the safety assessment. Further research is needed on workplace exposure to nanoparticles in dentistry.
Collapse
Affiliation(s)
- Farheen Tafti
- Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Suyog Savant
- Public Health Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Tanvi Saraf
- Pediatric and Preventive Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Sujata Pinge
- Public Health Dentistry, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| | - Rohit Thorat
- Prosthodontics, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Pune, IND
| | - Vivek Sharma
- Periodontics, Bharati Vidyapeeth (Deemed-to-Be University) Dental College and Hospital, Navi Mumbai, IND
| |
Collapse
|
7
|
Hayrapetyan R, Lacour T, Luce A, Finot F, Chagnon MC, Séverin I. The cell transformation assay to assess potential carcinogenic properties of nanoparticles. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 791:108455. [PMID: 36933785 DOI: 10.1016/j.mrrev.2023.108455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/15/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Nanoparticles (NPs) are present in many daily life products with particular physical-chemical properties (size, density, porosity, geometry …) giving very interesting technological properties. Their use is continuously growing and NPs represent a new challenge in terms of risk assessment, consumers being multi-exposed. Toxic effects have already been identified such as oxidative stress, genotoxicity, inflammatory effects, and immune reactions, some of which are leading to carcinogenesis. Cancer is a complex phenomenon implying multiple modes of action and key events, and prevention strategies in cancer include a proper assessment of the properties of NPs. Therefore, introduction of new agents like NPs into the market creates fresh regulatory challenges for an adequate safety evaluation and requires new tools. The Cell Transformation Assay (CTA) is an in vitro test able of highlighting key events of characteristic phases in the cancer process, initiation and promotion. This review presents the development of this test and its use with NPs. The article underlines also the critical issues to address for assessing NPs carcinogenic properties and approaches for improving its relevance.
Collapse
Affiliation(s)
- Ruzanna Hayrapetyan
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Théo Lacour
- GenEvolutioN - SEQENS' Lab Porcheville - Bâtiment 1, 2-8 rue de Rouen-ZI de Limay-Porcheville, F-78440 Porcheville, France
| | - Annette Luce
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Francis Finot
- GenEvolutioN - SEQENS' Lab Porcheville - Bâtiment 1, 2-8 rue de Rouen-ZI de Limay-Porcheville, F-78440 Porcheville, France
| | - Marie-Christine Chagnon
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France
| | - Isabelle Séverin
- Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231, Univ. Bourgogne Franche-Comté (UBFC) University of Burgundy, L'Institut Agro Dijon, 1 Esplanade Erasme, F-21000 Dijon, France.
| |
Collapse
|
8
|
Mona C, Salomé MM, Judit K, José-María N, Eric B, María-Luisa FC. Considerations for bioaccumulation studies in fish with nanomaterials. CHEMOSPHERE 2023; 312:137299. [PMID: 36410504 DOI: 10.1016/j.chemosphere.2022.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Nanomaterials (NMs) pose challenges in performing bioaccumulation studies in fish and in regulatory interpretation of results. Therefore, a clear guidance is needed to obtain reliable, reproducible and comparable results. By analysing all the available literature, we aim in this manuscript to identify the critical aspects that should be addressed in these type of studies. Seventy-eight studies from a total of 67 published articles were identified in which a variety of approaches were used: aqueous exposure (49 studies), dietary exposure (19), and pre-exposed animals for trophic transfer studies (10). The NMs tested included TiO2, Zn, ZnO, Cu, CuO, Ag, Au, CeO2, Fe2O3, Fe3O4, Se, CdS, CdSe/ZnS-QDs, CdTe/ZnS-QDs, graphene, fullerenol and MWCNTs. In general, there is a scarcity of bioaccumulation studies for the different NMs. In particular, studies that use the dietary exposure route are lacking. TiO2 NMs are the most studied for bioaccumulation potential in fish (20%), whereas very few data were available for CuO, FeO and carbon-based NMs. Different information gaps were identified in these studies that hamper overall conclusions to be made on the bioaccumulation potential of NMs. The main critical issues related to NM testing for bioaccumulation include: maintenance of stable exposure concentrations, the influence of feeding regimen on uptake and elimination, the use of appropriate feed spiking methodologies, the potential need for testing different concentrations, and the reporting of bioaccumulation endpoints (BCF/BMF). Each of these issues needs further guidance to allow proper use and reporting of NM bioaccumulation data for regulatory purposes.
Collapse
Affiliation(s)
- Connolly Mona
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Martínez-Morcillo Salomé
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Kalman Judit
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Navas José-María
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain
| | - Bleeker Eric
- National Institute for Public Health and the Environment (RIVM), P.O. Box 13720 BA Bilthoven, the Netherlands
| | - Fernández-Cruz María-Luisa
- Department of Environment and Agronomy, National Institute for Agriculture and Food Science and Technology (INIA), Spanish National Research Council (CSIC), Carretera de la Coruña km 7,5, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Yallop M, Wang Y, Masuda S, Daniels J, Ockenden A, Masani H, Scott TB, Xie F, Ryan M, Jones C, Porter AE. Quantifying impacts of titanium dioxide nanoparticles on natural assemblages of riverine phytobenthos and phytoplankton in an outdoor setting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154616. [PMID: 35307433 DOI: 10.1016/j.scitotenv.2022.154616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Impacts of widespread release of engineered titanium dioxide nanoparticles (nTiO2) on freshwater phytoplankton and phytobenthic assemblages in the field, represents a significant knowledge gap. Using outdoor experiments, we quantified impacts of nTiO2 on phytoplankton and periphyton from UK rivers, applied at levels representative of environmentally realistic concentrations (0.05 mg/L) and hot spots of accumulation (5.0 mg/L). Addition of nTiO2 to river water led to rapid temporal size changes in homoagglomerates and many heteroaggregates of nTiO2 with cells in the phytoplankton, including green algae, pennate and centric diatoms, increasing settlement of some cells. Changes in phytoplankton composition were evident after 72-h resulting from a significant decline in the relative abundance of very small phytoplankton cells (1-3 μm), often accompanied by increases in centric diatoms at both concentrations. Significant changes detected in the composition of the phytobenthos after 12 days, following nTiO2 treatments, were not evident when using benthic diatoms alone after 56 days. A lack of inhibition in the maximum quantum yield (Fv/Fm) in phytobenthos after 72-h exposures contrasted with a significant inhibition in Fv/Fm in 75% of phytoplankton samples, the highest recorded in Rutile nTiO2 exposures at both concentrations of nTiO2. After 12 days, strong positive stimulatory responses were recorded in the maximum relative electron transport rate (rETRmax) and the maximum non-photochemical coefficient (NPQmax), in phytoplankton and phytobenthos samples exposed to the higher Anatase nTiO2 concentration, were not measured in Rutile exposed biota. Collectively, these results indicate that the Rutile phase of nTiO2 has more negative impacts on freshwater algae than the Anatase form, at specific time scales, and phytoplankton may be more impacted by nTiO2 than phytobenthos. We caution that repeated release of nTiO2, could lead to significant changes in riverine algal biomass and species composition, dependent on the phase and concentration of nTiO2.
Collapse
Affiliation(s)
- Marian Yallop
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom.
| | - Yunyang Wang
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Seigo Masuda
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jack Daniels
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Amy Ockenden
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Hannah Masani
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, United Kingdom
| | - Tom B Scott
- Interface Analyses Centre, University of Bristol, Bristol BS2 8BS, United Kingdom
| | - Fang Xie
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Mary Ryan
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Christopher Jones
- Interface Analyses Centre, University of Bristol, Bristol BS2 8BS, United Kingdom
| | - Alexandra E Porter
- Department of Materials and London Centre for Nanotechnology, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
10
|
Skjolding LM, Sørensen SN, Dyhr KS, Hjorth R, Schlüter L, Hedberg C, Hartmann NB, Mayer P, Baun A. Separating toxicity and shading in algal growth inhibition tests of nanomaterials and colored substances. Nanotoxicology 2022; 16:265-275. [PMID: 35695192 DOI: 10.1080/17435390.2022.2080608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Nanoparticles and colored substances can inhibit algal growth by light shading and chemical toxicity. This study presents two complementary approaches to account for shading in algal growth inhibition tests of engineered nanomaterials (ENMs) and colored substances. The first approach distinguishes between shading effects and toxicity by varying the light path in parallel algal growth inhibition tests. This Multiple Path-Length (MPL) test was applied to TiO2 ENMs and the colored substances sodium picramate and Rhodamine B. A left shifting of concentration-response curves, with increasing light path lengths, indicated shading for Rhodamine B, sodium picramate and TiO2 ENMs. EC50-values obtained at the shortest light path length were generally found best suited to quantify the toxicity of ENMs and colored substances. The second approach addresses shading at the cellular level, where particles can attach to the cell surface and affect photo-pigment content and composition. Pigments associated with photosystem I and II were determined at varying light intensities and concentrations of TiO2 ENMs. The photo-pigments that increased in response to physical shading, decreased after TiO2 ENMs exposure. This indicates that toxicity rather than cellular shading dominated the response of algae exposed to TiO2 ENMs. Additional tests were conducted with the nanomaterials CeO2 and goethite to evaluate the applicability of this approach to other ENMs. On this basis, we recommend MPL testing for determining EC50-values that are not confounded by shading in the test solution, and the pigment-based approach for investigating shading on the cellular level.
Collapse
Affiliation(s)
- Lars Michael Skjolding
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sara Nørgaard Sørensen
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karen Scharling Dyhr
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Rune Hjorth
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Camilla Hedberg
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nanna B Hartmann
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anders Baun
- Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
11
|
Laycock A, Clark NJ, Clough R, Smith R, Handy RD. Determination of metallic nanoparticles in biological samples by single particle ICP-MS: a systematic review from sample collection to analysis. ENVIRONMENTAL SCIENCE. NANO 2022; 9:420-453. [PMID: 35309016 PMCID: PMC8852815 DOI: 10.1039/d1en00680k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/26/2021] [Indexed: 05/04/2023]
Abstract
A systematic review of the use of single particle ICP-MS to analyse engineered nanomaterials (ENMs) in biological samples (plants, animals, body fluids) has highlighted that efforts have focused on a select few types of ENMs (e.g., Ag and TiO2) and there is a lack of information for some important tissues (e.g., reproductive organs, skin and fatty endocrine organs). The importance of sample storage is often overlooked but plays a critical role. Careful consideration of the ENM and matrix composition is required to select an appropriate protocol to liberate ENMs from a tissue whilst not promoting the transformation of them, or genesis of new particulates. A 'one size fits all' protocol, applicable to all possible types of ENM and biological matrices, does not seem practical. However, alkaline-based extractions would appear to show greater promise for wide applicability to animal tissues, although enzymatic approaches have a role, especially for plant tissues. There is a lack of consistency in metrics reported and how they are determined (e.g. size limit of detection, and proportions of recovery), making comparison between some studies more difficult. In order to establish standardised protocols for regulatory use, effort is needed to: develop certified reference materials, achieve international agree on nomenclature and the use of control samples, and to create a decision tree to help select the best sample preparation for the type of tissue matrix.
Collapse
Affiliation(s)
- Adam Laycock
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
| | - Robert Clough
- Analytical Research Facility, School of Geography, Earth and Environmental Sciences, University of Plymouth Plymouth PL4 8AA UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus Didcot OX11 0RQ UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth Drake Circus Plymouth PL4 8AA UK
- Visiting Professor, Department of Nutrition, Cihan University-Erbil Kurdistan Region Iraq
| |
Collapse
|
12
|
Demir E, Demir FT, Marcos R. Drosophila as a Suitable In Vivo Model in the Safety Assessment of Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:275-301. [DOI: 10.1007/978-3-030-88071-2_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Jiang T, Amadei CA, Lin Y, Gou N, Rahman SM, Lan J, Vecitis CD, Gu AZ. Dependence of Graphene Oxide (GO) Toxicity on Oxidation Level, Elemental Composition, and Size. Int J Mol Sci 2021; 22:ijms221910578. [PMID: 34638921 PMCID: PMC8508828 DOI: 10.3390/ijms221910578] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The mass production of graphene oxide (GO) unavoidably elevates the chance of human exposure, as well as the possibility of release into the environment with high stability, raising public concern as to its potential toxicological risks and the implications for humans and ecosystems. Therefore, a thorough assessment of GO toxicity, including its potential reliance on key physicochemical factors, which is lacking in the literature, is of high significance and importance. In this study, GO toxicity, and its dependence on oxidation level, elemental composition, and size, were comprehensively assessed. A newly established quantitative toxicogenomic-based toxicity testing approach, combined with conventional phenotypic bioassays, were employed. The toxicogenomic assay utilized a GFP-fused yeast reporter library covering key cellular toxicity pathways. The results reveal that, indeed, the elemental composition and size do exert impacts on GO toxicity, while the oxidation level exhibits no significant effects. The UV-treated GO, with significantly higher carbon-carbon groups and carboxyl groups, showed a higher toxicity level, especially in the protein and chemical stress categories. With the decrease in size, the toxicity level of the sonicated GOs tended to increase. It is proposed that the covering and subsequent internalization of GO sheets might be the main mode of action in yeast cells.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
| | - Carlo Alberto Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - Yishan Lin
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China
- Correspondence: (Y.L.); (A.Z.G.)
| | - Na Gou
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sheikh Mokhlesur Rahman
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Department of Civil Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Jiaqi Lan
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA 02115, USA; (T.J.); (N.G.); (S.M.R.); (J.L.)
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; (C.A.A.); (C.D.V.)
| | - April Z. Gu
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
- Correspondence: (Y.L.); (A.Z.G.)
| |
Collapse
|
14
|
Wang J, Jia Y, Whalen JK, McShane H, Driscoll BT, Sunahara GI. Evidence that nano-TiO 2 induces acute cytotoxicity to the agronomically beneficial nitrogen-fixing bacteria Sinorhizobium meliloti. Can J Microbiol 2021; 68:1-6. [PMID: 34516930 DOI: 10.1139/cjm-2021-0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
When nano-sized titanium dioxide (nano-TiO2) absorbs ultra-violet (UV-A) radiation, it produces reactive oxygen species that can be toxic to bacteria. We used the agronomically beneficial nitrogen-fixing bacterium Sinorhizobium meliloti strain 1021 as a model microorganism to detect nano-TiO2 toxicity. Sinorhizobium meliloti was exposed to aqueous dispersions of micrometer-sized TiO2 (micron-TiO2, 44 μm) or nanometer-sized TiO2 (nano-TiO2, 21 nm) at nominal concentrations of 0, 100, 300, 600, 900, and 1800 mg TiO2/L. There were fewer viable S. meliloti cells after exposure to nano-TiO2 under dark and UV-A light conditions. Nano-TiO2 was more toxic to S. meliloti with UV-A irradiation (100% mortality at 100 mg TiO2/L) than under dark conditions (100% mortality at 900 mg TiO2/L). Micron-TiO2 concentrations less than 300 mg TiO2/L had no effect on S. meliloti viability under dark or UV-A light conditions. Exposure to 600 mg/L or more of micron-TiO2 under UV-A light could also photo-kill S. meliloti cells (100% mortality). Further studies are needed to ascertain whether nano-TiO2 interferes with the growth of N2-fixing microorganisms in realistic agricultural environments.
Collapse
Affiliation(s)
- Jieping Wang
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Yu Jia
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, 2585 Essex County Rd 20, Harrow, ON N0R 1G0, Canada
| | - Joann K Whalen
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Heather McShane
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Brian T Driscoll
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste-Anne-de-Bellevue, QC H9X 3V9, Canada
| |
Collapse
|
15
|
Koedrith P, Rahman MM, Jang YJ, Shin DY, Seo YR. Nanoparticles: Weighing the Pros and Cons from an Eco-genotoxicological Perspective. J Cancer Prev 2021; 26:83-97. [PMID: 34258247 PMCID: PMC8249203 DOI: 10.15430/jcp.2021.26.2.83] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/06/2022] Open
Abstract
The exponential growth of nanotechnology and the industrial production have raised concerns over its impact on human and environmental health and safety (EHS). Although there has been substantial progress in the assessment of pristine nanoparticle toxicities, their EHS impacts require greater clarification. In this review, we discuss studies that have assessed nanoparticle eco-genotoxicity in different test systems and their fate in the environment as well as the considerable confounding factors that may complicate the results. We highlight key mechanisms of nanoparticle-mediated genotoxicity. Then we discuss the reliability of endpoint assays, such as the comet assay, the most favored assessment technique because of its versatility to measure low levels of DNA strand breakage, and the micronucleus assay, which is complementary to the former because of its greater ability to detect chromosomal DNA fragmentation. We also address the current recommendations on experimental design, including environmentally relevant concentrations and suitable exposure duration to avoid false-positive or -negative results. The genotoxicity of nanoparticles depends on their physicochemical features and the presence of co-pollutants. Thus, the effect of environmental processes (e.g., aggregation and agglomeration, adsorption, and transformation of nanoparticles) would account for when determining the actual genotoxicity relevant to environmental systems, and assay procedures must be standardized. Indeed, the engineered nanoparticles offer potential applications in different fields including biomedicine, environment, agriculture, and industry. Toxicological pathways and the potential risk factors related to genotoxic responses in biological organisms and environments need to be clarified before appropriate and sustainable applications of nanoparticles can be established.
Collapse
Affiliation(s)
- Preeyaporn Koedrith
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
| | - Md. Mujibur Rahman
- Institute of Environmental Medicine for Green Chemistry, Dongguk University Biomedi Campus, Goyang, Korea
| | - Yu Jin Jang
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Dong Yeop Shin
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| | - Young Rok Seo
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, Thailand
- Department of Life Science, Dongguk University Biomedi Campus, Goyang, Korea
| |
Collapse
|
16
|
Petersen EJ, Goss GG, von der Kammer F, Kennedy AJ. New guidance brings clarity to environmental hazard and behaviour testing of nanomaterials. NATURE NANOTECHNOLOGY 2021; 16:482-483. [PMID: 33986532 DOI: 10.1038/s41565-021-00889-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Elijah Joel Petersen
- Biosystems and Biomaterials Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| | - Greg Gerard Goss
- Department of Biological Sciences, University of Alberta and National Research Council of Canada Nanotechnology Initiative, Edmonton, Alberta, Canada
| | - Frank von der Kammer
- Department of Environmental Geosciences (EDGE), Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alan James Kennedy
- US Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| |
Collapse
|
17
|
Scola S, Blasco J, Campana O. "Nanosize effect" in the metal-handling strategy of the bivalve Scrobicularia plana exposed to CuO nanoparticles and copper ions in whole-sediment toxicity tests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143886. [PMID: 33340740 DOI: 10.1016/j.scitotenv.2020.143886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 06/12/2023]
Abstract
To date, the occurrence, fate and toxicity of metal-based NPs in the environment is under investigated. Their unique physicochemical, biological and optical properties, responsible for their advantageous application, make them intrinsically different from their bulk counterpart, raising the issue of their potential toxic specificity or "nanosize effect". The aim of this study was to investigate copper bioaccumulation, subcellular distribution and toxic effect in the marine benthic species Scrobicularia plana exposed to two forms of sediment-associated copper, as nanoparticles (CuO NPs) and as soluble ions (CuCl2). Results showed that the exposure to different copper forms activated specific organism's metal handling strategies. Clams bioaccumulated soluble copper at higher concentrations than those exposed to sediment spiked with CuO NPs. Moreover, CuO NPs exposure elicited a stronger detoxification response mediated by a prompt mobilization of CuO NPs to metal-containing granules as well as a delayed induction of MT-like proteins, which conversely, sequestered soluble copper since the beginning of the exposure at levels significantly different from the control. Eventually, exposure to high concentrations of either copper form led to the same acute toxic effect (100% mortality) but the outcome was delayed in bivalves exposed to CuO NPs suggesting that the mechanisms underlying toxicity were copper form-specific. Indeed, while most of soluble copper was associated to the mitochondrial fraction suggesting an impairment of the ATP synthesis capacity at mitochondrial level, CuO NPs toxicity was most likely caused by the oxidative stress mediated by their bioaccumulation in the enzymatic and mitochondrial metabolically available fractions.
Collapse
Affiliation(s)
- Silvia Scola
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Julián Blasco
- Departamento de Ecología y Gestión Costera - Instituto sde Ciencias Marinas de Andalucía (CSIC), Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Olivia Campana
- Universidad de Cádiz, INMAR, Campus Rio San Pedro, 11510 Puerto Real, Spain.
| |
Collapse
|
18
|
Salinity Stress Mitigation Using Encapsulated Biofertilizers for Sustainable Agriculture. SUSTAINABILITY 2020. [DOI: 10.3390/su12219218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The harmful effect of salinity stress on crops needs to be mitigated. Therefore, the application of microbial inoculum in combination with nanomaterials and methyl salicylate was investigated. Initially, different seeds were exposed to salinity levels treated with variable microbial treatments using different modes of applications. The microbial treatments included application of cyanobacterial strain Cyanothece sp. and the rhizobacterium Enterobacter cloacae, alone or in combination with one another, and a final treatment using combined microbial inoculum supplied with methyl salicylate. Later, different nanomaterials were used, namely, graphene, graphene oxide, and carbon nanotubes in combination with biofertilizers on the highest salinity level. The nanomaterial with microbial treatment and methyl salicylate were applied partly as a mixture in soil and partly as capsules. Results showed that salinity stress had a drastic inhibitory effect on growth parameters, especially at −5 MPa level. Nonetheless, the microbial treatments significantly alleviated the deleterious effect of salinity stress, especially when combined with methyl salicylate. When the nanomaterials were added to biofertilizers at highest salinity level, the inhibitory effect of salinity was mostly alleviated. Smart use of synergistic biofertilizers alongside the right nanomaterial, both encapsulated and in soil, would allow for mitigation and alleviation of inhibitory effect of salinity.
Collapse
|
19
|
Luís de Sá Salomão A, Hauser-Davis RA, Marques M. Critical knowledge gaps and relevant variables requiring consideration when performing aquatic ecotoxicity assays. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110941. [PMID: 32678749 DOI: 10.1016/j.ecoenv.2020.110941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
The increasing diversity and complexity of contaminants released in the environment continuously lead to new challenges when applying ecotoxicity assays. This paper comprises a review concerning exposure assessment and highlights important variables that should be taken into account when investigating aquatic media toxicity under both laboratory or field conditions. Thus, to reflect as much as possible what occurs in nature, ecotoxicity assays must carefully consider these variables in their experimental design. This includes contaminant properties, the selected bioindicators and biomarkers, the dose mode/regime, concentration vs. load, exposure to single vs. multiple contaminants and exposure of single vs. multiple species. Many of these, however, are not usually taken into account, leading to critical knowledge gaps in this area, discussed in detail herein.
Collapse
Affiliation(s)
- André Luís de Sá Salomão
- Rio de Janeiro State University - UERJ, Department of Sanitary and Environmental Engineering, Rua São Francisco Xavier, 524, 5024E, CEP 20550-900, Rio de Janeiro, RJ, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, 21040-360, Brazil
| | - Marcia Marques
- Rio de Janeiro State University - UERJ, Department of Sanitary and Environmental Engineering, Rua São Francisco Xavier, 524, 5024E, CEP 20550-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
20
|
Meyer JS, Lyons‐Darden T, Garman ER, Middleton ET, Schlekat CE. Toxicity of Nanoparticulate Nickel to Aquatic Organisms: Review and Recommendations for Improvement of Toxicity Tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1861-1883. [PMID: 32619073 PMCID: PMC7590136 DOI: 10.1002/etc.4812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
We reviewed the literature on toxicity of nanoparticulate nickel (nano-Ni) to aquatic organisms, from the perspective of relevance and reliability in a regulatory framework. Our main findings were 1) much of the published nano-Ni toxicity data is of low or medium quality in terms of reporting key physical-chemical properties, methodologies, and results, compared with published dissolved nickel studies; and 2) based on the available information, some common findings about nanoparticle (NP) toxicity are not supported for nano-Ni. First, we concluded that nanoparticulate elemental nickel and nickel oxide, which differ in chemical composition, generally did not differ in their toxicity. Second, there is no evidence that the toxicity of nano-Ni increases as the size of the NPs decreases. Third, for most organisms tested, nano-Ni was not more toxic on a mass-concentration basis than dissolved Ni. Fourth, there is conflicting evidence about whether the toxicity is directly caused by the NPs or by the dissolved fraction released from the NPs. However, no evidence suggests that any of the molecular, physiological, and structural mechanisms of nano-Ni toxicity differ from the general pattern for many metal-based nanomaterials, wherein oxidative stress underlies the observed effects. Physical-chemical factors in the design and conduct of nano-Ni toxicity tests are important, but often they are not adequately reported (e.g., characteristics of dry nano-Ni particles and of wetted particles in exposure waters; exposure-water chemistry). Environ Toxicol Chem 2020;39:1861-1883 © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
|
21
|
De Marchi L, Freitas R, Oliva M, Cuccaro A, Manzini C, Tardelli F, Andrade M, Costa M, Leite C, Morelli A, Chiellini F, Pretti C. Does salinity variation increase synergistic effects of triclosan and carbon nanotubes on Mytilus galloprovincialis? Responses on adult tissues and sperms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:138837. [PMID: 32464379 DOI: 10.1016/j.scitotenv.2020.138837] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
The use of carbon nanotubes (CNTs) is rapidly increasing and several scientific studies have addressed their toxicological properties. However, only a very small number of publications have deal with the interaction between CNTs and other molecules. Triclosan (TCS) is an antibacterial agent used in personal care and household products. Commonly detected in aquatic ecosystems, there is a strong evidence that aquatic biota is sensitive to this compound. Aside from emergent pollutants, aquatic organisms are continuously subjected to abiotic variations including salinities. Therefore, the main goal of the present study was to better understand how physio-chemical interactions of CNTs with TCS under different salinity levels (37, 28 and 19) affect the mussel species Mytilus galloprovincialis through the evaluation of biochemical alterations on gametes (sperms) and adult tissues, providing more ecologically relevant information on organisms' responses. The results showed toxicological effects in terms of sperm metabolic activity and intracellular reactive oxygen species production as well as cellular damage and alteration of metabolic capacity at the adult's stage when exposed to both contaminants acting alone and in combination, under tested salinities. Moreover, when the mussels were exposed to the combination of both contaminants, they showed major toxic impacts on both assessed biological levels (adult tissues and sperms) especially under control salinity. This suggests that toxicity upon mixture exposure compared to single-substance exposure may impair mussels' populations, affecting reproduction success and growth.
Collapse
Affiliation(s)
- Lucia De Marchi
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Biology, University of Pisa, Via Derna 1, 56126 Pisa, Italy
| | - Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Matteo Oliva
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| | - Alessia Cuccaro
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Chiara Manzini
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Federica Tardelli
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Madalena Andrade
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marcelo Costa
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology &, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, 56126 Pisa, Italy
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122 Pisa, Italy
| |
Collapse
|
22
|
Boyle D, Clark NJ, Handy RD. Toxicities of copper oxide nanomaterial and copper sulphate in early life stage zebrafish: Effects of pH and intermittent pulse exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 190:109985. [PMID: 31841893 DOI: 10.1016/j.ecoenv.2019.109985] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Effort has been made to standardise regulatory ecotoxicity tests for engineered nanomaterials (ENMs), but the environmental realism of altered water quality and/or pulse exposure to these pollutants should be considered. This study aimed to investigate the relative toxicity to early life-stage zebrafish of CuO ENMs at acid pH and then under pulse exposure conditions, all compared to CuSO4. At all pH values, CuSO4 was more toxic to zebrafish than CuO ENMs. Additions of H+ were protective of CuSO4 toxicity, with median lethal concentrations LC50 (with 95% confidence intervals) of: 0.36 (0.33-0.40), 0.22 (0.20-0.24) and 0.27 (0.25-0.29) mg L-1 at pH 5, pH 6 and pH 7, respectively. In contrast, the toxicity of CuO ENMs increased with acidity; LC50 values were: 6.6 (4.5-8.5), 19.4 (11.6-27.2) and >100 mg L-1 at pH 5, pH 6 and pH 7, respectively. The increased toxicity of the CuO ENMs in acid water corresponded with greater dissolution of dissolved Cu from the particles at low pH, suggesting free Cu2+ ion delivery to the zebrafish was responsible for the pH-effect. In continuous 96 h exposures to the substances at the LC10 values and at pH 6, both CuSO4 and CuO ENMs caused Cu accumulation, inhibition of Na+/K+-ATPase and depletion of total glutathione in zebrafish. However, two 24 h pulses of CuSO4 or CuO ENMs at the same peak concentration caused similar effects to the continuous 96 h exposure, despite the shorter exposure durations of the former; suggesting that the pulses were more hazardous than the continuous exposure. In conclusion, the current water quality correction for pH with respect to Cu toxicity to freshwater fish should not be applied to the nano form. Crucially, CuO ENMs are more toxic in pulse than continuous exposure and new corrections for both water pH and the Cu exposure profile are needed for environmental risk assessment.
Collapse
Affiliation(s)
- David Boyle
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, The University of Plymouth, Plymouth, PL4 8AA, UK.
| |
Collapse
|
23
|
Gouin T, Becker RA, Collot A, Davis JW, Howard B, Inawaka K, Lampi M, Ramon BS, Shi J, Hopp PW. Toward the Development and Application of an Environmental Risk Assessment Framework for Microplastic. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2087-2100. [PMID: 31233238 PMCID: PMC6852392 DOI: 10.1002/etc.4529] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/13/2019] [Accepted: 06/19/2019] [Indexed: 05/20/2023]
Abstract
Emissions of plastic waste to the environment and the subsequent degradation into microplastic particles that have the potential to interact with biological organisms represent a concern for global society. Current understanding of the potential impacts on aquatic and terrestrial population stability and ecosystem structure and function associated with emissions of microplastic particles is limited and insufficient to fully assess environmental risks. Multistakeholder discussions can provide an important element in helping to identify and prioritize key knowledge gaps in assessing potential risks. In the present review, we summarize multistakeholder discussions from a 1-d International Council of Chemical Associations-sponsored symposium, which involved 39 scientists from 8 countries with representatives from academia, industry, and government. Participants were asked to consider the following: discuss the scientific merits and limitations of applying a proposed conceptual environmental risk assessment (ERA) framework for microplastic particles and identify and prioritize major research needs in applying ERA tools for microplastic particles. Multistakeholder consensus was obtained with respect to the interpretation of the current state of the science related to effects and exposure to microplastic particles, which implies that it is unlikely that the presence of microplastic in the environment currently represents a risk. However, the quality and quantity of existing data require substantial improvement before conclusions regarding the potential risks and impacts of microplastic particles can be fully assessed. Research that directly addresses the development and application of methods that strengthen the quality of data should thus be given the highest priority. Activities aimed at supporting the development of and access to standardized reference material were identified as a key research need. Environ Toxicol Chem 2019;38:2087-2100. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Todd Gouin
- TG Environmental Research, SharnbrookUnited Kingdom
| | | | | | | | | | | | - Mark Lampi
- ExxonMobil Biomedical SciencesAnnandaleNew JerseyUSA
| | | | - Jay Shi
- Procter & Gamble, CincinnatiOhioUSA
| | | |
Collapse
|
24
|
Hurtado-Gallego J, Leganés F, Rosal R, Fernández-Piñas F. Use of Cyanobacterial Luminescent Bioreporters to Report on the Environmental Impact of Metallic Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3597. [PMID: 31430858 PMCID: PMC6721232 DOI: 10.3390/s19163597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022]
Abstract
Due to their ecological relevance, low cost, and easy maintenance, cyanobacteria have been used for bioreporter development. In this study, a battery of cyanobacterial bioreporters has been used to assess the ecotoxicity of four highly used metallic nanoparticles (NPs). The toxicity of these NPs was tested using the bioreporter Nostoc CPB4337 (Anabaena CPB4337). As oxidative stress is a primary toxic mechanism of metallic NPs, cyanobacterial reactive oxygen species (ROS)-detecting bioreporters were used. Metallic NPs release metal ions, which contribute to their toxic effect and the formation of ROS, so a metal-detecting bioreporter was also used to detect the bioavailable metals. The results confirm that ROS production by NPs was due to the NPs per se and not by released free-ions, which in fact were almost undetectable. Although the metal-detecting bioreporter could not detect the dissolved metal ions, it was able to detect the metallic NPs themselves, indicating that this bioreporter may be useful to detect them in the environment. ROS production varied depending on the growth medium or environmental matrices conditions and on the NP type. This work demonstrated the different levels of ROS production by metallic NPs and the importance of nanotoxicology studies in real matrices.
Collapse
Affiliation(s)
- Jara Hurtado-Gallego
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Roberto Rosal
- Departamento de Ingeniería Química, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de ciencias, Universidad Autónoma de Madrid, 28029 Madrid, Spain.
| |
Collapse
|
25
|
Mertens J, Oorts K, Leverett D, Arijs K. Effects of Silver Nitrate are a Conservative Estimate for the Effects of Silver Nanoparticles on Algae Growth and Daphnia magna Reproduction. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:1701-1713. [PMID: 31070798 DOI: 10.1002/etc.4463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/24/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Silver (Ag) salts have been shown to be highly toxic to freshwater organisms. There is nevertheless still a high level of uncertainty as to the aquatic effects of Ag nanoparticles (AgNPs), and how these relate to the effects of soluble Ag salts. As part of the substance evaluation for Ag of the European Union Registration, Evaluation, Authorisation, and Restriction of Chemicals regulation, we have generated new data to justify read-across from soluble Ag salts to AgNPs. The aquatic toxicity to algae growth and Daphnia magna reproduction, fate, and behavior of AgNO3 versus AgNPs were tested and compared. Chloride salts in the test media were replaced with equimolar concentrations of nitrate salts. Total Ag, "conventionally" dissolved Ag (0.45 µm), and "truly" dissolved Ag (3 kDa) were determined. Algae were the most sensitive test species to AgNO3 (10% effect concentration [EC10] 0.10 µg Ag/L) when expressed as conventionally dissolved Ag. The corresponding value for AgNPs was 0.26 µg/L. For D. magna reproduction, the lowest EC10 values were 3.49 µg Ag/L for AgNO3 and 33.4 µg Ag/L for AgNPs. Using measured Ag concentrations, AgNO3 was experimentally shown to be more toxic than AgNPs for all Ag fractions. We explain these observations by a different dissolution behavior of AgNO3 versus AgNPs. The results provide experimental confirmation that AgNO3 can be used as a conservative estimate for the aquatic effects of AgNPs at comparable Ag concentrations. Environ Toxicol Chem 2019;38:1701-1713. © 2019 SETAC.
Collapse
Affiliation(s)
- Jelle Mertens
- European Precious Metals Federation, Brussels, Belgium
| | - Koen Oorts
- ARCHE Consulting, Ghent (Wondelgem), Belgium
| | | | - Katrien Arijs
- European Precious Metals Federation, Brussels, Belgium
- ARCHE Consulting, Ghent (Wondelgem), Belgium
| |
Collapse
|
26
|
Gerdes Z, Hermann M, Ogonowski M, Gorokhova E. A novel method for assessing microplastic effect in suspension through mixing test and reference materials. Sci Rep 2019; 9:10695. [PMID: 31337836 PMCID: PMC6650601 DOI: 10.1038/s41598-019-47160-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/09/2019] [Indexed: 11/27/2022] Open
Abstract
The occurrence of microplastic in the environment is of global concern. However, the microplastic hazard assessment is hampered by a lack of adequate ecotoxicological methods because of conceptual and practical problems with particle exposure. In the environment, suspended solids (e.g., clay and cellulose) in the same size range as microplastic, are ubiquitous. Therefore, it must be established whether the addition of microplastic to these background levels of particulate material represents a hazard. We present a novel approach employing a serial dilution of microplastic and reference particles, in mixtures, which allows disentangling the effect of the microplastic from that of the other particulates. We demonstrate the applicability of the method using an immobilization test with Daphnia magna exposed to polyethylene terephthalate (test microplastic; median particle diameter ~5 µm) and kaolin clay (reference material; ~3 µm). In the range of the suspended solids test concentrations (0-10 000 mg L-1), with microplastic contributing 0-100% of total mass, the LC50 values for the plastic mixtures were significantly lower compared to the kaolin exposure. Hence, the exposure to polyethylene terephthalate was more harmful to the daphnids than to the reference material alone. The estimated threshold for the relative contribution of the test microplastic to suspended matter above which significantly higher mortality was observed was 2.4% at 32 mg of the solids L-1. This approach has a potential for standardization of ecotoxicological testing of particulates, including microplastic.
Collapse
Affiliation(s)
- Zandra Gerdes
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-11418, Stockholm, Sweden
| | - Markus Hermann
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-11418, Stockholm, Sweden
| | - Martin Ogonowski
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-11418, Stockholm, Sweden
| | - Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Svante Arrhenius väg 8, SE-11418, Stockholm, Sweden.
| |
Collapse
|
27
|
Antagonistic Effects of Sublethal Concentrations of Certain Mixtures of Metal Oxide Nanoparticles and the Bulk (Al2O3, CuO, and SiO2) on Gill Histology in Clarias gariepinus. JOURNAL OF NANOTECHNOLOGY 2019. [DOI: 10.1155/2019/7686597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Background. The effect of nanoparticles (NPs) on aquatic environments is poorly studied. Aim. This study evaluates the toxicity of joint effects of these different metal nanoparticles and their bulk in mixtures (Al2O3, CuO, and SiO2) on fish using histological biomarker. Materials and Methods. The bulk and nano sizes of three salts (Al2O3, CuO, and SiO2) were used. Nanosizes ranged from 25 nm to 100 nm. The juvenile fishes of Clarias gariepinus (mean Length: 12.3 ± 3.5 cm; mean weight: 18.52 ± 6.41 g) were used for the acute and chronic toxicity tests. They were exposed to 7 mg/L each of the bulk and nano sizes of the three metallic oxides either singly or in mixtures for 28 days. The basis for the sublethal concentration was that the 96 hr acute toxicity of the varied sizes of the three metallic oxides was nontoxic up to the concentrations of 100 mg/L with no significant mortality at the highest exposure concentrations. The gills were collected for histopathology. Results. Of the three metal oxide nanoparticles, SiO was the most toxic, with histopathological alteration index (HAI) of 20.0, followed by nano-CuO (HAI, 10.0) and nano-Al2O3 (HAI, 2.0). In single exposure, the gill alterations include high frequencies of erosion of gill lamella (EGL), hypertrophy (HPT), oedema (OD), and necrosis (N). Less damage was observed at the combination of the metal oxide nanoparticles of SiO + Al2O3, SiO + CuO and SiO + Al2O3 + CuO in equal (1 : 1—HAI, 2 and 6; 1 : 1 : 1—HAI, 6) and unequal ratios (1 : 2—HAI, 16 and 6; 2 : 1—HAI, 8 and 6). Similarly, all bulk combinations were also antagonistic except for the equal ratio of bulk CuO (HAI, 20) and bulk Al2O3 (HAI, 10) that gave additive effect with HAI of 32. Conclusion. The joint actions of nano Al2O3 and CuO with SiO produced a low toxic effect, unlike the high toxicity of their single trials; this also indicates that nano Al2O3 and CuO are antagonists. Similarly, among the bulk metal oxides (SiO, Al2O3, and CuO), CuO was the most toxic. Bulk SiO and Al2O3 are antagonistic on the effects of CuO on the fish gill. There is need to properly document the ecological implications of nanoparticles in the aquatic environment.
Collapse
|
28
|
Shrivastava M, Srivastav A, Gandhi S, Rao S, Roychoudhury A, Kumar A, Singhal R, Jha SK, Singh S. Monitoring of engineered nanoparticles in soil-plant system: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.enmm.2019.100218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Abstract
Nanomaterials (NMs) find widespread use in different industries that range from agriculture, food, medicine, pharmaceuticals, and electronics to cosmetics. It is the exceptional properties of these materials at the nanoscale, which make them successful as growth promoters, drug carriers, catalysts, filters and fillers, but a price must be paid via the potential toxity of these materials. The harmful effects of nanoparticles (NPs) to environment, human and animal health needs to be investigated and critically examined, to find appropriate solutions and lower the risks involved in the manufacture and use of these exotic materials.The vast number and complex interaction of NM/NPs with different biological systems implies that there is no universal toxicity mechanism or assessment method. The various challenges need to be overcome and a number of research studies have been conducted during the past decade on different NMs to explore the possible mechanisms of uptake, concentrations/dosage and toxicity levels. This review article examines critically the recent reports in this field to summarize and present opportunities for safer design using case studies from published literature.
Collapse
|
30
|
Gómez-Sagasti MT, Epelde L, Anza M, Urra J, Alkorta I, Garbisu C. The impact of nanoscale zero-valent iron particles on soil microbial communities is soil dependent. JOURNAL OF HAZARDOUS MATERIALS 2019; 364:591-599. [PMID: 30390579 DOI: 10.1016/j.jhazmat.2018.10.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/24/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
The application of nanoscale zero-valent iron particles (nZVI) for the remediation of contaminated sites is very promising. However, information concerning the ecotoxicity of nZVI on soil microbial communities and, hence, soil quality, is still scarce. We carried out a three-month experiment to evaluate the impact of the application of different concentrations of nZVI (from 1 to 20 mg g DW soil-1) on soil microbial properties in a clay-loam versus a sandy-loam soil. Data on microbial biomass (total bacteria and fungi by qPCR, microbial biomass carbon), activity (β-glucosidase, arylsulphatase and urease activities), and functional (Biolog Ecoplates™) and structural (ARISA, 16S rRNA amplicon sequencing) diversity evidenced that the sandy-loam soil was more vulnerable to the presence of nZVI than the clay-loam soil. In the sandy-loam soil, arylsulphatase activity and bacterial abundance, richness and diversity were susceptible to the presence of nZVI. The high content of clay and organic matter present in the clay-loam soil may explain the observed negligible effects of nZVI on soil microbial properties. It was concluded that the impact of nZVI on soil microbial communities and, hence, soil quality, is soil dependent.
Collapse
Affiliation(s)
- María T Gómez-Sagasti
- Department of Plan Biology and Ecology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Lur Epelde
- NEIKER-Tecnalia, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio, Spain
| | - Mikel Anza
- NEIKER-Tecnalia, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio, Spain
| | - Julen Urra
- NEIKER-Tecnalia, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio, Spain
| | - Itziar Alkorta
- Instituto BIOFISIKA (CSIC, UPV/EHU), Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Carlos Garbisu
- NEIKER-Tecnalia, Department of Conservation of Natural Resources, Soil Microbial Ecology Group, c/Berreaga 1, E-48160 Derio, Spain.
| |
Collapse
|
31
|
Petersen EJ, Mortimer M, Burgess RM, Handy R, Hanna S, Ho KT, Johnson M, Loureiro S, Selck H, Scott-Fordsmand JJ, Spurgeon D, Unrine J, van den Brink N, Wang Y, White J, Holden P. Strategies for robust and accurate experimental approaches to quantify nanomaterial bioaccumulation across a broad range of organisms. ENVIRONMENTAL SCIENCE. NANO 2019; 6:10.1039/C8EN01378K. [PMID: 31579514 PMCID: PMC6774209 DOI: 10.1039/c8en01378k] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
One of the key components for environmental risk assessment of engineered nanomaterials (ENMs) is data on bioaccumulation potential. Accurately measuring bioaccumulation can be critical for regulatory decision making regarding material hazard and risk, and for understanding the mechanism of toxicity. This perspective provides expert guidance for performing ENM bioaccumulation measurements across a broad range of test organisms and species. To accomplish this aim, we critically evaluated ENM bioaccumulation within three categories of organisms: single-celled species, multicellular species excluding plants, and multicellular plants. For aqueous exposures of suspended single-celled and small multicellular species, it is critical to perform a robust procedure to separate suspended ENMs and small organisms to avoid overestimating bioaccumulation. For many multicellular organisms, it is essential to differentiate between the ENMs adsorbed to external surfaces or in the digestive tract and the amount absorbed across epithelial tissues. For multicellular plants, key considerations include how exposure route and the role of the rhizosphere may affect the quantitative measurement of uptake, and that the efficiency of washing procedures to remove loosely attached ENMs to the roots is not well understood. Within each organism category, case studies are provided to illustrate key methodological considerations for conducting robust bioaccumulation experiments for different species within each major group. The full scope of ENM bioaccumulation measurements and interpretations are discussed including conducting the organism exposure, separating organisms from the ENMs in the test media after exposure, analytical methods to quantify ENMs in the tissues or cells, and modeling the ENM bioaccumulation results. One key finding to improve bioaccumulation measurements was the critical need for further analytical method development to identify and quantify ENMs in complex matrices. Overall, the discussion, suggestions, and case studies described herein will help improve the robustness of ENM bioaccumulation studies.
Collapse
Affiliation(s)
- Elijah J. Petersen
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Robert M. Burgess
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Richard Handy
- Plymouth University, School of Biological Sciences, United Kingdom
| | - Shannon Hanna
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Kay T. Ho
- US Environmental Protection Agency, Atlantic Ecology Division, 27 Tarzwell Dr., Narragansett, RI 02882
| | - Monique Johnson
- Material Measurement Laboratory, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899
| | - Susana Loureiro
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Henriette Selck
- Roskilde University, Dept. of Science and Environment, Denmark
| | | | - David Spurgeon
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, Oxfordshire, OX10 8BB, United Kingdom
| | - Jason Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Nico van den Brink
- Department of Toxicology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ying Wang
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Jason White
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Patricia Holden
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
32
|
Tatsi K, Shaw BJ, Hutchinson TH, Handy RD. Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:462-473. [PMID: 30296611 DOI: 10.1016/j.ecoenv.2018.09.054] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENMs) may be functionalised with a surface coating to enhance their properties, but the ecotoxicity of the coatings and how hazard changes with ageing in soil is poorly understood. This study determined the toxic effect of CuO ENMs with different chemical coatings on the earthworm (Eisenia fetida) in fresh soil, and then after one year in aged soil. In both experiments, earthworms were exposed for 14 days to the CuO materials at nominal concentrations of 200 and 1000 mg Cu kg-1 dry weight and compared to CuSO4. In the fresh soil experiment, CuO-COOH was found to be the most acutely toxic of the nanomaterials (survival, 20 ± 50%), with tenfold increase of total Cu in the earthworms compared to controls. Sodium pump activity was reduced in most CuO ENM treatments, although not in the CuSO4 control. There was no evidence of glutathione depletion or the induction of superoxide dismutase (SOD) activity in any treatment. Histology showed a mild hypoplasia of mucous cells in the epidermis with some nanomaterials. In the aged soil, the CuO-NH4+ was the most acutely toxic ENM (survival 45 ± 3%) and Cu accumulation was lower in the earthworms than in the fresh soil study. Depletion of tissue Mn and Zn concentrations were seen in earthworms in aged soil, while no significant effects on sodium pump or total glutathione were observed. Overall, the study showed some coating-dependent differences in ENM toxicity to earthworms which also changed after a year of ageing the soil.
Collapse
Affiliation(s)
- Kristi Tatsi
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| | - Benjamin J Shaw
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Thomas H Hutchinson
- School of Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Richard D Handy
- School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
33
|
Vassallo J, Besinis A, Boden R, Handy RD. The minimum inhibitory concentration (MIC) assay with Escherichia coli: An early tier in the environmental hazard assessment of nanomaterials? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:633-646. [PMID: 30033160 DOI: 10.1016/j.ecoenv.2018.06.085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
There are now over a thousand nano-containing products on the market and the antibacterial properties of some nanomaterials has created interest in their use as cleaning agents, biocides and disinfectants. Engineered nanomaterials (ENMs) are being released into the environment and this raises concerns about their effects on microbes in the receiving ecosystems. This study evaluated the bacterial toxicity of a wide range of nanomaterials with different surface coatings on Escherichia coli K-12 MG1655. The minimum inhibitory concentration (MIC) assay, which quantifies the threshold for growth inhibition in suspensions of bacteria, was used to rank the toxicity of silver (Ag), cupric oxide (CuO), cadmium telluride (CdTe) quantum dots, titanium dioxide (TiO2), nanodiamonds and multi-walled carbon nanotubes (MWCNTs). Bacteria were exposed for 12 h at 37 °C to a dilution series of the test suspensions in 96-well plates. The precision and accuracy of the method was good with coefficients of variation < 10%. In terms of the measured MIC values, the toxicity order of the ENMs was as follows: CdTe quantum dots ammonium-coated, 6 mg L-1 > Ag nanoparticles, 12 mg L-1 > CdTe quantum dots carboxylate-coated, 25 mg L-1 > CdTe quantum dots polyethylene glycol-coated, 100 mg L-1. The MIC values were above the highest test concentration used (100 mg L-1) for CuO, TiO2, nanodiamonds and MWCNTs, indicating low toxicity. The MIC assay can be a useful tool for the initial steps of ENMs hazard assessment.
Collapse
Affiliation(s)
- J Vassallo
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - A Besinis
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; School of Engineering, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Plymouth University Peninsula Schools of Medicine and Dentistry, University of Plymouth, John Bull Building, Tamar Science Park, Plymouth PL6 8BU, UK
| | - R Boden
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - R D Handy
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Sustainable Earth Institute, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
34
|
Graca B, Zgrundo A, Zakrzewska D, Rzodkiewicz M, Karczewski J. Origin and fate of nanoparticles in marine water - Preliminary results. CHEMOSPHERE 2018; 206:359-368. [PMID: 29754060 DOI: 10.1016/j.chemosphere.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
The number, morphology and elemental composition of nanoparticles (<100 nm) in marine water was investigated using Variable Pressure Scanning Electron Microscopy (VP-SEM) and Energy-dispersive X-ray spectroscopy (EDS). Preliminary research conducted in the Baltic Sea showed that the number of nanoparticles in seawater varied from undetectable to 380 (x102) cm-3. Wind mixing and density barriers (thermocline) had a significant impact on the abundance and distribution of nanoparticles in water. Many more nanoparticles (mainly nanofibers) were detected in periods of intensive primary production and thermal stratification of water than at the end of the growing season and during periods of strong wind mixing. Temporal and spatial variability of nanoparticles as well as air mass trajectories indicated that the analysed nanofibers were both autochthonous and allochthonous (atmospheric), while the nanospheres were mainly autochthonous. Chemical composition of most of analysed nanoparticles indicates their autochthonous, natural (biogenic/geogenic) origin. Silica nanofibers (probably the remains of flagellates), nanofibers composed of manganese and iron oxides (probably of microbial origin), and pyrite nanospheres (probable formed in anoxic sediments), were all identified in the samples. Only asbestos nanofibers, which were also detected, are probably allochthonous and anthropogenic.
Collapse
Affiliation(s)
- Bożena Graca
- University of Gdansk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Aleksandra Zgrundo
- University of Gdansk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Danuta Zakrzewska
- University of Gdansk, Institute of Oceanography, Al. Piłsudskiego 46, 81-378 Gdynia, Poland.
| | - Monika Rzodkiewicz
- University of Adam Mickiewicz, Institute of Geoecology and Geoinformation, Department of Quaternary Geology and Paleogeography, ul. Dzięgielowa 27, 61-680 Poznań, Poland.
| | - Jakub Karczewski
- Gdansk University of Technology, Faculty of Applied Physics and Mathematics, Department of Solid State Physics, ul. Narutowicza 11/12 80-233 Gdansk, Poland.
| |
Collapse
|
35
|
Lead JR, Batley GE, Alvarez PJJ, Croteau MN, Handy RD, McLaughlin MJ, Judy JD, Schirmer K. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects-An updated review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2029-2063. [PMID: 29633323 DOI: 10.1002/etc.4147] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/14/2018] [Accepted: 03/29/2018] [Indexed: 05/21/2023]
Abstract
The present review covers developments in studies of nanomaterials (NMs) in the environment since our much cited review in 2008. We discuss novel insights into fate and behavior, metrology, transformations, bioavailability, toxicity mechanisms, and environmental impacts, with a focus on terrestrial and aquatic systems. Overall, the findings were that: 1) despite substantial developments, critical gaps remain, in large part due to the lack of analytical, modeling, and field capabilities, and also due to the breadth and complexity of the area; 2) a key knowledge gap is the lack of data on environmental concentrations and dosimetry generally; 3) substantial evidence shows that there are nanospecific effects (different from the effects of both ions and larger particles) on the environment in terms of fate, bioavailability, and toxicity, but this is not consistent for all NMs, species, and relevant processes; 4) a paradigm is emerging that NMs are less toxic than equivalent dissolved materials but more toxic than the corresponding bulk materials; and 5) translation of incompletely understood science into regulation and policy continues to be challenging. There is a developing consensus that NMs may pose a relatively low environmental risk, but because of uncertainty and lack of data in many areas, definitive conclusions cannot be drawn. In addition, this emerging consensus will likely change rapidly with qualitative changes in the technology and increased future discharges. Environ Toxicol Chem 2018;37:2029-2063. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Kirrawee, New South Wales, Australia
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | | | | | | | - Jonathan D Judy
- Soil and Water Sciences Department, University of Florida, Gainesville, Florida, USA
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
- School of Architecture, Civil and Environmental Engineering, Federal Institute of Technology Lausanne, Lausanne, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics, Swiss Federal Institute of Technology Zürich, Zürich, Switzerland
| |
Collapse
|
36
|
Morozesk M, Franqui LS, Mansano AS, Martinez DST, Fernandes MN. Interactions of oxidized multiwalled carbon nanotube with cadmium on zebrafish cell line: The influence of two co-exposure protocols on in vitro toxicity tests. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 200:136-147. [PMID: 29751160 DOI: 10.1016/j.aquatox.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 05/26/2023]
Abstract
The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies.
Collapse
Affiliation(s)
- Mariana Morozesk
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Lidiane S Franqui
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil
| | - Adrislaine S Mansano
- Department of Ecology and Evolutionary Biology, Federal University of Sao Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Giuseppe Maximo Scolfaro St., 10.000, Polo II de Alta Tecnologia de Campinas, 13083-970, Campinas, São Paulo, Brazil; School of Technology, University of Campinas (UNICAMP), Paschoal Marmo St., 1888, 13484-332, Limeira, São Paulo, Brazil.
| | - Marisa N Fernandes
- Physiological Science Department, Federal University of São Carlos (UFSCar), Washington Luiz Hwy, Km 235, 13565-905, São Carlos, São Paulo, Brazil.
| |
Collapse
|
37
|
Naha PC, Mukherjee SP, Byrne HJ. Toxicology of Engineered Nanoparticles: Focus on Poly(amidoamine) Dendrimers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15020338. [PMID: 29443901 PMCID: PMC5858407 DOI: 10.3390/ijerph15020338] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/14/2022]
Abstract
Engineered nanomaterials are increasingly being developed for paints, sunscreens, cosmetics, industrial lubricants, tyres, semiconductor devices, and also for biomedical applications such as in diagnostics, therapeutics, and contrast agents. As a result, nanomaterials are being manufactured, transported, and used in larger and larger quantities, and potential impacts on environmental and human health have been raised. Poly(amidoamine) (PAMAM) dendrimers are specifically suitable for biomedical applications. They are well-defined nanoscale molecules which contain a 2-carbon ethylenediamine core and primary amine groups at the surface. The systematically variable structural architecture and the large internal free volume make these dendrimers an attractive option for drug delivery and other biomedical applications. Due to the wide range of applications, the Organisation for Economic Co-Operation and Development (OECD) have included them in their list of nanoparticles which require toxicological assessment. Thus, the toxicological impact of these PAMAM dendrimers on human health and the environment is a matter of concern. In this review, the potential toxicological impact of PAMAM dendrimers on human health and environment is assessed, highlighting work to date exploring the toxicological effects of PAMAM dendrimers.
Collapse
Affiliation(s)
- Pratap C Naha
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA-19104, USA.
| | - Sourav P Mukherjee
- Molecular Toxicology Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, 17177 Stockholm, Sweden.
| | - Hugh J Byrne
- FOCAS Research Institute, Dublin Institute of Technology, Kevin Street, Dublin 8, Ireland.
| |
Collapse
|
38
|
Kim DY, Kadam A, Shinde S, Saratale RG, Patra J, Ghodake G. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:849-864. [PMID: 29065236 DOI: 10.1002/jsfa.8749] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 05/23/2023]
Abstract
The applications and benefits of nanotechnology in the agricultural sector have attracted considerable attention, particularly in the invention of unique nanopesticides and nanofertilisers. The contemporary developments in nanotechnology are acknowledged and the most significant opportunities awaiting the agriculture sector from the recent scientific and technical literature are addressed. This review discusses the significance of recent trends in nanomaterial-based sensors available for the sustainable management of agricultural soil, as well as the role of nanotechnology in detection and protection against plant pathogens, and for food quality and safety. Novel nanosensors have been reported for primary applications in improving crop practices, food quality, and packaging methods, thus will change the agricultural sector for potentially better and healthier food products. Nanotechnology is well-known to play a significant role in the effective management of phytopathogens, nutrient utilisation, controlled release of pesticides, and fertilisers. Research and scientific gaps to be overcome and fundamental questions have been addressed to fuel active development and application of nanotechnology. Together, nanoscience, nanoengineering, and nanotechnology offer a plethora of opportunities, proving a viable alternative in the agriculture and food processing sector, by providing a novel and advanced solutions. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Avinash Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Surendra Shinde
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Jayanta Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| | - Gajanan Ghodake
- Department of Biological and Environmental Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, Republic of Korea
| |
Collapse
|
39
|
Alginic Acid-Aided Dispersion of Carbon Nanotubes, Graphene, and Boron Nitride Nanomaterials for Microbial Toxicity Testing. NANOMATERIALS 2018; 8:nano8020076. [PMID: 29385723 PMCID: PMC5853708 DOI: 10.3390/nano8020076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/19/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023]
Abstract
Robust evaluation of potential environmental and health risks of carbonaceous and boron nitride nanomaterials (NMs) is imperative. However, significant agglomeration of pristine carbonaceous and boron nitride NMs due to strong van der Waals forces renders them not suitable for direct toxicity testing in aqueous media. Here, the natural polysaccharide alginic acid (AA) was used as a nontoxic, environmentally relevant dispersant with defined composition to disperse seven types of carbonaceous and boron nitride NMs, including multiwall carbon nanotubes, graphene, boron nitride nanotubes, and hexagonal boron nitride flakes, with various physicochemical characteristics. AA’s biocompatibility was confirmed by examining AA effects on viability and growth of two model microorganisms (the protozoan Tetrahymena thermophila and the bacterium Pseudomonas aeruginosa). Using 400 mg·L−1 AA, comparably stable NM (200 mg·L−1) stock dispersions were obtained by 30-min probe ultrasonication. AA non-covalently interacted with NM surfaces and improved the dispersibility of NMs in water. The dispersion stability varied with NM morphology and size rather than chemistry. The optimized dispersion protocol established here can facilitate preparing homogeneous NM dispersions for reliable exposures during microbial toxicity testing, contributing to improved reproducibility of toxicity results.
Collapse
|
40
|
Boyle D, Sutton PA, Handy RD, Henry TB. Intravenous injection of unfunctionalized carbon-based nanomaterials confirms the minimal toxicity observed in aqueous and dietary exposures in juvenile rainbow trout (Oncorhynchus mykiss). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:191-199. [PMID: 28941714 DOI: 10.1016/j.envpol.2017.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 06/07/2023]
Abstract
Numerous ecotoxicology studies of carbon-based nanomaterials (CNMs) have been conducted in fishes; however, different approaches have been used to make CNM dispersions and dose tanks for aqueous exposures, and to prepare food containing CNMs for dietary studies. This diversity of experimental methods has led to conflicting results and difficulties in comparing studies. The objective of the present study was to evaluate intravenous injection of unfunctionalized CNMs in rainbow trout (Oncorhynchus mykiss), as a means of delivering a known internal dose, on tissue biochemistry and histopathological lesions; then, subsequently, to compare the results with our previous work on aqueous and dietary exposures of rainbow trout to CNMs. Rainbow trout were injected in the caudal vein with corn oil dispersions of 200 μg (approximately 1 μg g-1) of either the fullerene C60, single-walled carbon nanotubes (SWCNTs), or amorphous carbon black. After 96 h, injected fish were euthanized and tissue samples collected for biochemistry and histology. Histological examination of the kidney of fish injected intravenously indicated the presence of black material consistent with the injected carbon treatments. However, there were no additional lesions associated with CNM exposure compared to controls. There were also no significant changes in haematology, or ionoregulatory disturbance in blood plasma among the intravenously injected fish. Significant elevation in lipid peroxidation (thiobarbituric acid reactive substances TBARS) was detected only in kidney and spleen of fish injected with SWCNTs, but not the other carbon treatments. The elevated TBARS following injection contrasted with CNMs delivered via aqueous or dietary routes in our previous studies, suggesting that the latter exposure routes may not lead to absorption and toxicity in the internal tissues. Comparison of the effects of injected CNMs with aqueous and dietary CNMs exposures indicates that these materials are of minimal environmentally-relevant toxicity in rainbow trout.
Collapse
Affiliation(s)
- David Boyle
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Paul A Sutton
- Biogeochemistry Research Centre, School of Geography, Earth and Environmental Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Richard D Handy
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK.
| | - Theodore B Henry
- School of Biological and Marine Sciences, Plymouth University, Devon, PL4 8AA, UK; School of Life Sciences, Heriot-Watt University, Edinburgh, EH10 5ES, UK; Center for Environmental Biotechnology, University of Tennessee, 676 Dabney Hall, Knoxville, TN, 37996, USA; Department of Forestry, Wildlife and Fisheries, Center for Environmental Biotechnology, 676 Dabney Hall, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
41
|
|
42
|
Li Y, Wang J, Zhao F, Bai B, Nie G, Nel AE, Zhao Y. Nanomaterial libraries and model organisms for rapid high-content analysis of nanosafety. Natl Sci Rev 2017. [DOI: 10.1093/nsr/nwx120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
Safety analysis of engineered nanomaterials (ENMs) presents a formidable challenge regarding environmental health and safety, due to their complicated and diverse physicochemical properties. Although large amounts of data have been published regarding the potential hazards of these materials, we still lack a comprehensive strategy for their safety assessment, which generates a huge workload in decision-making. Thus, an integrated approach is urgently required by government, industry, academia and all others who deal with the safe implementation of nanomaterials on their way to the marketplace. The rapid emergence and sheer number of new nanomaterials with novel properties demands rapid and high-content screening (HCS), which could be performed on multiple materials to assess their safety and generate large data sets for integrated decision-making. With this approach, we have to consider reducing and replacing the commonly used rodent models, which are expensive, time-consuming, and not amenable to high-throughput screening and analysis. In this review, we present a ‘Library Integration Approach’ for high-content safety analysis relevant to the ENMs. We propose the integration of compositional and property-based ENM libraries for HCS of cells and biologically relevant organisms to be screened for mechanistic biomarkers that can be used to generate data for HCS and decision analysis. This systematic approach integrates the use of material and biological libraries, automated HCS and high-content data analysis to provide predictions about the environmental impact of large numbers of ENMs in various categories. This integrated approach also allows the safer design of ENMs, which is relevant to the implementation of nanotechnology solutions in the pharmaceutical industry.
Collapse
Affiliation(s)
- Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Bai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - André E Nel
- Division of NanoMedicine, Department of Medicine, and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
A Novel Experimental and Modelling Strategy for Nanoparticle Toxicity Testing Enabling the Use of Small Quantities. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14111348. [PMID: 29113114 PMCID: PMC5707987 DOI: 10.3390/ijerph14111348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 11/17/2022]
Abstract
Metallic nanoparticles (NPs) differ from other metal forms with respect to their large surface to volume ratio and subsequent inherent reactivity. Each new modification to a nanoparticle alters the surface to volume ratio, fate and subsequently the toxicity of the particle. Newly-engineered NPs are commonly available only in low quantities whereas, in general, rather large amounts are needed for fate characterizations and effect studies. This challenge is especially relevant for those NPs that have low inherent toxicity combined with low bioavailability. Therefore, within our study, we developed new testing strategies that enable working with low quantities of NPs. The experimental testing method was tailor-made for NPs, whereas we also developed translational models based on different dose-metrics allowing to determine dose-response predictions for NPs. Both the experimental method and the predictive models were verified on the basis of experimental effect data collected using zebrafish embryos exposed to metallic NPs in a range of different chemical compositions and shapes. It was found that the variance in the effect data in the dose-response predictions was best explained by the minimal diameter of the NPs, whereas the data confirmed that the predictive model is widely applicable to soluble metallic NPs. The experimental and model approach developed in our study support the development of (eco)toxicity assays tailored to nano-specific features.
Collapse
|
44
|
Perspectives from the NanoSafety Modelling Cluster on the validation criteria for (Q)SAR models used in nanotechnology. Food Chem Toxicol 2017; 112:478-494. [PMID: 28943385 DOI: 10.1016/j.fct.2017.09.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 11/20/2022]
Abstract
Nanotechnology and the production of nanomaterials have been expanding rapidly in recent years. Since many types of engineered nanoparticles are suspected to be toxic to living organisms and to have a negative impact on the environment, the process of designing new nanoparticles and their applications must be accompanied by a thorough risk analysis. (Quantitative) Structure-Activity Relationship ([Q]SAR) modelling creates promising options among the available methods for the risk assessment. These in silico models can be used to predict a variety of properties, including the toxicity of newly designed nanoparticles. However, (Q)SAR models must be appropriately validated to ensure the clarity, consistency and reliability of predictions. This paper is a joint initiative from recently completed European research projects focused on developing (Q)SAR methodology for nanomaterials. The aim was to interpret and expand the guidance for the well-known "OECD Principles for the Validation, for Regulatory Purposes, of (Q)SAR Models", with reference to nano-(Q)SAR, and present our opinions on the criteria to be fulfilled for models developed for nanoparticles.
Collapse
|
45
|
Deng Y, Petersen EJ, Challis K, Rabb SA, Holbrook RD, R. David JF, Nelson BC, Xing B. Multiple Method Analysis of TiO 2 Nanoparticle Uptake in Rice (Oryza sativa L.) Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10615-10623. [PMID: 28777911 PMCID: PMC6082167 DOI: 10.1021/acs.est.7b01364] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Understanding the translocation of nanoparticles (NPs) into plants is challenging because qualitative and quantitative methods are still being developed and the comparability of results among different methods is unclear. In this study, uptake of titanium dioxide NPs and larger bulk particles (BPs) in rice plant (Oryza sativa L.) tissues was evaluated using three orthogonal techniques: electron microscopy, single-particle inductively coupled plasma mass spectroscopy (spICP-MS) with two different plant digestion approaches, and total elemental analysis using ICP optical emission spectroscopy. In agreement with electron microscopy results, total elemental analysis of plants exposed to TiO2 NPs and BPs at 5 and 50 mg/L concentrations revealed that TiO2 NPs penetrated into the plant root and resulted in Ti accumulation in above ground tissues at a higher level compared to BPs. spICP-MS analyses revealed that the size distributions of internalized particles differed between the NPs and BPs with the NPs showing a distribution with smaller particles. Acid digestion resulted in higher particle numbers and the detection of a broader range of particle sizes than the enzymatic digestion approach, highlighting the need for development of robust plant digestion procedures for NP analysis. Overall, there was agreement among the three techniques regarding NP and BP penetration into rice plant roots and spICP-MS showed its unique contribution to provide size distribution information.
Collapse
Affiliation(s)
- Yingqing Deng
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Elijah J. Petersen
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Corresponding authors: E.J.P., ; Tel: 301-975-8142; Address: National Institute of Standards and Technology, 100 Bureau Dr., Building 227 Room A222, Gaithersburg, MD, USA 20899, B.S.X, , Tel: 413-545-5212, Address: University of Massachusetts, Stockbridge School of Agriculture, 410 Paige Lab, Amherst, MA, USA 01003
| | - Katie Challis
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Savelas A. Rabb
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - R. David Holbrook
- Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - James F. R. David
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Bryant C. Nelson
- Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Corresponding authors: E.J.P., ; Tel: 301-975-8142; Address: National Institute of Standards and Technology, 100 Bureau Dr., Building 227 Room A222, Gaithersburg, MD, USA 20899, B.S.X, , Tel: 413-545-5212, Address: University of Massachusetts, Stockbridge School of Agriculture, 410 Paige Lab, Amherst, MA, USA 01003
| |
Collapse
|
46
|
Sendra M, Moreno-Garrido I, Yeste MP, Gatica JM, Blasco J. Toxicity of TiO 2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:39-48. [PMID: 28454020 DOI: 10.1016/j.envpol.2017.04.053] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure. TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability.
Collapse
Affiliation(s)
- M Sendra
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain.
| | - I Moreno-Garrido
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| | - M P Yeste
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, Faculty of Sciences, University of Cadiz, E-11510, Puerto Real, Cádiz, Spain
| | - J M Gatica
- Department of Material Science, Metallurgical Engineering and Inorganic Chemistry, Faculty of Sciences, University of Cadiz, E-11510, Puerto Real, Cádiz, Spain
| | - J Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Río S. Pedro, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
47
|
Bour A, Mouchet F, Cadarsi S, Silvestre J, Baqué D, Gauthier L, Pinelli E. CeO 2 nanoparticle fate in environmental conditions and toxicity on a freshwater predator species: a microcosm study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17081-17089. [PMID: 28585007 DOI: 10.1007/s11356-017-9346-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
We studied the fate and toxicity of two types of CeO2 NPs (bare or citrate-coated) in environmentally relevant conditions, using large indoor microcosms. Long-term exposure was carried out on a three-leveled freshwater trophic chain, comprising microbial communities as primary producers, chironomid larvae as primary consumers, and amphibian larvae as secondary consumers. Whereas coated NPs preferentially sedimented, bare NPs were mainly found in the water column. However, mass balance indicated low recovery (51.5%) for bare NPs, indicating possible NP loss, against 98.8% of recovery for coated NPs. NPs were rather chemically stable, with less than 4% of dissolution. Chironomid larvae ingested large amounts of NPs and were vectors of contamination for amphibian larvae. Although bioaccumulation in amphibian larvae was important (9.47 and 9.74 mg/kg for bare and coated NPs, respectively), no biomagnification occurred through the trophic chain. Finally, significant genotoxicity was observed in amphibian larvae, bare CeO2 NPs being more toxic than citrate-coated NPs. ᅟ.
Collapse
Affiliation(s)
- Agathe Bour
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France.
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France.
| | - Florence Mouchet
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France
| | - Stéphanie Cadarsi
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France
| | - Jérôme Silvestre
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France
| | - David Baqué
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Laury Gauthier
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France
| | - Eric Pinelli
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
- International Consortium for the Environmental Implications of Nanotechnology (iCEINT), Aix-en-Provence, France
| |
Collapse
|
48
|
Mahaye N, Thwala M, Cowan DA, Musee N. Genotoxicity of metal based engineered nanoparticles in aquatic organisms: A review. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:134-160. [PMID: 28927524 DOI: 10.1016/j.mrrev.2017.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/29/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Engineered nanoparticles (ENPs) are an emerging class of environmental contaminants, but are generally found in very low concentrations and are therefore likely to exert sub-lethal effects on aquatic organisms. In this review, we: (i) highlight key mechanisms of metal-based ENP-induced genotoxicity, (ii) identify key nanoparticle and environmental factors which influence the observed genotoxic effects, and (iii) highlight the challenges involved in interpreting reported data and provide recommendations on how these challenges might be addressed. We review the application of eight different genotoxicity assays, where the Comet Assay is generally preferred due to its capacity to detect low levels of DNA damage. Most ENPs have been shown to cause genotoxic responses; e.g., DNA or/and chromosomal fragmentation, or DNA strand breakage, but at unrealistic high concentrations. The genotoxicity of the ENPs was dependent on the inherent physico-chemical properties (e.g. size, coating, surface chemistry, e.tc.), and the presence of co-pollutants. To enhance the value of published genotoxicity data, the role of environmental processes; e.g., dissolution, aggregation and agglomeration, and adsorption of ENPs when released in aquatic systems, should be included, and assay protocols must be standardized. Such data could be used to model ENP genotoxicity processes in open environmental systems.
Collapse
Affiliation(s)
- N Mahaye
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa; Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - M Thwala
- Water Resources Competence Area, Natural Resources and the Environment, CSIR, Pretoria, South Africa
| | - D A Cowan
- Centre for Microbial Ecology and Genomics, Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - N Musee
- Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
49
|
Farkas J, Booth AM. Are fluorescence-based chlorophyll quantification methods suitable for algae toxicity assessment of carbon nanomaterials? Nanotoxicology 2017; 11:569-577. [DOI: 10.1080/17435390.2017.1329953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julia Farkas
- SINTEF Materials and Chemistry, Trondheim, Norway
| | | |
Collapse
|
50
|
Kennedy AJ, Coleman JG, Diamond SA, Melby NL, Bednar AJ, Harmon A, Collier ZA, Moser R. Assessing nanomaterial exposures in aquatic ecotoxicological testing: Framework and case studies based on dispersion and dissolution. Nanotoxicology 2017; 11:546-557. [DOI: 10.1080/17435390.2017.1317863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alan J. Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Jessica G. Coleman
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | | | - Nicolas L. Melby
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Anthony J. Bednar
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Ashley Harmon
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Zachary A. Collier
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Robert Moser
- U.S. Army Engineer Research and Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS, USA
| |
Collapse
|