1
|
Mishra R, Sahu C, Basti S, Sahu SK. Evaluation of heavy metal speciation in waters of Hirakud reservoir: a Ramsar site in India. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:840. [PMID: 39180609 DOI: 10.1007/s10661-024-13012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The growing concern of aquatic heavy metal (HM) pollution is dependent on the toxic nature of its bio-available form. Thus, bio-availability is guided by the HM fractionation in water. This study was therefore conducted to evaluate the spatial impact on physicochemical fractionation of HM (Zn, Mn, Cu, and Fe) in the waters of the Hirakud reservoir in India. Speciation along different pores using a filtration technique was adopted to fractionate the HMs in water samples. The result suggests that the water of the study area is polluted with Cu (0.22-0.35 mg/L), Mn (0.15-0.23 mg/L), and Fe (1.90-3.10 mg/L) that have crossed their permissible limits while Zn (0.17-0.97 mg/L) was within the permissible standard. When studied for physical partitioning, the right dyke was comparatively more polluted than the left dyke. While the water samples were dominated by the dissolved fraction of heavy metals, it was construed that a large proportion of the HMs are in bio-available form. Further, a distinct impact of spatial variation on metal fractionation was also evident in the study with PCA revealing site-specific behaviour. Therefore, it can be concluded that multiple anthropogenic activities lead to the distribution and fractionation of HMs in water.
Collapse
Affiliation(s)
- Rajesh Mishra
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Chandan Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India.
- Gangadhar Meher University, Amruta Vihar, Sambalpur, 768004, India.
| | - Sradhanjali Basti
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| | - Sanjat Kumar Sahu
- P.G. Department of Environmental Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, 768019, India
| |
Collapse
|
2
|
Baran A, Tack FG, Delemazure A, Wieczorek J, Boguta P, Skic K. Use of selected amendments for reducing metal mobility and ecotoxicity in contaminated bottom sediments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121183. [PMID: 38795467 DOI: 10.1016/j.jenvman.2024.121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
The aims of the study were 1) to assess the suitability of selected amendments for reducing the mobility of metals in sediments by evaluating their effects on metal sorption capacity, and 2) to assess the ecotoxicity of sediment/amendment mixtures. Three different amendments were tested: cellulose waste, biochar, and dolomite. The efficiency of metal immobilization in mixtures was dependent on pH, which increased with concentrations of amendment. The higher negative charge observed for dolomite and cellulose waste corresponded with greater attraction of cations and enhanced metal sorption. For cellulose waste, the highest values of the Q parameter were attributed to the presence of OH groups, which corresponded with the highest immobilization of metals. Biochar reduced the negative surface charge, which highlights the importance of additional factors such as high specific surface area and volume of pores in metal immobilization. All amendments increased the SSA and VN2, indicating a higher number of sorption sites for metal immobilization. Most bioassays established a reduction of the ecotoxicity for amendments. Mixtures with dolomite (25%, 45% doses) and biochar (45% dose) were low toxic. Mixtures with cellulose waste were toxic or highly toxic. The mobility of metals from contaminated sediments can be limited by reused industry side products, which could contribute to further closing the circular economy loop.
Collapse
Affiliation(s)
- Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agricultural in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - FilipM G Tack
- Department of Green Chemistry and Technology, Ghent University, Gent, Belgium.
| | - Antoine Delemazure
- Department of Green Chemistry and Technology, Ghent University, Gent, Belgium.
| | - Jerzy Wieczorek
- Department of Agricultural and Environmental Chemistry, University of Agricultural in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland.
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| |
Collapse
|
3
|
Szarłowicz K, Baran A, Wójs K, Wójcik S. Estimation of the level of anthropogenic impact based on the determination of radionuclides and heavy metals in sediments taken from Rybnik reservoir, Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37356-37365. [PMID: 38769262 PMCID: PMC11182859 DOI: 10.1007/s11356-024-33709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The aim of the study was to estimate the degree of anthropogenic risk by evaluating the level of the contamination of sediments collected from the Rybnik reservoir. The results of the determination of radionuclides (137Cs, 40K, 228Th, 228Ra, 226Ra, 210Pb, 238U) and heavy metals (Zn, Cd, Pb, Cu, Cr, Ni) were presented. The Rybnik reservoir is located in a highly urbanised area, the Lower Silesian Voivodeship in Poland. Radionuclides (137Cs, 40K, 228Th, 228Ra, 226Ra, 210Pb, 238U) were measured using gamma spectrometry. The heavy metal (Zn, Cd, Pb, Cu, Ni and Cr) content was determined using an inductively coupled plasma optical emission spectrophotometer (ICP-OES). The classification of sediment pollution was made on the basis of geochemical and ecotoxicological indices. Radioactivity was varied with the highest for 40K (more than 200 Bq·kg-1). The concentrations for the remaining radionuclides were mostly below 20 Bq·kg-1. At the inlet zone (no. 9) an increase in radioactivity of each radioisotope was observed. The values of heavy metals from the lowest to the highest total amount in the sediments were as follows: Cd < Cr < Pb < Ni < Cu < Zn. The sediments of the reservoir are largely contaminated with Cu, but the sediments generally are contaminated to an average degree. Most pollutants accumulate in the inlet zone and near the dam wall. The content of artificial radionuclides, as well as the geochemical and ecological indicators used, can serve as an indicator of the level of anthropopressure in the vicinity of the Rybnik reservoir.
Collapse
Affiliation(s)
| | - Agnieszka Baran
- Department of Agriculture and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
| | - Karolina Wójs
- Department of Agriculture and Environmental Chemistry, University of Agriculture in Krakow, Krakow, Poland
| | - Sylwia Wójcik
- Faculty of Energy and Fuels, AGH University of Krakow, Krakow, Poland
| |
Collapse
|
4
|
Tang S, Gong J, Song B, Li J, Cao W, Zhao J. Co-influence of biochar-supported effective microorganisms and seasonal changes on dissolved organic matter and microbial activity in eutrophic lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171476. [PMID: 38458471 DOI: 10.1016/j.scitotenv.2024.171476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
DOM (dissolved organic matter) play a crucial role in lakes' geochemical and carbon cycles. Eutrophication evolution would influence nutrient status of waters and investigating the DOM variation helps a better understanding of bioremediation on environmental behavior of DOM in eutrophic lakes. In our study, the contents, compositions and characteristics of systematic DOM&SOM (sediment organic matter) were greatly influenced by seasonal changes. But the effective bioremediations obviously reduced the DOM concentration and thus mitigated the eutrophication outbreak risks in water bodies due to the increased MBC (microbial biomass carbon), microbial activity and metabolism. In early summer, the overall DOM in each treatment were readily low levels and derived from both autochthonous and exogenous origins, dominated by fulvic acid-like. In midsummer, the DOM contents and characteristics in each treatment increased significantly as phytoplankton activity improved, and the majority of DOM were humic acid-like and mainly of biological origin. The greatest differences of enzymes, MBC, microbial metabolism and DOM&SOM removal among different treatments were observed in summer months. In autumn, the systematic DOM&SOM slightly reduced due to the deceased microbial activity, in which the microbial humic acids were main component and derived from endogenous sources. Additionally, the gradually decreased SOM with cultivated time in each treatment was a result of microbiological conversion of SOM into DOM. For various treatments, BE, BE.A, BE.C and BE.E increased the MBC, enzymatic and microbial activities due to the application of biochar-supported EMs. Among these, BE and BE.A, especially BE.A with oxygen supplement, achieved the most desirable effect on reducing systematic DOM&SOM levels and increasing enzymatic and microbial activities. The group of EM also reduced the levels of DOM&SOM as improved degradation of EMs for DOM. However, BC, BE.C and BE.E finally did not achieved the desirable effect on reducing DOM&SOM due to the suppression of microbial activities, respectively, from high dose of biochar, weakening of dominant species and additional introduction of EMs in low liveness.
Collapse
Affiliation(s)
- Siqun Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China.
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Weicheng Cao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| | - Jun Zhao
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, Guangdong Province, PR China; Shenzhen Institute, Hunan University, Shenzhen 518000, PR China
| |
Collapse
|
5
|
Li X, Ren X, Su Y, Zhou X, Wang Y, Ruan S, Yan J, Li B, Guo K. Differential effects of winter cold stress on soil bacterial communities, metabolites, and physicochemical properties in two varieties of Tetrastigma hemsleyanum Diels & Gilg in reclaimed land. Microbiol Spectr 2024; 12:e0242523. [PMID: 38470484 PMCID: PMC10994721 DOI: 10.1128/spectrum.02425-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Tetrastigma hemsleyanum Diels & Gilg (TDG) has been recently planted in reclaimed lands in Zhejiang Province, China, to increase reclaimed land use. Winter cold stress seriously limits the growth and development of TDG and has become the bottleneck limiting the TDG planting industry. To investigate the defense mechanisms of TDG toward winter cold stress when grown on reclaimed land, a combined analysis of soil bacterial communities, metabolites, and physicochemical properties was conducted in this study. Significant differences were observed in the composition of soil bacterial communities, metabolites, and properties in soils of a cold-tolerant variety (A201201) compared with a cold-intolerant variety (B201810). The fresh weight (75.8% of tubers) and dry weight (73.6%) of A201201 were significantly higher than those of B201810. The 16S rRNA gene amplicon sequencing of soil bacteria showed that Gp5 (25.3%), Gemmatimonas (19.6%), Subdivision3 (16.7%), Lacibacterium (11.9%), Gp4 (11.8%), Gp3 (10.4%), Gp6 (7.0%), and WPS-1 (1.2%) were less common, while Chryseolinea (10.6%) were more common in A201201 soils than B201810 soils. Furthermore, linear discriminant analysis of effect size identified 35 bacterial biomarker taxa for both treatments. Co-occurrence network analyses also showed that the structures of the bacterial communities were more complex and stable in A201201 soils compared to B201810 soils. In addition, ultra-high-performance liquid chromatography coupled to mass spectrometry analysis indicated the presence of significantly different metabolites in the two soil treatments, with 10 differentially expressed metabolites (DEMs) (8 significantly upregulated by 9.2%-391.3% and 2 significantly downregulated by 25.1%-73.4%) that belonged to lipids and lipid-like molecules, organic acids and derivatives, and benzenoids. The levels of those DEMs were significantly correlated with the relative abundances of nine bacterial genera. Also, redundancy discriminant analysis revealed that the main factors affecting changes in the bacterial community composition were available potassium (AK), microbial biomass nitrogen (MBN), microbial biomass carbon (MBC), alkaline hydrolysis nitrogen (AHN), total nitrogen (TN), available phosphorus (AP), and soil organic matter (SOM). The main factors affecting changes in the metabolite profiles were AK, MBC, MBN, AHN, pH, SOM, TN, and AP. Overall, this study provides new insights into the TDG defense mechanisms involved in winter cold stress responses when grown on reclaimed land and practical guidelines for achieving optimal TDG production.IMPORTANCEChina has been undergoing rapid urbanization, and land reclamation is regarded as a viable option to balance occupation and compensation. In general, the quality of reclaimed land cannot meet plant or even cultivation requirements due to poor soil fertility and high gravel content. However, Tetrastigma hemsleyanum Diels & Gilg (TDG), extensively used in Chinese herbal medicine, can grow well in stony soils with few nutrients. So, to increase reclaimed land use, TDG has been cultivated on reclaimed lands in Zhejiang Province, China, recently. However, the artificial cultivation of TDG is often limited by winter cold stress. The aim of this study was to find out how TDG on reclaimed land deal with winter cold stress by looking at the bacterial communities, metabolites, and physicochemical properties of the soil, thereby guiding production in practice.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Su
- Institute of Environment, Resource, Soil and Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiang Zhou
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Yu Wang
- Qingliangfeng Lvyuan Vegetable Professional Cooperative, Hangzhou, China
| | - Songlin Ruan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Guo
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Herceg Romanić S, Jaćimović N, Mendaš G, Fingler S, Stipičević S, Jakšić G, Popović A, Jovanović G. Bedload sediment transport model for revealing the multi-year trend of polychlorinated biphenyl contamination in the river sediment (Kupa, Croatia). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8473-8487. [PMID: 37639040 DOI: 10.1007/s10653-023-01733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
This article investigated the multi-year polychlorinated biphenyl (PCB) burden of the sediment collected along the Kupa River flow in Croatia using the bedload sediment transport model. Kupa, as the natural border between Croatia and Slovenia, belongs to the water system Krupa (Slovenia) → Lahinja (Slovenia) → Kupa (Croatia) → Sava → Danube → Black Sea. From 1962 to 1985, the total quantity of waste calculated for pure PCBs, released by a capacitor manufacturer into the environment within various locations of the Krupa River in Slovenia, was 70 tons. Krupa River (Slovenia) has become one of the most PCB-polluted rivers in Europe, and consequently, PCBs have been detected in the Kupa River (Croatia). Model application revealed that contamination of the Kupa River (Croatia) started significantly earlier than 1983, when a high concentration of PCB was detected for the first time in the Krupa River (Slovenia), with probably significantly higher sediment concentrations at the upstream boundary of the Kupa. A slow concentration changes and PCB accumulation in the sediment should be expected downstream compared to the upstream boundary, governed mainly by high flow events. The PCBs in sediments from 2020/2021 are markedly different after the Lahinja confluence with Kupa (0.2-0.6 μg kg-1 vs. 1.4-34.3 μg kg-1). Measurements of PCBs in Kupa sediment suggest that the intake of PCB has not yet been completely stopped, which should be confirmed by detailed monitoring in the future. The contamination situation observed in the Kupa River represents an excellent example of the persistency of PCBs in the environment.
Collapse
Affiliation(s)
- Snježana Herceg Romanić
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, PO Box 291, 10001, Zagreb, Croatia
| | - Nenad Jaćimović
- Department of Hydraulic and Environmental Engineering, Faculty of Civil Engineering, Bulevar Kralja Aleksandra 73, 11000, Belgrade, Serbia
| | - Gordana Mendaš
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, PO Box 291, 10001, Zagreb, Croatia.
| | - Sanja Fingler
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, PO Box 291, 10001, Zagreb, Croatia
| | - Sanja Stipičević
- Institute for Medical Research and Occupational Health, Ksaverska Cesta 2, PO Box 291, 10001, Zagreb, Croatia
| | - Goran Jakšić
- Aquatika - Karlovac Freshwater Aquarium Public Institute, Ulica Branka Čavlovića Čavleka 1/A, 47000, Karlovac, Croatia
| | - Aleksandar Popović
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, 11000, Belgrade, Serbia
| | - Gordana Jovanović
- Institute of Physics Belgrade, National Institute of the Republic of Serbia, University of Belgrade, Pregrevica 118, 11080, Belgrade, Serbia
- Singidunum University, Danijelova 32, 11000, Belgrade, Serbia
| |
Collapse
|
7
|
Li C, Li G, Qi X, Yu Z, Abdallah Y, Ogunyemi SO, Zhang S, Ren H, Mohany M, S. Al-Rejaie S, Li B, Liu E. The Effects of Accompanying Ryegrass on Bayberry Trees by Change of Soil Property, Rhizosphere Microbial Community Structure, and Metabolites. PLANTS (BASEL, SWITZERLAND) 2023; 12:3669. [PMID: 37960028 PMCID: PMC10650151 DOI: 10.3390/plants12213669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023]
Abstract
As a subtropical and tropical tree, bayberry (Myrica rubra) is an important fruit tree grown commercially in southern China. Interestingly, our studies found that the fruit quality of bayberry with accompanying ryegrass was significantly improved, but its mechanism remains unclear. The aim of this study was to explore the mechanism of accompanying ryegrass on the beneficial effect of the fruit quality of bayberry by measuring the vegetative growth parameters, fruit parameters with economic impact, physical and chemical properties of rhizosphere soil, microbial community structure, and metabolites of the bayberry with/without ryegrass. Notably, the results revealed a significant difference between bayberry trees with and without accompanying ryegrass in fruit quality parameters, soil physical and chemical properties, microbial community structure, and metabolites. Compared with the control without accompanying ryegrass, the planting of ryegrass increased the titratable sugar, vitamin C, and titratable flavonoid contents of bayberry fruits by 2.26%, 28.45%, and 25.00%, respectively, and decreased the titratable acid contents by 9.04%. Furthermore, based on 16S and ITS amplicon sequencing of soil microflora, the accompanying ryegrass caused a 12.47% increment in Acidobacteriota while a 30.04% reduction in Actinobacteria was recorded, respectively, when compared with the bayberry trees without ryegrass. Redundancy discriminant analysis of microbial communities and soil properties indicated that the main variables of the bacterial community included available nitrogen, available phosphorus, exchangeable aluminum, and available kalium, while the main variables of the fungal community included exchangeable aluminum, available phosphorus, available kalium, and pH. In addition, the change in microbial community structure was justified by the high correlation analysis between microorganisms and secondary metabolites. Indeed, GC-MS metabolomics analysis showed that planting ryegrass caused a 3.83%-144.36% increase in 19 metabolites such as 1,3-Dipentyl-heptabarbital and carbonic acid 1, respectively, and a 23.78%-51.79% reduction of 5 metabolites compared to the bayberry trees without the accompanying ryegrass. Overall, the results revealed the significant change caused by the planting of ryegrass in the physical and chemical properties, microbiota, and secondary metabolites of the bayberry rhizosphere soils, which provides a new insight for the ecological improvement of bayberry.
Collapse
Affiliation(s)
- Changxin Li
- College of Plant Protection, Hunan Agriculture University, Changsha 410128, China;
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (S.O.O.)
| | - Gang Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Yasmine Abdallah
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (S.O.O.)
- Plant Pathology Department, Faculty of Agriculture, Minia University, Elminya 61519, Egypt
| | | | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (G.L.); (X.Q.); (Z.Y.); (S.Z.)
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Salim S. Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia; (M.M.); (S.S.A.-R.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.A.); (S.O.O.)
| | - Erming Liu
- College of Plant Protection, Hunan Agriculture University, Changsha 410128, China;
| |
Collapse
|
8
|
Modabberi S, Tashakor M, Rajabian N, Khorasanipour M, Esmaeilzadeh E, Ambrosino M, Cicchella D. Characterization and chemical fractionation of potentially toxic elements in soils of a pre-mining mineralized area; an evaluation of mobility and environmental risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:4795-4815. [PMID: 36941446 DOI: 10.1007/s10653-023-01537-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/08/2023] [Indexed: 05/25/2023]
Abstract
The environmental geochemical characterization of mineralized areas prior to mining does not receive adequate attention. This study shows trace element distribution in soils of two unexploited porphyry copper deposits located in Darreh-Zereshk and Ali-Abad in central Iran. The study was carried out using a compositional data analysis (CoDa) approach and combination of multivariate statistics and clustering techniques, which made it possible to identify the geochemical associations representing the different areas of the mineral deposits. The results of the chemical analyses, performed by ICP-MS, revealed high concentrations of those elements typically associated with porphyry deposits (As, Co, Cu, Mo, Ni, Pb, and Zn). The typical zonal pattern with an anomaly of Cu in central parts of the system and the prevalence of epithermal elements (Ag, Cd, Pb, and Zn) toward the peripheral propylitic alteration zone were recognized. The XRD analysis of selected soil samples allowed us to determine the distribution of elements within the different carrier minerals. Afterward, geochemical speciation patterns were investigated by a four-step sequential extraction procedure based on BCR protocol. The residual fraction consisting of primary resistant minerals was found to be the main host for As (73-93.4%), Cr (65.1-79.6%), Cu (54.3-81.4%), Ni (58.9-80.6%), V (75.9-88%), and Zn (56.5-60.5%) in the studied soils. Even though these elements are not readily leachable, their behavior and distribution could be largely affected by the mining operation and consequent changes in the physicochemical properties of the soil. The soluble-exchangeable phase was only less than 15% of the total extractions for all elements, except for Cd. With respect to the mobility factor (MF), Cd was the most mobile element followed by Sb and Pb. The measured risk assessment code (RAC) presented the following risk order: Cd > Sb > Ni > Co > Pb > Cr > As > Zn > Cu > V. This study reveals that the acquisition of pre-mining geo-environmental data of trace elements is very important to establish pre-mining backgrounds and baselines for evaluating post-mining or post-reclamation geochemical signatures.
Collapse
Affiliation(s)
- Soroush Modabberi
- School of Geology, College of Science, University of Tehran, Tehran, Iran.
| | - Mahsa Tashakor
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Najmeh Rajabian
- School of Geology, College of Science, University of Tehran, Tehran, Iran
| | - Mehdi Khorasanipour
- Department of Geology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Esmat Esmaeilzadeh
- Research and Development Division, Sarcheshmeh Copper Complex, Kerman, Iran
| | - Maurizio Ambrosino
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Domenico Cicchella
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| |
Collapse
|
9
|
Li X, Wang D, Lu Q, Tian Z, Yan J. Effects of SMOF on soil properties, root-zone microbial community structure, metabolites, and maize ( Zea mays L.) response on a reclaimed barren mountainous land. Front Microbiol 2023; 14:1181245. [PMID: 37303787 PMCID: PMC10248427 DOI: 10.3389/fmicb.2023.1181245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Maize is the largest crop produced in China. With the growing population and the rapid development of urbanization and industrialization, maize has been recently cultivated in reclaimed barren mountainous lands in Zhejiang Province, China. However, the soil is usually not suitable for cultivation because of its low pH and poor nutrient conditions. To improve soil quality for crop growth, various fertilizers, including inorganic, organic, and microbial fertilizers, were used in the field. Among them, organic fertilizer-based sheep manure greatly improved the soil quality and has been widely adopted in reclaimed barren mountainous lands. But the mechanism of action was not well clear. Methods The field experiment (SMOF, COF, CCF and the control) was carried out on a reclaimed barren mountainous land in Dayang Village, Hangzhou City, Zhejiang Province, China. To systematically evaluate the effect of SMOF on reclaimed barren mountainous lands, soil properties, the root-zone microbial community structure, metabolites, and maize response were investigated. Results Compared with the control, SMOF could not significantly affect the soil pH but caused 46.10%, 28.28%, 101.94%, 56.35%, 79.07%, and 76.07% increases in the OMC, total N, available P, available K, MBC, and MBN, respectively. Based on 16S amplicon sequencing of soil bacteria, compared with the control, SMOF caused a 11.06-334.85% increase in the RA of Ohtaekwangia, Sphingomonas, unclassified_Sphingomonadaceae, and Saccharibacteria and a 11.91-38.60% reduction in the RA of Spartobacteria, Gemmatimonas, Gp4, Flavisolibacter, Subdivision3, Gp6, and unclassified_Betaproteobacteria, respectively. Moreover, based on ITS amplicon sequencing of soil fungi, SMOF also caused a 42.52-330.86% increase in the RA of Podospora, Clitopilus, Ascobolus, Mortierella, and Sordaria and a 20.98-64.46% reduction in the RA of Knufia, Fusarium, Verticillium, and Gibberella, respectively, compared with the control. RDA of microbial communities and soil properties revealed that the main variables of bacterial and fungal communities included available K, OMC, available P, MBN, and available K, pH, and MBC, respectively. In addition, LC-MS analysis indicated that 15 significant DEMs belonged to benzenoids, lipids, organoheterocyclic compounds, organic acids, phenylpropanoids, polyketides, and organic nitrogen compounds in SMOF and the control group, among which four DEMs were significantly correlated with two genera of bacteria and 10 DEMs were significantly correlated with five genera of fungi. The results revealed complicated interactions between microbes and DEMs in the soil of the maize root zone. Furthermore, the results of field experiments demonstrated that SMOF could cause a significant increase in maize ears and plant biomass. Conclusions Overall, the results of this study showed that the application of SMOF not only significantly modified the physical, chemical, and biological properties of reclaimed barren mountainous land but also promoted maize growth. SMOF can be used as a good amendment for maize production in reclaimed barren mountainous lands.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Daoze Wang
- Hangzhou Service Center for Rural Revitalization, Hangzhou, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
10
|
Li X, Li D, Jiang Y, Xu J, Ren X, Zhang Y, Wang H, Lu Q, Yan J, Ahmed T, Li B, Guo K. The effects of microbial fertilizer based Aspergillus brunneoviolaceus HZ23 on pakchoi growth, soil properties, rhizosphere bacterial community structure, and metabolites in newly reclaimed land. Front Microbiol 2023; 14:1091380. [PMID: 36814570 PMCID: PMC9939755 DOI: 10.3389/fmicb.2023.1091380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction Pakchoi is an important leafy vegetable in China. Due to industrialization and urbanization, pakchoi has been cultivated in newly reclaimed mountainous lands in Zhejiang Province, China in recent years. However, immature soil is not suitable for plant growth and needs to be modified by the application of different organic fertilizer or microbial fertilizer based plant-growth-promoting microbe. In 2021, a high efficient plant-growth-promoting fungi (PGPF; Aspergillus brunneoviolaceus HZ23) was obtained from newly reclaimed land of Zhejiang Province, China. In order to valuate microbial fertilizer based A. brunneoviolaceus HZ23 (MF-HZ23) on pakchoi growth in immature soil, we investigated the effect of MF-HZ23 on soil properties, rhizosphere bacterial community structure, and metabolites of pakchoi rhizosphere soil samples. Methods The field experiment (four treatments, MF-HZ23, MF-ZH23 + CCF, CCF and the control) was completely randomly designed and carried out on newly reclaimed land in Yangqingmiao Village of Fuyang district, Hangzhou City, Zhejiang Province, China. In order to evaluate the influence of microbial fertilizer based A. brunneoviolaceus HZ23 on pakchoi in the newly reclaimed land, the number of pakchoi leaves, total fresh and dry weight of the seedlings was counted. In addition, the soil properties, including the pH, OMC, total N, AHN, available P, the genome sequencing, and metabolomics assay were also detected. Results The results revealed a significant difference between MF-HZ23 and the control in soil properties, bacterial community structure, and metabolites. Indeed, compared with the control, MF-HZ23 caused 30.66, 71.43, 47.31, 135.84, and 2099.90% increase in the soil pH, organic matter contents (OMC), total nitrogen (N), alkaline hydrolysis nitrogen (AHN), and available phosphorus (P), respectively. Meanwhile, MF-HZ23 caused 50.78, 317.47, and 34.40% increase in the relative abundance of Proteobacteria, Bacteroidota, and Verrucomicrobiota and 75.55, 23.27, 69.25, 45.88, 53.42, and 72.44% reduction in the relative abundance of Acidobacteriota, Actinobacteriota, Chloroflexi, Planctomycetota, Patescibacteria, and WPS-2, respectively, compared with the control based on 16S amplicon sequencing of soil bacteria. Furthermore, redundancy discriminant analysis (RDA) of bacterial communities and soil properties indicated that the main variables of bacterial communities included available P, AHN, pH, OMC, and total N. In addition, non-targeted metabolomics techniques (UHPLC-MS analysis) revealed that MF-HZ23 resulted in a great change in the kinds of metabolites in the rhizosphere soil. Indeed, in MF-HZ23 and the control group, there were six differentially expressed metabolites (DEMs) belong to organoheterocyclic compounds, organic acids and derivatives, organic nitrogen compounds, and these six DEMs were significantly positively correlated with 23 genus of bacteria, which showed complicated interactions between bacteria and DEMs in pakchoi rhizosphere soil. Conclutions Overall, the results of this study revealed significant modification in physical, chemical, and biological properties of pakchoi soil. Microbial fertilizer based PGPF A. brunneoviolaceus HZ23 (MF-HZ23) can be used as a good amendment for newly reclaimed land.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Dingyi Li
- Department of Biological Environment, Material and Environmental CollegeShanxi Jinzhong Institute of Technology, Jinzhong, China
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, China
| | - Jun Xu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Ya Zhang
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Hong Wang
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou, China,*Correspondence: Qiujun Lu, ✉
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou, China,Jianli Yan, ✉
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Kai Guo
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China,Kai Guo, ✉
| |
Collapse
|
11
|
Sidoruk M. Pollution and Potential Ecological Risk Evaluation of Heavy Metals in the Bottom Sediments: A Case Study of Eutrophic Bukwałd Lake Located in an Agricultural Catchment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2387. [PMID: 36767755 PMCID: PMC9915378 DOI: 10.3390/ijerph20032387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Metals are natural components of the earth's crust and are essential elements in the metabolism of fauna and flora. However, some metals at high concentrations may pose an ecological risk. Ecological risk analysis is one of the best methods for detecting potential metal pollution problems and its impact on ecosystems. This study analyzed the potential ecological risk and contamination from heavy metals (Cd, Cu, Pb, Ni, Cr, and Zn) in bottom sediments. It analyzed the spatial variability of heavy metal concentrations in the bottom sediments of Lake Bukwałd. The potential ecological risk index (RI) was used to assess the impact of pollutants accumulated in bottom sediments on the environment. In addition to RI, the geochemical index (Igeo) and contamination factor (CF) were also calculated. The pollutant loading index (PLI) was used to compare the average content of metals in the bottom sediments of lakes. The obtained results indicate that agricultural activity determined the quality of the bottom sediments of the reservoir and the spatial content of trace metals in them. Higher concentrations of elements were found in sediments collected from the agricultural catchment, whereas the lowest concentrations were observed near the outflow from the lake. The calculated RI value was 153.3, representing a moderate ecological threat risk. The concentration of cadmium had the greatest influence on the value of the indicator. The analysis of the scale of pollution of bottom sediments using the geochemical index showed that the bottom sediments in terms of the content of most of the trace metals tested are class II. In Cu and Zn, the Igeo index classified these deposits as class 0 and class I. The highest CF values were determined for Cr, Ni, and Pb and classified as significant contamination. The remaining elements were classified as moderately contaminated. The designated PLI was 2.49, suggesting immediate action to reduce pollution and prevent the degradation of the lake.
Collapse
Affiliation(s)
- Marcin Sidoruk
- Department of Water Resources and Climatology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 2, 10-719 Olsztyn, Poland
| |
Collapse
|
12
|
Skic K, Boguta P, Klimkowicz-Pawlas A, Ukalska-Jaruga A, Baran A. Effect of sorption properties on the content, ecotoxicity, and bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in bottom sediments. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130073. [PMID: 36209611 DOI: 10.1016/j.jhazmat.2022.130073] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) tend to accumulate in the sediment due to their high hydrophobicity. Despite PAHs have been the subject of several reviews, PAH sorption processes in bottom sediments has not been comprehensively discucorrelation coefficients between sorption parameters and contessed. Understanding the dependencies governing PAH sorption processes will allow to predict, monitor, and mitigate the ecological effects of PAH contamination and the associated risks to humans or wildlife. The objectives of the study were to assess the relationship between the sorption properties and the content of PAHs in bottom sediments and mussels. The PAH profile was dominated by higher-molecular hydrocarbons, which accounted for 73% of the total concentration of PAHs. Potentiometric studies revealed the steric-based PAH sorption mechanism that strongly depended on the presence of negatively dissociating structures such as carboxylic or phenolic functional groups. Based on the changes in Q8 values, the size-exclusion effect was more likely for 5- and 6-ring compounds. Pores < 5 µm, which had the largest share in the specific surface area, were the preferred sites for PAH sequestration and stabilization in bottom sediments. The availability of PAHs was reduced in sediments with high organic matter content. The PAH bioaccumulation factor significantly decreased with increasing TOC content in sediments. Higher mortality and growth inhibition of H. incongruens were observed in samples with high and medium TOC contents than in those with low TOC content.
Collapse
Affiliation(s)
- Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| | - Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, Lublin 20-290, Poland.
| | - Agnieszka Klimkowicz-Pawlas
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, Puławy 24-100, Poland.
| | - Aleksandra Ukalska-Jaruga
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, Puławy 24-100, Poland.
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| |
Collapse
|
13
|
Baran A, Tack FMG, Delemazure A, Wieczorek J, Tarnawski M, Birch G. Metal contamination in sediments of dam reservoirs: A multi-facetted generic risk assessment. CHEMOSPHERE 2023; 310:136760. [PMID: 36243080 DOI: 10.1016/j.chemosphere.2022.136760] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
The quality of bottom sediments is a key factor for many functions of dam reservoirs, which include water supply, flood control and recreation. The aim of the study was to combine different pollution indices in a critical generic risk assessment of metal contamination of bottom sediments. Both geochemical and ecological indices reflected that sediment contamination was dominated by Zn, Pb and Cd. The ecological risk indices suggested a high riks for all three metals, whereas human health risks were high for Pb and Cd. An occasional local contamination of sediments with Cr and Ni was revealed, although at levels not expected to cause concerns about potential ecological or health risk. Sediments from the Rybnik reservoir for Cu only revealed a high potential ecological risk. EF turned to be as being the most useful, whereas TRI (∑TRI) was the most important ecological index. All multi-element indices suggested similar trends, indicating that Zn, Pb and Cd taken altogether had the greatest impact on the level of sediment contamination and posed the greatest potential ecological and health risks to organisms. The use of sequential BCR extraction and ecotoxicity analyses allowed for a multi-facetted generic risk assessment of metals in sediments of dam reservoirs.
Collapse
Affiliation(s)
- Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, Krakow, Poland.
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Ghent University, Gent, Belgium.
| | - Antoine Delemazure
- Department of Green Chemistry and Technology, Ghent University, Gent, Belgium.
| | - Jerzy Wieczorek
- Department of Agricultural and Environmental Chemistry, Krakow, Poland.
| | - Marek Tarnawski
- University of Agriculture in Krakow, Department of Hydraulic Engineering and Geotechnics, Al. Mickiewicza 24/28, 30-059, Krakow, Poland.
| | - Gavin Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
14
|
Birch GF. A review and critical assessment of sedimentary metal indices used in determining the magnitude of anthropogenic change in coastal environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158129. [PMID: 36113803 DOI: 10.1016/j.scitotenv.2022.158129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The current critical review examines the application of 11 frequently used sedimentary metal indices in their ability to accurately assess the magnitude of human-induced change (enrichment) in the highly vulnerable and intensely developed coastal environment. The plethora and rapidly increasing number of sedimentary metal indices should, if not derived for special purposes, produce a consistent assessment on the basis that they use the same suite of metals and concentrations. Inconsistent numerical results produced by different index formulations should, when combined with their associated classification scheme, produce a common assessment of environmental condition. However, such a consistent outcome is seldom observed. Significant differences in assessment results are partly due to the historical evolution of indices and to the extraordinary diversity of background and reference values and materials being applied to account for pre-anthropogenic metal levels and confounding due to variable sediment characteristics. Size-normalised sample and background metal data used in the mCd and MEQ indices do not require reference values to account for textural variability and provide a quasi-direct measurement of enrichment with minimal computation (simple division). These priority indices should be combined into a single index (Enrichment Quotient, EQ). Results produced by the EF index were strongly correlated to mCd and MEQ and provide a similar classification and is recommended if normalised data are unavailable. Other indices assessed (MPI, PI, mPI, SEF, Igeo, PLI and Cf, original and current) provided a range of results, which either over- or under-estimated enrichment. The confusion concerning the choice and application of background and reference values in the assessment process is reviewed and their use in local and global assessment is clarified. Single- and combined-metal evaluations are recommended to provide detailed, local and more comprehensive assessments, respectively.
Collapse
Affiliation(s)
- G F Birch
- Geocoastal Research Group, School of Geosciences, The University of Sydney, NSW, Australia.
| |
Collapse
|
15
|
Gözel F, Belivermiş M, Sezer N, Kurt MA, Sıkdokur E, Kılıç Ö. Chronology of trace elements and radionuclides using sediment cores in Golden Horn Estuary, Sea of Marmara. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120359. [PMID: 36216182 DOI: 10.1016/j.envpol.2022.120359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Trace elements and radionuclides are substantial pollutants in marine environment since they are non-biodegradable and can be harmful even in minute concentrations. The Golden Horn estuary, where is an inlet of Bosphorus and two creeks, has been seriously polluted by untreated municipal and industrial dischargers for several decades. Since 1998, a large restoration and rehabilitation efforts have been undertaken in the estuary to mitigate the pollution. In the present study, four sediment cores were taken from the Golden Horn estuary to assess the historical accumulation of trace elements and radionuclides. Radiometric dating was implemented by 210Pb and 137Cs radionuclides and CRS model. Sedimentation rates were calculated in the range of 0.92-0.97 cm yr-1 in the estuary. The distribution of radionuclides (40K, 226Ra, and 228Ra) indicated some slight variations which ascribes to the geological characteristics of sediment along the cores. The concentrations of the anthropogenic elements were relatively higher in the intensive industrialization period. Their concentrations reduced in the latest 15-20 years thanks to the large-scale rehabilitation project in the estuary. The pollution indices, namely EF, Igeo, CF, and PLI showed that the concentrations of Cd, Cr, Cu, Pb, Sb, and Sn were above the world averages. Our results provide an insight on the long-term accumulation trends of trace element in the Golden Horn, which revealed that the estuary remains moderately polluted. We suggest that preventive countermeasures are much more important than post pollution remediation in the case of metallic pollution in the estuaries.
Collapse
Affiliation(s)
- Furkan Gözel
- Vocational School of Health Services, Bahçeşehir University, Beşiktaş, 34353, Istanbul, Türkiye; Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye.
| | - Murat Belivermiş
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye
| | - Narin Sezer
- Medical Services and Techniques Department, Istanbul Arel University, 34295, Sefaköy, Istanbul, Türkiye
| | - Mehmet Ali Kurt
- Department of Environmental Engineering, Faculty of Engineering, 33343, Mersin University, Mersin, Türkiye
| | - Ercan Sıkdokur
- Department of Molecular Biology and Genetics, Koç University, 34450, Istanbul, Türkiye
| | - Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, Vezneciler, 34134, Istanbul, Türkiye
| |
Collapse
|
16
|
Li X, Lu Q, Li D, Wang D, Ren X, Yan J, Ahmed T, Li B. Effects of Two Kinds of Commercial Organic Fertilizers on Growth and Rhizosphere Soil Properties of Corn on New Reclamation Land. PLANTS (BASEL, SWITZERLAND) 2022; 11:2553. [PMID: 36235419 PMCID: PMC9571666 DOI: 10.3390/plants11192553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Due to the development of urbanization and industrialization, a large amount of cultivated land resources has been occupied, while new reclamation land could expand the supply of usable land for food security. Organic fertilizers, such as crop residues, biosolids, sheep manure, mushroom residue, and biogas liquid, have been considered as an effective amendment in immature soil to improve its quality. Recently, two kinds of commercial organic fertilizers, pig manure and mushroom residue organic fertilizer (PMMR-OF), and sheep manure organic fertilizer (SM-OF), have been more regularly applied in agriculture production. However, the information available on effect of the two kinds of fertilizers on plant growth and rhizosphere soil properties in immature field is very limited. In order to evaluate PMMR-OF and SM-OF on immature soil, the soil quality and microbial community structure of corn rhizosphere soil samples under the two kinds of organic fertilizers at different concentrations was investigated. The results revealed a significant difference between commercial organic fertilizers (especially SM-OF) and chemical compound fertilizers (CCF) in soil properties and microbial community structure. Indeed, compared with the control based on16S and ITS amplicon sequencing of soil microflora, SM-OF caused a 10.79-19.52%, 4.33-4.39%,and 14.58-29.29% increase in Proteobacteria, Actinobacteria, and Ascomycota, but a 5.82-20.58%, 0.53-24.06%, 10.87-16.79%, 2.69-10.50%, 44.90-59.24%, 8.88-10.98%, and 2.31-21.98% reduction in Acidobacteria, Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Basidiomycota, Mortierellomycota, and Chytridiomycota, respectively. CCF caused a 24.11%, 23.28%, 38.87%, 19.88%, 18.28%, and 13.89% reduction in Acidobacteria, Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Basidiomycota, Chytridiomycota, but a 22.77%, 41.28%, 7.88%, and 19.39% increase in Proteobacteria, Actinobacteria, Ascomycota, and Mortierellomycota, respectively. Furthermore, redundancy discriminant analysis of microbial communities and soil properties of PMMR-OF, SM-OF, CCF, and the control treatments indicated that the main variables of bacterial and fungal communities included organic matter content, available P, and available K. Overall, the results of this study revealed significant changes under different fertilizer conditions (PMMR-OF, SM-OF, CCF, under different concentrations) in microbiota and chemical properties of corn soil. Commercial organic fertilizers, particularly SM-OF, can be used as a good amendment for the new reclamation land.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou 310020, China
| | - Dingyi Li
- Department of Biological Environment, Material and Environmental College, Shanxi Jinzhong Institute of Technology, Jinzhong 030600, China
| | - Daoze Wang
- Rural Vitalization Service Center of Hangzhou, Hangzhou 310020, China
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Mali M, Di Leo A, Giandomenico S, Spada L, Cardellicchio N, Calò M, Fedele A, Ferraro L, Milia A, Renzi M, Massara F, Granata T, Moruzzi L, Buonocunto FP. Multivariate tools to investigate the spatial contaminant distribution in a highly anthropized area (Gulf of Naples, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62281-62298. [PMID: 35397022 PMCID: PMC9464125 DOI: 10.1007/s11356-022-19989-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The Gulf of Naples located in a high anthropized coastal area is subjected to an infrastructural intervention for the installation of a submarine power pipeline. In order to evaluate the distribution of contaminants in the seafloor sediments, a preliminary study has been conducted in the area using multivariate techniques. The statistic approach was performed to gain insights on the occurrence of organic and inorganic contaminants within the area, aiming to identify the relevant hot spots. Three geographical sub-areas influenced by different contaminant association were recognized: Torre Annunziata (TA), Capri (CA), and middle offshore (MO). TA and CA resulted marked by a severe contamination pattern due to anthropogenic pressures. In addition, the influence of the depositional basin in governing the contamination trend has been pointed out. The supervised technique PLS_DA resulted to be a powerful tool in addressing the complexity of the huge dataset acquired during the marine survey, highlighting the main trends in the variability of quality indicators, orienting thus the deeper investigations during follow-up monitoring activities.
Collapse
Affiliation(s)
- Matilda Mali
- DICATECh, Politecnico Di Bari, via Orabona, 4 I-70125, Bari, Italy.
| | - Antonella Di Leo
- Water Research Institute, National Research Council, Taranto, Italy
| | | | - Lucia Spada
- Water Research Institute, National Research Council, Taranto, Italy
| | | | - Maria Calò
- Water Research Institute, National Research Council, Taranto, Italy
| | | | - Luciana Ferraro
- Institute of Marine Sciences, National Research Council, Naples, Italy
| | - Alfonsa Milia
- Institute of Marine Sciences, National Research Council, Naples, Italy
| | - Monia Renzi
- Department of Life Science, L. Giorgieri, 10, 34127, Trieste, Italy
- CONISMA - Consorzio Nazionale Interuniversitario Per Le Scienze del Mare, Roma , Italy
| | - Francesca Massara
- Terna S.P.A. - Rete Elettrica Nazionale Roma - Viale Egidio Galbani, 70, Roma, Italy
| | - Tommaso Granata
- CESI S.P.a. - Centro Elettronico Sperimentale Italiano, Milano, Italy
| | - Letizia Moruzzi
- CESI S.P.a. - Centro Elettronico Sperimentale Italiano, Milano, Italy
| | | |
Collapse
|
18
|
Ontiveros-Cuadras JF, Ruiz-Fernández AC, Pérez-Bernal LH, Santiago-Pérez S, González Y González S, Ávila E, Cardoso-Mohedano JG, Sanchez-Cabeza JA. Accumulation and fluxes of potentially toxic elements in a large coastal lagoon (southern Gulf of Mexico) from 210Pb sediment chronologies. MARINE POLLUTION BULLETIN 2022; 181:113839. [PMID: 35843162 DOI: 10.1016/j.marpolbul.2022.113839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Three 210Pb-dated sediment cores were used to evaluate the contamination degree and flux ratios of potentially toxic elements (PTEs; As, Cd, Cr, Cu, Ni, Pb, V, and Zn) in seagrass meadows from the northern margin of Términos Lagoon (TL), southern Gulf of Mexico. The sediments displayed minor Cd, Ni, V, and Zn enrichments but moderate to strong enrichment by As. Results from a chemometric analysis revealed that: 1) salinization and grain size, along with 2) the terrigenous inputs are the major factors influencing the PTEs accumulation. The historical trends of PTEs flux ratios nearly follow the large-scale land-use changes around TL, linked to the growth of the Mexican oil industry in the area since the 1970s. Our findings showed the critical role of seagrass meadows as PTEs sinks. This information is useful for decision-makers to develop restoration projects for a vulnerable site within the largest coastal lagoon ecosystem in Mexico.
Collapse
Affiliation(s)
- Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Procesos Oceánicos y Costeros, Ciudad Universitaria, 04510 México City, Mexico.
| | - Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Libia Hascibe Pérez-Bernal
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| | - Susana Santiago-Pérez
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Procesos Oceánicos y Costeros, Ciudad Universitaria, 04510 México City, Mexico.
| | - Saraí González Y González
- Universidad Nacional Autónoma de México, Facultad de Ciencias, Ciencias de la Tierra, Ciudad Universitaria, 04510 México City, Mexico.
| | - Enrique Ávila
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Carr. Carmen-Puerto Real km. 9.5, 24157 Ciudad del Carmen, Mexico.
| | - José Gilberto Cardoso-Mohedano
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Estación El Carmen, Carr. Carmen-Puerto Real km. 9.5, 24157 Ciudad del Carmen, Mexico.
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Calz. Joel Montes Camarena s/n, 82040 Mazatlán, Mexico.
| |
Collapse
|
19
|
Li X, Lu Q, Li D, Wang D, Ren X, Yan J, Ahmed T, Li B. Effects of Different Microbial Fertilizers on Growth and Rhizosphere Soil Properties of Corn in Newly Reclaimed Land. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11151978. [PMID: 35956458 PMCID: PMC9370191 DOI: 10.3390/plants11151978] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/27/2023]
Abstract
Land reclamation may expand the supply of usable land for food security. Soil microorganisms have been considered as an amendment in immature soil to improve its quality. However, different microbial fertilizers' effects on plant growth in immature soil have largely been unexplored. In order to evaluate the effects of different microbial fertilizers on immature soil, the soil quality and microbial community structure of corn rhizosphere soil samples under different microbial fertilizers were investigated. The results revealed a significant difference between microbial fertilizers (especially seaweed microbial fertilizer, SMF) and commercial chemical compound fertilizers in the soil properties and microbial community structure. Indeed, SMF caused a 486.21%, 23.17%, 21.08%, 38.33%, and 482.39% increase in Flavobacteriaceae, Planctomycetaceae, Chitinophagaceae, Acidobacteria_Gp3, and Mortierellaceae but a 23.82%, 18.66%, 42.36%, 29.12%, 81.97%, 42.19%, and 99.33% reduction in Cytophagales, Comamonadaceae, Rhodospirillaceae, Sinobacteaceae, Aspergillaceae, Myrmecridiaceae, and Typhulaceae, respectively; while CCF caused an 85.68% and 183.22% increase in Xanthomonadaceae and Mortierellaceae but a 31.29%, 36.02%, and 65.74% reduction in Cytophagales, Spartobacteria, and Cyphellophoraceae compared with the control based on 16S and ITS amplicon sequencing of soil microflora. Furthermore, redundancy discriminant analysis of the microbial communities and soil properties indicated that the main variables of the bacterial and fungal communities included exchangeable Ca, organic matter content, total N, and available P. Overall, the results of this study revealed significant changes under different fertilizer conditions in the microbiota and chemical properties of corn soil. Microbial fertilizers, particularly SMF and SM, can be used as a good amendment for newly reclaimed land.
Collapse
Affiliation(s)
- Xuqing Li
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (X.L.); (X.R.)
| | - Qiujun Lu
- Hangzhou Agricultural and Rural Affairs Guarantee Center, Hangzhou 310020, China
| | - Dingyi Li
- Department of Biological Environment, Material and Environmental College, Shanxi Jinzhong Institute of Technology, Jinzhong 030600, China;
| | - Daoze Wang
- Rural Vitalization Service Center of Hangzhou, Hangzhou 310020, China;
| | - Xiaoxu Ren
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (X.L.); (X.R.)
| | - Jianli Yan
- Institute of Vegetable, Hangzhou Academy of Agricultural Sciences, Hangzhou 310024, China; (X.L.); (X.R.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.A.); (B.L.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (T.A.); (B.L.)
| |
Collapse
|
20
|
Varma K, Jha PK, Mukherjee S, Singhal A, Kumar M. Provenances, preponderances, and distribution of humic acids and organic pollutants in hydro-geosphere: The co-existence, interaction and isotopic biomarkers in the riverine ecosystem. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 313:114996. [PMID: 35395527 DOI: 10.1016/j.jenvman.2022.114996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/16/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
This paper aims to critically review the importance of geochemical fingerprinting and tracing using biomarkers and stable isotopes in the riverine ecosystem and depicts that isotopic ratios of δ13C, δ15N, and δ34S can be used for tracing pollution sources. Stable isotopes like carbon, hydrogen, nitrogen, oxygen, and sulfur are being used for this purpose, and their isotopic signatures are primarily used to distinguish close sources of organic matter through dual isotopes. The present review is articulated to bridge the critical research gaps of the previous and contemporary documented literature on the genesis and transport of OM between freshwater and marine systems. This review comprehensively provides methods and techniques in geochemical tracing and discusses the future directions to address the challenges of the current methods to enhance the knowledge about the source identification of organic matter in the riverine environment. Tracer geochemistry emphasizes the implications of elemental abundances and isotope ratio variations in geologic substances to track natural earth processes, anthropogenic contaminants, and geochemical signatures in the hydrologic system. The principal constituent of organic matter comprises humic substances like humic acid, fulvic acid, and humin, and these comprise 50-75% of the sediments and DOC in natural waters. Their structural and functional characterization is required to elucidate the transport and fate of organic matter, which are often influenced by several paleoenvironmental factors.
Collapse
Affiliation(s)
- Kriti Varma
- Centre of Environmental Studies, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pawan Kumar Jha
- Centre of Environmental Studies, University of Allahabad, Prayagraj, Uttar Pradesh, India.
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anjali Singhal
- Department of Botany, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Manish Kumar
- Sustainability Cluster, School for Engineering, University of Petroleum & Energy Studies, Dehradun, Uttrakhand, 248007, India.
| |
Collapse
|
21
|
Liu X, Sheng Y, Liu Q, Jiang M. Dissolved oxygen drives the environmental behavior of heavy metals in coastal sediments. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:297. [PMID: 35338431 DOI: 10.1007/s10661-022-09975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
In this study, the impacts of dissolved oxygen (DO) on dynamics concentrations of heavy metals (Cu, Cd, Cr, and Pb) from estuary sediments were investigated in a 49-day laboratory simulation. The exchange flux method, Bureau Communautaire de Référence (BCR) sequential extraction procedure, and risk assessment code (RAC) were used to analyze the behavior of heavy metals. The results indicated that oxic environments promoted the concentrations of Cu and Cd in overlying water compared to the anoxic environments. The exchange fluxes showed that the diffusion of Cu, Cd, Cr, and Pb from sediments was the predominant process in the first 9 days, and a metastable equilibrium state was gradually reached in the later period under anoxic conditions. However, oxic conditions extended the time required to reach metastable equilibrium for Cu over the sediment-water (overlying water) interface (SWI). Although the reducible fractions of Cu, Cd, and Pb accounted for a large proportion of their total levels, the release ability of Cu, Cd, and Pb was limited by the high content of sulfide under anoxic conditions. The RAC values indicated that anoxic environments increased the proportion of acid-soluble fraction. The information obtained from this study highlights the potential risk for re-release of heavy metal from sediments under different redox conditions.
Collapse
Affiliation(s)
- Xiaozhu Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Qunqun Liu
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ming Jiang
- Key Laboratory of Coastal Zone Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Catchment Soil Properties Affect Metal(loid) Enrichment in Reservoir Sediments of German Low Mountain Regions. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sediment management is a fundamental part of reservoir operation, but it is often complicated by metal(loid) enrichment in sediments. Knowledge concerning the sources of potential contaminants is therefore of important significance. To address this issue, the concentrations and the mobile fractions of metal(loid)s were determined in the sediments and the respective catchment areas of six reservoirs. The results indicate that reservoirs generally have a high potential for contaminated sediment accumulation due to preferential deposition of fine particles. The median values of the element-specific enrichment factor (EF) demonstrates slight enrichments of arsenic (EF: 3.4), chromium (EF: 2.8), and vanadium (EF: 2.9) for reservoir sediments. The enrichments of cadmium (EF: 8.2), manganese (EF: 3.9), nickel (EF: 4.8), and zinc (EF: 5.0) are significantly higher. This is enabled by a diffuse element release from the soils into the impounded streams, which is particularly favored by soil acidity. Leaching from the catchment soils partially enriches elements in stream sediments before their fine-grained portions in particular are deposited as reservoir sediment. We assume that this effect is of high relevance especially for reservoirs impounding small streams with forested catchments and weakly acid buffering parent material of soil formation.
Collapse
|
23
|
Boguta P, Skic K, Baran A, Szara-Bąk M. The influence of the physicochemical properties of sediment on the content and ecotoxicity of trace elements in bottom sediments. CHEMOSPHERE 2022; 287:132366. [PMID: 34597638 DOI: 10.1016/j.chemosphere.2021.132366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/07/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The sorption mechanisms of the trace elements in bottom sediment are not fully understood. The study aim was to analyse the effect sorption capacity of bottom sediments on the content of trace elements and the bottom sediment ecotoxicity. The study found higher content of trace elements caused higher potential toxicity of bottom sediments. However, the PCA analysis indicated that ecotoxicity to Heterocypris incongruens was not related to the trace element content in the sediments. It was found that some of the physicochemical properties of bottom sediments determine the behavior of the test organism. The study revealed a strong relationships between the properties of bottom sediments and trace element sorption, which results from significant differences in the carbonate and organic matter contents. The obtained relationships showed a significant role in trace element sorption of negatively dissociating functional groups (carboxyl, phenolic, alcohol, and carbonyl groups) of Cha, Cfa, Cnh and DOC fraction and of clay minerals. Positive correlation between the metal content and the volume of ultramicropores, cryptopores and residual pores suggest that these pore groups contain reactive sites capable of effective element sorption. In contrast, larger pores turned out to be of marginal importance in trace elements sorption, probably participating only in their migration within the bottom sediment structure. An understanding of the above factors will provide comprehensive information on the fate of trace elements in aquatic systems.
Collapse
Affiliation(s)
- Patrycja Boguta
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Kamil Skic
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| | - Magdalena Szara-Bąk
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| |
Collapse
|
24
|
Coordinated Development of Water Environment Protection and Water Ecological Carbon Sink in Baiyangdian Lake. Processes (Basel) 2021. [DOI: 10.3390/pr9112066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
“The Hebei Xiongan New Area Planning Outline” states that the carbon sink of the water body should be improved and the quality of Baiyangdian water should be improved by cleaning the sludge, but the treatment of endogenous pollution in the water body will release a large amount of carbon dioxide, which will reduce the carbon sink of Baiyangdian, which makes the improvement of water body quality and increasing carbon sink conflicting. In order to realize the coordinated development of Baiyangdian water quality improvement and carbon sink increase, this paper establishes the calculation model of the amount of sludge to be cleared to improve the unit water quality and the amount of carbon dioxide released by clearing the silt using the release flux and diffusion flux of nitrogen and phosphorus elements in the water body, and the relationship between the content of nitrogen and phosphorus elements, the depth of Baiyangdian sludge excavation and the amount of carbon dioxide released: as the content of nitrogen and phosphorus elements in the water decreases, the depth of sludge excavated to improve the unit water body increases, and the amount of carbon dioxide released gradually increases. As the nitrogen and phosphorus content in the water decreases, the depth of dredged sludge to improve the quality of the water body increases, the carbon dioxide released gradually increases, and when the nitrogen and phosphorus concentration reaches 0.18 g/m3 and 0.6 g/m3 respectively, the carbon dioxide released will increase exponentially. Thus, we propose countermeasures to improve the water quality of Baiyangdian and increase the carbon sink capacity: we can improve the water quality by reasonable dredging before the water quality reaches poor category 3; we can achieve the dual goals of improving the water quality and increasing the carbon sink by increasing the reed planting area.
Collapse
|
25
|
Ren H, Wang H, Yu Z, Zhang S, Qi X, Sun L, Wang Z, Zhang M, Ahmed T, Li B. Effect of Two Kinds of Fertilizers on Growth and Rhizosphere Soil Properties of Bayberry with Decline Disease. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112386. [PMID: 34834750 PMCID: PMC8624721 DOI: 10.3390/plants10112386] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 05/14/2023]
Abstract
Decline disease causes severe damage to bayberry. However, the cause of this disease remains unclear. Interestingly, our previous studies found that the disease severity is related with the level of soil fertilizer. This study aims to explore the effect and mechanism of compound fertilizer (CF) and bio-organic fertilizer (OF) in this disease by investigating the vegetative growth, fruit characters, soil property, rhizosphere microflora and metabolites. Results indicated that compared with the disease control, CF and OF exhibited differential effect in plant healthy and soil quality, together with the increase in relative abundance of Burkholderia and Mortierella, and the reduction in that of Rhizomicrobium and Acidibacter, Trichoderma, and Cladophialophora reduced. The relative abundance of Geminibasidium were increased by CF (251.79%) but reduced by OF (13.99%). In general, the composition of bacterial and fungal communities in rhizosphere soil was affected significantly at genus level by exchangeable calcium, available phosphorus, and exchangeable magnesium, while the former two variables had a greater influence in bacterial communities than fungal communities. Analysis of GC-MS metabonomics indicated that compared to the disease control, CF and OF significantly changed the contents of 31 and 45 metabolites, respectively, while both fertilizers changed C5-branched dibasic acid, galactose, and pyrimidine metabolic pathway. Furthermore, a significant correlation was observed at the phylum, order and genus levels between microbial groups and secondary metabolites of bayberry rhizosphere soil. In summary, the results provide a new way for rejuvenation of this diseased bayberry trees.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Li Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (Z.Y.); (S.Z.); (X.Q.); (L.S.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.W.); (B.L.)
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
- Correspondence: (Z.W.); (B.L.)
| |
Collapse
|
26
|
Szara-Bąk M, Baran A, Klimkowicz-Pawlas A, Tkaczewska J, Wojtasik B. Mobility, ecotoxicity, bioaccumulation and sources of trace elements in the bottom sediments of the Rożnów reservoir. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4701-4718. [PMID: 33969453 PMCID: PMC8528782 DOI: 10.1007/s10653-021-00957-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
The aim of the study was to use of geochemical, chemical, ecotoxicological and biological indicators for a comprehensive assessment of ecological risks related to the mobility, ecotoxicity and bioavailability of trace elements in the bottom sediment of the Rożnów reservoir. The study found three elements deserving attention in the sediments: cadmium, nickel and chromium. Cadmium proved to be the most mobile and bioavailable, although the total cadmium content and geochemical indicators did not reveal any risk to organisms. Geochemical indicators showed that the sediments are contaminated with nickel and chromium, but both elements had a low bioaccumulation factor. Fractional analysis also revealed relatively low mobility of Cr and Ni and a higher potential risk of bioavailability for nickel. Most of the tested sediment samples had low toxicity in relation to the tested organisms. For H. incongruens, 11% of the samples were non-toxic, 50% of the samples had low toxicity, and 39% of the samples were toxic. For A. fischeri, no toxicity was found in 7% of the samples, low toxicity in 76% of the samples and toxicity in 17% of the sediment samples. The As, Cd, Cu content in the F1 fraction correlated significantly positively with the content of these metals in mussel tissues. Both biotesting and chemical analysis can reveal a potential risk to aquatic organisms. For a real assessment of the ecological risks associated with trace elements, it is necessary to use bioindicators taken from the environment and exposed to trace elements in situ.
Collapse
Affiliation(s)
- Magdalena Szara-Bąk
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland
| | - Agnieszka Klimkowicz-Pawlas
- Department of Soil Science Erosion and Land Protection, Institute of Soil Science and Plant Cultivation – State Research Institute, Czartoryskich 8, 24-100, Puławy, Poland
| | - Joanna Tkaczewska
- Department of Animal Product Processing, University of Agriculture in Krakow, Krakow, Poland
| | - Barbara Wojtasik
- Department of Genetics and Biosystematics, University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
27
|
Cavaliere M, Barrenechea Angeles I, Montresor M, Bucci C, Brocani L, Balassi E, Margiotta F, Francescangeli F, Bouchet VMP, Pawlowski J, Frontalini F. Assessing the ecological quality status of the highly polluted Bagnoli area (Tyrrhenian Sea, Italy) using foraminiferal eDNA metabarcoding. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:147871. [PMID: 34098278 DOI: 10.1016/j.scitotenv.2021.147871] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Morphology-based benthic foraminifera indices are increasingly used worldwide for biomonitoring the ecological quality of marine sediments. The recent development of foraminiferal eDNA metabarcoding offers a reliable, time-, and cost-effective alternative to morphology-based foraminiferal biomonitoring. However, the practical applications of these new tools are still highly limited. In the present study, we evaluate the response of benthic foraminifera and define the ecological quality status (EcoQS) in the Bagnoli area (Tyrrhenian Sea, Italy) based on a traditional morphology-based approach and eDNA metabarcoding. The geochemical data show that several sites in front of the former industrial plant contain higher concentrations of potentially toxic elements than the effect range median and are characterized by the highest total organic carbon (TOC) content, whereas the distantly located sites can be considered relatively low- to unpolluted. Significant differences (i.e., diversity and assemblage composition) in both morphological and molecular datasets were found between the relatively low- to unpolluted and the most polluted areas. Similarly, the selected ecological indices of both morphological and molecular datasets strikingly and congruently resulted in a clear separation following the environmental stress gradient. The molecular indices (i.e., g-exp(H'bc), g-Foram AMBI, and g-Foram AMBI-MOTUs) reliably identified poor-to-bad EcoQS in the polluted area in front of the former industrial plant. On the other hand, the Foram-AMBI based on morphology well identified an overall trend but seemed to overestimate the EcoQS if the traditional class boundaries were considered. The congruent and complementary trends between morphological and metabarcoding data observed in the case of the Bagnoli site further support the application of foraminiferal metabarcoding in routine biomonitoring to assess the environmental impacts of heavily polluted marine areas.
Collapse
Affiliation(s)
- M Cavaliere
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy.
| | - I Barrenechea Angeles
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland; Department of Earth Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - M Montresor
- Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | - C Bucci
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy
| | - L Brocani
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy
| | - E Balassi
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy
| | - F Margiotta
- Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| | - F Francescangeli
- University of Hamburg, Institute for Geology, Centre for Earth System Research and Sustainability, 20146 Hamburg, Germany
| | - V M P Bouchet
- University of Lille, CNRS, Univ. Littoral Côte d'Opale, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F 59000 Lille, France
| | - J Pawlowski
- Department of Genetics and Evolution, University of Geneva, 1205 Geneva, Switzerland; ID-Gene ecodiagnostics, Campus Biotech Innovation Park, 1202 Geneva, Switzerland; Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland
| | - F Frontalini
- Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino "Carlo Bo", 61029 Urbino, Italy
| |
Collapse
|
28
|
Solid-Phase Partitioning and Leaching Behavior of Pb and Zn from Playground Soils in Kabwe, Zambia. TOXICS 2021; 9:toxics9100248. [PMID: 34678944 PMCID: PMC8539481 DOI: 10.3390/toxics9100248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/24/2021] [Accepted: 09/30/2021] [Indexed: 12/03/2022]
Abstract
Zambia’s Kabwe mine wastes (KMWs) are responsible for contaminating the surrounding soil and dust in the Kabwe district. Unfortunately, these wastes arise from the historical mining activities of lead (Pb) and Zinc (Zn), which lacked adequate waste management strategies. As a result, potentially toxic elements (PTEs) (Pb and Zn) spread across the Kabwe district. To assess the soil pollution derived from previous mining activities, we studied topsoil samples (n = 8) from the school playground soils (SPs). In this study, the degree of contamination, geochemical partitioning, and leachability, coupled with the release and retention of Pb and Zn, were studied. The SPs were classified as extremely enriched (EF > 40) and contaminated with Pb (Igeo > 5). On average, Pb (up to 89%) and Zn (up to 69%) were bound with exchangeable, weak acid-soluble, reducible and oxidizable phases, which are considered as ’geochemically mobile’ phases in the environment. The leachates from the soils (n = 5) exceeded the Zambian standard (ZS: 190:2010) for Pb in potable drinking water (Pb < 0.01 mg/L). Furthermore, the spatial distribution of Pb and Zn showed a significant reduction in contents of Pb and Zn with the distance from the mine area.
Collapse
|
29
|
Ren H, Wang H, Qi X, Yu Z, Zheng X, Zhang S, Wang Z, Zhang M, Ahmed T, Li B. The Damage Caused by Decline Disease in Bayberry Plants through Changes in Soil Properties, Rhizosphere Microbial Community Structure and Metabolites. PLANTS (BASEL, SWITZERLAND) 2021; 10:2083. [PMID: 34685892 PMCID: PMC8540645 DOI: 10.3390/plants10102083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 05/03/2023]
Abstract
Decline disease causes serious damage and rapid death in bayberry, an important fruit tree in south China, but the cause of this disease remains unclear. The aim of this study was to investigate soil quality, microbial community structure and metabolites of rhizosphere soil samples from healthy and diseased trees. The results revealed a significant difference between healthy and diseased bayberry in soil properties, microbial community structure and metabolites. Indeed, the decline disease caused a 78.24% and 78.98% increase in Rhizomicrobium and Cladophialophora, but a 28.60%, 57.18%, 38.84% and 68.25% reduction in Acidothermus, Mortierella, Trichoderma and Geminibasidium, respectively, compared with healthy trees, based on 16S and ITS amplicon sequencing of soil microflora. Furthermore, redundancy discriminant analysis of microbial communities and soil properties indicated that the main variables of bacterial and fungal communities included pH, organic matter, magnesium, available phosphorus, nitrogen and calcium, which exhibited a greater influence in bacterial communities than in fungal communities. In addition, there was a high correlation between the changes in microbial community structure and secondary metabolites. Indeed, GC-MS metabolomics analysis showed that the healthy and diseased samples differed over six metabolic pathways, including thiamine metabolism, phenylalanine-tyrosine-tryptophan biosynthesis, valine-leucine-isoleucine biosynthesis, phenylalanine metabolism, fatty acid biosynthesis and fatty acid metabolism, where the diseased samples showed a 234.67% and 1007.80% increase in palatinitol and cytidine, respectively, and a 17.37-8.74% reduction in the other 40 metabolites compared to the healthy samples. Overall, these results revealed significant changes caused by decline disease in the chemical properties, microbiota and secondary metabolites of the rhizosphere soils, which provide new insights for understanding the cause of this bayberry disease.
Collapse
Affiliation(s)
- Haiying Ren
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Hongyan Wang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
- School of Horticulture and Landscape architecture, Yangtze University, Jingzhou 434023, China
| | - Xingjiang Qi
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Zheping Yu
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Xiliang Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Shuwen Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (H.R.); (H.W.); (X.Q.); (Z.Y.); (X.Z.); (S.Z.)
| | - Zhenshuo Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Muchen Zhang
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Temoor Ahmed
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (M.Z.); (T.A.)
| |
Collapse
|
30
|
Integrated Assessment of Affinity to Chemical Fractions and Environmental Pollution with Heavy Metals: A New Approach Based on Sequential Extraction Results. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168458. [PMID: 34444207 PMCID: PMC8391145 DOI: 10.3390/ijerph18168458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/29/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022]
Abstract
To assess the affinity degree of heavy metals (HMs) to geochemical phases, many indices with several limitations are used. Thus, this study aims to develop a new complex index for assessing contamination level and affinity to chemical fractions in various solid environmental media. For this, a new integrated approach using the chemical affinity index (CAF) is proposed. Comparison of CAF with %F on the literature examples on fractionation of HMs from soils, bottom sediments, atmospheric PM10, and various particle size fractions of road dust proved a less significant role of the residual HMs fraction and a greater contribution of the rest of the chemical fractions in the pollution of all studied environments. This fact is due to the normalization relative to the global geochemical reference standard, calculations of contribution of an individual element to the total pollution by all studied HMs, and contribution of the particular chemical fraction to the total HMs content taken into account in CAF. The CAF index also shows a more significant role in pollution and chemical affinity of mobile and potentially mobile forms of HMs. The strong point of CAF is the stability of the obtained HM series according to the degree of chemical affinity and contamination. Future empirical studies are necessary for the more precise assessment of CAF taking into account the spatial distribution of HMs content, geographic conditions, geochemical factors, the intensity of anthropogenic impact, environmental parameters (temperature, humidity, precipitation, pH value, the content of organic matter, electrical conductivity, particle size distribution, etc.). The combined use of CAF along with other indices allows a more detailed assessment of the strength of HMs binding to chemical phases, which is crucial for understanding the HMs’ fate in the environment.
Collapse
|
31
|
Marziali L, Guzzella L, Salerno F, Marchetto A, Valsecchi L, Tasselli S, Roscioli C, Schiavon A. Twenty-year sediment contamination trends in some tributaries of Lake Maggiore (Northern Italy): relation with anthropogenic factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38193-38208. [PMID: 33728603 DOI: 10.1007/s11356-021-13388-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 05/24/2023]
Abstract
Lake tributaries collect contaminants from the watershed, which may accumulate in lake sediments over time and may be removed through the outlets. DDx, PCB, PAH, PBDE, and trace element (Hg, As, Cd, Ni, Cu, Pb) contamination was analyzed over 2001-2018 period in sediments of the 5 main tributaries and of the outlet of Lake Maggiore (Northern Italy). Sediment cores were collected in two points of the lake, covering 1995-2017 period. Concentrations were compared to Sediment Quality Guidelines (PECs), potential sources and drivers (land use, population numbers, industrial activities, hydrology) were analyzed, and temporal trends were calculated (Mann-Kendall test). PCB, PBDE, Pb, Cd, and Hg contamination derives mainly from heavy urbanization and industry. Cu and Pb show a temporal decreasing trend in the basin, likely as result of improved wastewater treatments and change in use. A recent PAH increase in the whole lake may derive from a single point source. A legacy DDx and Hg industrial pollution is still present, due to high persistence in sediments. Values of DDx, Hg, Pb, and Cu above the PECs in lake sediments and/or in the outlet show potential risk for aquatic organisms. Results highlight the key role of tributaries in driving contamination from the watershed to the lake through sediment transport.
Collapse
Affiliation(s)
- Laura Marziali
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy.
| | - Licia Guzzella
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Franco Salerno
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Aldo Marchetto
- National Research Council - Water Research Institute (CNR-IRSA), Corso Tonolli 50, 28922, Verbania, VB, Italy
| | - Lucia Valsecchi
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Stefano Tasselli
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
- Department of Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Claudio Roscioli
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Alfredo Schiavon
- National Research Council - Water Research Institute (CNR-IRSA), via del Mulino 19, 20861, Brugherio, MB, Italy
- Department of Ecohydrology, IGB Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
32
|
Bibak M, Sattari M, Tahmasebi S, Kafaei R, Sorial GA, Ramavandi B. Trace and Major Elements Concentration in Fish and Associated Sediment-Seawater, Northern Shores of the Persian Gulf. Biol Trace Elem Res 2021; 199:2717-2729. [PMID: 32894397 DOI: 10.1007/s12011-020-02370-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/01/2020] [Indexed: 12/26/2022]
Abstract
The concentration of 19 metal and non-metal elements in two fishes (Liza subviridis and Sphyraena jello) and associated sediment-seawater from the northern part of the Persian Gulf was measured. The samples were gathered from two industrial ports, one commercial port, and one residential port. The metal accumulation in the muscle and liver of fishes was evaluated. Nickel (mean 362.07-712.83 μg/g) and chromium (mean 470.00-691.47 μg/g) in sediment and zinc (mean 9.01-31.15 μg/L) and arsenic (mean 18.22-22.14 μg/L) in seawater had the most abundancy among studied elements. The accumulation of elements in S. jello (a pelagic species) was higher than L. subviridis (a demersal species). For both species, major elements of S and Mg and trace elements of Fe, Al, Si, Zn, and Cu showed highest accumulation. Also, fish samples from Emam Hassan Port were more contaminated than other stations. Ecological indexes values have revealed a low to moderate elemental pollution of sediment and fish samples in the north part of the Persian Gulf.
Collapse
Affiliation(s)
- Mehdi Bibak
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Masoud Sattari
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
- Department of Marine Biology, the Caspian Basin Research Center, University of Guilan, Rasht, Iran
| | - Saeid Tahmasebi
- Department of Statistics, Persian Gulf University, Bushehr, Iran
| | - Raheleh Kafaei
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - George A Sorial
- Environmental Engineering Program, Department of Chemical and Environmental Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH, 45221-0012, USA
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
33
|
Awad M, Liu Z, Skalicky M, Dessoky ES, Brestic M, Mbarki S, Rastogi A, EL Sabagh A. Fractionation of Heavy Metals in Multi-Contaminated Soil Treated with Biochar Using the Sequential Extraction Procedure. Biomolecules 2021; 11:biom11030448. [PMID: 33802758 PMCID: PMC8002428 DOI: 10.3390/biom11030448] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/06/2021] [Accepted: 03/14/2021] [Indexed: 12/01/2022] Open
Abstract
Heavy metals (HMs) toxicity represents a global problem depending on the soil environment’s geochemical forms. Biochar addition safely reduces HMs mobile forms, thus, reducing their toxicity to plants. While several studies have shown that biochar could significantly stabilize HMs in contaminated soils, the study of the relationship of soil properties to potential mechanisms still needs further clarification; hence the importance of assessing a naturally contaminated soil amended, in this case with Paulownia biochar (PB) and Bamboo biochar (BB) to fractionate Pb, Cd, Zn, and Cu using short sequential fractionation plans. The relationship of soil pH and organic matter and its effect on the redistribution of these metals were estimated. The results indicated that the acid-soluble metals decreased while the fraction bound to organic matter increased compared to untreated pots. The increase in the organic matter metal-bound was mostly at the expense of the decrease in the acid extractable and Fe/Mn bound ones. The highest application of PB increased the organically bound fraction of Pb, Cd, Zn, and Cu (62, 61, 34, and 61%, respectively), while the BB increased them (61, 49, 42, and 22%, respectively) over the control. Meanwhile, Fe/Mn oxides bound represents the large portion associated with zinc and copper. Concerning soil organic matter (SOM) and soil pH, as potential tools to reduce the risk of the target metals, a significant positive correlation was observed with acid-soluble extractable metal, while a negative correlation was obtained with organic matter-bound metal. The principal component analysis (PCA) shows that the total variance represents 89.7% for the TCPL-extractable and HMs forms and their relation to pH and SOM, which confirms the positive effect of the pH and SOM under PB and BB treatments on reducing the risk of the studied metals. The mobility and bioavailability of these metals and their geochemical forms widely varied according to pH, soil organic matter, biochar types, and application rates. As an environmentally friendly and economical material, biochar emphasizes its importance as a tool that makes the soil more suitable for safe cultivation in the short term and its long-term sustainability. This study proves that it reduces the mobility of HMs, their environmental risks and contributes to food safety. It also confirms that performing more controlled experiments, such as a pot, is a disciplined and effective way to assess the suitability of different types of biochar as soil modifications to restore HMs contaminated soil via controlling the mobilization of these minerals.
Collapse
Affiliation(s)
- Mahrous Awad
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Department of Soils and Water, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Zhongzhen Liu
- Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture, Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China;
- Correspondence: (Z.L.); (A.E.S.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (M.B.)
| | - Eldessoky S. Dessoky
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.S.); (M.B.)
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
| | - Sonia Mbarki
- National Institute of Research in Rural Engineering, Water 13 and Forests (INRGREF). BP 10, Ariana 2080, Tunisia;
| | - Anshu Rastogi
- Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649 Poznan, Poland;
| | - Ayman EL Sabagh
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Correspondence: (Z.L.); (A.E.S.)
| |
Collapse
|
34
|
Zheng T, Dang C, Zhong S, Sun W, Chen Q. Spatiotemporal distribution, risk assessment and source appointment of metal(loid)s in water and sediments of Danjiangkou Reservoir, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:139-152. [PMID: 32785822 DOI: 10.1007/s10653-020-00684-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Danjiangkou Reservoir is the biggest artificial reservoir in China. But spatiotemporal distribution and risks of metal(loid)s in it were still unclear after the operation of Middle Route of South-to-North Water Diversion Project. In this study, distribution pattern of fifteen metal(loid)s in the Danjiangkou Reservoir was investigated. It was shown that metal(loid)s concentrations in the water were much lower than the drinking water quality standards in China, while Sb, Co, Cd and Cr were identified as the major pollutants in the sediments. Environment-metal(loid)s correlation analysis revealed total organic carbon, sulfate, temperature, dissolved oxygen and total phosphorus markedly controlled metal(loid)s distribution in the water, while organic carbon, total phosphorus and ammonia nitrogen shaped their distribution in the sediments. Results of risk assessment further revealed that the sediments of Danjiangkou Reservoir were minor to moderate polluted, and Sb, Cd exhibited the highest potential ecological risk. Additionally, source identification showed agricultural activities (25.3%), industrial and mining activities (17.5%) and natural processes (57.2%) were the dominant sources of metal(loid)s burden in the sediments. Overall, the results are of significance to understanding the ecological risk and pollution sources in the Danjiangkou Reservoir, which is essential for the effective management of metal(loid)s pollution.
Collapse
Affiliation(s)
- Tong Zheng
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Chenyuan Dang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Sining Zhong
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China
| | - Weiling Sun
- Qinghai University, State Key Lab Plateau Ecology and Agriculture, Xining, 810016, Qinghai, People's Republic of China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, No. 5 Yiheyuan Road, Beijing, 100871, People's Republic of China.
| |
Collapse
|
35
|
Baran A, Urbaniak M, Szara M, Tarnawski M. Concentration of dioxin and screening level ecotoxicity of pore water from bottom sediments in relation to organic carbon contents. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:57-66. [PMID: 33280055 PMCID: PMC7826296 DOI: 10.1007/s10646-020-02318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The information about concentrations of dioxin in pore water, ecotoxicity and DOC and TOC content can be key factor for the prediction of the fate of dioxins in the aquatic environment as well as an ecological risk assessment. The aims of the study were to assess the concentration of PCDDs/PCDFs and ecotoxicity of pore water and to compare above results in relation to the dissolved organic carbon (DOC) and total organic carbon (TOC) content. The concentration of dioxins was assessed using an enzyme-linked immunoassay test, while the ecotoxicity of pore water was determined using a crustacean Daphnia magna and bacteria Aliivibrio fischeri. The studies were conducted on two different dammed reservoirs Rożnów (catchment basin of an agricultural character) and Rybnik (catchment basin of an industrial character) located in southern Poland. The concentration of dioxins in pore water was between 8.56 to 90.92 ng EQ/L, with a significantly higher concentration in the pore water from the Rożnów Reservoir than the Rybnik Reservoir. The DOC content in pore water was from 30.29 to 63.02 mg/L (Rożnów Reservoir) and from 35.46 to 60.53 mg/L (Rybnik Reservoir). Higher toxic responses were recorded for A. fischeri than for D. magna. Moreover a significantly higher toxicity for both tested organisms was indicated in pore water from the Rożnów Reservoir. Besides of TOC and DOC, the fine fractions of the sediments were particularly important in the concentration of dioxin in pore water. The other pore water parameters, such as pH and EC can influence the toxicity of water for organisms. The result indicate complex relationships between the PCDD/F, ecotoxicity and DOC, TOC concentration in pore water and confirms that these parameters are important in terms of water environmental contamination.
Collapse
Affiliation(s)
- Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland.
| | - Magdalena Urbaniak
- European Regional Centre for Ecohydrology of the Polish Academy of Sciences, Tylna 3, 90-364, Lodz, Poland
| | - Magdalena Szara
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120, Krakow, Poland
| | - Marek Tarnawski
- Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059, Krakow, Poland
| |
Collapse
|
36
|
Szara M, Baran A, Klimkowicz-Pawlas A, Tarnawski M. Ecotoxicological and chemical properties of the rożnów reservoir bottom sediment amended with various waste materials. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111176. [PMID: 32763744 DOI: 10.1016/j.jenvman.2020.111176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/20/2020] [Accepted: 07/31/2020] [Indexed: 05/16/2023]
Abstract
In the study, an attempt was made to create innovative mixtures based on bottom sediment and various types of waste to be tested for use as a substrate in the cultivation of consumer and non-consumer plants. The aim of the study was to assess the chemical and ecotoxicological properties of the growing medium prepared on the basis of bottom sediment (BS) and different carbon rich waste (cellulose waste (CW), biomass ash (BA), coffee hulls (CH), and sludge from water treatment (SW)) with a combination of 75% bottom sediment and 25% waste material. The mixtures had deacidifying properties, significant content of total organic carbon (TOC), the total quantities of macro- and micronutrients, and good sorption properties. The study showed a low total content of heavy metals in the mixtures. Moreover, a low share of the mobile fraction (F1) of metals indicated a low risk related to the metals mobility and potential bioavailability. The highest toxic effect was found in the mixture of bottom sediment and cellulose waste. Heterocypris incongruens was the most sensitive organism to substances present in the tested mixtures. Due to its low toxicity, the mixture of bottom sediment and water treatment sludge (BS+SW) constituted a potentially suitable substrate for its environmental application in agriculture, horticulture (for consumer crops) or land reclamation. Other mixtures exhibited valuable chemical properties (BS + BA, BS + CH BS + CW), but ended up being eco-toxic to the organisms, excluding them from agricultural or horticultural use for consumer crops. The proposed technology, which includes the production of growing medium based on the use of bottom sediment, is a promising way of transforming the sediment from a waste material to a valuable resource, thus enhancing the environmental benefits.
Collapse
Affiliation(s)
- Magdalena Szara
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, Poland.
| | - Agnieszka Klimkowicz-Pawlas
- Institute of Soil Science and Plant Cultivation - State Research Institute, Department of Soil Science Erosion and Land Protection, Czartoryskich 8, 24-100, Puławy, Poland.
| | - Marek Tarnawski
- Department of Water Engineering and Geotechnics, University of Agriculture in Krakow, Poland.
| |
Collapse
|
37
|
Bondareva L, Fedorova N. The effect of humic substances on metal migration at the border of sediment and water flow. ENVIRONMENTAL RESEARCH 2020; 190:109985. [PMID: 32750556 DOI: 10.1016/j.envres.2020.109985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/02/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The speciation of radionuclides in bottom sediments of the Yenisei River, sampled in the near-field region of the nuclear fuel cycle enterprise, was studied. It has been established that most of 152Eu and 241Am radionuclides isolated by sequential chemical fractionation are in a bound state with the organic matter of bottom sediments (up to 35% of the total amount). In this case, the content of 152Eu and 241Am in depth of the bottom sediment layers is directly dependent on the change in the organic matter content. Bottom sediments containing a high content of organic substances (humic acids - HA and fulvic acids - FA) were studied. By the HA: FA ratio, the studied bottom sediments are related to a fulvate-humate type. When fractionating the organic matter of bottom sediments, it was revealed that the distribution occurred as follows (% of the total content): in the form of fulvates 152Eu - 53, 241Am-16, 60Co - 10, 137Cs-3; 241Am-28% associated with humin; in the form of organomineral compounds ~ 2-5%; in the form of organometallic complexes ~ 2-3%. Model experiments with addition of HA to the aqueous medium of the bottom sediments-water system. HA was previously isolated from bottom sediments and identified by IR Fourier spectroscopy. The introduction of HA significantly influenced the release of radionuclides and some metals from bottom sediments into the liquid medium. So, the content of 152Eu and 241Am radionuclides are intensively released into the water: from 0 to 198 ± 8 Bq·L-1 and 167 ± 7 Bq·L-1, respectively. The content of 4 K, 60Co, 137Cs was not considerable. The content of some analysed metals in the aqueous medium also increased significantly: 9 times for U6+ and 32 times for Cu2+.
Collapse
Affiliation(s)
- Lydia Bondareva
- Federal Scientific Center of Hygiene Named After F.F. Erisman, 171014, Semashko Street 2, Mytischi, Moscow Region, Russia.
| | - Nataliia Fedorova
- Federal Scientific Center of Hygiene Named After F.F. Erisman, 171014, Semashko Street 2, Mytischi, Moscow Region, Russia
| |
Collapse
|
38
|
Pastuszak J, Kopeć P, Płażek A, Gondek K, Szczerba A, Hornyák M, Dubert F. Antioxidant activity as a response to cadmium pollution in three durum wheat genotypes differing in salt-tolerance. OPEN CHEM 2020. [DOI: 10.1515/chem-2020-0113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractDurum wheat is commonly used in various food industry industries and cultivated worldwide. A serious problem with the species cultivation is its capability to accumulate cadmium (Cd) in the grains. The aim of this study is to investigate whether antioxidant activity may be used as a marker of Cd tolerance in durum wheat. The experiment involved three durum wheat genotypes/lines differing in salt tolerance. The plant response to Cd was appraised based on the activity of ascorbate–glutathione (AsA–GSH) cycle enzymes, ascorbate-to-dehydroascorbate ratio, reduced-to-oxidized glutathione ratio (GSH:GSSG), as well as Cd content in the seeds. The highest activity of dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase was noted in control plants of salt-sensitive cultivar “Tamaroi.” In the presence of Cd, activity of these enzymes was considerably reduced. “Tamaroi” plants demonstrated also the highest Cd content in the grain. In conclusion, we identified the cultivar “Tamaroi” as most susceptible to cadmium, and the level of durum wheat sensitivity to the element can be evaluated based on a significant decrease in the activity of AsA–GSH cycle enzymes and GSH:GSSG ratio.
Collapse
Affiliation(s)
- Jakub Pastuszak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Przemysław Kopeć
- Department of Cell Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
| | - Agnieszka Płażek
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Krzysztof Gondek
- Department of Agriculture and Environmental Chemistry, University of Agriculture, Al. A. Mickiewicza 21, 31-120 Kraków, Poland
| | - Anna Szczerba
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Marta Hornyák
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture, ul. Podłużna 3, 30-239 Kraków, Poland
| | - Franciszek Dubert
- Department of Cell Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland
| |
Collapse
|
39
|
Alves Martins MV, Hohenegger J, Martínez-Colón M, Frontalini F, Bergamashi S, Laut L, Belart P, Mahiques M, Pereira E, Rodrigues R, Terroso D, Miranda P, Geraldes MC, Villena HH, Reis T, Socorro OAA, de Mello E Sousa SH, Yamashita C, Rocha F. Ecological quality status of the NE sector of the Guanabara Bay (Brazil): A case of living benthic foraminiferal resilience. MARINE POLLUTION BULLETIN 2020; 158:111449. [PMID: 32753225 DOI: 10.1016/j.marpolbul.2020.111449] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The ecological quality status of the NE region of the Guanabara Bay (SE Brazil), one of the most important Brazilian embayments, is evaluated. For this purpose, sediment samples from in the inner of the Guanabara Bay (GB) were collected and analyzed (grain-size, mineralogy, geochemistry and living foraminifera). In this study, it is hypothesized that the potentially toxic elements (PTEs) concentrations, in solution and associated with organic matter (OMPTEs, potential nutrient source), may represent two potential pathways to impact benthic foraminifers. A multiproxy approach applied to complex statistical analyses and ecological indexes shows that the study area is, in general, eutrophic (with high organic matter and low oxygen content), polluted by PTEs and oil. As a consequence, foraminifera are not abundant and their assemblages are poorly diversified and dominated by some stress-tolerant species (i.e., Ammonia tepida, Quinqueloculina seminula, Cribroelphidium excavatum). The results allow us to identify a set of species sensitive to eutrophication and OMPTEs. Factors such as the increase of organic matter contents and OMPTEs and, in particular of Zn, Cd and Pb, the oxygen depletion and the presence of oil, altogether contribute to a marked reduction in the abundance and diversity of foraminifera. Ammonia-Elphidium Index and the Foram Stress Index confirm that the NE zone of GB is, in general, "heavily polluted", with "poor ecological quality status" and experiences suboxic to anoxic conditions. In light of it, special attention from public authorities and policymakers is required in order to take immediate actions to enable its environmental recovery.
Collapse
Affiliation(s)
- Maria Virgínia Alves Martins
- Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Departamento de Estratigrafia e Paleontologia, Av. São Francisco Xavier, 524, sala 2020A, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil; Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Johann Hohenegger
- Universität Wien, Institut für Paläontologie, Althanstrasse 17, A 1090 Wien, Austria.
| | - Michael Martínez-Colón
- Florida A&M University, School of the Environment, FL, USA, FSH Science Research Center, RM306B, 1515 South MLK Blvd, Tallahassee, FL 32307, USA.
| | - Fabrizio Frontalini
- Università degli Studi di Urbino "Carlo Bo", Dipartimento di Scienze Pure e Applicate (DiSPeA), Urbino, Italy.
| | - Sérgio Bergamashi
- Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Departamento de Estratigrafia e Paleontologia, Av. São Francisco Xavier, 524, sala 2020A, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil.
| | - Lazaro Laut
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Laboratório de Micropaleontologia - LabMicro, Av. Pasteur, 458, IBIO/CCET sala 500 Urca, 22.240-490, Rio de Janeiro, Brazil.
| | - Pierre Belart
- Universidade Federal do Estado do Rio de Janeiro - UNIRIO, Laboratório de Micropaleontologia - LabMicro, Av. Pasteur, 458, IBIO/CCET sala 500 Urca, 22.240-490, Rio de Janeiro, Brazil.
| | - Michel Mahiques
- Universidade de São Paulo, Instituto Ocenográfico, Departamento de Ocenografia Física, Brazil.
| | - Egberto Pereira
- Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Departamento de Estratigrafia e Paleontologia, Av. São Francisco Xavier, 524, sala 2020A, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil.
| | - Rene Rodrigues
- Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Departamento de Estratigrafia e Paleontologia, Av. São Francisco Xavier, 524, sala 2020A, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil.
| | - Denise Terroso
- Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Paulo Miranda
- Governo Regional dos Açores, Direção Regional dos Assuntos do Mar, Horta, Açores, Portugal.
| | - Mauro César Geraldes
- Universidade do Estado do Rio de Janeiro, Faculdade de Geologia, Departamento de Estratigrafia e Paleontologia, Av. São Francisco Xavier, 524, sala 2020A, Maracanã, 20550-013 Rio de Janeiro, RJ, Brazil.
| | - Hélio Heringer Villena
- Universidade do Estado do Rio de Janeiro, UERJ, Faculdade de Oceanografia, Rua São Francisco Xavier, 524, 4° andar, Bloco E, sala 4018, CEP 20550-900 Rio de Janeiro, RJ, Brazil.
| | - Tadeu Reis
- Universidade do Estado do Rio de Janeiro, UERJ, Faculdade de Oceanografia, Rua São Francisco Xavier, 524, 4° andar, Bloco E, sala 4018, CEP 20550-900 Rio de Janeiro, RJ, Brazil.
| | - Orangel Antonio Aguilera Socorro
- Universidade Federal Fluminense, Instituto de Biologia, Departamento de Biologia Marinha, Laboratorio de Paleoecologia e Mudanças Globais Campus de Gragoatá, Bloco M, CEP: 24210-200, Niterói, Rio de Janeiro, Brazil.
| | | | - Cintia Yamashita
- Universidade de São Paulo, Instituto Ocenográfico, Departamento de Ocenografia Física, Brazil.
| | - Fernando Rocha
- Universidade de Aveiro, GeoBioTec, Departamento de Geociências, Campus de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
40
|
Ranjbar Jafarabadi A, Dashtbozorg M, Raudonytė-Svirbutavičienė E, Riyahi Bakhtiari A. First report on polybrominated diphenyl ethers in the Iranian Coral Islands: Concentrations, profiles, source apportionment, and ecological risk assessment. CHEMOSPHERE 2020; 251:126397. [PMID: 32169708 DOI: 10.1016/j.chemosphere.2020.126397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
Coral reefs are challenged by multiple stressors due to the growing industrialization. Despite that, data on their environment are still scarce, and no research is yet performed on polybrominated diphenyl ethers in the Persian Gulf area. Seeking to fill in this gap, the present study aims to determine spatio-vertical distributions, source apportionment and ecological risk of polybrominated diphenyl ethers in the sediment cores and seawater samples from ten coral reef Islands in the Persian Gulf, Iran. Σ12PBDEs concentrations ranged from 0.42 ± 0.04 to 47.14 ± 1.35 ng g-1 dw in sediments, and from 1.17 ± 0.06 to 7.21 ± 1.13 ng L-1 in seawater. The vertical polybrominated diphenyl ethers distribution varied significantly among the sampling stations and different depths with a decreasing trend towards the surface and peaks around 12-20 cm. Both in the seawater and sediment samples, elevated polybrominated diphenyl ethers loadings were observed in highly industrialized areas. Deca-bromodiphenyl ether-209 was the predominant congener along the sediment cores, whereas Tetra-bromodiphenyl ether-47 and Penta-bromodiphenyl ether-100 dominated in seawater samples. Commercial Deca-bromodiphenyl ether mixture was found to be the major source of polybrominated diphenyl ethers. Penta-bromodiphenyl ether was revealed to be the major ecological risk driver in the study area: it posed medium to high-risk quotient to sediment dwelling organisms. This study indicated that coral reefs are playing an important role in retaining polybrominated diphenyl ethers and highlighted the need to manage polybrominated diphenyl ethers contamination in the coral reef environment.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Mehdi Dashtbozorg
- Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| |
Collapse
|
41
|
Jokinen SA, Jilbert T, Tiihonen-Filppula R, Koho K. Terrestrial organic matter input drives sedimentary trace metal sequestration in a human-impacted boreal estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137047. [PMID: 32084679 DOI: 10.1016/j.scitotenv.2020.137047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Coastal sediments play a fundamental role in processing anthropogenic trace metal inputs. Previous studies have shown that terrestrial organic matter (OM) is a significant vector for trace metal transport across the land-to-sea continuum, but little is known about the fate of land-derived metal-OM complexes in coastal sediments. Here, we use a comprehensive set of sediment pore water and solid-phase analyses to investigate how variations in terrestrial OM delivery since the 1950s have influenced trace metal accumulation and diagenesis in a human-impacted boreal estuary in the northern Baltic Sea. A key feature of our dataset is a strong correlation between terrestrial OM deposition and accumulation of metal-OM complexes in the sediments. Based on this strong coupling, we infer that the riverine input of terrestrial metal-OM complexes from the hinterland, followed by flocculation-induced settling in the estuary, effectively modulates sedimentary trace metal sequestration. While part of the trace metal pool associated with these complexes is efficiently recycled in the surface sediments during diagenesis, a substantial fraction is permanently buried as refractory metal-OM complexes or through incorporation into insoluble sulfides, thereby escaping further biological processing. These findings suggest that terrestrial OM input could play a more pivotal role in trace metal processing in coastal environments than hitherto acknowledged.
Collapse
Affiliation(s)
- Sami A Jokinen
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland; Lake and Marine Sediment Research Group, Department of Geography and Geology, University of Turku, FI-20014 Turku, Finland.
| | - Tom Jilbert
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland; Tvärminne Zoological Station, University of Helsinki, J.A. Palménintie 260, 10900 Hanko, Finland
| | - Rosa Tiihonen-Filppula
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| | - Karoliina Koho
- Aquatic Biogeochemistry Research Unit, Ecosystems and Environment Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, FI-00014 Helsinki, Finland
| |
Collapse
|