1
|
Ivaneev A, Brzhezinskiy A, Karandashev V, Fedyunina N, Ermolin M, Fedotov P. Nanoparticles of dust as an emerging contaminant in urban environments. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:367. [PMID: 39167245 DOI: 10.1007/s10653-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Due to very high mobility in the environment and penetration ability into living organisms, nanoparticles (NPs) of urban dust pose a potential threat to human health and urban ecosystems. Currently, data on the chemical composition of NPs of urban dust, their fate in the environment, and corresponding risks are rather limited. In the present work, NPs of deposited urban dust have been comprehensively studied for the first time; NPs isolated from 78 samples of dust collected in Moscow, the largest megacity in Europe, being taken as example. The elemental composition, potential sources as well as environmental, ecological, and health risks of NPs of urban dust are assessed. It is found that dust NPs are extremely enriched by Cu, Hg, Zn, Mo, Sb, and Pb, and can serve as their carrier in urban environments. No regularities in the spatial distribution of elements have been found, probably, due to high mobility of dust NPs. High ecological and health risks caused by dust NPs are demonstrated. Source apportionment study has evaluated one natural and two anthropogenic sources of elements in NPs of urban dust; the contribution of natural and anthropogenic sources being comparable. It is also shown that dust NPs may be considered as an important carrier of trace elements in urban aquatic systems. Additionally, the risks associated with NPs and bulk samples of dust have been compared. The observed risks associated with NPs are significantly higher.
Collapse
Affiliation(s)
- Alexandr Ivaneev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991.
| | - Anton Brzhezinskiy
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- Russian Biotechnological University, Moscow, Russia, 125080
| | - Vasily Karandashev
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- Institute of Microelectronics Technology and High-Purity Materials, Russian Academy of Sciences, Chernogolovka, Russia, 142432
| | - Natalia Fedyunina
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- National University of Science and Technology 'MISIS', Moscow, Russia, 119049
| | - Mikhail Ermolin
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
| | - Petr Fedotov
- Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Street, Moscow, Russia, 119991
- National University of Science and Technology 'MISIS', Moscow, Russia, 119049
| |
Collapse
|
2
|
Li F, Zhang G, Jinxu Y, Ding T, Liu CQ, Lang Y, Liu N, Song S, Shi Y, Ge B. Comprehensive source identification of heavy metals in atmospheric particulate matter in a megacity: A case study of Hangzhou. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121747. [PMID: 38991345 DOI: 10.1016/j.jenvman.2024.121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Megacities face significant pollution challenges, particularly the elevated levels of heavy metals (HMs) in particulate matter (PM). Despite the advent of interdisciplinary and advanced methods for HM source analysis, integrating and applying these approaches to identify HM sources in PM remains a hurdle. This study employs a year-long daily sampling dataset for PM1 and PM1-10 to examine the patterns of HM concentrations under hazy, clean, and rainy conditions in Hangzhou City, aiming to pinpoint the primary sources of HMs in PM. Contrary to other HMs that remained within acceptable limits, the annual average concentrations of Cd and Ni were found to be 20.6 ± 13.6 and 46.9 ± 34.8 ng/m³, respectively, surpassing the World Health Organization's limits by 4.1 and 1.9 times. Remarkably, Cd levels decreased on hazy days, whereas Ni levels were observed to rise on rainy days. Using principal component analysis (PCA), enrichment factor (EF), and backward trajectory analysis, Fe, Mn, Cu, and Zn were determined to be primarily derived from traffic emissions, and there was an interaction between remote migration and local emissions in haze weather. Isotope analysis reveals that Pb concentrations in the Hangzhou region were primarily influenced by emissions from unleaded gasoline, coal combustion, and municipal solid waste incineration, with additional impact from long-range transport; it also highlights nuanced differences between PM1 and PM1-10. Pb isotope and PCA analyses indicate that Ni primarily stemmed from waste incineration emissions. This explanation accounts for the observed higher Ni concentrations on rainy days. Backward trajectory cluster analysis revealed that southern airflows were the primary source of high Cd concentrations on clean days in Hangzhou City. This study employs a multifaceted approach and cross-validation to successfully delineate the sources of HMs in Hangzhou's PM. It offers a methodology for the precise and reliable analysis of complex HM sources in megacity PM.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| | - Gaoxiang Zhang
- College of Ecology, Lishui University, Lishui 323000, PR China
| | - Yifei Jinxu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tianzheng Ding
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Cong-Qiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, PR China
| | - Nuohang Liu
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yasheng Shi
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Baozhu Ge
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China.
| |
Collapse
|
3
|
Jabłońska-Czapla M, Grygoyć K. Elevated Urbanization-Driven Plant Accumulation of Metal(loid)s Including Arsenic Species and Assessment of the Kłodnica River Sediment Contamination. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:137-152. [PMID: 36385385 PMCID: PMC9834106 DOI: 10.1007/s00244-022-00967-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The impact of water and bottom sediment pollution of a river subjected to a strong industrial anthropogenic pressure of metal(loid) (including arsenic and its species) accumulation in riverbank plants such as Solidago virgaurea L., Phragmites L. and Urtica dioica L. was investigated. The high-performance liquid chromatography-inductively coupled plasma-mass spectrometry (HPLC-ICP-MS) technique was used to study organic and inorganic arsenic species in selected plants and their response to heavy metal and arsenic contamination. The modified BCR extraction results showed that arsenic was mainly bound to the mobile reducible and organic-sulfide fractions in the Kłodnica River bottom sediments. Research has shown that the bottom sediments of the Kłodnica River are contaminated with metals, including Pb, Zn, Ni, As, and among arsenic species, the As(V) form dominated quantitatively, with its highest concentration being 49.3 mg kg-1 and the organic species occurred extremely rarely. The highest concentration of arsenic, among the tested plants, occurred in Phragmites communis L. The evaluation of the bottom sediment pollution was performed using Sb/As factor, geoaccumulation index (Igeo), enrichment factor (EF) and pollution load index (PLI). The ability of the plant to assimilate metals from the substrate was studied by calculation of the bioaccumulation factor (BAF). Values of the Igeo change in a wide range from class 1 (uncontaminated to moderately polluted for Cu and Zn) at the first sampling point, to 5 (highly to extremely polluted for Ba and Fe) at the K4 sampling point. The Igeo results show an increase in the contamination with elements toward the runoff of the Kłodnica River.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland.
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering of the Polish Academy of Sciences, 34 M. Skłodowska-Curie Street, 41-819, Zabrze, Poland
| |
Collapse
|
4
|
Moniruzzaman M, Shaikh MAA, Saha B, Shahrukh S, Jawaa ZT, Khan MF. Seasonal changes and respiratory deposition flux of PM 2.5 and PM 10 bound metals in Dhaka, Bangladesh. CHEMOSPHERE 2022; 309:136794. [PMID: 36220426 DOI: 10.1016/j.chemosphere.2022.136794] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Due to rapid urbanization and fast economic development, aerosol pollution is a serious environmental issue, especially in Bangladesh. Based on bioaccessibility and respiratory deposition doses (RDD), health risks of PM2.5 and PM10 bound 15 (fifteen) metals were investigated at fourteen urban sites (roadside, marketplace, industrial, and commercial areas). Sampling campaigns were conducted over four seasons (winter, summer, rainy, and autumn) from December 2020 to November 2021. A beta attenuation mass analyzer measured particulate matter concentrations in ambient air. The metals in PM fractions were analyzed by X-ray fluorescence spectroscopy and inductively coupled plasma mass spectrometry (ICP-MS). The airborne trace metals (Cd, As, Zn, Pb, Cr, Cu, Ni) with high enrichment factors indicate anthropogenic sources. The positive matrix factorization (PMF) categorized these elements as originating from automobile exhaust, industrial emissions, and solid waste/coal combustion, whereas the geologic elements came from earth crust/soil dust. During the winter, most of the air mass trajectories arrived from India across the land (82%) and Indo Gangetic Plain (IGP) region to the sampling sites, which may have aided in the transport of pollutants. The deposition flux of metals illustrated that compared to PM2.5, PM10 deposited a higher amount of metals in the upper airways (81.96%). In comparison, PM2.5 accumulates more elevated amounts of metals in alveolar regions (11.77%), due to the ability of fine particles to penetrate deeper into the lower pulmonary region. Among age groups, an adult inhales a higher amount of metals than a child, on average 0.103 mg and 0.08 mg of metals per day via PM2.5, respectively. Acute health impacts are caused by the deposited cancer-causing metals in alveolar tissue, which circulates through the bloodstream and affects several organs. Prolonged exposure to these carcinogenic metals poses significant health risks.
Collapse
Affiliation(s)
- Mohammad Moniruzzaman
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh; Department of Chemistry, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Badhan Saha
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh
| | - Saif Shahrukh
- Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, 1205, Bangladesh; Department of Soil, Water and Environment, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Zarin Tasneem Jawaa
- Department of Environmental Science and Management, North South University, Dhaka, 1229, Bangladesh
| | - Md Firoz Khan
- Department of Environmental Science and Management, North South University, Dhaka, 1229, Bangladesh; School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
5
|
Faria T, Cunha-Lopes I, Pilou M, Housiadas C, Querol X, Alves C, Almeida SM. Children's exposure to size-fractioned particulate matter: Chemical composition and internal dose. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153745. [PMID: 35150685 DOI: 10.1016/j.scitotenv.2022.153745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
The health effects of the particulate matter (PM) depend not only on its aerodynamic diameter (AD) and chemical composition, but also on the time activity pattern of the individuals and on their age. The main objective of this work was to assess the exposure of children to aerosol particles by using personal instruments, to study the particle size and composition of the inhaled PM, and to estimate their transport and deposition into the human respiratory tract (HRT). The average daily PM2.5 exposure was 19 μg/m3 and the size fractions with the greatest contribution to PM2.5 concentrations were 1 < AD <2.5 μm and AD <0.25 μm. Results indicated a contribution of 9% from the mineral aerosol, 7.2% from anthropogenic sulphate, 6.7% from black carbon and 5% from anthropogenic trace elements to the daily exposure to PM2.5. The levels of mineral and marine elements increased with increasing particle size, while anthropogenic elements were present in higher concentrations in the finest particles. Particle size has been shown to influence the variability of daily dose deposited between the extrathoracic and alveolar-interstitial zones. On average, 3% of the PM deposited in the bronchial region, whereas 5% to 8% were found in the bronchiolar region. The level of physical activity had a significant contribution to the total daily dose.
Collapse
Affiliation(s)
- T Faria
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal.
| | - I Cunha-Lopes
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| | - M Pilou
- Thermal Hydraulics & Multiphase Flow Laboratory, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR "DEMOKRITOS", Athens, Greece
| | - C Housiadas
- Thermal Hydraulics & Multiphase Flow Laboratory, Institute of Nuclear and Radiological Science & Technology, Energy & Safety, NCSR "DEMOKRITOS", Athens, Greece
| | - X Querol
- Institute of Environmental Assessment and Water Research, Spanish Research Council, 08034 Barcelona, Spain
| | - C Alves
- Department of Environment, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - S M Almeida
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Lisbon, Portugal
| |
Collapse
|
6
|
Warren E, Charlton‐Perez C, Lean H, Kotthaus S, Grimmond S. Spatial variability of forward modelled attenuated backscatter in clear-sky conditions over a megacity: Implications for observation network design. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY. ROYAL METEOROLOGICAL SOCIETY (GREAT BRITAIN) 2022; 148:1168-1183. [PMID: 35915744 PMCID: PMC9313619 DOI: 10.1002/qj.4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 06/15/2023]
Abstract
Sensors that measure the attenuated backscatter coefficient (e.g., automatic lidars and ceilometers [ALCs]) provide information on aerosols that can impact urban climate and human health. To design an observational network of ALC sensors for supporting data assimilation and to improve prediction of urban weather and air quality, a methodology is needed. In this study, spatio-temporal patterns of aerosol-attenuated backscatter coefficient are modelled using Met Office numerical weather prediction (NWP) models at two resolutions, 1.5 km (UKV) and 300 m (London Model [LM]), for 28 clear-sky days and nights. Initially, attenuated backscatter coefficient data are analysed using S-mode principal component analysis (PCA) with varimax rotation. Four to seven empirical orthogonal functions (EOFs) are produced for each model level, with common EOFs found across different heights (day and night) for both NWP models. EOFs relate strongly to orography, wind, and emissions source location, highlighting these as critical controls of attenuated backscatter coefficient spatial variability across the megacity. Urban-rural differences are largest when wind speeds are low and vertical boundary-layer dynamics can more effectively distribute near-surface aerosol emissions vertically. In several night-time EOFs, gravity-wave features are found for both NWP models. Increasing the horizontal resolution of native ancillaries (model input parameters) and improving the urban surface scheme in the LM may enhance the urban signal in the EOFs. PCA output, with agglomerative Ward cluster analysis (CA), minimises intra-group variance. The UKV and LM CA shape and size results are similar and strongly related to orography. PCA-CA is a simple, but adaptable methodology, allowing close alignment with observation network design goals. Here, CA is used with wind roses to suggest the optimised ALC deployment is one in the city to observe the urban plume and others surrounding the city, with priority given to cluster size and frequency of upwind advection.
Collapse
Affiliation(s)
- Elliott Warren
- Department of MeteorologyUniversity of ReadingReadingUK
- Met OfficeExeterUK
| | | | | | - Simone Kotthaus
- Institut Pierre Simon Laplace (IPSL), CNRS, École Polytechnique, Institut Polytechnique de ParisPalaiseau CedexFrance
| | - Sue Grimmond
- Department of MeteorologyUniversity of ReadingReadingUK
| |
Collapse
|
7
|
Bihałowicz JS, Rogula-Kozłowska W, Krasuski A, Majder-Łopatka M, Walczak A, Fliszkiewicz M, Rogula-Kopiec P, Mach T. Characteristics of Particles Emitted from Waste Fires-A Construction Materials Case Study. MATERIALS (BASEL, SWITZERLAND) 2021; 15:152. [PMID: 35009296 PMCID: PMC8746207 DOI: 10.3390/ma15010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
This study aimed to determine the relative densities of populations of particles emitted in fire experiments of selected materials through direct measurement and parametrization of size distribution as number (NSD), volume (VSD), and mass (MSD). As objects of investigation, four typical materials used in construction and furniture were chosen: pinewood (PINE), laminated particle board (LPB), polyurethane (PUR), and poly(methyl methacrylate) (PMMA). The NSD and VSD were measured using an electric low-pressure impactor, while MSD was measured by weighing filters from the impactor using a microbalance. The parametrization of distributions was made assuming that each distribution can be expressed as the sum of an arbitrary number of log-normal distributions. In all materials, except PINE, the distributions of the particles emitted in fire experiments were the sum of two log-normal distributions; in PINE, the distribution was accounted for by only one log-normal distribution. The parametrization facilitated the determination of volume and mass abundances, and therefore, the relative density. The VSDs of particles generated in PINE, LPB, and PUR fires have similar location parameters, with a median volume diameter of 0.2-0.3 µm, whereas that of particles generated during PMMA burning is 0.7 µm. To validate the presented method, we burned samples made of the four materials in similar proportions and compared the measured VSD with the VSD predicted based on the weighted sum of VSD of raw materials. The measured VSD shifted toward smaller diameters than the predicted ones due to thermal decomposition at higher temperatures.
Collapse
Affiliation(s)
- Jan Stefan Bihałowicz
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego Street, 01-629 Warsaw, Poland; (W.R.-K.); (A.K.); (M.M.-Ł.)
| | - Wioletta Rogula-Kozłowska
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego Street, 01-629 Warsaw, Poland; (W.R.-K.); (A.K.); (M.M.-Ł.)
| | - Adam Krasuski
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego Street, 01-629 Warsaw, Poland; (W.R.-K.); (A.K.); (M.M.-Ł.)
| | - Małgorzata Majder-Łopatka
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego Street, 01-629 Warsaw, Poland; (W.R.-K.); (A.K.); (M.M.-Ł.)
| | - Agata Walczak
- Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 52/54 Słowackiego Street, 01-629 Warsaw, Poland; (A.W.); (M.F.)
| | - Mateusz Fliszkiewicz
- Faculty of Safety Engineering and Civil Protection, The Main School of Fire Service, 52/54 Słowackiego Street, 01-629 Warsaw, Poland; (A.W.); (M.F.)
| | - Patrycja Rogula-Kopiec
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowska-Curie St., 41-819 Zabrze, Poland;
| | - Tomasz Mach
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Plac Grunwaldzki 13, 50-377 Wrocław, Poland;
| |
Collapse
|
8
|
Wilczyńska-Michalik W, Różańska A, Bulanda M, Chmielarczyk A, Pietras B, Michalik M. Physicochemical and microbiological characteristics of urban aerosols in Krakow (Poland) and their potential health impact. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:4601-4626. [PMID: 33913083 PMCID: PMC8528768 DOI: 10.1007/s10653-021-00950-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
Eight aerosol samples were collected in Krakow using a low-volume sampler in February and March 2019 during variable meteorological conditions and times of the day, to study their single particles' properties (size, morphology and chemical composition analyzed using a scanning electron microscope fitted with an energy-dispersive spectrometer) and microbiological characteristics. The content of particles of different chemical compositions larger than 2.5 μm was low. Considering the number of the particles, submicron particles strongly dominated with a high content of ultrafine particles (nanoparticles). Tar ball-type particles were relatively common in the studied samples, while soot was the dominant component. Soot was present as small agglomerates composed of few particles, but also as bigger agglomerates. Metal-containing particles of various chemical characteristics were abundant, with transition metals commonly occurring in these particles. The physicochemical characteristics of aerosols indicate that despite a relatively low mass concentration, their adverse health impact could be very strong because of the high content of nanoparticles, the abundance of soot and other fuel combustion-related particles, and the high incidence of transition metal-rich particles. Microbiological analysis was based on cultures on both solid and liquid agar. The MALDI-TOF method was used for species identification-for bacteria and fungi. Twelve different species of bacteria were isolated from the collected samples of aerosols. The most frequently isolated species was Gram-positive sporulating Bacillus licheniformis. The isolated mold fungi were of the genus Aspergillus.
Collapse
Affiliation(s)
| | - Anna Różańska
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Małgorzata Bulanda
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Agnieszka Chmielarczyk
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, ul. Czysta 18, 31-121 Kraków, Poland
| | - Bartłomiej Pietras
- Institute of Geography, Pedagogical University in Kraków, ul. Podchorążych 2, Kraków, Poland
| | - Marek Michalik
- Institute of Geological Sciences, Jagiellonian University, Ul. Gronostajowa 3a, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Impact of Municipal, Road Traffic, and Natural Sources on PM10: The Hourly Variability at a Rural Site in Poland. ENERGIES 2021. [DOI: 10.3390/en14092654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The paper presents data from a monthly campaign studying the elemental composition of PM10, as measured by a specific receptor in Kotórz Mały (Opole Voivodeship)—located in the vicinity of a moderately inhabited rural area—measured in one-hour samples using a Horiba PX-375 analyzer. The hourly variability of SO2, NO, NO2, CO, and O3 concentrations, as well as the variability of meteorological parameters, was also determined. On average, during the entire measurement period, the elements related to PM10 can be arranged in the following order: As < V < Ni < Pb < Cr < Mn < Cu < Ti < Zn < K < Fe < Ca < Al < Si < S. Trace elements, including toxic elements—such as As, V, Ni, Pb, Cr, and Mn—were present in low concentrations, not exceeding 10 ng/m3 (average daily value). These elements had fairly even concentrations, both daily and hourly. The concentrations of the main elements in the PM10, as measured by the receptor, are subject to strong hourly changes related not only to changes in the structures of the sources identified in the statistical analysis, but also to wind speed and direction changes (soil and sand particle pick-up and inflow of pollutants from coal combustion). It has been shown that the transport emissions measured by the receptor can have an intense effect on PM10 in the afternoon.
Collapse
|
10
|
Rogula-Kozłowska W, Rybak J, Wróbel M, Bihałowicz JS, Krasuski A, Majder-Łopatka M. Site environment type - The main factor of urban road dust toxicity? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112290. [PMID: 33962272 DOI: 10.1016/j.ecoenv.2021.112290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The main objective of the study was to determine the effects of the water extracts of urban road dust (URD) samples on the growth inhibition and mortality rate of Heterocypris incongruens in various site environment type. We collected 24 samples of the road dust close to highways, main roads, crossroads as well as at other places i.e. residential area, and suburbs. We determined the selected metals (Al, As, Ba, Cd, Co, Cr, Cu, Ga, Mg, Mn, Mo, Ni, Pb, Rb, Sr, Ti, Tl, V and Zn) content of the water extracts of these samples as well as we tested the toxicity of the water extracts of URD samples using a commercial test Ostracodtoxkit F. We observed the lowest values of the growth inhibition of H. incongruens for residential areas and suburbs (<50%). The highest growth inhibition we found for water extracts of URD samples collected at the main roads in the Katowice urban area and crossroads in the urban areas. Although the mortality and growth inhibition of H. incongruens were related to the road traffic emissions it was impossible to clearly relate this finding with the urban site category.
Collapse
Affiliation(s)
- Wioletta Rogula-Kozłowska
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
| | - Justyna Rybak
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
| | - Magdalena Wróbel
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
| | - Jan Stefan Bihałowicz
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland.
| | - Adam Krasuski
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
| | - Małgorzata Majder-Łopatka
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
| |
Collapse
|
11
|
Rovelli S, Cattaneo A, Nischkauer W, Borghi F, Spinazzè A, Keller M, Campagnolo D, Limbeck A, Cavallo DM. Toxic trace metals in size-segregated fine particulate matter: Mass concentration, respiratory deposition, and risk assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115242. [PMID: 32712529 DOI: 10.1016/j.envpol.2020.115242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 06/11/2023]
Abstract
To characterise the mass concentration, size-distribution, and respiratory deposition of selected trace metals (Cr, Mn, Fe, Ni, Cu, Zn, Ba, and Pb) in size-segregated PM2.5, a long-term monitoring campaign was undertaken at an urban background site in Como (Northern Italy). 96-h aerosol samples were collected weekly, from May 2015 to March 2016, using a 13-stage low pressure impactor and analysed via laser ablation-inductively coupled plasma-mass spectrometry. Significantly higher levels of trace metals were generally found during the heating season (two to more than four times) compared to the non-heating period at all size ranges, especially for concentrations in PM0.1-1. Distinct distribution profiles characterised the different elements, even though the corresponding heating and non-heating shapes always exhibited similar features, with negligible seasonal shifts in the average mass median aerodynamic diameters. Fe, Ba, and Cu had >70% of their mass in PM1-2.5, whereas Pb, Zn, and Ni showed higher contributions in the accumulation mode (>60%). Finally, broad size-distributions were found for Cr and Mn. The multiple-path particle dosimetry model estimated the overall deposition fractions in human airways varying between 27% (Pb) and 48% (Ba). The greatest deposition variability was always registered in the head region of the respiratory system, with the highest contributions for those metals predominantly accumulated in the PM2.5 coarse modes. In contrast, the deposition in the deepest respiratory tract maintained nearly constant proportions over time, becoming notably important for Pb, Ni, and Zn (∼13%) with respect to their total deposition. The comparison with national limits established for Pb and Ni suggested the absence of significant risks for the local population, as expected, with average concentrations two orders of magnitude lower than the corresponding annual limit and objective value. Similar findings were reported for all the other metals, for which the estimated hazard quotients were always well <1.
Collapse
Affiliation(s)
- Sabrina Rovelli
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy.
| | - Andrea Cattaneo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Winfried Nischkauer
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Francesca Borghi
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Andrea Spinazzè
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Marta Keller
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Davide Campagnolo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| | - Andreas Limbeck
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9/164-IAC, A-1060, Vienna, Austria
| | - Domenico M Cavallo
- Department of Science and High Technology, University of Insubria, via Valleggio 11, 22100, Como, Italy
| |
Collapse
|
12
|
Jabłońska-Czapla M, Grygoyć K. Spatial and temporal variability of metal(loid)s concentration as well as simultaneous determination of five arsenic and antimony species using HPLC-ICP-MS technique in the study of water and bottom sediments of the shallow, lowland, dam reservoir in Poland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12358-12375. [PMID: 31993903 PMCID: PMC7136309 DOI: 10.1007/s11356-020-07758-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 01/15/2020] [Indexed: 05/14/2023]
Abstract
The optimization of new methodology for simultaneous determination of arsenic [As(III), As(V)] and antimony [Sb(III), Sb(V), SbMe3] species using high-performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS) in water and bottom sediment samples collected from the dam Kozłowa Góra Reservoir (Poland) was studied. Samples were collected monthly from May to September 2018 in four-point (water) and fifth-point (sediment) transects. The contents of Mn, Co, Ni, Cu, Zn, As, Cr, Rb, Sr, Cd, Sb, Ba, Tl, Pb, and Sb were studied in water and bottom sediments using ICP-MS techniques. Additionally, arsenic and antimony fractions were determined in sediments with the BCR method. Pollution Load Index (PLI), Geoaccumulation Index (Igeo), LAWA classification, and Sb/As ratio indicated the presence of extreme sediment pollution for Zn, Cd, Pb, and Cr from anthropogenic sources. Research has shown that the easy-leached bottom sediment fraction contained in most cases more As(V) and Sb(V). But often Sb(V) concentration was equal as Sb(III), which can be released into the pelagic zone under favorable conditions. Even though As(V) and Sb(V) prevail in the reservoir bottom sediments, they can be transformed into As(III) and Sb(III) as a result of drastic changes in pH or redox potential. The Kozłowa Góra sediments are heavily polluted with Pb, Zn, Cd, and As, Cu, and Ni. The highest concentrations of the heavy metals were recorded in the middle of the tank and there was a small spatial variability. The migration of metals along the reservoir transect was closely related to its morphometry.
Collapse
Affiliation(s)
- Magdalena Jabłońska-Czapla
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie Street, 41-819, Zabrze, Poland.
| | - Katarzyna Grygoyć
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie Street, 41-819, Zabrze, Poland
| |
Collapse
|
13
|
Soluble Inorganic Arsenic Species in Atmospheric Submicron Particles in Two Polish Urban Background Sites. SUSTAINABILITY 2020. [DOI: 10.3390/su12030837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This paper presents results of the research on soluble inorganic As(III) and As(V) bound to submicron atmospheric particles (PM1) in two Polish urban background sites (Zabrze and Warsaw). The purpose of the research was to give some insight on the susceptibility to leaching of PM1-bound arsenic species from easily water-soluble compounds, i.e., considered potentially bioavailable based on its daily and seasonal changes. Quantitative analysis for 120 PM1 samples (collected from 24 June 2014 to 8 March 2015) was performed by using a high-performance liquid chromatography in combination with inductively coupled plasma mass spectrometry. The mean seasonal concentrations of dominant soluble As specie—As(V)—ranged from 0.27 ng/m3 in the summer season in Warsaw to 2.41 ng/m3 in the winter season in Zabrze. Its mean mass shares in total As were 44% in Warsaw and 75% in Zabrze in the winter and 18% and 48%, respectively, in the summer. Obtained results indicated fossil fuel combustion as the main source of PM1-bound As(V) and road traffic emission as its minor sources. In opposite to As(V), soluble As(III) was not clearly seasonally variable. In both seasons, its mean concentrations were higher in Zabrze than in Warsaw. As(III) concentrations were not preferentially shaped by an exact emission from road traffic in both cities.
Collapse
|
14
|
Size-Segregated Particulate Matter in a Selected Sports Facility in Poland. SUSTAINABILITY 2019. [DOI: 10.3390/su11246911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aims of this study were to determine the concentration of particulate matter, analyze the percentage share of four particulate matter subfractions (PM1, PM2.5, PM4, PM10) in TSP (total mass of particulate matter (PM)) in a typical Polish sports hall at different day periods during heating and non-heating seasons, and compare the average daily doses of respirable dust (PM4) for three groups of the sports hall users (pupils, teachers, and athletes). Gravimetric measurements of PM4 and TSP concentrations and optical measurements of the concentrations of five PM fractions (PM1, PM2.5, PM4, PM10, PM100) were conducted for 8 hours a day, simultaneously inside and outside the hall, for 20 days each in summer and winter. During training, PM mass was concentrated mainly in coarse particles (PM2.5–100) (summer—55%, winter—35%). Without activity, the main part of PM mass was from fine particles (PM2.5, summer—59%, winter—75%). In summer, PM inside the hall originated mainly from internal sources. In winter, the fine PM concentration was affected by outdoor sources. The daily doses of PM4 for different groups of sports hall users indicate that the health exposure of sports practitioners to PM may be greater than for non-practitioners staying in the same conditions.
Collapse
|
15
|
Jeong CH, Salehi S, Wu J, North ML, Kim JS, Chow CW, Evans GJ. Indoor measurements of air pollutants in residential houses in urban and suburban areas: Indoor versus ambient concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133446. [PMID: 31374501 DOI: 10.1016/j.scitotenv.2019.07.252] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/17/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Indoor exposure to air pollutants was assessed through 99 visits to 51 homes located in downtown high-rise buildings and detached houses in suburban and rural areas. The ambient concentrations of ultrafine particles (UFP), black carbon (BC), particulate matter smaller than 2.5 μm in diameter (PM2.5), and trace elements were concurrently measured at a central monitoring site in downtown Toronto. Median hourly indoor concentrations for all measurements were 4700 particles/cm3 for UFP, 270 ng/m3 for BC, and 4 μg/m3 for PM2.5, which were lower than ambient outdoor levels by a factor of 2-3. Much higher variability was observed for indoor UFP and BC across the homes compared to ambient levels, mostly due to the influence of indoor cooking emissions. Traffic emissions appeared to have a strong influence on the indoor background (i.e., outdoor-originated) concentrations of BC, UFP, and some trace elements. Specifically, 85% and 34% of the indoor concentrations of BC and UFP were predominantly from outdoor sources, respectively. Moreover, a positive correlation was observed between indoor concentrations of BC and UFP and total road length within a 300 m buffer zone. There was no significant decrease in indoor air pollution with increasing floor level among high-rise residences. In addition to the influence of outdoor sources on indoor air quality, indoor sources contributed to elevated concentrations of K, Ca, Cr, and Cu. A factor analysis was performed on trace elements, UFP, and BC in homes to further resolve possible sources. Local traffic emissions, soil dust, biomass burning, and regional coal combustion were identified as outdoor-originated sources, while cooking emissions was a dominant indoor source. This study highlights how outdoor sources can contribute to chronic exposure in indoor environments and how indoor activities can be associated with acute exposure to temporally varying indoor-originated air pollutants.
Collapse
Affiliation(s)
- Cheol-Heon Jeong
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada.
| | - Sepehr Salehi
- Division of Respirology and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Joyce Wu
- Division of Respirology and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Michelle L North
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada
| | - Jong Sung Kim
- Department of Community Health and Epidemiology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Chung-Wai Chow
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada; Division of Respirology and Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Evans
- Southern Ontario Centre for Atmospheric Aerosol Research, University of Toronto, Toronto, Ontario, Canada; Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Analysis of Particulate Matter Concentration Variability and Origin in Selected Urban Areas in Poland. SUSTAINABILITY 2019. [DOI: 10.3390/su11205735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The work presents the results of research and analyses related to measurements of concentration and chemical composition of three size fractions of particulate matter (PM), PM10, PM2.5 and PM1.0. The studies were conducted in the years 2014–2016 during both the heating and non-heating season in two Polish cities: Wrocław and Poznań. The studies indicate that in Wrocław and Poznań, the highest annual concentrations of particulate matter (PM1.0, PM2.5, and PM10) were observed in 2016, and the mean concentrations were respectively equal to 18.16 μg/m3, 30.88 μg/m3 and 41.08 μg/m3 (Wrocław) and 8.5 μg/m3, 30.8 μg/m3 and 32.9 μg/m3 (Poznań). Conducted analyses of the chemical composition of the particulate matter also indicated higher concentrations of organic and elemental carbon (OC and EC), and water-soluble ions in a measurement series which took place in the heating season were studied. Analyses with the use of principal component analysis (PCA) indicated a dominating percentage of fuel combustion processes as sources of particulate matter emission in the areas considered in this research. Acquired results from these analyses may indicate the influence of secondary aerosols on air quality. In the summer season, a significant role could be also played by an influx of pollutants—mineral dust—originating from outside the analyzed areas or from the resuspension of mineral and soil dust.
Collapse
|
17
|
Qiu Z, Wang W, Zheng J, Lv H. Exposure assessment of cyclists to UFP and PM on urban routes in Xi'an, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:241-250. [PMID: 30999201 DOI: 10.1016/j.envpol.2019.03.129] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
With the promotion of bicycle sharing, cycling as an active transportation mode is a matter of public interest. However, cyclists' recurrent exposure to traffic-related air pollution is associated with the potential health risks. Quantification of the health risks associated with daily exposure of commuting cyclists to atmospheric pollutants is vital, but barely reported. In this study, real-time mobile measurement campaigns were performed with high time-resolution portable instruments, along two commuting routes in Xi'an, China. We investigated personal exposure and inhaled dose of particulate matter and ultrafine particle (UFP) for cyclists. The results showed cyclists' exposure to average pollutants concentrations: fine particulate matter (PM2.5, 38.6 ± 17.1 μg m-3) and UFP (18,172 ± 11,282 particles cm-3). The exposure "hotspots" of cyclists were identified: intersections, diesel engines, etc. Cyclists' exposure to the highest PM2.5 (46.9 μg m-3) concentrations were observed in morning periods; these were ∼36%/42% higher compared to the afternoon or evening, while the latter periods corresponded to higher UFP concentrations (18,342/18,502 particles cm-3). The measurements of PM2.5 and UFP were clearly higher during autumn months, when compared to summer months. In multivariate models, wind speed was not significant, temperature and local urban background concentrations explained 70.9% the variation of PM2.5, the 67.8% of UFP was explained by temperature, traffic and relative humidity, and each 100 increase in on-road vehicles were associated with increase of 1328 particles cm-3 for UFP exposure in cyclists. Cycling in bike boulevards decreased exposure concentrations by 31.5% for PM and 36.6% for UFP compared to traffic roadsides, moving vehicles were identified as key contributors to PM0.25-0.3 and PM2.0-10 of cyclists' exposure. The potential health risks deserve attention under the mobility and air pollution challenges faced by many metropolitan areas in emerging economies. Our findings could serve to promote better design for low-exposure network of separated bike boulevards.
Collapse
Affiliation(s)
- Zhaowen Qiu
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064, Shaanxi, China.
| | - Wazi Wang
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064, Shaanxi, China.
| | - Jinlong Zheng
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064, Shaanxi, China.
| | - Huitao Lv
- School of Automobile, Chang'an University, Chang'an Road, Xi'an, 710064, Shaanxi, China.
| |
Collapse
|
18
|
The Impact of Catchment Characteristics and Weather Conditions on Heavy Metal Concentrations in Stormwater—Data Mining Approach. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9112210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dynamics of processes affecting the quality of stormwater removed through drainage systems are highly complicated. Relatively little information is available on predicting the impact of catchment characteristics and weather conditions on stormwater heavy metal (HM). This paper reports research results concerning the concentrations of selected HM (Ni, Cu, Cr, Zn, Pb and Cd) in stormwater removed through drainage system from three catchments located in the city of Kielce, Poland. Statistical models for predicting concentrations of HM in stormwater were developed based on measurement results, with the use of artificial neural network (ANN) method (multi-layer perceptron). Analyses conducted for the study demonstrated that it is possible to use simple variables to characterise catchment and weather conditions. Simulation results showed that for Ni, Cu, Cr, Zn and Pb, the selected independent variables ensure satisfactory predictive capacities of the models (R2 > 0.78). The models offer considerable application potential in the area of development plans, and they also account for environmental aspects as stormwater and snowmelt water quality affects receiving waters.
Collapse
|
19
|
Nocoń K, Rogula-Kozłowska W. Speciation of arsenic: a case study of PM1 in Zabrze. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0456-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Tavera Busso I, Mateos AC, Juncos LI, Canals N, Carreras HA. Kidney damage induced by sub-chronic fine particulate matter exposure. ENVIRONMENT INTERNATIONAL 2018; 121:635-642. [PMID: 30316178 DOI: 10.1016/j.envint.2018.10.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 06/08/2023]
Abstract
According to the WHO, about 3 million people die each year due to ambient air pollution. Most of the in vivo studies on the PM2.5 effects have been done on respiratory and cardiovascular tissues. However, little is known about the effects on the tissues involved on xenobiotic removal, such as kidneys. In the present study we assess the harmful effects of sub-chronic exposure to PM2.5 on the kidney, by investigating histologic and serum alterations in healthy and hypertensive rat models. Mean PM2.5 concentrations during exposures were slightly above the daily WHO standard. Exposed animals showed fibrosis, mesangial expansion, decrease glomerular and tubular lumen volumes in kidneys, with an elevated BUN. Hypertensive animals also exhibited much more severe alterations than healthy animals. We conclude that PM2.5 induces minimal or small-scale abnormalities that can be determinant for renal health preservation.
Collapse
Affiliation(s)
- Iván Tavera Busso
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina; Fundación J. Robert Cade, Córdoba, Argentina.
| | - Ana Carolina Mateos
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | - Hebe Alejandra Carreras
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
21
|
Wang H, Qiao B, Zhang L, Yang F, Jiang X. Characteristics and sources of trace elements in PM 2.5 in two megacities in Sichuan Basin of southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1577-1586. [PMID: 30077406 DOI: 10.1016/j.envpol.2018.07.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/11/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
To characterize major trace elements in PM2.5 and associated sources in two megacities, Chengdu (CD) and Chongqing (CQ), in Sichuan Basin of southwest China, daily PM2.5 samples were collected at one urban site in each city from October 2014 to July 2015 and were analyzed for their contents of thirteen trace elements including four crustal elements (Al, Ca, Fe, and Ti), eight trace metals (K, Cr, Zn, Cu, Mn, Pb, Ni, and V), and As. Multiple approaches including correlation analysis, enrichment factor, principal component analysis, and conditional probability function (CPF) were applied to identify potential sources of these elements. Most of the measured trace elements in Sichuan Basin were found to have lower concentrations than in the other regions of China. K and Fe were the most abundant elements at CD with an annual mean concentrations of 720 ± 357 and 456 ± 248 ng m-3, accounting for 34.6% and 21.9% of the total analyzed trace elements, respectively. Ca presented the highest concentration among all of the elements at CQ with annual mean of 824 ± 633 ng m-3 (29.1% of the total). Crustal elements had the highest concentrations in spring while heavy metals had distinct seasonal variations typically with the highest concentrations in winter and the lowest in summer. Ti and Al were identified to be primarily from soil while most of the analyzed heavy metals (Cr, Mn, Cu, Zn, Pb, Ni) and As were from anthropogenic sources associated with coal combustion, industrial emission from glassmaking production and iron/steel manufacturing, and non-exhaust vehicle emission.
Collapse
Affiliation(s)
- Huanbo Wang
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, 621010, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Baoqing Qiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, M3H 5T4, Canada
| | - Fumo Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China; Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| | - Xia Jiang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
22
|
Rohra H, Tiwari R, Khare P, Taneja A. Indoor-outdoor association of particulate matter and bounded elemental composition within coarse, quasi-accumulation and quasi-ultrafine ranges in residential areas of northern India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1383-1397. [PMID: 29727962 DOI: 10.1016/j.scitotenv.2018.03.095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Attempts have been made to comprehend size distribution pattern of Particulate Matter (PM) and associated elemental concentration within coarse (2.5-10μm), quasi-accumulation (q-Acc) (0.25-2.5μm) and quasi-ultrafine (q-UF) (<0.25μm) ranges at indoors and outdoors of residential homes of Agra. Overall, the average mass concentrations of PM10 and PM2.5 in indoors were found to be 263.24±59.24 and 212.01±38.06μgm-3 while in outdoors the concentrations accounted to 194.28±15.25 and 152.88±16.31μgm-3 respectively; exceeding WHO standards. In view of geographical variation, significantly higher (t=2.461; P=0.044) PM mass was found in outdoor samples of roadside location when compared to homes located far away from busy traffic; whereas indoor concentration exhibited non-significant relationship (t=1.887; P=0.095) between the two categorized homes. Findings of size partitioning trend through deployment of Sioutas Cascade Impactor evidenced presence of high proportion of PM and elemental concentrations within q-Acc and q-UF modes with their distribution pattern and probable emission sources conferred upon. Absence of modal peak in coarse range indicated predominance of anthropogenic emissions with presumed wash-out of coarse particles during frequent precipitation coincidental with sampling event. Seeming modal shifts for some elements (K, Cd, Zn) from q-Acc to q-UF were perceived during infiltration process. Presence of high traffic emission in homes near busy road stemmed the shifting of particles (Cu, K, Co, Zn) towards finer size (preferably q-UF mode) thus exposing residents to adverse health effects through their penetration (Finf=0.14) into indoor environment. Flat slopes (0.11) and poor correlation (8.4%) for metals in coarser range obtained through regression model hypothesized their high deposition velocities and low penetration efficiency. Our findings suggest enhanced resident exposure to fine particles (81%) especially q-UF range (37%) through indoor and outdoor (through infiltration) sources along with complexity of size distribution of airborne particles that prerequisites surplus consideration to achieve a healthier environment within residential area.
Collapse
Affiliation(s)
- Himanshi Rohra
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, India.
| | - Rahul Tiwari
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, India
| | - Puja Khare
- Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow 226015, India
| | - Ajay Taneja
- Department of Chemistry, Dr. Bhimrao Ambedkar University, Agra 282002, India.
| |
Collapse
|
23
|
Li J, Chen B, de la Campa AMS, Alastuey A, Querol X, de la Rosa JD. 2005-2014 trends of PM10 source contributions in an industrialized area of southern Spain. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:570-579. [PMID: 29428711 DOI: 10.1016/j.envpol.2018.01.101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED Particulate matter with a diameter of 10 μm or less (PM10) using receptor modelling was determined at an urban (La Linea, LL) and an industrial area (Puente Mayorga, PMY) in Southern Spain with samples collected during 2005-2014. The concentrations of PM10 had been decreasing at both sites in three distinctive periods: 1) the initial PM10 levels approached or exceeded the Spain and EU PM10 annual guidelines of 40 μg/m3 during 2005-2007 at LL and 2005-2009 at PMY; 2) then PM10 dropped by 25%-∼30 μg/m3 during 2008-2011 at LL and during 2010-2011 at PMY; 3) since 2012, the PM10 concentrations gradually decreased to <30 μg/m3. Chemical compositions of PM10 revealed the important contributions of water soluble ions (sulfate, nitrate, ammonium, and chloride), carbonaceous aerosols, and other major elements. These PM components generally showed a decrease trend, in accord with the trend of PM10 reduction. A PMF model identified seven sources to PM10 contributions. Secondary sulfate, soil/urban/construction dust, and secondary nitrate showed significantly decreasing trends with reduction of 40-60% comparing to the initial levels. The road traffic contribution decreased by 14% from the first to third period. However, sea salt, oil combustion, and industrial metallurgical process had relative stable contributions. These source contribution changes are reasonably governed by the PM emission abatement actions implemented during the past decade, as well as the financial crisis, that accounted for a significant decrease of PM pollution in Southern Spain. THE MAIN FINDING OF THE WORK We identified that the mitigation efforts on industry, fossil fuel combustion, and urban transportation during the past decade were successful for air quality improvement in a highly industrialized area in Southern Spain.
Collapse
Affiliation(s)
- Jiwei Li
- Environment Research Institute, Shandong University, Jinan 250100, China
| | - Bing Chen
- Environment Research Institute, Shandong University, Jinan 250100, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266061, China; State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Ana M Sánchez de la Campa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071 Huelva, Spain; Agrifood Campus of International Excellence CEIA3, Spain; Campus of International Excellence of the Sea CEIMAR, Spain
| | - Andrés Alastuey
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071 Huelva, Spain; Institute for Environmental Assessment and Water Research (IDÆA-CSIC), C/Jordi Girona 18-24, Barcelona 08034, Spain
| | - Xavier Querol
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071 Huelva, Spain; Institute for Environmental Assessment and Water Research (IDÆA-CSIC), C/Jordi Girona 18-24, Barcelona 08034, Spain
| | - Jesus D de la Rosa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Center for Research in Sustainable Chemistry (CIQSO), University of Huelva, E21071 Huelva, Spain; Agrifood Campus of International Excellence CEIA3, Spain; Campus of International Excellence of the Sea CEIMAR, Spain
| |
Collapse
|
24
|
Rogula-Kozłowska W, Kozielska B, Majewski G, Rogula-Kopiec P, Mucha W, Kociszewska K. Submicron particle-bound polycyclic aromatic hydrocarbons in the Polish teaching rooms: Concentrations, origin and health hazard. J Environ Sci (China) 2018; 64:235-244. [PMID: 29478645 DOI: 10.1016/j.jes.2017.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 05/09/2023]
Abstract
The goal of the work was to investigate the concentrations of the 16 US EPA priority polycyclic aromatic hydrocarbons (PAH) bound to submicrometer particles (particulate matter, PM1) suspended in the air of university teaching rooms and in the atmospheric air outside. Two teaching rooms were selected in two Polish cities, Gliwice, southern Poland, and Warsaw, central Poland, differing with regard to the ambient concentrations and major sources of PM and PAH. The variabilities of indoor and outdoor 24-hr concentrations of PM1-bound PAH, the ratio (I/O) of the indoor to outdoor 24-hr concentrations of PM1-bound PAH, probable sources of PAH and the level of the hazard from the mixture of the 16 PAH (ΣPAH) to humans at both sites were analyzed. In both Warsaw and Gliwice, the mean concentrations of PM1-bound ΣPAH were slightly higher in the atmospheric air than in the rooms. The indoor and outdoor concentrations of individual PAH in Gliwice were correlated, in Warsaw - they were not. Most probably, the lack of the correlations in Warsaw was due to the existence of an unidentified indoor source of gaseous PAH enriching PM1 in phenanthrene, fluorene, and pyrene. Although the ambient concentrations of PM1-bound PAH were low compared to the ones observed earlier at both sites, they were much higher than in other urbanized European areas. However, because of low mass share of heavy PAH in ΣPAH, the various indicators of the health hazard from the 16 PAH mixture were low compared to other regions.
Collapse
Affiliation(s)
- Wioletta Rogula-Kozłowska
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowska-Curie St., 41-819 Zabrze, Poland; The Main School of Fire Service, Faculty of Fire Safety Engineering, 52/54 Słowackiego St., 01-629 Warsaw, Poland.
| | - Barbara Kozielska
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Air Protection, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Grzegorz Majewski
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-776 Warsaw, Poland
| | - Patrycja Rogula-Kopiec
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowska-Curie St., 41-819 Zabrze, Poland
| | - Walter Mucha
- Silesian University of Technology, Faculty of Energy and Environmental Engineering, Department of Air Protection, 22B Konarskiego St., 44-100 Gliwice, Poland
| | - Karolina Kociszewska
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-776 Warsaw, Poland
| |
Collapse
|
25
|
Particulate Matter from the Road Surface Abrasion as a Problem of Non-Exhaust Emission Control. ENVIRONMENTS 2018. [DOI: 10.3390/environments5010009] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Rogula-Kozłowska W, Widziewicz K, Majewski G. A simple method for determination of total water in PM 1 on quartz fiber filters. Microchem J 2017. [DOI: 10.1016/j.microc.2017.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Lyu Y, Zhang K, Chai F, Cheng T, Yang Q, Zheng Z, Li X. Atmospheric size-resolved trace elements in a city affected by non-ferrous metal smelting: Indications of respiratory deposition and health risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:559-571. [PMID: 28245949 DOI: 10.1016/j.envpol.2017.02.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 02/11/2017] [Accepted: 02/19/2017] [Indexed: 05/28/2023]
Abstract
This study examines size-resolved heavy metal data for particles sampled near an urban site affected by non-ferrous metal smelting in China with a focus on how particle sizes impact regional respiratory deposition behavior. Particles with aerodynamic diameters between 0.43 and 9 μm were collected during winter haze episodes from December 2011 to January 2012. The results showed that concentrations of individual trace elements ranged from ∼10-2-∼104 ng/m3. Mass size distributions exhibit that Cu, Zn, As, Se, Ag, Cd, TI, and Pb have unimodal peak in fine particles range (<2.1 μm); Al, Ti, Fe, Sr, Cr, Co, Ni, Mo, and U have unimodal peak in coarse range (>2.1 μm), and Be, Na, Mg, Ca, Ba, Th, V, Mn, Sn, Sb, and K have bimodal profiles with a dominant peak in the fine range and a smaller peak in the coarse range. The total deposition fluxes of trace elements were estimated at 2.1 × 10-2 - 4.1 × 103 ng/h by the MPPD model, and the region with the highest contribution was the head region (42% ± 13%), followed by the tracheobronchial region (11% ± 3%) and pulmonary region (6% ± 1%). The daily intake of individual element for humans occurs via three main exposure pathways: ingestion (2.3 × 10-4 mg/kg/day), dermal contact (2.3 × 10-5 mg/kg/day), and inhalation (9.0 × 10-6 mg/kg/day). A further health risk assessment revealed that the risk values for humans were all above the guidelines of the hazard quotient (1) and cancer risk (10-6), indicating that there are potential non-cancer effects and cancer risks in this area.
Collapse
Affiliation(s)
- Yan Lyu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, China
| | - Kai Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fahe Chai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tiantao Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, China
| | - Qing Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zilong Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiang Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Megido L, Negral L, Castrillón L, Suárez-Peña B, Fernández-Nava Y, Marañón E. Enrichment factors to assess the anthropogenic influence on PM 10 in Gijón (Spain). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:711-724. [PMID: 27752948 DOI: 10.1007/s11356-016-7858-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 10/06/2016] [Indexed: 06/06/2023]
Abstract
Thirty-two chemical species were determined in PM10 sampled at a suburban site on the north coast of Spain. Enrichment factors were applied to infer their soil/non-soil origin. The geochemical ratios were calculated using two databases: soil composition from locations in the surroundings of the sampling station and the Earth's average upper-crust composition. In the present study, dissimilarities were found between the enrichment factors obtained using these two databases. Al, Ti, La and Ce were taken as the reference elements to normalise the data, reaching analogous conclusions. Bi, Cd, Cu, Sb, Se, Sn and Zn were associated with predominantly non-soil apportionments. As the relevance of soil/non-soil sources for the other analysed elements was found to be variable, they were probably of mixed origin. Furthermore, pairs of elements showed strong relationships, thus pointing to a common origin. Na-Mg and Co-Ni, with Pearson correlation coefficients above 0.9, were respectively related to marine and industrial apportionments. Enrichment factors have proved to be a useful tool to distinguish the soil/non-soil origin of chemical species present in airborne particulate matter. However, the choice of the reference database for soil composition considerably determined the accuracy of the conclusions.
Collapse
Affiliation(s)
- Laura Megido
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Luis Negral
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain.
- Department of Chemical and Environmental Engineering, Technical University of Cartagena, 30202, Cartagena, Spain.
| | - Leonor Castrillón
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Beatriz Suárez-Peña
- Department of Materials Science and Metallurgical Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Yolanda Fernández-Nava
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| | - Elena Marañón
- Department of Chemical and Environmental Engineering, Polytechnic School of Engineering, Gijón Campus, University of Oviedo, 33203, Gijón, Spain
| |
Collapse
|
29
|
Submicron Particle-Bound Mercury in University Teaching Rooms: A Summer Study from Two Polish Cities. ATMOSPHERE 2016. [DOI: 10.3390/atmos7090117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Fischer A, Wiechuła D. Age-Dependent Changes in Pb Concentration in Human Teeth. Biol Trace Elem Res 2016; 173:47-54. [PMID: 26888348 DOI: 10.1007/s12011-016-0643-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 12/30/2022]
Abstract
The result of exposure to Pb is its accumulation in mineralized tissues. In human body, they constitute a reservoir of approx. 90 % of the Pb reserve. The conducted research aimed at determining the accumulation of Pb in calcified tissues of permanent teeth. The concentration of Pb in 390 samples of teeth taken from a selected group of Polish people was determined using the AAS method. Average concentration of Pb in teeth amounted to 14.3 ± 8.18 μg/g, range of changes: 2.21-54.8 μgPb/g. Accumulation of Pb in human body was determined based on changes in Pb concentration in teeth of subjects aged 13-84 years. It was found that in calcified tissues of teeth, the increase in concentration of Pb that occurs with age is a statistically significant process (p = 0.02, the ANOVA Kruskal-Wallis test). It was determined that the annual increase in concentration of Pb in tissues of teeth is approx. 0.1 μg/g. Moreover, a different course of changes in Pb concentration in tissues of teeth in people born in different years was observed. The level of Pb concentration in teeth of the oldest subjects (>60 years) decreased for those born in the 1930s compared to those in the 1950s. Teeth from younger persons (<60 years) were characterized by an increasing level of Pb concentration. The analysis of changes of Pb indicates that for low exposure, a relatively greater accumulation of Pb concentration in calcified tissues of teeth can occur.
Collapse
Affiliation(s)
- Agnieszka Fischer
- Department of Toxicology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland.
| | - Danuta Wiechuła
- Department of Toxicology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
31
|
Rogula-Kozłowska W, Majewski G, Błaszczak B, Klejnowski K, Rogula-Kopiec P. Origin-Oriented Elemental Profile of Fine Ambient Particulate Matter in Central European Suburban Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E715. [PMID: 27428988 PMCID: PMC4962256 DOI: 10.3390/ijerph13070715] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/24/2022]
Abstract
Twenty-four-hour samples of fine ambient particulate matter (PM2.5; particles with aerodynamic diameters ≤2.5 µm) were collected in a suburban (quasi-rural) area in Racibórz (Poland) between 1 January 2011 and 26 December 2012. The samples were analyzed for the contents of 28 elements. Sources of PM2.5 were identified and the contribution of each source to the PM2.5 concentration was assessed using an enrichment factor (EF) analysis, a principal component analysis (PCA), and multi-linear regression analysis (MLRA). In the cold season (January-March and October-December 2011-2012), the mean ambient concentration of PM2.5 in Racibórz was 48.7 ± 39.4 µg·m(-3), which was much higher than at other suburban or rural sites in Europe. Additionally the ambient concentrations of some toxic PM2.5-bound elements were also high, i.e., the mean ambient concentrations of PM2.5-bound As, Cd, and Pb were 11.3 ± 11.5, 5.2 ± 2.5, and 34.0 ± 34.2 ng·m(-3), respectively. In the warm season (April-September 2011-2012), the PM2.5 and PM2.5-bound element concentrations in Racibórz were comparable to the concentrations noted at other suburban (or rural) sites in Europe. Our findings suggest that elemental composition and concentrations of PM2.5 in Racibórz are mainly influenced by anthropogenic emissions, i.e., the energy production based on coal and biomass combustion, traffic, and industry.
Collapse
Affiliation(s)
- Wioletta Rogula-Kozłowska
- Polish Academy of Sciences, Institute of Environmental Engineering, M. Skłodowskiej-Curie 34, Zabrze 41-819, Poland.
| | - Grzegorz Majewski
- Faculty of Civil and Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 166, Warszawa 02-776, Poland.
| | - Barbara Błaszczak
- Polish Academy of Sciences, Institute of Environmental Engineering, M. Skłodowskiej-Curie 34, Zabrze 41-819, Poland.
| | - Krzysztof Klejnowski
- Polish Academy of Sciences, Institute of Environmental Engineering, M. Skłodowskiej-Curie 34, Zabrze 41-819, Poland.
| | - Patrycja Rogula-Kopiec
- Polish Academy of Sciences, Institute of Environmental Engineering, M. Skłodowskiej-Curie 34, Zabrze 41-819, Poland.
| |
Collapse
|
32
|
Megido L, Negral L, Castrillón L, Marañón E, Fernández-Nava Y, Suárez-Peña B. Traffic tracers in a suburban location in northern Spain: relationship between carbonaceous fraction and metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8669-78. [PMID: 26797958 PMCID: PMC4850174 DOI: 10.1007/s11356-015-5955-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/10/2015] [Indexed: 05/05/2023]
Abstract
PM10 and black smoke were monitored at a suburban sampling station located in the northern Spanish city of Gijón. Thirty-two metals and total carbon (TC) (i.e., organic carbon (OC) and elemental carbon (EC)) were analyzed over a year. The study of air-mass origin based on 5-day back trajectories was carried out to assess its influence on the recovery data. Different strategies were implemented to infer the influence of traffic in the area. On average, TC accounted for 29 % of the PM10 fraction, with OC forming 77 % of this TC. The influence of traffic was clearly reduced during intense Atlantic advection episodes, when OC and EC decreased up to 0.39 and 0.22 μg C/m(3), respectively. In contrast, the highest values were reported during regional episodes, exceeding 10 μg C/m(3) of OC and 2 μg C/m(3) of EC. The correlation between EC and OC was found to notably improve when considering the days with high traffic flow (from R (2) = 0.46 to R (2) = 0.74). This pattern was also reproduced by black smoke and EC (from R (2) = 0.49 to R (2) = 0.59). Cu and Sn were found to be reliable traffic tracers given their high dependence on EC (R (2) = 0.82 and R (2) = 0.79, respectively). Nevertheless, Sn, Ba, and Sb showed a better correlation with Cu than EC, suggesting a common origin. In the case of Sn, R (2) improved from 0.79 to 0.91. The Cu/Sb ratio had a mean value of 6.6 which agrees with diagnostic criterions for brake wear particles. The relationships and ratios between EC, Cu, Sb, Sn, Ba, and Bi pointed out to non-exhaust emissions, playing a significant role in the chemical composition of PM10. Brake wear was presented as the most likely origin for Cu, Sb, and Sn.
Collapse
Affiliation(s)
- L Megido
- Department of Chemical and Environmental Engineering, University Institute of Industrial Technology of Asturias, University of Oviedo, Gijón Campus, 33203, Gijón, Spain
| | - L Negral
- Department of Chemical and Environmental Engineering, University Institute of Industrial Technology of Asturias, University of Oviedo, Gijón Campus, 33203, Gijón, Spain.
| | - L Castrillón
- Department of Chemical and Environmental Engineering, University Institute of Industrial Technology of Asturias, University of Oviedo, Gijón Campus, 33203, Gijón, Spain
| | - E Marañón
- Department of Chemical and Environmental Engineering, University Institute of Industrial Technology of Asturias, University of Oviedo, Gijón Campus, 33203, Gijón, Spain
| | - Y Fernández-Nava
- Department of Chemical and Environmental Engineering, University Institute of Industrial Technology of Asturias, University of Oviedo, Gijón Campus, 33203, Gijón, Spain
| | - B Suárez-Peña
- Department of Materials Science and Metallurgiscal Engineering, Polytechnic School of Engineering, University of Oviedo, Gijón Campus, 33203, Gijón, Spain
| |
Collapse
|
33
|
Pyta H, Rogula-Kozłowska W. Determination of mercury in size-segregated ambient particulate matter using CVAAS. Microchem J 2016. [DOI: 10.1016/j.microc.2015.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
|
35
|
Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:13085-103. [PMID: 26501310 PMCID: PMC4627018 DOI: 10.3390/ijerph121013085] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 11/26/2022]
Abstract
This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.
Collapse
|