1
|
Guo Y, Cheng S, Fang H, Geng J, Li Y, Shi F, Wang H, Chen L, Zhou Y. Copper and cadmium co-contamination increases the risk of nitrogen loss in red paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135626. [PMID: 39197279 DOI: 10.1016/j.jhazmat.2024.135626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The microbiome plays a crucial role in soil nitrogen (N) cycling and in regulating its bioavailability. However, the functional and genomic information of microorganisms encoding N cycling in response to copper (Cu) and cadmium (Cd) contamination is largely unknown. Here, metagenomics and genome binning were used to examine microbial N cycling in Cu and Cd co-contaminated red paddy soils collected from a polluted watershed in southern China. The results showed that soil Cu and Cd concentrations induced more drastic changes in microbial N functional and taxonomic traits than soil general properties. Soil Cu and Cd co-contamination stimulated microbial nitrification, denitrification, and dissimilatory nitrate reduction processes mainly by increasing the abundance of Nitrospira (phylum Nitrospirota), while inhibiting N fixation by decreasing the abundance of Desulfobacca. These contrasting changes in microbial N cycling processes suggested a potential risk of N loss in paddy soils. A high-quality genome was identified as belonging to Nitrospirota with the highest abundance in heavily contaminated soils. This novel Nitrospirota strain possessed metabolic capacities for N transformation and metal resistance. These findings elucidate the genetic mechanisms underlying soil N bioavailability under long-term Cu and Cd contamination, which is essential for maintaining agricultural productivity and controlling heavy metal pollution.
Collapse
Affiliation(s)
- Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an 343000, China.
| | - Jing Geng
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Afzal M, Muhammad S, Tan D, Kaleem S, Khattak AA, Wang X, Chen X, Ma L, Mo J, Muhammad N, Jan M, Tan Z. The Effects of Heavy Metal Pollution on Soil Nitrogen Transformation and Rice Volatile Organic Compounds under Different Water Management Practices. PLANTS (BASEL, SWITZERLAND) 2024; 13:871. [PMID: 38592896 PMCID: PMC10976017 DOI: 10.3390/plants13060871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 04/11/2024]
Abstract
One of the most concerning global environmental issues is the pollution of agricultural soils by heavy metals (HMs), especially cadmium, which not only affects human health through Cd-containing foods but also impacts the quality of rice. The soil's nitrification and denitrification processes, coupled with the release of volatile organic compounds by plants, raise substantial concerns. In this review, we summarize the recent literature related to the deleterious effects of Cd on both soil processes related to the N cycle and rice quality, particularly aroma, in different water management practices. Under both continuous flooding (CF) and alternate wetting and drying (AWD) conditions, cadmium has been observed to reduce both the nitrification and denitrification processes. The adverse effects are more pronounced in alternate wetting and drying (AWD) as compared to continuous flooding (CF). Similarly, the alteration in rice aroma is more significant in AWD than in CF. The precise modulation of volatile organic compounds (VOCs) by Cd remains unclear based on the available literature. Nevertheless, HM accumulation is higher in AWD conditions compared to CF, leading to a detrimental impact on volatile organic compounds (VOCs). The literature concludes that AWD practices should be avoided in Cd-contaminated fields to decrease accumulation and maintain the quality of the rice. In the future, rhizospheric engineering and plant biotechnology can be used to decrease the transport of HMs from the soil to the plant's edible parts.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Sajid Muhammad
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Dedong Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China;
| | - Sidra Kaleem
- Riphah Institute of Pharmaceutical Sciences, Islamabad 44600, Pakistan;
| | - Arif Ali Khattak
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaolin Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Liangfang Ma
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Jingzhi Mo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| | - Niaz Muhammad
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan;
| | - Mehmood Jan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Zhiyuan Tan
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (M.A.); (A.A.K.); (X.W.); (L.M.)
| |
Collapse
|
3
|
Lutts S, Zhou M, Flores-Bavestrello A, Hainaut P, Dailly H, Debouche G, Foucart G. Season-dependent physiological behavior of Miscanthus x giganteus growing on heavy-metal contaminated areas in relation to soil properties. Heliyon 2024; 10:e25943. [PMID: 38384526 PMCID: PMC10878947 DOI: 10.1016/j.heliyon.2024.e25943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Miscanthus x giganteus is often considered as a suitable plant species for phytomanagement of heavy metal polluted sites. Nevertheless, its physiological behavior in response to the level of metal toxicity throughout the growing season remains poorly documented. Miscanthus x giganteus was cultivated on three sites in Belgium (BSJ: non-polluted control; CAR: slightly contaminated; VM strongly polluted by Cd, Pb, Cu, Zn, Ni and As). The presence of Miscanthus improved soil biological parameters assessed by measurement of enzyme activity and basal soil respiration on the three considered sites, although to a lower level on VM site. Heavy metal accumulation in the shoot was already recorded in spring. It displayed a contrasting distribution in the summer leaves since heavy metals and As metalloid accumulated mainly in the older leaves of CAR plants while showing a uniform distribution among leaves of different ages in VM plants. Comparatively to plants growing on BSJ, net photosynthesis decreased in plants growing on CAR and VM sites. The recorded decrease was mainly related to stomatal factors in CAR plants (decrease in stomatal conductance and in Ci) but to non-stomatal factors such as decrease in carboxylation efficiency and non-photochemical quenching in VM plants. Stomata remained open in VM plants which presented lower instantaneous and intrinsic water use efficiencies than CAR and BSJ plants. High proportions of heavy metals accumulated in CAR plants were bound to the cell wall fraction while the soluble and organelle-rich fractions were proportionally higher in VM plants, leading to a decrease in cell viability and cell membrane damages. It is concluded that not only the intensity but also the nature of physiological responses in Miscanthus x giganteus may drastically differ depending on the pollution level.
Collapse
Affiliation(s)
- S. Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A) Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - M.X. Zhou
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A) Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - A. Flores-Bavestrello
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A) Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
- Departamento de Silvicultura, Universidad de Concepción, Chile
| | - P. Hainaut
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A) Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - H. Dailly
- Plateforme Analytique MOCA (Mineral and Organic Chemical Analysis) – Earth and Life Institute – Université catholique de Louvain, Belgium
| | - G. Debouche
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute – Agronomy (ELI-A) Université catholique de Louvain, 5 (Bte 7.07.13) Place Croix du Sud, 1348, Louvain-la-Neuve, Belgium
| | - G. Foucart
- Centre indépendant de Promotion Fourragère (CIPF), 2 (Bte 7.05.11) Chemin du Cyclotron, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Chaurasia M, Patel K, Rao KS. Impact of anthropogenic land uses on soil microbiological activity in a peri-urban landscape. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1233. [PMID: 37728781 DOI: 10.1007/s10661-023-11822-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Land use and land cover patterns impact soil properties and negatively affect soil microbial community and related processes. However, the information regarding the influence of urban land use on soil microbial composition and functioning is limited. Here, we investigated the impact of urban land use patterns on soil microbiological parameters by comparing five contrasting anthropogenic land use classes, i.e. agriculture, park, roadside plantation, street green, and bare land. Soil physicochemical properties, basal respiration (BR), microbial biomass carbon (MBC), and enzyme activities were estimated and correlated. The results revealed that soil physicochemical and microbiological properties greatly varied across the five land use classes. Among all the land use types, the roadside plantation had the highest nutrient content, i.e. soil organic carbon (SOC), total nitrogen (TN), and mineral nitrogen (MN) (1.33%, 0.13%, 84.0 mg kg-1, respectively), while the soil functional capacities measured in terms of BR, MBC, microbial quotient (QCO2), soil microbial activity (SMA), and dehydrogenase activity (DHA) (9.90 C µg g-1 h-1, 300 µg g-1, 0.045 µg h-1/ µg MBC, 9.0 µg ml-1, 1.30 TPF g-1 h-1, respectively) were highest in the park. Disturbed street greens were markedly nutrient depleted and apparently exhibited lower microbial activity. Variations in soil BR, MBC, and enzyme activity were revealed to be primarily influenced by soil moisture, available phosphorus, and SOC content. We concluded that the negative impacts of anthropogenic land use soil quality and microbiological functioning can be managed by integrating proper management approaches for various land use classes in urban systems.
Collapse
Affiliation(s)
| | - Kajal Patel
- Department of Botany, University of Delhi, New Delhi-110007, India
| | | |
Collapse
|
5
|
Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol 2023; 11:1178680. [PMID: 37122866 PMCID: PMC10133563 DOI: 10.3389/fbioe.2023.1178680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Toxic heavy metal accumulation is one of anthropogenic environmental pollutions, which poses risks to human health and ecological systems. Conventional heavy metal remediation approaches rely on expensive chemical and physical processes leading to the formation and release of other toxic waste products. Instead, microbial bioremediation has gained interest as a promising and cost-effective alternative to conventional methods, but the genetic complexity of microorganisms and the lack of appropriate genetic engineering technologies have impeded the development of bioremediating microorganisms. Recently, the emerging synthetic biology opened a new avenue for microbial bioremediation research and development by addressing the challenges and providing novel tools for constructing bacteria with enhanced capabilities: rapid detection and degradation of heavy metals while enhanced tolerance to toxic heavy metals. Moreover, synthetic biology also offers new technologies to meet biosafety regulations since genetically modified microorganisms may disrupt natural ecosystems. In this review, we introduce the use of microorganisms developed based on synthetic biology technologies for the detection and detoxification of heavy metals. Additionally, this review explores the technical strategies developed to overcome the biosafety requirements associated with the use of genetically modified microorganisms.
Collapse
Affiliation(s)
| | | | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Shurson GC, Urriola PE, Hung YT. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals (Basel) 2022; 12:3374. [PMID: 36496895 PMCID: PMC9739216 DOI: 10.3390/ani12233374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/26/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The objectives of this review were to summarize current knowledge of Zn in swine nutrition, environmental concerns, potential contribution to antimicrobial resistance, and explore the use of alternative feeding strategies to reduce Zn excretion in manure while capturing improvements in productivity. Zinc is a required nutrient for pigs but is commonly supplemented at concentrations that greatly exceed estimated requirements. Feeding pharmacological concentrations of Zn from ZnO to pigs for 1 to 2 weeks post-weaning reduces post-weaning diarrhea and improves growth performance. Feeding elevated dietary levels of Zn to sows during the last 30 days of gestation can reduce the incidence of low-birth-weight pigs and pre-weaning mortality. Most of the dietary Zn consumed by pigs is not retained in the body and is subsequently excreted in manure, which led several countries to impose regulations restricting dietary Zn concentrations to reduce environmental impacts. Although restricting Zn supplementation in swine diets is a reasonable approach for reducing environmental pollution, it does not allow capturing health and productivity benefits from strategic use of elevated dietary Zn concentrations. Therefore, we propose feeding strategies that allow strategic use of high dietary concentrations of Zn while also reducing Zn excretion in manure compared with current feeding practices.
Collapse
Affiliation(s)
- Gerald C. Shurson
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | - Pedro E. Urriola
- Department of Animal Science, University of Minnesota, St. Paul, MN 55108, USA
| | | |
Collapse
|
7
|
Bist V, Anand V, Srivastava S, Kaur J, Naseem M, Mishra S, Srivastava PK, Tripathi RD, Srivastava S. Alleviative mechanisms of silicon solubilizing Bacillus amyloliquefaciens mediated diminution of arsenic toxicity in rice. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128170. [PMID: 35032955 DOI: 10.1016/j.jhazmat.2021.128170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Silicon (Si) has gained considerable attention for its utility in improved plant health under biotic and abiotic stresses through alteration of physiological and metabolic processes. Its interaction with arsenic (As) has been the compelling area of research amidst heavy metal toxicity. However, microbe mediated Si solubilization and their role for reduced As uptake is still an unexplored domain. Foremost role of Bacillus amyloliquefaciens (NBRISN13) in impediment of arsenite (AsIII) translocation signifies our work. Reduced grain As content (52-72%) during SN13 inoculation under feldspar supplementation (Si+SN+As) highlight the novel outcome of our study. Upregulation of Lsi1, Lsi2 and Lsi3genes in Si+SN+As treated rice plants associated with restricted As translocation, frames new propositions for future research on microbemediated reduced As uptake through increased Si transport. In addition to low As accumulation, alleviation of oxidative stress markers by modulation of defense enzyme activities and differential accumulation of plant hormones was found to be associated with improved growth and yield. Thus, our findings confer the potential role of microbe mediated Si solubilization in mitigation of As stress to restore plant growth and yield.
Collapse
Affiliation(s)
- Vidisha Bist
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vandana Anand
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sonal Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jasvinder Kaur
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India
| | - Mariya Naseem
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Seema Mishra
- Department of Chemistry, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| | - Pankaj Kumar Srivastava
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Rudra Deo Tripathi
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Suchi Srivastava
- Division of Microbial Technology, CSIR-National Botanical Research Institute, RanaPratapMarg, Lucknow 226 001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Henagamage AP, Peries CM, Seneviratne G. Fungal-bacterial biofilm mediated heavy metal rhizo-remediation. World J Microbiol Biotechnol 2022; 38:85. [PMID: 35380298 DOI: 10.1007/s11274-022-03267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/21/2022] [Indexed: 12/01/2022]
Abstract
Heavy metal pollution due to excessive use of chemical fertilizers (CF) causes major damage to the environment. Microbial biofilms, closely associated with the rhizosphere can remediate heavy metal-contaminated soil by reducing plant toxicity. Thus, this study was undertaken to examine the remedial effects of microbial biofilms against contaminated heavy metals. Fungi and bacteria isolated from soil were screened for their tolerance against Cd2+, Pb2+, and Zn2+. Three bacterial and two fungal isolates were selected upon the tolerance index (TI) percentage. Fungal-bacterial biofilms (FBBs) were developed with the most tolerant isolates and were further screened for their bioremediation capabilities against heavy metals. The best biofilm was evaluated for its rhizoremediation capability with different CF combinations using a pot experiment conducted under greenhouse conditions with potatoes. Significantly (P < 0.05), the highest metal removal percentage was observed in Trichoderma harzianum and Bacillus subtilis biofilm under in situ conditions. When compared to the 100% recommended CF, the biofilm with 50% of the recommended CF (50CB) significantly (P < 0.05) reduced soil available Pb2+ by 77%, Cd2+ by 78% and Zn2+ by 62%. In comparison to initial soil, it was 73%, 76%, and 57% lower of Pb2+, Cd2+, and Zn2+, respectively. In addition, 50CB treatment significantly (P < 0.05) reduced the metal penetration into the tuber tissues in comparison with 100 C. Thus, the function of the developed FBB with T. harzianum-B. subtilis can be used as a potential solution to remediate soil polluted with Pb2+ Cd2+ and Zn2+ metal contaminants.
Collapse
Affiliation(s)
- A P Henagamage
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla, Sri Lanka.
| | - C M Peries
- Department of Science and Technology, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla, Sri Lanka
| | - G Seneviratne
- National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| |
Collapse
|
9
|
Li X, Wang Y, Luo T, Ma Y, Wang B, Huang Q. Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil. ENVIRONMENTAL TECHNOLOGY 2022; 43:1068-1081. [PMID: 32844719 DOI: 10.1080/09593330.2020.1815858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 08/18/2020] [Indexed: 05/22/2023]
Abstract
The remediation of organic pollutant-heavy metal co-contaminated soil is a great challenge. Immobilized microorganism technology (IMT) is a potential approach to remediate co-contaminated soil. In this study, we evaluated the feasibility of IMT for the remediation of petroleum hydrocarbon-heavy metal nickel (Ni) co-contaminated soil. The Ni resistant and hydrocarbon-degrading bacteria strain Citrobacter sp. was added to co-contaminated soil by immobilizing on corncob biochar. The potential performance in biodegradation of petroleum hydrocarbon and changing the mobility and speciation of nickel (Ni) in soil were determined, with consideration of the influences of the soil properties and dehydrogenase activity. The results demonstrated that the degradation rate of petroleum hydrocarbons by immobilized microorganisms group (IM) was 45.52%, significantly higher than that of the free bacteria (30.15%), biochar (25.92%) and blank group (18.47%) (P<0.05). At the same time, IM was more effective in immobilizing Ni in the soil by transforming available Ni to a stable fraction with a maximum residual concentration increasing by 101.50 mg·kg-1, and the carcinogenic nickel sulfide was not detected after remediation in IM. IM exhibited a higher level of soil dehydrogenase activity (0.3956 μg·mL-1·h-1·g-1) than that of free bacteria (0.2878 μg·mL-1·h-1·g-1). A linear correlation was found between the petroleum pollutants degradation rate and dehydrogenase activity (P<0.05). This study indicates the effectiveness and potential of IMT application in degrading petroleum hydrocarbon and immobilizing heavy metals in co-contaminated soil.
Collapse
Affiliation(s)
- Xi Li
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, People's Republic of China
| | - Yaxuan Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Ting Luo
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Yongsong Ma
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Bing Wang
- Department of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, People's Republic of China
| | - Qiuyu Huang
- Sichuan Bureau of Geology and Mineral Resources Chengdu Analytical & Testing Center for Mineral and Rocks, Chengdu, People's Republic of China
| |
Collapse
|
10
|
Chasapis CT, Peana M, Bekiari V. Structural Identification of Metalloproteomes in Marine Diatoms, an Efficient Algae Model in Toxic Metals Bioremediation. Molecules 2022; 27:378. [PMID: 35056698 PMCID: PMC8779346 DOI: 10.3390/molecules27020378] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 01/04/2022] [Indexed: 01/10/2023] Open
Abstract
The biosorption of pollutants using microbial organisms has received growing interest in the last decades. Diatoms, the most dominant group of phytoplankton in oceans, are (i) pollution tolerant species, (ii) excellent biological indicators of water quality, and (iii) efficient models in assimilation and detoxification of toxic metal ions. Published research articles connecting proteomics with the capacity of diatoms for toxic metal removal are very limited. In this work, we employed a structural based systematic approach to predict and analyze the metalloproteome of six species of marine diatoms: Thalassiosira pseudonana, Phaeodactylum tricornutum, Fragilariopsis cylindrus, Thalassiosira oceanica, Fistulifera solaris, and Pseudo-nitzschia multistriata. The results indicate that the metalloproteome constitutes a significant proportion (~13%) of the total diatom proteome for all species investigated, and the proteins binding non-essential metals (Cd, Hg, Pb, Cr, As, and Ba) are significantly more than those identified for essential metals (Zn, Cu, Fe, Ca, Mg, Mn, Co, and Ni). These findings are most likely related to the well-known toxic metal tolerance of diatoms. In this study, metalloproteomes that may be involved in metabolic processes and in the mechanisms of bioaccumulation and detoxification of toxic metals of diatoms after exposure to toxic metals were identified and described.
Collapse
Affiliation(s)
- Christos T. Chasapis
- Department of Animal Production, Fisheries and Aquaculture, University of Patras, 30200 Messolonghi, Greece
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology, Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Massimiliano Peana
- Department of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece;
| |
Collapse
|
11
|
Khan MJ, Rai A, Ahirwar A, Sirotiya V, Mourya M, Mishra S, Schoefs B, Marchand J, Bhatia SK, Varjani S, Vinayak V. Diatom microalgae as smart nanocontainers for biosensing wastewater pollutants: recent trends and innovations. Bioengineered 2021; 12:9531-9549. [PMID: 34709977 PMCID: PMC8810035 DOI: 10.1080/21655979.2021.1996748] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/15/2022] Open
Abstract
Microalgae have been recognized as one of the most efficient microorganisms to remediate industrial effluents. Among microalgae diatoms are silica shelled unicellular eukaryotes, found in all types of water bodies and flourish very well even in wastewater. They have their silica cell wall made up of nano arrayed pores arranged in a uniform fashion. Therefore, they act as smart nanocontainers to adsorb various trace metals, dyes, polymers, and drugs which are hazardous to human as well to aquatic life. The beautiful nanoarchitecture in diatoms allows them to easily bind to ligands of choice to form a nanocomposite structure with the pollutants which can be a chemical or biological component. Such naturally available diatom nanomaterials are economical and highly sensitive compared to manmade artificial silica nanomaterials to help in facile removal of the toxic pollutants from wastewater. This review is thus focused on employing diatoms to remediate various pollutants such as heavy metals, dyes, hydrocarbons detected in the wastewater. It also includes different microalgae as biosensors for determination of pollutants in effluents and the perspectives for nanotechnological applications in the field of remediating pollutants through microalgae. The review also discusses in length the hurdles and perspectives of employing microalgae in wastewater remediation.
Collapse
Affiliation(s)
- Mohd Jahir Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Anshuman Rai
- School of Engineering, Department of Biotechnology, Mmu, Deemed University, Ambala,India
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Sudhanshu Mishra
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Mer Molecules Santé, Le Mans University, Le Mans, France
| | | | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Harisingh Gour Central University, Sagar, India
| |
Collapse
|
12
|
Campos P, Knicker H, Miller AZ, Velasco-Molina M, De la Rosa JM. Biochar ageing in polluted soils and trace elements immobilisation in a 2-year field experiment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118025. [PMID: 34450489 DOI: 10.1016/j.envpol.2021.118025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Biochar application to soils has become a focus of research during the last decade due to its high potential for C sequestration. Nevertheless, there is no exhaustive information on the long-term effects of biochar application in soils contaminated with trace elements. In this work, a 2-year field experiment was conducted comprising the application of different types of biochar to acidic and moderately acidic soils with high concentrations of As, Cu, Pb, Ba and Zn. In addition, representative samples of each biochar were buried in permeable bags that allowed the flow of water and microorganisms but not their physical interaction with soil aggregates. The biochars significantly adsorbed trace elements from polluted soils. However, given the high total concentration of these persistent trace elements in the soils, the application of biochars did not succeed in reducing the concentration of available metals (CaCl2 extractable fraction). After 2 years of ageing under field conditions, some degradation of the biochars from olive pit, rice husk and wood were observed. This study provides novel information concerning the biochar alterations during ageing in polluted soils, as the decrease of aryl C signal observed by 13C nuclear magnetic resonance (NMR) spectroscopy and the presence of O-containing groups shown by Fourier Transform mid-Infrared Spectroscopy (FT-IR) in aged biochar which enhanced trace elements adsorption. Scanning electron microscopy (SEM) revealed slight changes on surface morphology of aged biochar particles.
Collapse
Affiliation(s)
- Paloma Campos
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012, Seville, Spain.
| | - Heike Knicker
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012, Seville, Spain
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012, Seville, Spain; Laboratorio Hercules, University of Évora, Largo Marquês de Marialva 8, 7000-809, Évora, Portugal
| | - Marta Velasco-Molina
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012, Seville, Spain
| | - José María De la Rosa
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012, Seville, Spain
| |
Collapse
|
13
|
Diatoms: Miniscule biological entities with immense importance in synthesis of targeted novel bioparticles and biomonitoring. J Biosci 2021. [DOI: 10.1007/s12038-021-00222-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Plant Uptake of Lactate-Bound Metals: A Sustainable Alternative to Metal Chlorides. Biomolecules 2021; 11:biom11081085. [PMID: 34439752 PMCID: PMC8391765 DOI: 10.3390/biom11081085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 01/04/2023] Open
Abstract
Global agricultural intensification has prompted investigations into biostimulants to enhance plant nutrition and soil ecosystem processes. Metal lactates are an understudied class of organic micronutrient supplement that provide both a labile carbon source and mineral nutrition for plant and microbial growth. To gain a fundamental understanding of plant responses to metal lactates, we employed a series of sterile culture-vessel experiments to compare the uptake and toxicity of five metals (Zn, Mn, Cu, Ni, and Co) supplied in lactate and chloride salt form. Additionally, primary root growth in plate-grown Arabidopsis thaliana seedlings was used to determine optimal concentrations of each metal lactate. Our results suggest that uptake and utilization of metals in wheat (Triticum aestivum L.) when supplied in lactate form is comparable to that of metal chlorides. Metal lactates also have promotional growth effects on A. thaliana seedlings with optimal concentrations identified for Zn (0.5–1.0 µM), Mn (0.5–1.0 µM), Cu (0.5 µM), Ni (1.0 µM), and Co (0.5 µM) lactate. These findings present foundational evidence to support the use of metal lactates as potential crop biostimulants due to their ability to both supply nutrients and stimulate plant growth.
Collapse
|
15
|
Rabiee N, Khatami M, Jamalipour Soufi G, Fatahi Y, Iravani S, Varma RS. Diatoms with Invaluable Applications in Nanotechnology, Biotechnology, and Biomedicine: Recent Advances. ACS Biomater Sci Eng 2021; 7:3053-3068. [PMID: 34152742 DOI: 10.1021/acsbiomaterials.1c00475] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diatoms are unicellular microalga found in soil and almost every aquatic environment (marine and fresh water). Biogenic silica and diatoms are attractive for biotechnological and industrial applications, especially in the field of biomedicine, industrial/synthetic manufacturing processes, and biomedical/pharmaceutical sciences. Deposition of silica by diatoms allows them to create micro- or nanoscale structures which may be utilized in nanomedicine and especially in drug/gene delivery. Diatoms with their unique architectures, good thermal stability, suitable surface area, simple chemical functionalization/modification procedures, ease of genetic manipulations, optical/photonic characteristics, mechanical resistance, and eco-friendliness, can be utilized as smart delivery platforms. The micro- to nanoscale properties of the diatom frustules have garnered a great deal of attention for their application in diverse areas of nanotechnology and biotechnology, such as bioimaging/biosensing, biosensors, drug/gene delivery, photodynamic therapy, microfluidics, biophotonics, solar cells, and molecular filtrations. Additionally, the genetically engineered diatom microalgae-derived nanoporous biosilica have enabled the targeted anticancer drug delivery to neuroblastoma and B-lymphoma cells as well as the mouse xenograft model of neuroblastoma. In this perspective, current trends and recent advances related to the applications of diatoms for the synthesis of nanoparticles, gene/drug delivery, biosensing determinations, biofuel production, and remediation of heavy metals are deliberated, including the underlying significant challenges and future perspectives.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Mehrdad Khatami
- Noncommunicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran.,Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University in Olomouc, Slechtitelu 27, 783 71, Olomouc, Czech Republic
| |
Collapse
|
16
|
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. TOXICS 2021; 9:42. [PMID: 33668829 PMCID: PMC7996329 DOI: 10.3390/toxics9030042] [Citation(s) in RCA: 521] [Impact Index Per Article: 130.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Environmental problems have always received immense attention from scientists. Toxicants pollution is a critical environmental concern that has posed serious threats to human health and agricultural production. Heavy metals and pesticides are top of the list of environmental toxicants endangering nature. This review focuses on the toxic effect of heavy metals (cadmium (Cd), lead (Pb), copper (Cu), and zinc (Zn)) and pesticides (insecticides, herbicides, and fungicides) adversely influencing the agricultural ecosystem (plant and soil) and human health. Furthermore, heavy metals accumulation and pesticide residues in soils and plants have been discussed in detail. In addition, the characteristics of contaminated soil and plant physiological parameters have been reviewed. Moreover, human diseases caused by exposure to heavy metals and pesticides were also reported. The bioaccumulation, mechanism of action, and transmission pathways of both heavy metals and pesticides are emphasized. In addition, the bioavailability in soil and plant uptake of these contaminants has also been considered. Meanwhile, the synergistic and antagonistic interactions between heavy metals and pesticides and their combined toxic effects have been discussed. Previous relevant studies are included to cover all aspects of this review. The information in this review provides deep insights into the understanding of environmental toxicants and their hazardous effects.
Collapse
Affiliation(s)
- Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;
| | - Sara Taha Abdelkhalek
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Sundas Rana Qureshi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.T.A.); (S.R.Q.)
| |
Collapse
|
17
|
Waheed A, Abdel-Azeim S, Ullah N, Oladepo SA. Design and synthesis of two new terbium and europium complex-based luminescent probes for the selective detection of zinc ions. LUMINESCENCE 2020; 35:1238-1247. [PMID: 32501608 DOI: 10.1002/bio.3883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 02/06/2023]
Abstract
Zinc plays a key role in many physiological processes and has implications for the environment. Consequently, detection of chelatable zinc ion (Zn2+ ) has attracted widespread interest from the research community. Lanthanide-based luminescent probes offer particular advantages, such as high water solubility, long luminescence lifetimes and a large Stokes' shift, over common organic dye-based fluorescent sensors. Here, we report the synthesis of terbium and europium complex-based probes, Tb-1 and Eu-1, for sensitive and selective detection of Zn2+ in water. These probes featured the incorporation of bis(2-pyridylmethyl)]amine (DPA) receptor for Zn2+ chelation and the 1,4,7-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane (DO3A) ring to chelate lanthanide (Ln3+ ). Tb-1 and Eu-1 displayed high selectivity for Zn2+ ions over a wide range of competing ions, with limits of detection of 0.50 ± 0.1 μM and 1.5 ± 0.01 μM, respectively. Density functional theory simulations were in good agreement with experimental observations, displaying high Zn2+ selectivity compared with most competing ions. In the competing ions experiments, the luminescence response of Tb-1 and Eu-1 was moderately quenched by some ions such as Cu2+ , this was linked to the comparable binding abilities of these ions for the receptor of the probe.
Collapse
Affiliation(s)
- Abdul Waheed
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Safwat Abdel-Azeim
- Center of Integrative Petroleum Research, College of Petroleum Engineering and Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Nisar Ullah
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sulayman A Oladepo
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
18
|
Kiran Marella T, Saxena A, Tiwari A. Diatom mediated heavy metal remediation: A review. BIORESOURCE TECHNOLOGY 2020; 305:123068. [PMID: 32156552 DOI: 10.1016/j.biortech.2020.123068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 05/09/2023]
Abstract
Exposure to heavy metals is a major threat to aquatic bodies and is a global concern to our four main spheres of the earth viz. atmosphere, biosphere, hydrosphere, and lithosphere. The biosorption of pollutants using naturally inspired sources like microalgae has considerable advantages. Diatoms are the most dominant and diverse group of phytoplankton which accounts for 45% oceanic primary productivity. They perform a pioneer part in the biogeochemistry of metals in both fresh and marine water ecosystems. The diatoms play a significant role in degradation, speciation, and detoxification of chemical wastes and hazardous metals from polluted sites. Herein, an overview is presented about the ability of diatom algae to phycoremediate heavy metals by passive adsorption and active assimilation from their aqueous environments with an emphasis on extracellular and intracellular mechanisms involved in contaminant uptake through the frustules for preventing heavy metal toxicity.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru 502 324, Telangana State, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201 313, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201 313, India.
| |
Collapse
|
19
|
Hemati Matin N, Jalali M, Buss W. Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. CHEMOSPHERE 2020; 241:124932. [PMID: 31590018 DOI: 10.1016/j.chemosphere.2019.124932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 05/15/2023]
Abstract
Biochar and nanoparticle (NP) have the ability to sorb potentially toxic elements (PTEs) from soil and reduce toxicity and leaching into water bodies. However, there is need to tailor biochar formulations to soil types. In this study, we investigate the mobility and chemical forms of Cd, Cr, Cu, Ni, and Zn in a spiked, alkaline soil after amendment with combination of NPs (nano-Fe (NF), nano-clay (NC)) and biochars (almond shell 500 °C, walnut shell 400 °C) in different doses (0, 2.5, 5, and 10%). Many previous studies concluded biochar immobilized PTEs due to an increase in soil pH, which can be disregarded here (soil pH 7.9). In a twenty-week column leaching experiment biochar addition significantly decreased PTE leaching and NP addition further immobilized PTEs in most cases. On average almond biochar more effectively reduced Zn leaching and walnut biochar was more effective in decreasing the leaching of Cd, Cr, and Ni (e.g. 5% biochar reduced Cr leaching by 68%). Copper was immobilized effectively by both biochars. Nano-clay combined with walnut biochar performed best in all treatments, in particular for Cd, Ni, and Zn (e.g. 10% walnut biochar only and in combination with NC reduced Zn leaching by 14.2% and 58.5%, respectively). After amendment, PTEs were present in the Fe-Mn oxides, organic and residual fractions and less in the exchangeable fraction, reducing PTE availability and leachability. The results demonstrate that even for cationic PTEs that behave similarly in the environment optimal biochar-mineral formulations can differ.
Collapse
Affiliation(s)
- Narges Hemati Matin
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Wolfram Buss
- Fenner School of Environment and Society, Australian National University, Canberra, Australia; Conversion Technologies of Biobased Resources, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
20
|
Chen M, Ding S, Gao S, Fu Z, Tang W, Wu Y, Gong M, Wang D, Wang Y. Efficacy of dredging engineering as a means to remove heavy metals from lake sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 665:181-190. [PMID: 30772548 DOI: 10.1016/j.scitotenv.2019.02.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/29/2019] [Accepted: 02/03/2019] [Indexed: 06/09/2023]
Abstract
Dredging is used worldwide to remove polluted sediments from water bodies. However, the dredging efficacy remains hard to identify. Here, we studied the efficacy of dredging engineering as a means to remove Cu, Cd, and Pb from polluted lake sediments, after six years of completion. Dissolved metals and DGT-labile metals were quantified in the non-dredged and post-dredged sediments by high-resolution dialysis (HR-Peeper) and diffusive gradients (DGT) in thin films techniques. April and July measurements showed that dredging was effectively remediate the polluted sediments. The dissolved Pb, Cd, and Cu contents decreased up to 30%, 44%, and 26%, and the DGT-labile contents decreased up to 51%, 27%, and 33% compared with the contents in the non-dredged zone. Dredging was thus proven efficient in decreasing the labile metal fractions, increasing the capacity of available solids to bind metals, and slowing the leaching of metals from available solids in the post-dredged sediments. In October and January, the dredging efficacy was counteracted by the decomposition of algae, which increased the dissolved and DGT-labile metal concentrations in the post-dredged zone.
Collapse
Affiliation(s)
- Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shuaishuai Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Fu
- Nanjing University of Science and Technology, 200 Xiaolingwei Road, 210094 Nanjing, China
| | - Wanying Tang
- Nanjing University of Science and Technology, 200 Xiaolingwei Road, 210094 Nanjing, China
| | - Yuexia Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengdan Gong
- Shanghai Water Source Construction Development Co., Ltd., Shanghai 200437, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| |
Collapse
|
21
|
Chen M, Ding S, Gao S, Xu S, Yang C, Wu Y, Gong M, Wang D, Wang Y. Long-term effects of sediment dredging on controlling cobalt, zinc, and nickel contamination determined by chemical fractionation and passive sampling. CHEMOSPHERE 2019; 220:476-485. [PMID: 30594799 DOI: 10.1016/j.chemosphere.2018.12.138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/19/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Studies of dredging effectiveness, especially the ones that last for several years, are scarce. In this study, we evaluated effectiveness of dredging performed for six years on controlling cobalt (Co), zinc (Zn), and nickel (Ni) contamination of sediments. High-resolution dialysis (HR-Peeper) and diffusive gradients in thin films (DGT) methods were applied to analyze the non-dredged and post-dredging sediments. The soluble and DGT-labile Co and Ni content declined by 22% and 44% (soluble) and by 16% and 26% (labile) in April, July and October in the post-dredging region. In contrast, their concentrations increased by 105% and 9% (soluble) and 322% and 27% (labile) in January. These changes in the dredging effects were caused by the corresponding changes in the reducible and residual fractions of Co and the residual fraction of Ni in sediments in the dredged site, respectively. Soluble and DGT-labile Zn decreased on average by 23% and 29% in July and October and increased on average by 151% and 52% in April and January in the post-dredging region. The different Zn mobility in the post-dredging region was controlled by the reducible fraction of Zn. The results revealed positive influence of dredging engineering in summer, autumn and/or spring and negative one in winter. Therefore, an accurate assessment of dredging effectiveness should take its seasonal variation into consideration.
Collapse
Affiliation(s)
- Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Shuaishuai Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiwei Xu
- Central Laboratory, Jiangsu Academy of Agricultural Science, Nanjing 210008, China
| | - Chenye Yang
- Central Laboratory, Jiangsu Academy of Agricultural Science, Nanjing 210008, China
| | - Yuexia Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengdan Gong
- Shanghai Water Source Construction Development Co., Ltd., Shanghai 200437, China
| | - Dan Wang
- Shanghai Waterway Engineering Design and Consulting Co., Ltd., Shanghai 200120, China
| | - Yan Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Nanjing EasySensor Environmental Technology Co., Ltd, Nanjing 210018, China
| |
Collapse
|