1
|
Yamagishi S, Yoshizawa H, Hosoya M, Seki M, Toi S, Kitagawa K. Brachial-Ankle Pulse Wave Velocity is Associated with Incident Dementia in Patients with Cerebral Small-Vessel Disease. J Atheroscler Thromb 2025; 32:58-69. [PMID: 38960633 DOI: 10.5551/jat.65042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
AIMS Increased arterial stiffness is associated with the severity of cerebral small-vessel disease (SVD) and may predict incident dementia. This study investigated the predictive value of brachial-ankle pulse wave velocity (ba-PWV) for dementia and cognitive decline. METHODS Data were obtained from a Japanese cohort of 478 patients who underwent ba-PWV measurement. Magnetic resonance imaging (MRI) was used to evaluate SVD severity. The Mini-Mental State Examination (MMSE) and the Japanese version of the Montreal Cognitive Assessment (MoCA-J) were used to assess the cognitive function. The primary outcome was the incidence of dementia. The secondary outcome was cognitive change during three years of follow-up. RESULTS The median age was 71 years old, 61% were men, and the median ba-PWV was 1787 cm/s. Dementia was diagnosed in 23 patients during a mean follow-up of 4.8 years. A Cox proportional hazard regression analysis revealed that the highest quartile (ba-PWV ≥ 2102 cm/s) was associated with a significantly higher risk of dementia than the first to third quartiles (ba-PWV ≤ 2099 cm/s) after adjusting for risk factors, the mean blood pressure, the MoCA-J score, and SVD severity (adjusted HR, 3.40; 95% CI, 1.24-9.34; P=0.018). Longitudinal cognitive changes in 192 patients indicated that ba-PWV was negatively related to changes in the MoCA-J score (r=-0.184, P=0.011). The decline in the MoCA-J score in the highest quartile was greater than that in the first to third quartiles after adjusting for risk factors, SVD severity, and baseline MoCA-J score (P=0.017). CONCLUSIONS ba-PWV was associated with incident dementia and cognitive decline, independent of age, risk factors, the baseline cognitive function, and the SVD severity.
Collapse
Affiliation(s)
- Sae Yamagishi
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Hiroshi Yoshizawa
- Department of Neurology, Tokyo Women's Medical University Hospital
- Department of Neurology, Tokyo Women's Medical University, Yachiyo Medical Center
| | - Megumi Hosoya
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Misa Seki
- Department of Neurology, Tokyo Women's Medical University Hospital
| | - Sono Toi
- Department of Neurology, Tokyo Women's Medical University Hospital
- Department of Medicine, Tokyo Women's Medical University, Adachi Medical Center
| | - Kazuo Kitagawa
- Department of Neurology, Tokyo Women's Medical University Hospital
- Department of Neurology, Suita Municipal Hospital
| |
Collapse
|
2
|
Aimagambetova B, Ariko T, Merritt S, Rundek T. Arterial stiffness measured by pulse wave velocity correlated with cognitive decline in hypertensive individuals: a systematic review. BMC Neurol 2024; 24:393. [PMID: 39415095 PMCID: PMC11481605 DOI: 10.1186/s12883-024-03905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Arterial stiffness is a degenerative modification in the arterial wall that significantly affects normal aging. Arterial hypertension is a major risk factor for cerebrovascular impairment. Pulse wave velocity (PWV) is an established gold standard for measuring arterial stiffness. Studies demonstrated that individuals with elevated blood pressure (BP) and PWV are more likely to experience worse cognitive decline compared to those with either condition alone. The aim of this review is to explore the clinical importance of arterial stiffness for cognitive function in older adults with hypertension. METHODS The systematic review was reported following the PRISMA 2020 guidelines and Cochrane protocol and was registered in NIHR PROSPERO. PubMed, Embase, Web of Science, CINAHL, and Cochrane databases were searched for relevant publications up to December 2022. Articles were filtered by age and type of study and only those including a sample size of at least 500 individuals were selected. Screening of abstracts and full-text review of selected articles were carried out through Covidence. RESULTS The full-text review included a total of 434 articles. Twenty-eight prospective studies have met the inclusion criteria. Selected studies used PWV as the main measurement of stiffness: 24 used carotid-femoral, 2 used brachial-ankle, 1 used aortic PWV, and 11 compared different measures. Studies demonstrated a strong association between increased BP and PWV with brain damage and cognitive deterioration among older adults. One study did not find an interaction with hypertension, while another study found that PWV but not BP was associated with cognitive decline. Few studies showed that the association between stiffness and cognitive outcomes was not significant after adjustment for BP. Several authors suggested that cognitive decline induced by stiff vasculature and hypertension benefited from antihypertensive therapy. CONCLUSION The results of this review demonstrated that arterial hypertension is an important factor linking arterial stiffness to cognitive health in older individuals. BP plays a crucial role in brain integrity, whereas PWV was shown to be a strong measure associated with cognitive decline. Together, they can lead to disabling cognitive outcomes. Early screening of stiffness, BP control, and compliance with treatment are essential for cerebrovascular disease prevention. TRIAL REGISTRATION NIHR PROSPERO registry ID: CRD42022379887 .
Collapse
Affiliation(s)
- Botagoz Aimagambetova
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA.
| | - Taylor Ariko
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| | - Stacy Merritt
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| | - Tatjana Rundek
- Department: University of Miami Miller School of Medicine, Evelyn F. McKnight Brain Institute, 1120 NW 14th St, Miami, Fl, 33136, USA
| |
Collapse
|
3
|
Heffernan KS, Wilmoth JM, London AS. Estimated Pulse Wave Velocity Is Associated With a Higher Risk of Dementia in the Health and Retirement Study. Am J Hypertens 2024; 37:909-915. [PMID: 39031044 DOI: 10.1093/ajh/hpae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024] Open
Abstract
BACKGROUND In this paper, we use the Health and Retirement Study (HRS) to examine the relationship between an estimated measure of pulse wave velocity (ePWV) and cognitive impairment with no dementia and dementia, respectively. METHODS We modeled the relationship between ePWV and cognitive status in 2006/2008 using data from 8,492 men and women (mean age 68.6 years) controlling for age, blood pressure, sociodemographic, and socioeconomic characteristics (sex, race and ethnicity, education, income, wealth), health behaviors (smoking and physical activity), body mass index (BMI), health status and related medication use (history of cardiovascular disease, diabetes, and stroke), and cerebrovascular disease (CVD)-related biomarkers (C-reactive protein, cystatin-C, hemoglobin A1c, total cholesterol, high-density lipoprotein [HDL] cholesterol). We assess cognitive function with the 27-item Langa-Weir Telephone Interview for Cognitive Status (TICS) scale. ePWV is derived from an equation based on participant age and resting blood pressure. RESULTS In a model that controlled for the constituent components of ePWV (age, age squared, systolic and diastolic blood pressure), ePWV is associated with increased odds of having cognitive impairment with no dementia (OR = 2.761) and dementia (OR = 6.344) relative to a group with no cognitive impairment or dementia. After controlling for the constituent components of ePWV, sociodemographic and socioeconomic characteristics, health behaviors, BMI, health status and medication use, and CVD-related biomarkers, ePWV remains significantly associated with dementia (OR = 3.969) but not cognitive impairment with no dementia (OR = 1.782). CONCLUSIONS These findings suggest that ePWV may be a novel research tool and biomarker of vascular aging that can be used in large, population-representative studies to examine cognitive aging and dementia risk.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York City, NY, USA
| | - Janet M Wilmoth
- Department of Sociology, Maxwell School of Citizen and Public Affairs, Syracuse University, Syracuse, NY, USA
- The Aging Studies Institute, Syracuse University, Syracuse, NY, USA
| | - Andrew S London
- Department of Sociology, Maxwell School of Citizen and Public Affairs, Syracuse University, Syracuse, NY, USA
- The Aging Studies Institute, Syracuse University, Syracuse, NY, USA
| |
Collapse
|
4
|
Han W, Zhang J, Xu Z, Yang T, Huang J, Beevers S, Kelly F, Li G. Could the association between ozone and arterial stiffness be modified by fish oil supplementation? ENVIRONMENTAL RESEARCH 2024; 249:118354. [PMID: 38325778 DOI: 10.1016/j.envres.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 10/10/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Arterial stiffness (AS) is an important predicting factor for cardiovascular disease. However, no epidemiological studies have ever explored the mediating role of biomarkers in the association between ozone and AS, nor weather fish oil modified such association. METHODS Study participants were drawn from the UK biobank, and a total of 95,699 middle-aged and older adults were included in this study. Ozone was obtained from Community Multiscale Air Quality (CMAQ) model matched to residential addresses, fish oil from self-reported intake, and arterial stiffness was based on device measurements. First, we applied a double robust approach to explore the association between ozone or fish oil intake and arterial stiffness, adjusting for potential confounders at the individual and regional levels. Then, how triglycerides, apolipoprotein B (Apo B)/apolipoprotein A (ApoA) and non-high-density lipoprotein cholesterol (Non-HDL-C) mediate the relationship between ozone and AS. Last, the modifying role of fish oil was further explored by stratified analysis. RESULTS The mean age of participants was 55 years; annual average ozone exposure was associated with ASI (beta:0.189 [95%CI: 0.146 to 0.233], P < 0.001), and compared to participants who did not consume fish oil, fish oil users had a lower ASI (beta: 0.061 [95%CI: -0.111 to -0.010], P = 0.016). The relationship between ozone exposure and AS was mediated by triglycerides, ApoB/ApoA, and Non-HDL-C with mediation proportions ranging from 10.90% to 18.30%. Stratified analysis showed lower estimates on the ozone-AS relationship in fish oil users (P = 0.011). CONCLUSION Ozone exposure was associated with higher levels of arterial stiffness, in contrast to fish oil consumption, which showed a protective association. The association between ozone exposure and arterial stiffness was partially mediated by some biomarkers. In the general population, fish oil consumption might provide protection against ozone-related AS.
Collapse
Affiliation(s)
- Wenxing Han
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jin Zhang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Zhihu Xu
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Teng Yang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Institute for Global Health and Development, Peking University, Beijing, China.
| | - Sean Beevers
- Environmental Research group, school of public health, Imperial college London, London, UK.
| | - Frank Kelly
- Environmental Research group, school of public health, Imperial college London, London, UK.
| | - Guoxing Li
- Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing, China; Environmental Research group, school of public health, Imperial college London, London, UK.
| |
Collapse
|
5
|
Dinh QN, Lo C, Zhang DW, Tran V, Gibson-Hughes T, Sheriff A, Diep H, Kim HA, Zhang SR, Barreto-Arce LJ, Jelinic M, Vinh A, Arumugam TV, Chan ST, Lim R, Drummond GR, Sobey CG, De Silva TM. Human amnion epithelial cell therapy reduces hypertension-induced vascular stiffening and cognitive impairment. Sci Rep 2024; 14:1837. [PMID: 38246932 PMCID: PMC10800338 DOI: 10.1038/s41598-024-52214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Vascular inflammation and fibrosis are hallmarks of hypertension and contribute to the development of cardiovascular disease and cognitive impairment. However, current anti-hypertensive drugs do not treat the underlying tissue damage, such as inflammation-associated fibrosis. Human amnion epithelial cells have several properties amenable for treating vascular pathology. This study tested the effect of amnion epithelial cells on vascular pathology and cognitive impairment during hypertension. Male C57Bl6 mice (8-12 weeks) were administered vehicle (saline; n = 58) or angiotensin II (0.7 mg/kg/d, n = 56) subcutaneously for 14 d. After surgery, a subset of mice were injected with 106 amnion epithelial cells intravenously. Angiotensin II infusion increased systolic blood pressure, aortic pulse wave velocity, accumulation of aortic leukocytes, and aortic mRNA expression of collagen subtypes compared to vehicle-infused mice (n = 9-11, P < 0.05). Administration of amnion epithelial cells attenuated these effects of angiotensin II (P < 0.05). Angiotensin II-induced cognitive impairment was prevented by amnion epithelial cell therapy (n = 7-9, P < 0.05). In the brain, amnion epithelial cells modulated some of the inflammatory genes that angiotensin II promoted differential expression of (n = 6, p-adjusted < 0.05). These findings suggest that amnion epithelial cells could be explored as a potential therapy to inhibit vascular pathology and cognitive impairment during hypertension.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Cecilia Lo
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - David Wong Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Vivian Tran
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tayla Gibson-Hughes
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ashleigh Sheriff
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Henry Diep
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Hyun Ah Kim
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shenpeng R Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Liz J Barreto-Arce
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Maria Jelinic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christopher G Sobey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - T Michael De Silva
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
6
|
Haidegger M, Lindenbeck S, Hofer E, Rodler C, Zweiker R, Perl S, Pirpamer L, Kneihsl M, Fandler-Höfler S, Gattringer T, Enzinger C, Schmidt R. Arterial stiffness and its influence on cerebral morphology and cognitive function. Ther Adv Neurol Disord 2023; 16:17562864231180715. [PMID: 37363185 PMCID: PMC10285591 DOI: 10.1177/17562864231180715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/03/2023] [Indexed: 06/28/2023] Open
Abstract
Background Recently, arterial stiffness has been associated with cerebral small vessel disease (SVD), brain atrophy and vascular dementia. Arterial stiffness is assessed via pulse wave velocity (PWV) measurement and is strongly dependent on arterial blood pressure. While circadian blood pressure fluctuations are important determinants of end-organ damage, the role of 24-h PWV variability is yet unclear. Objectives We here investigated the association between PWV and its circadian changes on brain morphology and cognitive function in community-dwelling individuals. Design Single-centre, prospective, community-based follow-up study. Methods The study cohort comprised elderly community-based participants of the Austrian Stroke Prevention Family Study which was started in 2006. Patients with any history of cerebrovascular disease or dementia were excluded. The study consists of 84 participants who underwent ambulatory 24-h PWV measurement. White matter hyperintensity volume and brain volume were evaluated by 3-Tesla magnetic resonance imaging (MRI). A subgroup of patients was evaluated for cognitive function using an extensive neuropsychological test battery. Results PWV was significantly related to reduced total brain volume (p = 0.013), which was independent of blood pressure and blood pressure variability. We found no association between PWV with markers of cerebral SVD or impaired cognitive functioning. Only night-time PWV values were associated with global brain atrophy (p = 0.005). Conclusions This study shows a relationship of arterial stiffness and reduced total brain volume. Elevations in PWV during night-time are of greater importance than day-time measures.
Collapse
Affiliation(s)
| | - Simon Lindenbeck
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Edith Hofer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Christina Rodler
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Robert Zweiker
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Sabine Perl
- Division of Cardiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Lukas Pirpamer
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Markus Kneihsl
- Department of Neurology, Medical University of Graz, Graz, Austria
| | | | - Thomas Gattringer
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
7
|
Tomoto T, Verma A, Kostroske K, Tarumi T, Patel NR, Pasha EP, Riley J, Tinajero CD, Hynan LS, Rodrigue KM, Kennedy KM, Park DC, Zhang R. One-year aerobic exercise increases cerebral blood flow in cognitively normal older adults. J Cereb Blood Flow Metab 2023; 43:404-418. [PMID: 36250505 PMCID: PMC9941859 DOI: 10.1177/0271678x221133861] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 09/04/2022] [Indexed: 02/16/2023]
Abstract
The impact of aerobic exercise training (AET) on cerebral blood flow (CBF) regulation remains inconclusive. This study investigated the effects of one-year progressive, moderate-to-vigorous AET on CBF, central arterial stiffness, and cognitive performance in cognitively normal older adults. Seventy-three older adults were randomly assigned to AET or stretching-and-toning (SAT, active control) intervention. CBF was measured with 2D duplex ultrasonography. Central arterial stiffness, measured by carotid β-stiffness index, was assessed with the ultrasonography and applanation tonometry. Cerebrovascular resistance (CVR) was calculated as mean arterial pressure divided by CBF. A cognitive battery was administered with a focus on memory and executive function. Cardiorespiratory fitness was measured by peak oxygen consumption (V ˙ O2peak). One-year AET increased V ˙ O2peak and CBF and decreased CVR and carotid β-stiffness index. In the AET group, improved V ˙ O2peak was correlated with increased CBF (r = 0.621, p = 0.001) and decreased CVR (r = -0.412, p = 0.037) and carotid β-stiffness index (r = -0.478, p = 0.011). Further, increased Woodcock-Johnson recall score was associated with decreased CVR (r = -0.483, p = 0.012) and carotid β-stiffness index (r = -0.498, p = 0.008) in AET group (not in SAT group). In conclusion, one-year progressive, moderate-to-vigorous aerobic exercise training increased CBF and decreased carotid arterial stiffness and CVR which were associated with improved memory function in cognitively normal older adults.
Collapse
Affiliation(s)
- Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National
Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki,
Japan
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Aryan Verma
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Kayla Kostroske
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Human Informatics and Interaction Research Institute, National
Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki,
Japan
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Graduate School of Comprehensive Human Sciences, University of
Tsukuba, Tsukuba, Ibaraki, Japan
| | - Neena R Patel
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
| | - Jonathan Riley
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Cynthia D Tinajero
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
| | - Linda S Hynan
- Department of Psychiatry, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Department of Population and Data Sciences, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| | - Karen M Rodrigue
- Center for Vital Longevity, School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Kristen M Kennedy
- Center for Vital Longevity, School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Denise C Park
- Center for Vital Longevity, School of Behavioral and Brain
Sciences, The University of Texas at Dallas, Dallas, Texas, USA
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health
Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern
Medical Center, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas
Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Sekikawa A, Wharton W, Butts B, Veliky CV, Garfein J, Li J, Goon S, Fort A, Li M, Hughes TM. Potential Protective Mechanisms of S-equol, a Metabolite of Soy Isoflavone by the Gut Microbiome, on Cognitive Decline and Dementia. Int J Mol Sci 2022; 23:11921. [PMID: 36233223 PMCID: PMC9570153 DOI: 10.3390/ijms231911921] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
S-equol, a metabolite of soy isoflavone daidzein transformed by the gut microbiome, is the most biologically potent among all soy isoflavones and their metabolites. Soy isoflavones are phytoestrogens and exert their actions through estrogen receptor-β. Epidemiological studies in East Asia, where soy isoflavones are regularly consumed, show that dietary isoflavone intake is inversely associated with cognitive decline and dementia; however, randomized controlled trials of soy isoflavones in Western countries did not generally show their cognitive benefit. The discrepant results may be attributed to S-equol production capability; after consuming soy isoflavones, 40-70% of East Asians produce S-equol, whereas 20-30% of Westerners do. Recent observational and clinical studies in Japan show that S-equol but not soy isoflavones is inversely associated with multiple vascular pathologies, contributing to cognitive impairment and dementia, including arterial stiffness and white matter lesion volume. S-equol has better permeability to the blood-brain barrier than soy isoflavones, although their affinity to estrogen receptor-β is similar. S-equol is also the most potent antioxidant among all known soy isoflavones. Although S-equol is available as a dietary supplement, no long-term trials in humans have examined the effect of S-equol supplementation on arterial stiffness, cerebrovascular disease, cognitive decline, or dementia.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Whitney Wharton
- School of Nursing and Medicine, Emory University, Atlanta, GA 30322, USA
| | - Brittany Butts
- School of Nursing and Medicine, Emory University, Atlanta, GA 30322, USA
| | - Cole V. Veliky
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Joshua Garfein
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jiatong Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Shatabdi Goon
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Annamaria Fort
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mengyi Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Timothy M. Hughes
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
9
|
Heffernan KS, Stoner L, Meyer ML, Loprinzi PD. Association Between Estimated Pulse Wave Velocity and Cognitive Performance in Older Black and White Adults in NHANES. J Alzheimers Dis 2022; 88:985-993. [PMID: 35754267 DOI: 10.3233/jad-220042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aging-associated cognitive decline is greater in non-Hispanic Black (NHB) adults than non-Hispanic White (NHW) adults. An important risk factor for cognitive decline with aging is arterial stiffening, though the importance to racial variation remains poorly understood. OBJECTIVE We examined the association of an estimate of arterial stiffness with cognitive function in a bi-racial sample of 60-85-year-old adults (N = 3,616, 26.5% NHB) enrolled in the National Health and Nutrition Examination Survey (NHANES) between 1999-2002 and 2011-2014. METHODS As a measure of vascular aging, pulse wave velocity was estimated (ePWV) using an equation incorporating age and mean arterial pressure and expressed as m/s. Using the digit symbol substitution test (DSST), cognitive function was expressed as the number of correctly matched symbols (out of 133) within 120 s. Linear regression models examined associations between ePWV and DSST. RESULTS In models that adjusted for sex, education, smoking, body mass index, history of cardiovascular disease, and hypertension, ePWV was inversely associated with DSST score in NHB adults (β= -3.47, 95% CI = -3.9 to -3.0; p < 0.001) and NHW adults (β= -3.51, 95% CI = -4.4 to -2.6; p < 0.001). CONCLUSION ePWV is inversely associated with a measure of cognitive function in older Black and White adults. ePWV may be a useful measure of vascular aging that can offer insight into cognitive aging.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Exercise Science, Syracuse University, Syracuse NY, USA
| | - Lee Stoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michelle L Meyer
- Department of Emergency Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Paul D Loprinzi
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, Oxford MS, USA
| |
Collapse
|
10
|
Pierce GL, Coutinho TA, DuBose LE, Donato AJ. Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology (Bethesda) 2022; 37:154-173. [PMID: 34779281 PMCID: PMC8977146 DOI: 10.1152/physiol.00035.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/09/2023] Open
Abstract
Aortic stiffness increases with advancing age, more than doubling during the human life span, and is a robust predictor of cardiovascular disease (CVD) clinical events independent of traditional risk factors. The aorta increases in diameter and length to accommodate growing body size and cardiac output in youth, but in middle and older age the aorta continues to remodel to a larger diameter, thinning the pool of permanent elastin fibers, increasing intramural wall stress and resulting in the transfer of load bearing onto stiffer collagen fibers. Whereas aortic stiffening in early middle age may be a compensatory mechanism to normalize intramural wall stress and therefore theoretically "good" early in the life span, the negative clinical consequences of accelerated aortic stiffening beyond middle age far outweigh any earlier physiological benefit. Indeed, aortic stiffness and the loss of the "windkessel effect" with advancing age result in elevated pulsatile pressure and flow in downstream microvasculature that is associated with subclinical damage to high-flow, low-resistance organs such as brain, kidney, retina, and heart. The mechanisms of aortic stiffness include alterations in extracellular matrix proteins (collagen deposition, elastin fragmentation), increased arterial tone (oxidative stress and inflammation-related reduced vasodilators and augmented vasoconstrictors; enhanced sympathetic activity), arterial calcification, vascular smooth muscle cell stiffness, and extracellular matrix glycosaminoglycans. Given the rapidly aging population of the United States, aortic stiffening will likely contribute to substantial CVD burden over the next 2-3 decades unless new therapeutic targets and interventions are identified to prevent the potential avalanche of clinical sequelae related to age-related aortic stiffness.
Collapse
Affiliation(s)
- Gary L Pierce
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa
| | - Thais A Coutinho
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Divisions of Cardiology and Cardiac Prevention and Rehabilitation, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Lyndsey E DuBose
- Division of Geriatrics, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anthony J Donato
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
- Department of Biochemistry, University of Utah, Salt Lake City, Utah
- Geriatric Research Education and Clinical Center, VA Salt Lake City, Salt Lake City, Utah
| |
Collapse
|
11
|
Birch AA, El-Bouri WK, Marchbanks RJ, Moore LA, Campbell-Bell CM, Kipps CM, Bulters DO. Pulsatile tympanic membrane displacement is associated with cognitive score in healthy subjects. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2022; 3:100132. [PMID: 36324393 PMCID: PMC9616339 DOI: 10.1016/j.cccb.2022.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/17/2022] [Accepted: 02/27/2022] [Indexed: 06/16/2023]
Abstract
To test the hypothesis that pulsing of intracranial pressure has an association with cognition, we measured cognitive score and pulsing of the tympanic membrane in 290 healthy subjects. This hypothesis was formed on the assumptions that large intracranial pressure pulses impair cognitive performance and tympanic membrane pulses reflect intracranial pressure pulses. 290 healthy subjects, aged 20-80 years, completed the Montreal Cognitive Assessment Test. Spontaneous tympanic membrane displacement during a heart cycle was measured from both ears in the sitting and supine position. We applied multiple linear regression, correcting for age, heart rate, and height, to test for an association between cognitive score and spontaneous tympanic membrane displacement. Significance was set at P < 0.0125 (Bonferroni correction.) A significant association was seen in the left supine position (p = 0.0076.) The association was not significant in the right ear supine (p = 0.28) or in either ear while sitting. Sub-domains of the cognitive assessment revealed that executive function, language and memory have been primarily responsible for this association. In conclusion, we have found that spontaneous pulses of the tympanic membrane are associated with cognitive performance and believe this reflects an association between cognitive performance and intracranial pressure pulses.
Collapse
Affiliation(s)
- Anthony A. Birch
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
| | - Wahbi K. El-Bouri
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- University of Southampton, Faculty of Engineering and Physical Sciences, Southampton, SO17 1BJ, UK
- Liverpool Centre for Cardiovascular Sciences, Department of Cardiovascular and Metabolic Medicine, University of Liverpool, Liverpool, UK
| | - Robert J. Marchbanks
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
| | - Laura A. Moore
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Cherith M. Campbell-Bell
- Neurological Physics Group, Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Christopher M. Kipps
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
- Department of Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Diederik O. Bulters
- University of Southampton, Faculty of Medicine, Southampton, SO17 1BJ, UK
- Department of Neurosurgery, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
12
|
Fico BG, Miller KB, Rivera-Rivera LA, Corkery AT, Pearson AG, Eisenmann NA, Howery AJ, Rowley HA, Johnson KM, Johnson SC, Wieben O, Barnes JN. The Impact of Aging on the Association Between Aortic Stiffness and Cerebral Pulsatility Index. Front Cardiovasc Med 2022; 9:821151. [PMID: 35224051 PMCID: PMC8863930 DOI: 10.3389/fcvm.2022.821151] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 01/25/2023] Open
Abstract
The central arteries dampen the pulsatile forces from myocardial contraction, limiting the pulsatility that reaches the cerebral vasculature, although there are limited data on this relationship with aging in humans. The purpose of this study was to determine the association between aortic stiffness and cerebral artery pulsatility index in young and older adults. We hypothesized that cerebral pulsatility index would be associated with aortic stiffness in older adults, but not in young adults. We also hypothesized that both age and aortic stiffness would be significant predictors for cerebral pulsatility index. This study included 23 healthy older adults (aged 62 ± 6 years) and 33 healthy young adults (aged 25 ± 4 years). Aortic stiffness was measured using carotid-femoral pulse wave velocity (cfPWV), while cerebral artery pulsatility index in the internal carotid arteries (ICAs), middle cerebral arteries (MCAs), and basilar artery were assessed using 4D Flow MRI. Cerebral pulsatility index was calculated as (maximum flow - minimum flow) / mean flow. In the combined age group, there was a positive association between cfPWV and cerebral pulsatility index in the ICAs (r = 0.487; p < 0.001), MCAs (r = 0.393; p = 0.003), and basilar artery (r = 0.576; p < 0.001). In young adults, there were no associations between cfPWV and cerebral pulsatility index in any of the arteries of interest (ICAs: r = 0.253; p = 0.156, MCAs: r = -0.059; p = 0.743, basilar artery r = 0.171; p = 0.344). In contrast, in older adults there was a positive association between cfPWV and cerebral pulsatility index in the MCAs (r = 0.437; p = 0.037) and basilar artery (r = 0.500; p = 0.015). However, the relationship between cfPWV and cerebral pulsatility index in the ICAs of the older adults did not reach the threshold for significance (r = 0.375; p = 0.078). In conclusion, age and aortic stiffness are significant predictors of cerebral artery pulsatility index in healthy adults. This study highlights the importance of targeting aortic stiffness in our increasingly aging population to reduce the burden of age-related changes in cerebral hemodynamics.
Collapse
Affiliation(s)
- Brandon G. Fico
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Kathleen B. Miller
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Leonardo A. Rivera-Rivera
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Adam T. Corkery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Andrew G. Pearson
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Nicole A. Eisenmann
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Anna J. Howery
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Howard A. Rowley
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Department of Radiology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin M. Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veteran's Hospital, Madison, WI, United States
| | - Oliver Wieben
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Jill N. Barnes
- Bruno Balke Biodynamics Laboratory, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Jill N. Barnes
| |
Collapse
|
13
|
Liu Q, Fang J, Cui C, Dong S, Gao L, Bao J, Li Y, Ma M, Chen N, He L. Association of Aortic Stiffness and Cognitive Decline: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2021; 13:680205. [PMID: 34248605 PMCID: PMC8261283 DOI: 10.3389/fnagi.2021.680205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 05/24/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Increased aortic stiffness has been found to be associated with cognitive function decline, but the evidence is still under debate. It is of great significance to elucidate the evidence in this debate to help make primary prevention decisions to slow cognitive decline in our routine clinical practice. Methods: Electronic databases of PubMed, EMBASE, and Cochrane Library were systematically searched to identify peer-reviewed articles published in English from January 1, 1986, to March 16, 2020, that reported the association between aortic stiffness and cognitive function. Studies that reported the association between aortic pulse wave velocity (PWV) and cognitive function, cognitive impairment, and dementia were included in the analysis. Results: Thirty-nine studies were included in the qualitative analysis, and 29 studies were included in the quantitative analysis. The aortic PWV was inversely associated with memory and processing speed in the cross-sectional analysis. In the longitudinal analysis, the high category of aortic PWV was 44% increased risk of cognitive impairment (OR 1.44; 95% CI 1.24–1.85) compared with low PWV, and the risk of cognitive impairment increased 3.9% (OR 1.039; 95% CI 1.005–1.073) per 1 m/s increase in aortic PWV. Besides, meta-regression analysis showed that age significantly increased the association between high aortic PWV and cognitive impairment risk. Conclusion: Aortic stiffness measured by aortic PWV was inversely associated with memory and processing speed and could be an independent predictor for cognitive impairment, especially for older individuals.
Collapse
Affiliation(s)
- Qian Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinghuan Fang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Chaohua Cui
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuju Dong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Lijie Gao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiajia Bao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yanbo Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Mengmeng Ma
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ning Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Li He
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Abstract
Arterial stiffness, a leading marker of risk in hypertension, can be measured at material or structural levels, with the latter combining effects of the geometry and composition of the wall, including intramural organization. Numerous studies have shown that structural stiffness predicts outcomes in models that adjust for conventional risk factors. Elastic arteries, nearer to the heart, are most sensitive to effects of blood pressure and age, major determinants of stiffness. Stiffness is usually considered as an index of vascular aging, wherein individuals excessively affected by risk factor exposure represent early vascular aging, whereas those resistant to risk factors represent supernormal vascular aging. Stiffness affects the function of the brain and kidneys by increasing pulsatile loads within their microvascular beds, and the heart by increasing left ventricular systolic load; excessive pressure pulsatility also decreases diastolic pressure, necessary for coronary perfusion. Stiffness promotes inward remodeling of small arteries, which increases resistance, blood pressure, and in turn, central artery stiffness, thus creating an insidious feedback loop. Chronic antihypertensive treatments can reduce stiffness beyond passive reductions due to decreased blood pressure. Preventive drugs, such as lipid-lowering drugs and antidiabetic drugs, have additional effects on stiffness, independent of pressure. Newer anti-inflammatory drugs also have blood pressure independent effects. Reduction of stiffness is expected to confer benefit beyond the lowering of pressure, although this hypothesis is not yet proven. We summarize different steps for making arterial stiffness measurement a keystone in hypertension management and cardiovascular prevention as a whole.
Collapse
Affiliation(s)
- Pierre Boutouyrie
- Faculté de Médecine, Université de Paris, INSERM U970, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, France (P.B.)
| | - Phil Chowienczyk
- King's College London British Heart Foundation Centre, Department of Clinical Pharmacology, St Thomas' Hospital, London, United Kingdom (P.C.)
| | - Jay D Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT (J.D.H.)
| | | |
Collapse
|
15
|
Suri S, Chiesa ST, Zsoldos E, Mackay CE, Filippini N, Griffanti L, Mahmood A, Singh-Manoux A, Shipley MJ, Brunner EJ, Kivimäki M, Deanfield JE, Ebmeier KP. Associations between arterial stiffening and brain structure, perfusion, and cognition in the Whitehall II Imaging Sub-study: A retrospective cohort study. PLoS Med 2020; 17:e1003467. [PMID: 33373359 PMCID: PMC7771705 DOI: 10.1371/journal.pmed.1003467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Aortic stiffness is closely linked with cardiovascular diseases (CVDs), but recent studies suggest that it is also a risk factor for cognitive decline and dementia. However, the brain changes underlying this risk are unclear. We examined whether aortic stiffening during a 4-year follow-up in mid-to-late life was associated with brain structure and cognition in the Whitehall II Imaging Sub-study. METHODS AND FINDINGS The Whitehall II Imaging cohort is a randomly selected subset of the ongoing Whitehall II Study, for which participants have received clinical follow-ups for 30 years, across 12 phases. Aortic pulse wave velocity (PWV) was measured in 2007-2009 (Phase 9) and at a 4-year follow-up in 2012-2013 (Phase 11). Between 2012 and 2016 (Imaging Phase), participants received a multimodal 3T brain magnetic resonance imaging (MRI) scan and cognitive tests. Participants were selected if they had no clinical diagnosis of dementia and no gross brain structural abnormalities. Voxel-based analyses were used to assess grey matter (GM) volume, white matter (WM) microstructure (fractional anisotropy (FA) and diffusivity), white matter lesions (WMLs), and cerebral blood flow (CBF). Cognitive outcomes were performance on verbal memory, semantic fluency, working memory, and executive function tests. Of 542 participants, 444 (81.9%) were men. The mean (SD) age was 63.9 (5.2) years at the baseline Phase 9 examination, 68.0 (5.2) at Phase 11, and 69.8 (5.2) at the Imaging Phase. Voxel-based analysis revealed that faster rates of aortic stiffening in mid-to-late life were associated with poor WM microstructure, viz. lower FA, higher mean, and radial diffusivity (RD) in 23.9%, 11.8%, and 22.2% of WM tracts, respectively, including the corpus callosum, corona radiata, superior longitudinal fasciculus, and corticospinal tracts. Similar voxel-wise associations were also observed with follow-up aortic stiffness. Moreover, lower mean global FA was associated with faster rates of aortic stiffening (B = -5.65, 95% CI -9.75, -1.54, Bonferroni-corrected p < 0.0125) and higher follow-up aortic stiffness (B = -1.12, 95% CI -1.95, -0.29, Bonferroni-corrected p < 0.0125). In a subset of 112 participants who received arterial spin labelling scans, faster aortic stiffening was also related to lower cerebral perfusion in 18.4% of GM, with associations surviving Bonferroni corrections in the frontal (B = -10.85, 95% CI -17.91, -3.79, p < 0.0125) and parietal lobes (B = -12.75, 95% CI -21.58, -3.91, p < 0.0125). No associations with GM volume or WMLs were observed. Further, higher baseline aortic stiffness was associated with poor semantic fluency (B = -0.47, 95% CI -0.76 to -0.18, Bonferroni-corrected p < 0.007) and verbal learning outcomes (B = -0.36, 95% CI -0.60 to -0.12, Bonferroni-corrected p < 0.007). As with all observational studies, it was not possible to infer causal associations. The generalisability of the findings may be limited by the gender imbalance, high educational attainment, survival bias, and lack of ethnic and socioeconomic diversity in this cohort. CONCLUSIONS Our findings indicate that faster rates of aortic stiffening in mid-to-late life were associated with poor brain WM microstructural integrity and reduced cerebral perfusion, likely due to increased transmission of pulsatile energy to the delicate cerebral microvasculature. Strategies to prevent arterial stiffening prior to this point may be required to offer cognitive benefit in older age. TRIAL REGISTRATION ClinicalTrials.gov NCT03335696.
Collapse
Affiliation(s)
- Sana Suri
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Scott T. Chiesa
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Enikő Zsoldos
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Clare E. Mackay
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Nicola Filippini
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Ludovica Griffanti
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Abda Mahmood
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Archana Singh-Manoux
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
- Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Université de Paris, Paris, France
| | - Martin J. Shipley
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Eric J. Brunner
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - John E. Deanfield
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Klaus P. Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Rosa G, Giannotti C, Martella L, Massa F, Serafini G, Pardini M, Nobili FM, Monacelli F. Brain Aging, Cardiovascular Diseases, Mixed Dementia, and Frailty in the Oldest Old: From Brain Phenotype to Clinical Expression. J Alzheimers Dis 2020; 75:1083-1103. [DOI: 10.3233/jad-191075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gianmarco Rosa
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Cardiovascular Diseases, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Giannotti
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lucia Martella
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Flavio Mariano Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health DINOGMI, Section of Psychiatry, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fiammetta Monacelli
- Department of Internal Medicine and Medical Specialties, DIMI, Section of Geriatrics, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | |
Collapse
|
17
|
Wang Y, Jiang C, Huang H, Liu N, Wang Y, Chen Z, Liang S, Wu M, Jiang Y, Wang X, Zhou T, Chen H, Zhang L, Li H. Correlation of Cerebral White Matter Lesions with Carotid Intraplaque Neovascularization assessed by Contrast-enhanced Ultrasound. J Stroke Cerebrovasc Dis 2020; 29:104928. [PMID: 32689582 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Carotid atherosclerotic plaque is closely associated with cerebral white matter lesions (WMLs), while intraplaque neovascularization (IPN) contributes significantly to arterial remodeling and plaque vulnerability. In this study, we aim to evaluate the correlation of carotid IPN with cerebral WMLs. METHODS The presence of IPN and WMLs were assessed by contrast-enhanced ultrasound (CEUS) and MRI respectively. IPN was evaluated utilizing semi-quantification visual grading scale and WMLs was divided according to Fazekas grading scale. We investigated the baseline data, Fazekas grades, and IPN grades among 269 participants. We explored the influences of each variable on Fazekas grades using ordinal logistic regression and evaluated the relationship between IPN grades and WMLs Fazekas grades. RESULTS Increased age (OR: 1.06, P<0.001), hypertension (OR: 2.17, P=0.002), cerebral infarction (OR: 1.74, P=0.046), and elevated carotid IPN grading were significantly associated with aggravated Fazekas grades (grade 2 or 3). To be specific, people having grade 3, 2, and 1 carotid IPN were 25.84 (P<0.001), 10.64 (P<0.001), and 5.96 (P=0.010) times as likely to have elevated Fazekas grades compared with those who having grade 0 carotid IPN. CONCLUSION Increased carotid IPN is independently correlated with aggravated cerebral WMLs.
Collapse
Affiliation(s)
- Yuxuan Wang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Chao Jiang
- Department of Public Health, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Huang
- Department of Ultrasound, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Niu Liu
- Department of Ultrasound, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yi Wang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhaoyao Chen
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Sen Liang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Minghua Wu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yajun Jiang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Xiaoxiao Wang
- GCP Center, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tingting Zhou
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hu Chen
- Department of Radiology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lin Zhang
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Hui Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China; First Clinical Medical School, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Ikram MA, Brusselle G, Ghanbari M, Goedegebure A, Ikram MK, Kavousi M, Kieboom BCT, Klaver CCW, de Knegt RJ, Luik AI, Nijsten TEC, Peeters RP, van Rooij FJA, Stricker BH, Uitterlinden AG, Vernooij MW, Voortman T. Objectives, design and main findings until 2020 from the Rotterdam Study. Eur J Epidemiol 2020; 35:483-517. [PMID: 32367290 PMCID: PMC7250962 DOI: 10.1007/s10654-020-00640-5] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/23/2020] [Indexed: 12/19/2022]
Abstract
The Rotterdam Study is an ongoing prospective cohort study that started in 1990 in the city of Rotterdam, The Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. The study focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. As of 2008, 14,926 subjects aged 45 years or over comprise the Rotterdam Study cohort. Since 2016, the cohort is being expanded by persons aged 40 years and over. The findings of the Rotterdam Study have been presented in over 1700 research articles and reports. This article provides an update on the rationale and design of the study. It also presents a summary of the major findings from the preceding 3 years and outlines developments for the coming period.
Collapse
Affiliation(s)
- M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André Goedegebure
- Department of Otorhinolaryngology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Brenda C T Kieboom
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Caroline C W Klaver
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Ophthalmology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Tamar E C Nijsten
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robin P Peeters
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank J A van Rooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Bruno H Stricker
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Trudy Voortman
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|