1
|
Barre A, Briand JF, Vaccher V, Briant N, Briand JM, Dormoy B, Boissery P, Bouchoucha M. A comparative biomonitoring study of trace metals and organic compounds bioaccumulation in marine biofilms and caged mussels along the French Mediterranean coast. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125239. [PMID: 39491582 DOI: 10.1016/j.envpol.2024.125239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The bioaccumulation potential of contaminants in marine environments was investigated in biofilms and compared with caged mussels for a wide range of both organic and metallic contaminants across a large geographic area. Marine biofilms were sampled after three months of sub-surface immersion at 49 locations along the 1800 km of the French Mediterranean coast. Ten chemical elements (i.e. As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, and Zn) and 57 organic compounds (i.e., 18 polycyclic aromatic hydrocarbons (PAHs), 8 dioxin-like and 6 non-dioxin-like polychlorinated biphenyls (PCBs) and 25 organochlorine pesticides (OCPs)) were quantified in triplicates, revealing different multi-contaminated profiles depending on sites. Most of contaminants exhibited higher concentrations in biofilms than in mussels. Moreover, a remarkable significant and positive correlation between the concentrations in both biological matrices was observed for PAHs and PCBs, and more contaminant-dependent for OCPs and metals. These results highlighted the potential of biofilms as relevant bioindicators of the marine chemical contamination.
Collapse
Affiliation(s)
- Abel Barre
- Université de Toulon, MAPIEM, Toulon, France
| | | | - Vincent Vaccher
- LUNAM Université, Oniris, USC 1329 Laboratoire d'Etude des Résidus et Contaminants dans les Aliments (LABERCA), Nantes, France
| | - Nicolas Briant
- Ifremer, CCEM Contamination Chimique des Écosystèmes Marins, F-44000, Nantes, France
| | - J Marine Briand
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse (LER-PAC), CS 20330, F-83507, La Seyne Sur Mer, France
| | - Bruno Dormoy
- Laboratoire d'Analyses de Surveillance et d'Expertise de la Marine (LASEM), Toulon, France
| | - Pierre Boissery
- Agence de l'Eau Rhône Méditerranée Corse - Délégation Paca Corse, F-13001, Marseille, France
| | - Marc Bouchoucha
- Ifremer, Laboratoire Environnement Ressources Provence Azur Corse (LER-PAC), CS 20330, F-83507, La Seyne Sur Mer, France
| |
Collapse
|
2
|
García-Pimentel MM, Mezzelani M, Valdés NJ, Giuliani ME, Gorbi S, Regoli F, León VM, Campillo JA. Integrative oxidative stress biomarkers in gills and digestive gland of the combined exposure to citalopram and bezafibrate with polyethylene microplastics on mussels Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 366:125508. [PMID: 39662579 DOI: 10.1016/j.envpol.2024.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Pharmaceutical active compounds (PhACs) and microplastics (MPs) have been detected in different marine compartments from coastal areas, raising concerns due to their simultaneous discharge through wastewater treatment plants (WWTPs) and the role of MPs as vectors of pollutants for marine organisms. This study investigates the biochemical effects of citalopram (CIT) and bezafibrate (BEZ) on the mussel Mytilus galloprovincialis, at environmentally relevant concentrations, and their co-exposure with high-density polyethylene (HDPE) MPs. MPs accumulated in gills and digestive glands during exposure, but they were rapidly eliminated after depuration, except for a small fraction of the smallest MPs in gills. This study evaluated the biological effects in gills and digestive gland, and confirmed CIT induced oxidative stress in both tissues, exacerbated by the presence of MPs. BEZ, despite not being detected at high concentrations in the mussel tissues, activated an antioxidant response in gills and increasing the transcription of the genes Se-gpx and gst-pi in digestive gland. Both PhACs impaired the cholinergic pathway long-term, even after the depuration period, as indicated by decreased AChE levels in the gills, suggesting potential neurotoxic effects after prolonged exposure. Consequently, adverse effects were provoked by both PhACs with (CIT) and without (BEZ) significant bioaccumulation capacity.
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain.
| | - M Mezzelani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - N J Valdés
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain
| | - M E Giuliani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - S Gorbi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - F Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain.
| |
Collapse
|
3
|
Toth J, Fugère V, Yargeau V. Relationship between stream size, watershed land use, and pesticide concentrations in headwater streams. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123940. [PMID: 38599268 DOI: 10.1016/j.envpol.2024.123940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/30/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
A quantitative multiresidue study of current-use pesticides in multiple matrices was undertaken with field sampling at 32 headwater streams near Lac Saint-Pierre in Québec, Canada. A total of 232 samples were collected in five campaigns of stream waters and streambed sediments from streams varying in size and watershed land use. Novel multiresidue analytical methods from previous work were successfully applied for the extraction of pesticide residues from sediments via pressurized liquid extraction (PLE) and quantitative analysis using ultra high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) with online sample preparation on a hydrophilic-lipophilic balance (HLB) column. Of the 31 target compounds, including 29 pesticides and two degradation products of atrazine, 29 compounds were detected at least once. Consistent with other studies, atrazine and metolachlor were the most widely-detected herbicides. Detections were generally higher in water than sediment samples and the influence of land use on pesticide concentrations was only detectable in water samples. Small streams with a high proportion of agricultural land use in their watershed were generally found to have the highest pesticide concentrations. Corn and soybean monoculture crops, specifically, were found to cause the greatest impact on pesticide concentration in headwater streams and correlated strongly with many of the most frequently detected pesticides. This study highlights the importance of performing multiresidue pesticide monitoring programs in headwater streams in order to capture the impacts of agricultural intensification on freshwater ecosystems.
Collapse
Affiliation(s)
- Jonah Toth
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec, H3A 0C5, Canada
| | - Vincent Fugère
- Département des sciences de l'environnement, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, Québec, G9A 5H7, Canada
| | - Viviane Yargeau
- Department of Chemical Engineering, McGill University, 3610 rue University, Montréal, Québec, H3A 0C5, Canada.
| |
Collapse
|
4
|
Izma G, Raby M, Prosser R, Rooney R. Urban-use pesticides in stormwater ponds and their accumulation in biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170534. [PMID: 38301793 DOI: 10.1016/j.scitotenv.2024.170534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Stormwater ponds frequently receive urban runoff, increasing the likelihood of pesticide contamination. Biofilms growing in surface waters of these ponds are known to accumulate a range of aquatic contaminants, paradoxically providing both water purification services and potentially posing a threat to urban wildlife. Thus, sampling biofilms in stormwater ponds may be a critical and biologically relevant tool for characterizing pesticide contamination and toxicity in urban environments. Here, we aimed to investigate pesticide occurrences at 21 stormwater ponds in Brampton, ON, one of Canada's fastest growing municipalities, and quantify their accumulation in biofilm. Over nine weeks, we collected time-integrated composite water and biofilm samples for analysis of ∼500 current-use and legacy pesticides. Thirty-two pesticide compounds were detected across both matrices, with 2,4-D, MCPA, MCPP, azoxystrobin, bentazon, triclopyr, and diuron having near-ubiquitous occurrences. Several compounds not typically monitored in pesticide suites (e.g., melamine and nicotine) were also detected, but only in biofilms. Overall, 56 % of analytes detected in biofilms were not found in water samples, indicating traditional pesticide monitoring practices fail to capture all exposure routes, as even when pesticides are below detection levels in water, organisms may still be exposed via dietary pathways. Calculated bioconcentration factors ranged from 4.2 to 1275 and were not predicted by standard pesticide physicochemical properties. Monitoring biofilms provides a sensitive and comprehensive supplement to water sampling for pesticide quantification in urban areas, and identifying pesticide occurrences in stormwater could improve source-tracking efforts in the future. Further research is needed to understand the mechanisms driving pesticide accumulation, to investigate toxicity risks associated with pesticide-contaminated biofilm, and to evaluate whether pesticide accumulation in stormwater pond biofilms represents a route through which contaminants are mobilized into the surrounding terrestrial and downstream aquatic environments.
Collapse
Affiliation(s)
- Gab Izma
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Melanie Raby
- Ontario Ministry of Environment, Conservation, and Parks, Etobicoke, ON, Canada
| | - Ryan Prosser
- School of Environmental Science, University of Guelph, Guelph, ON, Canada
| | - Rebecca Rooney
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
5
|
Ijzerman MM, Raby M, Letwin NV, Kudla YM, Anderson JD, Atkinson BJ, Rooney RC, Sibley PK, Prosser RS. New insights into pesticide occurrence and multicompartmental monitoring strategies in stream ecosystems using periphyton and suspended sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170144. [PMID: 38242468 DOI: 10.1016/j.scitotenv.2024.170144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
Streams are susceptible to pesticide pollutants which are transported outside of the intended area of application from surrounding agricultural fields. It is essential to monitor the occurrence and levels of pesticides in aquatic ecosystems to comprehend their effects on the aquatic environment. The common sampling strategy used for monitoring pesticides in stream ecosystems is through the collection and analysis of grab water samples. However, grab water sampling may not effectively monitor pesticides due to its limited ability to capture temporal and spatial variability, potentially missing fluctuations and uneven distribution of pesticides in aquatic environments. Monitoring using periphyton and sediment sampling may offer a more comprehensive approach by accounting for accumulative processes and temporal variations. Periphyton are a collective of microorganisms that grow on hard surfaces in aquatic ecosystems. They are responsive to chemical and biological changes in the environment, and therefore have the potential to act as a cost-effective, integrated sampling tool to monitor pesticide exposures in aquatic ecosystems. The objective of this study was to assess pesticides detected through periphyton, suspended sediment, and conventional grab water sampling methods and identify the matrix that offers a more comprehensive characterization of a stream's pesticide exposure profile. Ten streams across Southern Ontario were sampled in 2021 and 2022. At each stream site, water, sediment and periphyton, colonizing both artificial and natural substrates, were collected and analyzed for the presence of ~500 pesticides. Each of the three matrices detected distinctive pesticide exposure profiles. The frequency of detection in periphyton, sediment and water matrices were related to pesticides' log Kow and log Koc (P < 0.05). In addition, periphyton bioconcentrated 22 pesticides above levels observed in the ambient water. The bioconcentration factors of pesticides in periphyton can be predicted from their log Kow (simple linear regressions, P < 0.05). The results demonstrate that sediment and periphyton accumulate pesticides in stream environments. This highlights the importance of monitoring pesticide exposure using these matrices to ensure a complete and comprehensive characterization of exposure in stream ecosystems.
Collapse
Affiliation(s)
- Moira M Ijzerman
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Melanie Raby
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| | - Nicholas V Letwin
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Yaryna M Kudla
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Jenna D Anderson
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Brian J Atkinson
- Laboratory Services Division, University of Guelph, Guelph, ON, Canada
| | - Rebecca C Rooney
- University of Waterloo, Department of Biology, Waterloo, ON, Canada
| | - Paul K Sibley
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada
| | - Ryan S Prosser
- University of Guelph, School of Environmental Sciences, Guelph, ON, Canada.
| |
Collapse
|
6
|
Castaño-Ortiz JM, Gil-Solsona R, Ospina-Álvarez N, Alcaraz-Hernández JD, Farré M, León VM, Barceló D, Santos LHMLM, Rodríguez-Mozaz S. Fate of pharmaceuticals in the Ebro River Delta region: The combined evaluation of water, sediment, plastic litter, and biomonitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167467. [PMID: 37778570 DOI: 10.1016/j.scitotenv.2023.167467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
The increasing consumption of pharmaceuticals, alongside their limited removal in wastewater treatment plants (WWTPs), have led to their ubiquitous occurrence in receiving aquatic environments. This study addresses the occurrence of 68 pharmaceuticals (PhACs) in the Ebro River Delta region (NE Spain), as well as their distribution in different environmental compartments, including surface water, sediments, biota (river biofilm and fish tissues), and field-collected plastic litter. In addition, their concentrations in serving WWTPs, as possible sources of environmental contamination, were also determined. Our study confirmed the widespread occurrence of PhACs in riverine and, to a more limited extent, coastal environments. Most frequently detected PhACs belonged to analgesics/anti-inflammatories (e.g., ibuprofen) and psychiatric drugs (e.g., venlafaxine) therapeutic groups, followed by antihypertensives (e.g., valsartan) and antibiotics (e.g., azithromycin). Seasonal differences in cumulative levels of PhACs were reported for water and sediments (winter>summer). Despite spatial gradients were not clear along the river, a non-negligible contribution of upstream Ebro sites (reference area) was highlighted, which was unexpected based on the low anthropogenic pressure. Sediments represented a minor attenuation pathway for the selected PhACs, whereas they were more heavily accumulated in biota: fish liver (up to 166 ng/g dw), river biofilms (up to 108 ng/g dw), fish plasma (up to 63 ng/mL), and fish muscle (up to 31 ng/g dw). These findings highlight the importance of biomonitoring in the characterization of polluted areas and prioritization of hazardous substances (e.g., psychiatric drugs) in aquatic systems, and a particular interest of fish plasma as non-destructive biomonitoring matrix. PhACs were also detected on plastic litter, demonstrating their role as environmental sinks for certain PhACs (e.g., analgesics/anti-inflammatories, psychiatric drugs). Overall, the widespread detection of PhACs in a variety of biotic and abiotic matrices from the lower Ebro River and Delta warns about their possible environmental implications.
Collapse
Affiliation(s)
- J M Castaño-Ortiz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - R Gil-Solsona
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - N Ospina-Álvarez
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; Atlantic International Research Centre (AIR Centre), 9700-702 Angra do Heroísmo, Azores, Portugal
| | | | - M Farré
- IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Varadero 1, San Pedro del Pinatar, 30740 Murcia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain; IDAEA-CSIC, Department of Environmental Chemistry, C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA-CERCA), C/ Emili Grahit 101, 17003 Girona, Spain; University of Girona, Girona, Spain.
| |
Collapse
|
7
|
Fernandes G, Aparicio VC, De Gerónimo E, Prestes OD, Zanella R, Ebling E, Parisi PB, Mollmann VHDS, Reichert JM, Rheinheimer Dos Santos D. Epilithic biofilms as a discriminating matrix for long-term and growing season pesticide contamination in the aquatic environment: Emphasis on glyphosate and metabolite AMPA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:166315. [PMID: 37604376 DOI: 10.1016/j.scitotenv.2023.166315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023]
Abstract
The indiscriminate use of pesticides represents high ecological risk in aquatic systems. Recently, the inclusion of epilithic biofilms as a reactive matrix has shown potential in diagnosing the health of water resources. The objective of this study was to use multiple matrices (water, suspended sediments, and biofilms) to discriminate contamination degrees in catchments with long and recent history of intensive pesticide use and to monitor growing season pesticides transfer to watercourses. Two catchments were monitored: one representative of "modern agriculture" in a subtropical environment, and another representative of recent agricultural expansion over the Pampa Biome in subtropical Brazil. Glyphosate and AMPA were accumulated in the biofilms and were detected at all sites and at all monitoring times, in concentrations ranging from 195 to 7673 μg kg-1 and from 225 to 4180 μg kg-1, respectively. Similarly, the fungicide tebuconazole has always been found in biofilms. The biofilms made it possible to discriminate the long-term history of pesticide use in the catchments and even to identify the influx pulses of pesticides immediately after their application to crops, which was not possible with active water sampling and even with suspended sediment monitoring. It is strongly recommended that, in regions with intensive cultivation of soybeans and other genetically modified crops, the presence of glyphosate and its metabolite AMPA be permanently monitored, a practice still very scarce in the literature.
Collapse
Affiliation(s)
- Gracieli Fernandes
- Soils Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil.
| | - Virginia Carolina Aparicio
- Instituto Nacional de Tecnología Agropecuaria INTA EEA Balcarce, Ruta Nacional 226, Km 73,5, Balcarce CP 7620, Buenos Aires, Argentina
| | - Eduardo De Gerónimo
- Instituto Nacional de Tecnología Agropecuaria INTA EEA Balcarce, Ruta Nacional 226, Km 73,5, Balcarce CP 7620, Buenos Aires, Argentina
| | - Osmar Damian Prestes
- Laboratory of Pesticide Residues Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Renato Zanella
- Laboratory of Pesticide Residues Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Ederson Ebling
- Soils Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Pedro Bolzan Parisi
- Soils Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Victor Hugo Dos Santos Mollmann
- Graduate Program in Animal Biodiversity, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - José Miguel Reichert
- Soils Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil
| | - Danilo Rheinheimer Dos Santos
- Soils Department, Federal University of Santa Maria, Roraima Avenue, 1000, Santa Maria, RS, 97105-900, Brazil; Foreign Visiting Professors at University of Limoges, (2022-2023) France
| |
Collapse
|
8
|
Ijzerman MM, Raby M, Izma GB, Kudla YM, Letwin NV, Gallant MJ, Schiffer SR, Atkinson BJ, Rooney RC, Sibley PK, Prosser RS. An Assessment of the Toxicity of Pesticide Mixtures in Periphyton from Agricultural Streams to the Mayfly Neocloeon triangulifer. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2143-2157. [PMID: 37341551 DOI: 10.1002/etc.5698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/22/2023]
Abstract
Residual concentrations of pesticides are commonly found outside the intended area of application in Ontario's surface waters. Periphyton are a vital dietary component for grazing organisms in aquatic ecosystems but can also accumulate substantial levels of pesticides from the surrounding water. Consequently, grazing aquatic organisms are likely subjected to pesticide exposure through the consumption of pesticide-contaminated periphyton. The objectives of the present study were to determine if pesticides partition into periphyton in riverine environments across southern Ontario and, if so, to determine the toxicity of pesticides in periphyton when fed to the grazing mayfly Neocloeon triangulifer. Sites with low, medium, and high pesticide exposure based on historic water quality monitoring data were selected to incorporate a pesticide exposure gradient into the study design. Artificial substrate samplers were utilized to colonize periphyton in situ, which were then analyzed for the presence of approximately 500 pesticides. The results demonstrate that periphyton are capable of accumulating pesticides in agricultural streams. A novel 7-day toxicity test method was created to investigate the effects of pesticides partitioned into periphyton when fed to N. triangulifer. Periphyton collected from the field sites were fed to N. triangulifer and survival and biomass production recorded. Survival and biomass production significantly decreased when fed periphyton colonized in streams with catchments dominated by agricultural land use (p < 0.05). However, the relationship between pesticide concentration and survival or biomass production was not consistent. Using field-colonized periphyton allowed us to assess the dietary toxicity of environmentally relevant concentrations of pesticide mixtures; however, nutrition and taxonomic composition of the periphyton may vary between sites. Environ Toxicol Chem 2023;42:2143-2157. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Moira M Ijzerman
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Melanie Raby
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Gab B Izma
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Yaryna M Kudla
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Nicholas V Letwin
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | | | | - Brian J Atkinson
- Agriculture and Food Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Rebecca C Rooney
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Bertrans-Tubau L, Menard Y, Batisson I, Creusot N, Mazzella N, Millan-Navarro D, Moreira A, Morin S, Ponsá S, Abril M, Proia L, Romaní AM, Artigas J. Dissipation of pesticides by stream biofilms is influenced by hydrological histories. FEMS Microbiol Ecol 2023; 99:fiad083. [PMID: 37480243 DOI: 10.1093/femsec/fiad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/23/2023] Open
Abstract
To evaluate the effects of hydrological variability on pesticide dissipation capacity by stream biofilms, we conducted a microcosm study. We exposed biofilms to short and frequent droughts (daily frequency), long and less frequent droughts (weekly frequency) and permanently immersed controls, prior to test their capacities to dissipate a cocktail of pesticides composed of tebuconazole, terbuthylazine, imidacloprid, glyphosate and its metabolite aminomethylphosphonic acid. A range of structural and functional descriptors of biofilms (algal and bacterial biomass, extracellular polymeric matrix (EPS) concentration, microbial respiration, phosphorus uptake and community-level physiological profiles) were measured to assess drought effects. In addition, various parameters were measured to characterise the dynamics of pesticide dissipation by biofilms in the different hydrological treatments (% dissipation, peak asymmetry, bioconcentration factor, among others). Results showed higher pesticide dissipation rates in biofilms exposed to short and frequent droughts, despite of their lower biomass and EPS concentration, compared to biofilms in immersed controls or exposed to long and less frequent droughts. High accumulation of hydrophobic pesticides (tebuconazole and terbuthylazine) was measured in biofilms despite the short exposure time (few minutes) in our open-flow microcosm approach. This research demonstrated the stream biofilms capacity to adsorb hydrophobic pesticides even in stressed drought environments.
Collapse
Affiliation(s)
- Lluís Bertrans-Tubau
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Yoann Menard
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | - Isabelle Batisson
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| | | | | | | | | | - Soizic Morin
- INRAE, UR EABX, 50 avenue de Verdun, F-33612 Cestas, France
| | - Sergio Ponsá
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Meritxell Abril
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Lorenzo Proia
- BETA Technological Centre- University of Vic-Central University of Catalunya (BETA-UVic-UCC), Carretera de Roda 70, 08500 Vic, Barcelona, Spain
| | - Anna M Romaní
- Institute of Aquatic Ecology, University of Girona, Campus Montilivi, 17005 Girona, Spain
| | - Joan Artigas
- CNRS, Laboratoire Microorganismes: Génome et Environnement (LMGE), Université Clermont Auvergne, Campus Universitaire des Cézeaux, 1 Impasse Amélie Murat. F-63000 Clermont-Ferrand, France
| |
Collapse
|
10
|
Mubeen I, Fawzi Bani Mfarrej M, Razaq Z, Iqbal S, Naqvi SAH, Hakim F, Mosa WFA, Moustafa M, Fang Y, Li B. Nanopesticides in comparison with agrochemicals: Outlook and future prospects for sustainable agriculture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107670. [PMID: 37018866 DOI: 10.1016/j.plaphy.2023.107670] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/07/2023]
Abstract
Agrochemicals are products of advanced technologies that use inorganic pesticides and fertilizers. Widespread use of these compounds has adverse environmental effects, leading to acute and chronic exposure. Globally, scientists are adopting numerous green technologies to ensure a healthy and safe food supply and a livelihood for everyone. Nanotechnologies significantly impact all aspects of human activity, including agriculture, even if synthesizing certain nanomaterials is not environmentally friendly. Numerous nanomaterials may therefore make it easier to create natural insecticides, which are more effective and environmentally friendly. Nanoformulations can improve efficacy, reduce effective doses, and extend shelf life, while controlled-release products can improve the delivery of pesticides. Nanotechnology platforms enhance the bioavailability of conventional pesticides by changing kinetics, mechanisms, and pathways. This allows them to bypass biological and other undesirable resistance mechanisms, increasing their efficacy. The development of nanomaterials is expected to lead to a new generation of pesticides that are more effective and safer for life, humans, and the environment. This article aims to express at how nanopesticides are being used in crop protection now and in the future. This review aims to shed some light on the various impacts of agrochemicals, their benefits, and the function of nanopesticide formulations in agriculture.
Collapse
Affiliation(s)
- Iqra Mubeen
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates.
| | - Zarafshan Razaq
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Shehzad Iqbal
- Laboratorio de Patología Frutal, Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca, 3460000, Maule, Chile.
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Fahad Hakim
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Main Campus Bosan Road, Multan, 60800, Pakistan.
| | - Walid F A Mosa
- Plant Production Department (Horticulture- Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt.
| | - Mahmoud Moustafa
- Department of Biology, Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, Egypt.
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
11
|
Rheinheimer Dos Santos D, Camotti Bastos M, Monteiro De Castro Lima JA, Le Guet T, Vargas Brunet J, Fernandes G, Zanella R, Damian Prestes O, Mondamert L, Labanowski J. Epilithic biofilms, POCIS, and water samples as complementary sources of information for a more comprehensive view of aquatic contamination by pesticides and pharmaceuticals in southern Brazil. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:273-284. [PMID: 36861268 DOI: 10.1080/03601234.2023.2182583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatial-temporal monitoring of the presence of pesticides and pharmaceuticals in water requires rigor in the choice of matrix to be analyzed. The use of matrices, isolated or combined, may better represent the real state of contamination. In this sense, the present work contrasted the effectiveness of using epilithic biofilms with active water sampling and with a passive sampler-POCIS. A watershed representative of South American agriculture was monitored. Nine sites with different rural anthropic pressures (natural forest, intensive use of pesticides, and animal waste), and urban areas without sewage treatment, were monitored. Water and epilithic biofilms were collected during periods of intensive pesticide and animal waste application. After the harvest of the spring/summer crop, a period of low agrochemical input, the presence of pesticides and pharmaceuticals was monitored using the POCIS and epilithic biofilms. The spot water sampling leads to underestimation of the level of contamination of water resources as it does not allow discrimination of different anthropic pressures in rural areas. The use of endogenous epilithic biofilms as a matrix for the analysis of pesticides and pharmaceuticals is a viable and highly recommended alternative to diagnose the health of water sources, especially if associated with the use of POCIS.
Collapse
Affiliation(s)
| | - Marília Camotti Bastos
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Laboratoire E2Lim - Eau et Environnement Limoges, Université de Limoges, Limoges, France
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | | | - Thibaut Le Guet
- Laboratoire E2Lim - Eau et Environnement Limoges, Université de Limoges, Limoges, France
| | - Jocelina Vargas Brunet
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | - Gracieli Fernandes
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Renato Zanella
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Osmar Damian Prestes
- Departamento de Solos, Centro de Ciências Rurais, Universidade Federal de Santa Maria, Rio Grande do Sul, Brazil
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, Université de Poitiers, Poitiers, France
| |
Collapse
|
12
|
Bastos MC, Rheinheimer DDS, Le Guet T, Vargas Brunet J, Aubertheau E, Mondamert L, Labanowski J. Presence of pharmaceuticals and bacterial resistance genes in river epilithic biofilms exposed to intense agricultural and urban pressure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:328. [PMID: 36697888 DOI: 10.1007/s10661-022-10899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
The continuous discharge of pharmaceutical compounds into the aquatic environment has raised concerns over the contamination of water resources. Urban activities and intensive animal breeding are important sources of contamination. The accumulation of antibiotics may lead to the transfer or alternatively maintain the presence of resistance genes in natural microbial communities existing in epilithic biofilms. The objective of this study was to evaluate the pharmaceutical contamination levels and the presence of resistance genes in biofilms from a South Brazilian watershed. The Guaporé watershed exhibits a high diversity of land use, including agricultural and urban areas with differing levels of anthropogenic pressure. Seventeen sites along the Guaporé watershed were monitored. Biofilm samples were collected in two seasons (winter and summer), and the pharmaceutical concentration and quantity of resistance genes were analyzed. All monitored sites were contaminated with pharmaceuticals. Agricultural activities contribute through transferring pharmaceuticals derived from the application of animal waste to agricultural fields. The most contaminated site (pharmaceuticals and bacterial resistance genes) was located in an urban area exposed to high pressure. Decreases in the contamination of biofilms were also observed, exemplifying processes of natural attenuation in the watershed. The quality of the biofilms sampled throughout the watershed served as a useful tool to understand and monitor environmental pollution.
Collapse
Affiliation(s)
- Marília Camotti Bastos
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil.
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France.
| | - Danilo Dos Santos Rheinheimer
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil
| | - Thibaut Le Guet
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Jocelina Vargas Brunet
- Centro de Ciências Rurais, Departamento de Solos, Universidade Federal de Santa Maria, Avenida Roraima, N° 1000, Bairro Camobi, Rio Grande Do Sul, CEP, 97105-900, Brazil
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Elodie Aubertheau
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Leslie Mondamert
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| | - Jérôme Labanowski
- Institut de Chimie Des Milieux Et Matériaux de Poitiers, Université de Poitiers, IC2MP, Poitiers, France
| |
Collapse
|
13
|
Laderriere V, Morin S, Eon M, Fortin C. Vulnerability and tolerance to nickel of periphytic biofilm harvested in summer and winter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120223. [PMID: 36191798 DOI: 10.1016/j.envpol.2022.120223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Metals are naturally present in freshwater ecosystems but anthropogenic activities like mining operations represent a long-standing concern. Metals released into aquatic environments may affect microbial communities such as periphytic biofilm, which plays a key role as a primary producer in stream ecosystems. Using two 28-day microcosm studies involving two different photoperiods (light/dark cycle of 16/8 vs 8/16), the present study assessed the effects of four increasing nickel (Ni) concentrations (0-6 μM) on two natural biofilm communities collected at different seasons (summer and winter). The two communities were characterized by different structural profiles and showed significant differences in Ni accumulated content for each treatment. For instance, the biofilm metal content was four times higher in the case of summer biofilm at the highest Ni treatment and after 28 days of exposure. Biomarkers examined targeted both heterotrophic and autotrophic organisms. For heterotrophs, the β-glucosidase and β-glucosaminidase showed no marked effects of Ni exposure and were globally similar between the two communities suggesting low toxicity. However, the photosynthetic yield confirmed the toxicity of Ni on autotrophs with maximum inhibition of 81 ± 7% and 60 ± 1% respectively for the summer and winter biofilms. Furthermore, biofilms previously exposed to the highest long-term Ni concentration ([Ni2+] = 6 μM) revealed no acute effects in subsequent toxicity based on the PSII yield, suggesting a tolerance acquisition by the phototrophic community. Taken together, the results suggest that the biofilm response to Ni exposure was dependent of the function considered and that descriptors such as biofilm metal content could be seasonally dependent, information of great importance in a context of biomonitoring.
Collapse
Affiliation(s)
- Vincent Laderriere
- INRS - ETE, 490 Rue de la Couronne, Québec, Canada; EcotoQ, 490 Rue de la Couronne, Québec, Canada.
| | - Soizic Morin
- EcotoQ, 490 Rue de la Couronne, Québec, Canada; INRAE, 50 Avenue de Verdun, Cestas, France.
| | | | - Claude Fortin
- INRS - ETE, 490 Rue de la Couronne, Québec, Canada; EcotoQ, 490 Rue de la Couronne, Québec, Canada.
| |
Collapse
|
14
|
Pompa-Monroy DA, Iglesias AL, Dastager SG, Thorat MN, Olivas-Sarabia A, Valdez-Castro R, Hurtado-Ayala LA, Cornejo-Bravo JM, Pérez-González GL, Villarreal-Gómez LJ. Comparative Study of Polycaprolactone Electrospun Fibers and Casting Films Enriched with Carbon and Nitrogen Sources and Their Potential Use in Water Bioremediation. MEMBRANES 2022; 12:327. [PMID: 35323802 PMCID: PMC8951516 DOI: 10.3390/membranes12030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022]
Abstract
Augmenting bacterial growth is of great interest to the biotechnological industry. Hence, the effect of poly (caprolactone) fibrous scaffolds to promote the growth of different bacterial strains of biological and industrial interest was evaluated. Furthermore, different types of carbon (glucose, fructose, lactose and galactose) and nitrogen sources (yeast extract, glycine, peptone and urea) were added to the scaffold to determinate their influence in bacterial growth. Bacterial growth was observed by scanning electron microscopy; thermal characteristics were also evaluated; bacterial cell growth was measured by ultraviolet-visible spectrophotometry at 600-nm. Fibers produced have an average diameter between 313 to 766 nm, with 44% superficial porosity of the scaffolds, a glass transition around ~64 °C and a critical temperature of ~338 °C. The fibrous scaffold increased the cell growth of Escherichia coli by 23% at 72 h, while Pseudomonas aeruginosa and Staphylococcus aureus increased by 36% and 95% respectively at 48 h, when compared to the normal growth of their respective bacterial cultures. However, no significant difference in bacterial growth between the scaffolds and the casted films could be observed. Cell growth depended on a combination of several factors: type of bacteria, carbon or nitrogen sources, casted films or 3D scaffolds. Microscopy showed traces of a biofilm formation around 3 h in culture of P. aeruginosa. Water bioremediation studies showed that P. aeruginosa on poly (caprolactone)/Glucose fibers was effective in removing 87% of chromium in 8 h.
Collapse
Affiliation(s)
- Daniella Alejandra Pompa-Monroy
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Ana Leticia Iglesias
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
| | - Syed Gulam Dastager
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Meghana Namdeo Thorat
- National Collection of Industrial Microorganism (NCIM), CSIR-National Chemical Laboratory, Pune 41008, Maharashtra, India; (S.G.D.); (M.N.T.)
| | - Amelia Olivas-Sarabia
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Ricardo Valdez-Castro
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Ensenada 22860, Baja California, Mexico; (A.O.-S.); (R.V.-C.)
| | - Lilia Angélica Hurtado-Ayala
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Tijuana 21500, Baja California, Mexico; (D.A.P.-M.); (A.L.I.); (G.L.P.-G.)
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22260, Baja California, Mexico; (L.A.H.-A.); (J.M.C.-B.)
| |
Collapse
|
15
|
Feitosa MH, Prado TM, Santos AM, Silva LP, Grosseli GM, Fadini PS, Fatibello-Filho O, Moraes FC. Titanium dioxide/cadmium sulfide photoanode applied to photoelectrodegradation of naproxen in wastewater. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|