1
|
Eid Z, Mahmoud UM, Sayed AEDH. Deleterious effects of polypropylene released from paper cups on blood profile and liver tissue of Clarias gariepinus: bioremediation using Spirulina. Front Physiol 2024; 15:1380652. [PMID: 38846421 PMCID: PMC11155391 DOI: 10.3389/fphys.2024.1380652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Despite numerous studies on microplastics, the biological impacts of polypropylene microplastics (PP-MPs) and its toxicity on freshwater fish have yet to be fully revealed. The purpose of this research was to look at the potentially harmful effects of PP-MPs in freshwater African catfish Clarias gariepinus and bioremediation using Spirulina. After acclimatization to laboratory conditions, 108 fish (125 ± 3 gm and 27 ± 2 cm) were assigned into triplicate six experimental groups (12 fish/group), a control group, Spirulina group (SP), PP-MP-treated groups (0.14 and 0.28 mg/l PP-MPs), and PP-MP + Spirulina-treated groups (0.14 mg/l PP-MPs + 200 mg/L SP and 0.28 mg/l PP-MPs +200 mg/L SP) for 15-day exposure and 45-day recovery after that. The hematological parameters exhibiting significance (RBCs, Hct, Hb, and MCV) or non-significance (MCH and MCHC) either decreased with the increase in PP-MP doses from 0.0 in the control to 0.28 mg/L red blood cells (RBCs), hematocrit (Hct), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb) and platelets or increased with such an increase in doses (mean corpuscular volume (MCV)). The liver enzyme activity, aspartate aminotransferase (AST), alkaline phosphatase (ALP), and alanine aminotransferase (ALT) exhibited non-significant (p ≥ 0.05) or significant (p < 0.05) increases in (0.14 and 0.28 mg/L) PP-MP-exposed groups, respectively, except ALP. Furthermore, there was a significant (p < 0.05) or non-significant (p ≥ 0.05) increase in 0.14 and 0.28 mg/l PP-MP +200 mg/L-exposure groups, respectively, compared to the control group and the same exposure group without Spirulina. In comparison to the control group, PP-MPs (0.14 and 0.28 mg/L) induced a significant (p < 0.05) increase in the percentage of poikilocytosis and nuclear abnormalities of RBCs. The liver tissue from fish exposed to PP-MPs exhibited varying degrees of pathological changes. These results indicated that these pathological changes increased with PP-MP concentration, suggesting that the effect of PP-MPs was dose-dependent. After 45 days of recovery under normal conditions, it was obvious that there was a significant improvement in the percentage of poikilocytosis and nuclear abnormalities of RBCs, as well as a non-significant improvement in hemato-biochemical parameters and liver tissue.
Collapse
Affiliation(s)
- Zainab Eid
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Usama M. Mahmoud
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
- Molecular Biology Research & Studies Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Downie AT, Wu NC, Cramp RL, Franklin CE. Sublethal consequences of ultraviolet radiation exposure on vertebrates: Synthesis through meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:6620-6634. [PMID: 37366045 DOI: 10.1111/gcb.16848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Ultraviolet radiation (UVR) from the sun is a natural daytime stressor for vertebrates in both terrestrial and aquatic ecosystems. UVR effects on the physiology of vertebrates manifest at the cellular level, but have bottom-up effects at the tissue level and on whole-animal performance and behaviours. Climate change and habitat loss (i.e. loss of shelter from UVR) could interact with and exacerbate the genotoxic and cytotoxic impacts of UVR on vertebrates. Therefore, it is important to understand the range and magnitude of effects that UVR can have on a diversity of physiological metrics, and how these may be shaped by taxa, life stage or geographical range in the major vertebrate groups. Using a meta-analytical approach, we used 895 observations from 47 different vertebrate species (fish, amphibian, reptile and bird), and 51 physiological metrics (i.e. cellular, tissue and whole-animal metrics), across 73 independent studies, to elucidate the general patterns of UVR effects on vertebrate physiology. We found that while UVR's impacts on vertebrates are generally negative, fish and amphibians were the most susceptible taxa, adult and larvae were the most susceptible life stages, and animals inhabiting temperate and tropical latitudes were the most susceptible to UVR stress. This information is critical to further our understanding of the adaptive capacity of vulnerable taxon to UVR stress, and the wide-spread sublethal physiological effects of UVR on vertebrates, such as DNA damage and cellular stress, which may translate up to impaired growth and locomotor performance. These impairments to individual fitness highlighted by our study may potentially cause disruptions at the ecosystem scale, especially if the effects of this pervasive diurnal stressor are exacerbated by climate change and reduced refuge due to habitat loss and degradation. Therefore, conservation of habitats that provide refuge to UVR stress will be critical to mitigate stress from this pervasive daytime stressor.
Collapse
Affiliation(s)
- Adam T Downie
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
3
|
Naguib M, Mekkawy IA, Mahmoud UM, Sayed AEDH. Genotoxic evaluation of silver nanoparticles in catfish Clarias gariepinus erythrocytes; DNA strand breakage using comet assay. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
4
|
Hu F, Yin L, Dong F, Zheng M, Zhao Y, Fu S, Zhang W, Chen X. Effects of long-term cadmium exposure on growth, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:106014. [PMID: 34739975 DOI: 10.1016/j.aquatox.2021.106014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental contaminant, posing serious threats to aquatic organisms. The aims of the present study were to investigate the effects of long-term Cd exposure on the growth, GH/IGF axis, antioxidant defense and DNA methylation in juvenile Nile tilapia (Oreochromis niloticus). To this end, juvenile Nile tilapia were exposed to 0, 10 and 50 µg∙L-1 Cd for 45 and 90 days. The obtained results revealed that exposure to high concentrations of Cd significantly decreased body mass and body length, and down-regulated mRNA levels of GHRs, IGF-I and IGF-II in the liver of Nile tilapia. Cd exposure induced oxidative stress including the reduction of antioxidant activities and increases of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) contents. Beside, the global DNA methylation levels significantly decreased with increasing Cd concentration and exposure time, which might result from increased oxidative DNA damage, the down-regulated expression of DNMT3a and DNMT3b and up-regulated expression of TET1 and TET2. In conclusion, long-term Cd exposure could inhibit growth, reduce antioxidant capacity and lead to oxidative damages to lipid and DNA, and decrease global DNA methylation level in juvenile Nile tilapia.
Collapse
Affiliation(s)
- Fengxiao Hu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li Yin
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feilong Dong
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mengyan Zheng
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixin Zhao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shirong Fu
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weini Zhang
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
5
|
Faheem M, Adeel M, Khaliq S, Lone KP, El-Din-H-Sayed A. Bisphenol-A induced antioxidants imbalance and cytokines alteration leading to immune suppression during larval development of Labeo rohita. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26800-26809. [PMID: 32382907 DOI: 10.1007/s11356-020-08959-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Recently, the oxidative stress and immunotoxicity biomarkers have been extensively used in embryotoxicity using fish embryos as promising models especially after exposure to chemical-like environmental estrogens. Bisphenol-A (BPA) is an estrogenic endocrine disruptor and is ubiquitous in the aquatic environment. Larvae of Labeo rohita were exposed to low concentrations of BPA (10, 100, 1000 μg/l) for 21 days. Innate immune system, antioxidants parameters, and developmental alterations were used as biomarkers. Exposure to BPA caused developmental abnormalities including un-inflated swim bladder, delayed yolk sac absorption, spinal curvature, and edema of pericardium. Lipid peroxidation increased and activity of catalase (p < 0.05), superoxide dismutase (p < 0.05), and glutathione peroxidase (p < 0.01) decreased after exposure to BPA. Level of reduced glutathione also decreased (p < 0.05) in BPA-exposed group. Lower expression of tumor necrosis factor-α (p < 0.05) and interferon-γ (p < 0.001) was observed in BPA-exposed groups while expression of interleukin-10 increased (p < 0.05) in larvae exposed to 10 μg/l BPA. Moreover, exposure of BPA caused a concentration-dependent increase in expression of heat shock protein 70 (p < 0.05). The present study showed that the exposure to BPA in early life stages of Labeo rohita caused oxidative stress and suppress NF-κB signaling pathway leading to immunosuppression. The results presented here demonstrate the cross talk between heat shock protein 70 and cytokines expression.
Collapse
Affiliation(s)
| | | | - Saba Khaliq
- Department of Physiology and Cell Biology, University of Health Sciences, Lahore, Pakistan
| | - Khalid P Lone
- Department of Zoology, GC University, Lahore, Pakistan
| | | |
Collapse
|
6
|
Hamed M, Soliman HAM, Osman AGM, Sayed AEDH. Antioxidants and molecular damage in Nile Tilapia (Oreochromis niloticus) after exposure to microplastics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14581-14588. [PMID: 32048193 PMCID: PMC7190598 DOI: 10.1007/s11356-020-07898-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Recently, research on the biological effects of microplastics (MPs) has grown exponentially. However, effects of MPs on freshwater fishes and the mechanisms of the biological effects of MPs were limited. So, the purpose of the current study was to clarify the effects of microplastics on oxidative stress response, DNA fragmentation, and proteinogram of the early juvenile stage of Nile Tilapia (Oreochromis niloticus). The fishes were assigned into four groups: one control, three MPs-exposed groups as 1 mg/L of MPs, 10 mg/L of MPs, and 100 mg/L of MPs respectively for 15 days and 15 days of recovery. The activities of superoxide dismutase, catalase, total peroxides, and oxidative stress index (OSI), as well as lipid peroxidation and DNA fragmentation, increased in groups exposed to MPs compared to the control group in a dose-dependent manner. In contrast, the activity of total antioxidant capacity decreased in groups exposed to MPs compared to the control group in a dose-dependent manner. The electrophoretic pattern of muscle proteins revealed alteration in the proteinogram in the MPs-exposed groups compared to control. After the recovery period, the activities of superoxide dismutase, catalase, total peroxides, total antioxidant capacity, lipid peroxidation, DNA fragmentation, and the electrophoretic pattern of muscle proteins returned to normal levels in 1 mg/L of MPs-exposed group. Combined with our previous work, these results suggest that MPs cause the overproduction of reactive oxygen species (ROS) and alters the antioxidants parameters, resulting in oxidative stress and DNA damage. The present study fosters a better understanding of the toxic effects of MPs on Tilapia as a freshwater model. Graphical Abstract.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Zoology, Faculty of Science, Al-AzharUniversity (Assiut Branch), Assiut, 71524, Egypt
| | - Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 8562, Egypt
| | - Alaa G M Osman
- Department of Zoology, Faculty of Science, Al-AzharUniversity (Assiut Branch), Assiut, 71524, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
7
|
Mekkawy IA, Mahmoud UM, Moneeb RH, Sayed AEDH. Significance Assessment of Amphora coffeaeformis in Arsenic-Induced Hemato- Biochemical Alterations of African Catfish (Clarias gariepinus). FRONTIERS IN MARINE SCIENCE 2020. [DOI: 10.3389/fmars.2020.00191] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
8
|
Sayed AEDH, Wassif ET, Elballouz AI. Retina damage after exposure to UVA radiation on the early developmental stages of the Egyptian toad Bufo regularis Reuss. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2016.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | - Ekbal T. Wassif
- Zoology Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Afaf I. Elballouz
- Zoology Department, Faculty of Science, Misurate University, Misurate, Libya
| |
Collapse
|
9
|
Yel M, Güven T, Türker H. Effects of ultraviolet radiation on the stratum corneum of skin in mole rats. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mustafa Yel
- Gazi University, Gazi Education of Faculty, Department of Biology, Teknikokullar, Ankara, 06500, Turkey
| | - Turan Güven
- Gazi University, Gazi Education of Faculty, Department of Biology, Teknikokullar, Ankara, 06500, Turkey
| | - Hüseyin Türker
- Ankara University, Science Faculty, Department of Biology, Besevler, Ankara, Cankaya, 06500, Turkey
| |
Collapse
|
10
|
Türker H. Histological and ultrastructural analyses of mole rats lung cells exposed to ultraviolet radiation. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2014.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hüseyin Türker
- Ankara University, Science Faculty, Department of Biology, Ankara, 06500, Turkey
| |
Collapse
|
11
|
Soliman HAM, Hamed M, Lee JS, Sayed AEDH. Protective effects of a novel pyrazolecarboxamide derivative against lead nitrate induced oxidative stress and DNA damage in Clarias gariepinus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:678-684. [PMID: 30711823 DOI: 10.1016/j.envpol.2019.01.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 01/15/2019] [Accepted: 01/20/2019] [Indexed: 02/07/2023]
Abstract
Pyrazole derivatives display diverse biological and pharmacological activities. The aim of this study is to investigate the antioxidant properties of a novel pyrazolecarboxamide derivative (4-amino-N-[(4-chlorophenyl)]-3-methyl-1-phenyl-1H-thieno [2, 3-c] pyrazole-5-carboxamide) in African catfish, Clarias gariepinus, exposed to 1 mg/L PbNO3. Fish were intramuscularly injected with pyrazole-5-carboxamidederivative according to the following groupings: Group 1 (control), Group 2 (1 mg/L lead nitrate), Group 3 (1 mg/L lead nitrate + 5 mg pyrazole derivative/kg body weight), and Group 4 (1 mg/L lead nitrate + 10 mg pyrazole derivative/kg body weight) for two weeks and four weeks. Lead nitrate (1 mg/L) caused significant elevation of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatinine, uric acid, cholesterol, and glucose-6-phosphate dehydrogenase (G6PDH) compared to the control group after two and four weeks of exposure, while serum total lipids, alkaline phosphatase (ALP), and lactate dehydrogenase (LDH) were significantly reduced compared to the control group. Furthermore, levels of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) and total antioxidant capacity (TAC) were reduced in group 2 compared to the control group. However, in group 2, hepatic lipid peroxidation (LPO) and DNA fragmentation percentage were significantly increased compared to the control group. Histopathological changes in the liver of lead-exposed groups included marked disturbance of hepatic tissue organization, degeneration of hepatocytes, dilation of blood sinusoids and the central vein as well as necrosis. Injection of pyrazole derivative for two weeks and four weeks reversed alterations in biochemical parameters, antioxidant biomarkers, lipid peroxidation, hepatic DNA damage, and histopathological changes in liver tissue induced by 1 mg/L lead nitrate. This amelioration was higher in response to high-dose pyrazole derivative (10 mg) at the fourth week of exposure, showing concentration-and time-dependency. Overall, the sensitized derivative pyrazolecarboxamide is likely a useful tool to minimize the effects of lead toxicity due to its potent antioxidant activity.
Collapse
Affiliation(s)
- Hamdy A M Soliman
- Department of Zoology, Faculty of Science, Sohag University, 8562, Sohag, Egypt
| | - Mohamed Hamed
- Department of Zoology, Faculty of Science, Al Azhar University (Assiut Branch), 71524, Assiut, Egypt
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516, Assiut, Egypt.
| |
Collapse
|
12
|
Osman A, Hamed M, Sayed A. Protective role of Spirulina platensis against UVA-induced haemato-biochemical and cellular alterations in Clarias gariepinus. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2019; 191:59-64. [PMID: 30583267 DOI: 10.1016/j.jphotobiol.2018.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023]
Abstract
Recently, it has become widely recognized that ultraviolet A (UVA) exposure is harmful for both aquatic and terrestrial organisms. Many studies have reported the effects of UVA on aquatic animals, especially fish, but little is known about the antioxidant role of microalgae in ameliorating the negative effects of UVA exposure. Recently, there has been great interest in using Spirulina platensis (SP) as a dietary antioxidant agent. Therefore, this study aimed to investigate the protective role of SP against UVA-induced effects by analysing haemato-biochemical alterations and erythrocyte cytotoxic and genotoxic biomarkers in African catfish (Clarias gariepinus). Fish were exposed to UVA, UVA + 100 mg/L SP extract, UVA + 200 mg/L SP extract for 3 days (UVA exposure: 1 h/day), and were not subjected to treatment (control group). The results showed the presence of some morphological malformations in red blood cells (RBCs) after UVA exposure. Additionally, nuclear abnormalities, including micronuclei, were observed. UVA induced alterations in most of the haemato-biochemical indices. Adding SP to the fish aquaria restored the haemato-biochemical parameters to their control values. In addition, SP repaired cellular damage in a dose-dependent manner. We conclude that SP plays a modulatory role in preventing and/or repairing the haemotoxic effects induced by UVA.
Collapse
Affiliation(s)
- Alaa Osman
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt
| | - Mohamed Hamed
- Zoology Department, Faculty of Science, Al-Azhar University, Assiut Branch, 71524 Assiut, Egypt.
| | - Alaa Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| |
Collapse
|
13
|
Sayed AEDH, Soliman HAM, Mitani H. UVA-induced neurotoxicity in Japanese medaka (Oryzias latipes). Photochem Photobiol Sci 2019; 18:71-79. [PMID: 30306185 DOI: 10.1039/c8pp00169c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ultraviolet radiation-induced neurodegeneration has been studied in the early stages of development in fish, but not extensively in the adult stage. The present study aimed at investigating the effects of ultraviolet radiation-A (UVA) in adult Japanese medaka (Oryzias latipes). The brain, spinal cord, and retina were examined histopathologically as nervous system target organs. Japanese medaka fish were exposed to 15, 30, and 60 min day-1 UVA for 3 days, and samples were obtained 24 h and 14 days after UVA exposure. Neurohistopathological alterations in brain tissue included vacuoles, blood congestion, degeneration of neuropils, and pyknotic nuclei in neurons. Alterations in the spinal cord included neuronal cell degeneration, reduction in the spinal cord area, and degeneration of Mauthner cells. Retinal tissue showed vacuolation in the nerve fiber layer (NFL), pyknotic nuclei in the ganglion cell layer (GCL), and decreased cell populations particularly in the inner nuclear layer (INL) and GCL. The degree of degeneration was dependent on the duration of UVA exposure. The signs of degeneration decreased gradually and disappeared completely after the 14-day recovery period. In addition, p53-deficient medaka fish were more tolerant than were wild-type (Hd-rR) Japanese medaka. In conclusion, UV radiation induced neurodegeneration in the brain, spinal cord, and retina of adult Japanese medaka (Oryzias latipes) but their normal histological architecture reappeared in these tissues after 14 days.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Laboratory of Fish Biology and Pollution, Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt. and Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hamdy A M Soliman
- Zoology Department, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
14
|
Hurem S, Fraser TWK, Gomes T, Mayer I, Christensen T. Sub-lethal UV radiation during early life stages alters the behaviour, heart rate and oxidative stress parameters in zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:359-365. [PMID: 30278398 DOI: 10.1016/j.ecoenv.2018.09.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Environmental UV radiation in sufficient doses, as a possible consequence of climate change, is potent enough to affect living organisms with different outcomes, depending on the exposure life stage. The aim of this project was to evaluate the potentially toxic effects of exposure to sub-lethal and environmentally relevant doses of UVA (9.4, 18. 7, 37.7 J/cm2) and UVB radiation (0.013, 0.025, 0.076 J/cm2) on the development and behaviour in early life stages (4.5-5.5 h post fertilization, hpf) of the zebrafish (Danio rerio). The used doses were all below the median lethal dose (LD50) and caused no significant difference in survival, deformities, or hatching between exposed and control groups. Compared to controls, there were transient UVA and UVB exposure effects on heart rate, with dose dependent reductions at 50 hpf, and at 60 hpf for UVA only. The UVB exposure caused an increasing trend in reactive oxygen species (ROS) formation at the two highest doses, even though only significant at 120 hpf for the second highest dose. Both UVA and UVB caused an increasing trend in lipid peroxidation (LPO) at the highest doses tested at 72 hpf. Furthermore, UVA exposure led to significant reductions in larval movement following exposure to the two highest doses of UVA, i.e., reduction in the time spent active and the total distance moved compared to control at 100 hpf, while no effect on the swimming speed was observed. The lowest dose of UVA had no effect on behaviour. In contrast, the highest dose of UVB led to a possible increase in the time spent active and a slower average swimming speed although these effects were not significant (p = 0.07). The obtained results show that UV doses below LD50 levels are able to cause changes in the behaviour and physiological parameters of zebrafish larvae, as well as oxidative stress in the form of ROS formation and LPO. Further testing is necessary to assess how this type of radiation and the effects observed could affect fish population dynamics.
Collapse
Affiliation(s)
- Selma Hurem
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway.
| | - Thomas W K Fraser
- Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Tȃnia Gomes
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway
| | - Ian Mayer
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Veterinary Medicine and Biosciences, P.O. Box 8146 Dep., 0033 Oslo, Norway
| | - Terje Christensen
- Centre for Environmental Radioactivity (CERAD CoE), NMBU, 1433 Ås, Norway; Norwegian Radiation Protection Authority, P.O. Box 329 Skøyen, 0213 Oslo, Norway
| |
Collapse
|
15
|
Sayed AEDH, Ismail RF, Mitani H. Oocyte atresia in WT (HdrR) and P53 (-/-) medaka (Oryzias latipes) exposed to UVA. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2018; 183:57-63. [PMID: 29684721 DOI: 10.1016/j.jphotobiol.2018.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
The negative effects of ambient ultraviolet (UVA) on the water environment have been recently highlighted; UVA can create deleterious effects by stimulating stress on pelagic organisms. Little is known about UVA effects on oocyte characteristics of female fish. In the present study we explored the effects of exposure to ecologically relevant levels of simulated UVA radiation on ovaries of two major strains WT (HdrR) and P53 (-/-) of medaka (Oryzias latipes) mature female. Fish were assigned to control and three UVA-exposed groups as (15 min, 30 min, and 60 min/day) for three days and sample selection was 24 h and 14 days after exposure. Histological alterations and oocyte atresia percentage were analyzed in the UVA-exposed fish compared to control. Alteration comprised hyperthrophied follicular cells with increased thickness, breakdown of egg chorion (zona radiata), damage of cortical alveoli, and distorted nucleus and cytoplasm. The atresia percentages significantly increased with higher UVA exposure dose and time for both the wild type and the p53 deficient fish. The wild type displayed significantly higher oocyte atresia percentage than the p53 mutant. These results suggested that UVA exposure provoked histological alterations in both p53 and WT medaka oocytes leading to follicular atresia, which reduce female reproductive ability and larval production. UVA oocyte response showed p53 dependent and independent histological alteration, however, the p53 mutant was less sensitive to UVA than the wild type in medaka fish.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Laboratory of Fish Biology and Pollution, Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Rania F Ismail
- Laboratory of Fish Reproduction and Spawning, Aquaculture Division, National Institute of Oceanography and Fisheries, 21556 Alexandria, Egypt
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
16
|
Kotb AM, Abd-Elkareem M, Abou Khalil NS, Sayed AEDH. Protective effect of Nigella sativa on 4-nonylphenol-induced nephrotoxicity in Clarias gariepinus (Burchell, 1822). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:692-699. [PMID: 29156287 DOI: 10.1016/j.scitotenv.2017.11.131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/26/2017] [Accepted: 11/11/2017] [Indexed: 02/07/2023]
Abstract
The aim of this study was to examine the protective effects of Nigella sativa (N. sativa) on 4-Nonylphenol-induced nephrotoxicity in Clarias gariepinus. 30 fishes were divided into five groups: control, 4-nonylphenol-treated, 1% N. sativa treated, 2.5% N. sativa treated, and 5% N. sativa treated. N. sativa and 4-Nonylphenol were given for 3weeks. 4-NP and 4-NP-N. sativa treated fishes were compared with the control group. Kidney histology, immunochemistry, and electron microscope were assessed after 4-NP exposure. In the African catfish, 4-NP is mainly excreted through the kidney causing nephrotoxicity. Our results showed that 4-NP administration significantly disturbed the kidney structure and function. 4-NP treated fishes showed dilated glomerular vessels, fewer glomerular cells content, decreased expressions of glomerular proteins, and increased level of autophagy compared to control group (P<0.05). As N. sativa has different immunological and pharmacological effects such as anti-apoptotic and anti-oxidant, therefore, the administration of N. sativa with 4-Nonylphenol significantly minimize the nephrotoxic effect of 4-NP and maintain the normal kidney structure and function. Our novel study demonstrated for the first time that N. sativa could protect the kidney against 4-NP induced-nephrotoxicity.
Collapse
Affiliation(s)
- Ahmed M Kotb
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71516 Assiut, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, 71516 Assiut, Egypt
| | - Nasser S Abou Khalil
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Alaa El-Din H Sayed
- Zoology department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
17
|
Sayed AEDH, Kataoka C, Oda S, Kashiwada S, Mitani H. Sensitivity of medaka (Oryzias latipes) to 4-nonylphenol subacute exposure; erythrocyte alterations and apoptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:98-104. [PMID: 29306823 DOI: 10.1016/j.etap.2017.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/22/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023]
Abstract
The present study was undertaken to assess the effects of the endocrine-disrupting compound; 4-nonylphenol (4-NP) in medaka (Oryzias latipes). The frequencies of erythrocyte alterations, apoptosis, and micronuclei were used as biological indicators of damage. Medaka were exposed 15 days to 4-NP at three sublethal concentrations (50, 80, and 100 μg/l 4-NP) and results compared with those of a previous study using catfish as an animal model. Exposure of medaka resulted in a dose-dependent increase in the frequency of erythrocyte alterations, apoptosis and micronucleus (MN). Many morphological alterations and nuclear abnormalities were observed, including acanthocytes, lobed nucleus, eccentric nucleus, fragmented nucleus, blebbed nucleus, binuclei, deformed nucleus, notched nucleus, hemolysed cells, crenated cells, teardrop-like cells, and schistocytes. Mortality was recorded after treatment with 80 and 100 μg/l 4-NP, indicating that medaka are more sensitive than catfish to 4-NP exposure. We concluded that, 4-NP causes several malformations in the shape and number of erythrocytes in medaka, indicating its genotoxicity.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Chisato Kataoka
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shosaku Kashiwada
- Graduate School of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan; Research Center of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
18
|
Sayed AEDH. UVA-Induced DNA Damage and Apoptosis in Red Blood Cells of the African Catfish Clarias gariepinus. Photochem Photobiol 2018; 94:158-164. [PMID: 28767143 DOI: 10.1111/php.12818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/21/2017] [Indexed: 02/05/2023]
Abstract
Ultraviolet-A light (UVA)-induced DNA damage and repair in red blood cells to investigate the sensitivity of African catfish to UVA exposure is reported. Fishes were irradiated with various doses of UVA light (15, 30, and 60 min day-1 for 3 days). Morphological and nuclear abnormalities in red blood cells were observed in the fish exposed to UVA compared with controls. Morphological alterations such as acanthocytes, crenated cells, swollen cells, teardrop-like cells, hemolyzed cells, and sickle cells were observed. Those alterations were increased after 24 h exposure to UVA light and decreased at 14 days after exposure. The percentage of apoptosis was higher in red blood cells exposed to higher doses of UVA light. No micronuclei were detected, but small nuclear abnormalities such as deformed and eccentric nuclei were observed in some groups. We concluded that exposure to UVA light induced DNA damage, apoptosis, and morphological alterations in red blood cells in catfish; however, catfish were found to be less sensitive to UVA light than wild-type medaka.
Collapse
|
19
|
Sayed AEDH, Soliman HAM. Developmental toxicity and DNA damaging properties of silver nanoparticles in the catfish (Clarias gariepinus). MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2017; 822:34-40. [PMID: 28844240 DOI: 10.1016/j.mrgentox.2017.07.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 07/05/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023]
Abstract
Although, silver nanoparticles (AgNPs) are used in many different products, little information is known about their toxicity in tropical fish embryos. Therefore, this study evaluated the developmental toxicity of waterborne silver nanoparticles in embryos of Clarias gariepinus. Embryos were treated with (0, 25, 50, 75ng/L silver nanoparticles) in water up to 144h postfertilization stage (PFS). Results revealed various morphological malformations including notochord curvature and edema. The mortality rate, malformations, and DNA fragmentation in embryos exposed to silver nanoparticles increased in a dose- and embryonic stage-dependent manner. The total antioxidant capacity and the activity of catalase in embryos exposed to 25ng/L silver nanoparticles were decreased significantly while the total antioxidant capacity and the activity of catalase were insignificantly increased with increasing concentrations in the embryos from 24 to 144 h-PFS exposed to 50 and 75ng/L silver nanoparticles. Lipid peroxidation values showed fluctuations with doses of silver nanoparticles. Histopathological lesions including severely distorted and wrinkled notochord were observed. The current data propose that the toxicity of silver nanoparticles in C. gariepinus embryos is caused by oxidative stress and genotoxicity.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt.
| | - Hamdy A M Soliman
- Zoology Department, Faculty of Science, Sohag University, 8562 Sohag, Egypt
| |
Collapse
|
20
|
Derakhshesh N, Movahedinia A, Salamat N, Hashemitabar M, Bayati V. Using a liver cell culture from Epinephelus coioides as a model to evaluate the nonylphenol-induced oxidative stress. MARINE POLLUTION BULLETIN 2017; 122:243-252. [PMID: 28676171 DOI: 10.1016/j.marpolbul.2017.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 06/16/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
The present study aimed to use primary liver cell culture derived from the orange-spotted grouper, Epinephelus coioides, to assess the toxic effects of nonylphenol (NP) on the hepatocyte viability and the liver antioxidant system. E. coioides was selected due to its commercial importance. NP was used in this study because of its high potential of producing oxidative stress due to increased reactive oxygen species (ROS). A liver of E. coioides was digested with PBS containing 0.1% collagenase IV. The digested cells were moved to Leibovitz L-15 culture medium with 20% fetal bovine serum (FBS), 100IUmL-1 penicillin, 100μgmL-1 streptomycin. Aliquots of cell suspension were seeded as a monolayer into sterile 25cm2 tissue culture flasks and incubated at 30°C for 14days. The medium, containing non-attached cells, was removed after 24 to 48h and a new medium was added. The IC50 of 10-4molL-1 was determined for nonylphenol using MTT assay. Cells were then incubated with L-15 medium containing 10-5, 2×10-5, 3×10-5molL-1 of NP and samples were taken after 6, 12 and 24h of incubation for analysis of LPO, SOD, CAT, GPx, LDH, AST, ALT, and ALP. Based on the results, the lowest concentration of NP was not markedly cytotoxic to primary hepatocytes and the cell sensitivity to NP increased dose-dependently. The activities of SOD, CAT and GPx decreased significantly, while activities of LPO, LDH, AST, ALT and ALP, increased significantly in a dose-related pattern in NP-treated cells. In conclusion, this study revealed that NP could induce the oxidative stress in cultivated hepatocytes of E. coioides during a short-term exposure. NP toxicity is mainly due to the induction of the reactive oxygen species (ROS), which lead to cell membrane disruption, damage of cellular metabolism, and interference with cellular macromolecules.
Collapse
Affiliation(s)
- Negin Derakhshesh
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Iran
| | - AbdolAli Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Iran.
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, Iran.
| | - Mahmoud Hashemitabar
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Sayed AEDH, El-Sayed YS, El-Far AH. Hepatoprotective efficacy of Spirulina platensis against lead-induced oxidative stress and genotoxicity in catfish; Clarias gariepinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:344-350. [PMID: 28554489 DOI: 10.1016/j.ecoenv.2017.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/01/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023]
Abstract
Lead (Pb) is a toxic environmental pollutant that induces a broad range of biochemical and physiological hazards in living organisms. We investigated the possible hepatoprotective effects of Spirulina platensis (SP) in counteracting the Pb-induced oxidative damage. Ninety-six adult African catfish were allocated into four equal groups. The 1st group (control) fed basal diet while the 2nd group (Pb-treated) fed on basal diet and exposed to 1mg Pb(NO3)2/L. The 3rd and 4th groups fed SP-supplemented basal diets at levels of 0.25% and 0.5%, respectively and exposed to Pb. Serum samples were used to analyze hepatic function biomarkers, electrolytes, and oxidant and antioxidant status. Lipid peroxidation and DNA fragmentation were determined in the liver tissues. Pb exposure induced hepatic dysfunction, electrolytes (Na+, K+, Ca+2, and Cl-) imbalance, as well a significant decrease in GSH content, and LDH, AChE, SOD, CAT and GST enzymes activity. SP supplementation reverted these biochemical and genetic alterations close to control levels. This amelioration was higher with 0.5% SP and at the 4th week of exposure, showing concentration- and time-dependency. Thus, the current study suggests that SP could protect the catfish liver against lead-induced injury by scavenging ROS, sustaining the antioxidant status and diminishing DNA oxidative damage. The dietary inclusion of SP can be used as a promising protective agent to counteract oxidative stress-mediated diseases and toxicities.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut 71516, Egypt.
| | - Yasser S El-Sayed
- Department of Veterinary Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| |
Collapse
|
22
|
Sayed AEDH, Mitani H. Immunostaining of UVA-induced DNA damage in erythrocytes of medaka (Oryzias latipes). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2017; 171:90-95. [PMID: 28482225 DOI: 10.1016/j.jphotobiol.2017.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
Abstract
Some authors have recently reported that UVA induces double-strand breaks (DSBs) in DNA. Only a few researchers have reported on the induction of DSBs upon UVA exposure, as measured using the Comet assay and γ-H2AX as markers of DSB formation. In the present study, we have investigated for the first time the dose-dependent induction of DSBs by UVA in medaka (Oryzias latipes) erythrocytes. Adult female medaka fish were exposed to UVA for 15, 30, and 60min/day for three continuous days; an unirradiated control group was kept in the same laboratory conditions. At 0h and 24h after UVA exposure, blood was collected to detect DNA damage and repair. The number of γ-H2AX foci was higher than the control value at 0h after UVA exposure and decreased within a 24h. the comet assay showed that DNA repair began during the recovery period. These findings confirm our pervious findings of genotoxic effects after UVA exposure in medaka erythrocytes and suggest that the replication-independent formation of UVA-induced DSBs is mediated through the generation of reactive oxygen species. In conclusion, these results suggest that DNA damage and repair occur after UVA exposure in medaka fish. UVA is the main component of solar UV radiation and is used for artificial UV exposure. Our results may have implications for skin cancer research.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
23
|
Sayed AEDH, Igarashi K, Watanabe-Asaka T, Mitani H. Double strand break repair and γ-H2AX formation in erythrocytes of medaka (Oryzias latipes) after γ-irradiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 224:35-43. [PMID: 28347471 DOI: 10.1016/j.envpol.2016.11.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/14/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023]
Abstract
The study of the DNA damage response in erythrocytes after γ-irradiation may provide evidence for its effectiveness as a biomarkers for genotoxic environmental stress. We previously reported various malformations in erythrocytes of medaka irradiated with10 Gy, but not in their micronuclei. In this study, we optimized an assay method for γ-H2AX and double strand breaks in erythrocytes of adult medaka fish after 15 Gy of γ-irradiation. The highest level of apoptosis and nuclear abnormalities, including in micronuclei, were recorded 4 h after γ-irradiation, as was the highest level of γ-H2AX foci in erythrocytes. These results suggest that recognition and repair processes occur as a response to DNA damage in erythrocytes in medaka.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516, Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan.
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, 277-8562, Japan
| |
Collapse
|
24
|
Yang S, Zhou B, Xu W, Xue F, Nisar MF, Bian C, Huang X, Yang L, Zhang Y, Bartsch JW, Zhong JL. Nrf2- and Bach1 May Play a Role in the Modulation of Ultraviolet A-Induced Oxidative Stress by Acetyl-11-Keto-β-Boswellic Acid in Skin Keratinocytes. Skin Pharmacol Physiol 2017; 30:13-23. [PMID: 28142143 DOI: 10.1159/000452744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/15/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND Exposure of human skin to solar ultraviolet A (UVA) irradiation causes severe oxidative stress with damage to various cellular components and concomitant inflammation and carcinogenesis. OBJECTIVE The aim of this study is to investigate the protective effect of acetyl-11-keto-β-boswellic acid (AKBA) against UVA radiation on human skin keratinocytes. METHODS HaCaT cells were pretreated with AKBA followed by UVA irradiation. Radiation effects on cell morphology, cell viability, intracellular reactive oxygen species (ROS) levels, and antioxidant enzymes were examined. RESULTS AKBA reduces UVA irradiation-induced cell viability loss, accompanied by a decreased production of UVA-induced ROS, decreased malondialdehyde, and increased superoxide dismutase expression. In addition, AKBA increased basal and UVA-induced levels of Nrf2 (NF-E2-related factor 2), the redox-sensitive factor, and its target genes NQO1 and heme oxygenase-1 (HO-1), whereas expression of the transcriptional repressor Bach1 (BTB and CNC homology 1) was reduced. Furthermore, the cytoprotective effects of AKBA against UVA-derived oxidative damage were accompanied by modulating expression of inflammatory mediators (i.e., cyclooxygenase-2 and nuclear factor-κB) and NOX1. CONCLUSIONS AKBA protects skin cells from UVA-induced damage by modulating inflammatory mediators and/or ROS production. Therefore, AKBA has potential in the development of skin care products.
Collapse
Affiliation(s)
- Shiying Yang
- The Base of "111 Project" for Biomechanics and Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Mekkawy IA, Mahmoud U, Salah S. Atrazine-induced Changes in some Biochemical Parameters of the Early Developmental Stages of the African Catfish Clarias gariepinus (Burchell, 1822). ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajbmb.2017.21.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Sayed AEDH, Mitani H. The notochord curvature in medaka (Oryzias latipes) embryos as a response to ultraviolet A irradiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 164:132-140. [PMID: 27668833 DOI: 10.1016/j.jphotobiol.2016.09.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 02/07/2023]
Abstract
In the present work, the destructive effects of ultraviolet A (UVA; 366nm) irradiation on the developmental stages of Japanese medaka (Oryzias latipes) are revealed in terms of hatching success, mortality rate, and morphological malformations (yolk sac edema, body curvature, fin blistering, and dwarfism). Fertilized eggs in stage 4 were exposed to 15, 30, and 60min/day UVA for 3days in replicates. Fish were staged and aged following the stages established by Iwamatsu [1]. We observed and recorded the hatching time and deformed and dead embryos continuously. The hatching time was prolonged and the deformed and dead embryos numbers were increased by UVA dose increase. At stage 40, samples from each group were fixed to investigate their morphology and histopathology. Some morphological malformations were recorded after UVA exposure in both strains. Histopathological changes were represented as different shapes of curvature in notochord with collapse. The degree of collapsation was depended on the dose and time of UVA exposure. Our findings show that exposure to UVA irradiation caused less vertebral column curvature in medaka fry. Moreover, p53-deficient embryos were more tolerant than those of wild-type (Hd-rR) Japanese medaka. This study indicated the dangerous effects of the UVA on medaka.
Collapse
Affiliation(s)
- Alaa El-Din Hamid Sayed
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
27
|
Sayed AEDH, Watanabe-Asaka T, Oda S, Mitani H. Apoptosis and morphological alterations after UVA irradiation in red blood cells of p53 deficient Japanese medaka (Oryzias latipes). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2016; 161:1-8. [PMID: 27203565 DOI: 10.1016/j.jphotobiol.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/01/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023]
Abstract
Morphological alterations in red blood cells were described as hematological bioindicators of UVA exposure to investigate the sensitivity to UVA in wild type Japanese medaka (Oryzias latipes) and a p53 deficient mutant. The fewer abnormal red blood cells were observed in the p53 mutant fish under the control conditions. After exposure to different doses of UVA radiation (15min, 30min and 60min/day for 3days), cellular and nuclear alterations in red blood cells were analyzed in the UVA exposed fish compared with non-exposed controls and those alterations included acanthocytes, cell membrane lysis, swollen cells, teardrop-like cell, hemolyzed cells and sickle cells. Those alterations were increased after the UVA exposure both in wild type and the p53 deficient fish. Moreover, apoptosis analyzed by acridine orange assay showed increased number of apoptosis in red blood cells at the higher UVA exposure dose. No micronuclei but nuclear abnormalities as eccentric nucleus, nuclear budding, deformed nucleus, and bilobed nucleus were observed in each group. These results suggested that UVA exposure induced both p53 dependent and independent apoptosis and morphological alterations in red blood cells but less sensitive to UVA than Wild type in medaka fish.
Collapse
Affiliation(s)
- Alla El-Din Hamid Sayed
- Zoology department, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
28
|
Sayed AEDH, Mohamed NH, Ismail MA, Abdel-Mageed WM, Shoreit AAM. Antioxidant and antiapoptotic activities of Calotropis procera latex on Catfish (Clarias gariepinus) exposed to toxic 4-nonylphenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 128:189-94. [PMID: 26946283 DOI: 10.1016/j.ecoenv.2016.02.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 02/19/2016] [Accepted: 02/23/2016] [Indexed: 02/07/2023]
Abstract
Calotropis procera L. is known as medicinal plant. The Phytochemical analyzes of its latex revealed that it possessed antioxidants, namely terpenes, phenolic compounds and cardenolides, flavonoids and saponins, while tannins, alkaloids and resin were absent in moderate to high concentration. In the present study, the role of latex of Calotropis procera as antioxidant and antiapoptotic was reported. To carry out this aim, fishes were exposed to 100 µg l(-1) 4-nonylphenol as chemical pollutant. The enzymes, superoxidase dismutase, catalase, acetlycholinstrase (AchE), glutathione s-transferase, cortisol, G6PDH) and apoptotic cells increased significantly (p<0.05) accompanied by irregular disturbance of (Na(+), K(+)) ions in the presence of 4-nonylphenol. On the other hand, these enzymes, ions, and apoptotic cells decreased normally and significantly (p<0.05) in the presence of latex. Total phenol content, total capacity antioxidant, reducing power decrease significantly (p<0.05) in the presence of 4-nonylphenol and increase normally in the presence of latex. Latex was used for the first time to protect catfish after 4-nonylphenol exposure. Our study confirms that crude latex of Calotropis procera possessed antioxidant and antiapoptotic activities against the toxicity of 4-Nonylphenol.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Nadia H Mohamed
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt; Department of Biology, Faculty of Science and Art, Samtah, Jazan University, Saudi Arabia
| | - Mady A Ismail
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Wael M Abdel-Mageed
- Pharmacognosy Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia; Pharmacognosy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ahmed A M Shoreit
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
| |
Collapse
|
29
|
Abstract
PURPOSE To study the adverse impacts of ultraviolet radiation-A (UVA 320-400 nm) on some hematological and biochemical parameters of Bufo regularis was considered. MATERIALS AND METHODS Samples were classified into four groups: (i) Control; (ii) ultraviolet radiation (UVR)-treated group (for 3 days/for 15 min/day); (iii) UVR-treated group (for 3 days/for 30 min/day); and (iv) (for 3 days/for 60 min/day). The destructive effects of UVA radiation was evaluated by red blood cells (RBC) count, hemoglobin content (Hb), hematocrite (Ht), erythrocytic indices, white blood cells (WBC) count, total protein, glucose, aspartic amino transferase (AST), alanine amino transferase (ALT), alkaline phosphatase (ALP), lactate dehyderogenase (LDH), glucose-6-phosphate dehyderogenase (G6PDH) and total bilribuin. RESULTS No mortality was observed. However, some physiological effects after the exposure to UVA were reported. The UVA-induced malformations recorded in the red blood cells included crenated cells (Cr), Acanthocytes (Ac), tear drop-like cells (Tr) and sickle cells (Sk). CONCLUSION The present study revealed the exposure to UVA from 15-60 min/day for three days could promote several biochemical and physiological disturbances as well as some changes in RBC.
Collapse
Affiliation(s)
- Alaa El-Din H Sayed
- a Zoology Department , Faculty of Science, Assiut University , Assiut , Egypt
| |
Collapse
|
30
|
Tekın S, Türker H, Güven T, Yel M. The effects of ultraviolet C radiation on the ultrastructure of the liver cells of mole rats. Ultrastruct Pathol 2015; 40:51-6. [PMID: 26512906 DOI: 10.3109/01913123.2015.1088909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aim of this study was to elucidate the ultrastructural changes in the liver cells of mole rats (Spalax leucodon) exposed to ultraviolet radiation (UVR). Thirteen mole rats used in this study were caught from nature. They were divided into four groups. The first group was separated as a control and was not given any radiation. The rest were exposed to ultraviolet C (UVC) radiation for 7, 14, and 21 days. The electron microscopic examinations revealed that significant ultrastructural changes occurred in the liver tissue. These changes were the reduction in cytoplasmic organelles, dilatation in rough endoplasmic reticulum, impairment of nucleus membrane, and broadened and vacuolated mitochondria in the cytoplasm. Also, UVC radiation caused significant changes in liver enzymes of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and gama-glutamiltransferase values. After long-term exposure to radiation, some excessive ultrastructural changes occurred. These results indicated that longer exposure to UVR would cause more ultrastructural effects on the liver cells and liver enzymes.
Collapse
Affiliation(s)
- Saban Tekın
- a Department of Molecular Biology , Gaziosmanpaşa University , Tokat , Turkey
| | - Hüseyin Türker
- b Department of Biology, Science Faculty , Ankara University , Ankara , Turkey
| | - Turan Güven
- c Biology Education Department, Gazi Faculty of Education , Gazi University , Ankara , Turkey
| | - Mustafa Yel
- c Biology Education Department, Gazi Faculty of Education , Gazi University , Ankara , Turkey
| |
Collapse
|
31
|
de Lapuente J, Lourenço J, Mendo SA, Borràs M, Martins MG, Costa PM, Pacheco M. The Comet Assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Front Genet 2015; 6:180. [PMID: 26089833 PMCID: PMC4454841 DOI: 10.3389/fgene.2015.00180] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 04/28/2015] [Indexed: 01/20/2023] Open
Abstract
Since Singh and colleagues, in 1988, launched to the scientific community the alkaline Single Cell Gel Electrophoresis (SCGE) protocol, or Comet Assay, its uses and applications has been increasing. The thematic areas of its current employment in the evaluation of genetic toxicity are vast, either in vitro or in vivo, both in the laboratory and in the environment, terrestrial or aquatic. It has been applied to a wide range of experimental models: bacteria, fungi, cells culture, arthropods, fishes, amphibians, reptiles, mammals, and humans. This document is intended to be a comprehensive review of what has been published to date on the field of ecotoxicology, aiming at the following main aspects: (i) to show the most relevant experimental models used as bioindicators both in the laboratory and in the field. Fishes are clearly the most adopted group, reflecting their popularity as bioindicator models, as well as a primary concern over the aquatic environment health. Amphibians are among the most sensitive organisms to environmental changes, mainly due to an early aquatic-dependent development stage and a highly permeable skin. Moreover, in the terrestrial approach, earthworms, plants or mammalians are excellent organisms to be used as experimental models for genotoxic evaluation of pollutants, complex mix of pollutants and chemicals, in both laboratory and natural environment. (ii) To review the development and modifications of the protocols used and the cell types (or tissues) used. The most recent developments concern the adoption of the enzyme linked assay (digestion with lesion-specific repair endonucleases) and prediction of the ability to repair of oxidative DNA damage, which is becoming a widespread approach, albeit challenging. For practical/technical reasons, blood is the most common choice but tissues/cells like gills, sperm cells, early larval stages, coelomocytes, liver or kidney have been also used. (iii) To highlight correlations with other biomarkers. (iv) To build a constructive criticism and summarize the needs for protocol improvements for future test applications within the field of ecotoxicology. The Comet Assay is still developing and its potential is yet underexploited in experimental models, mesocosmos or natural ecosystems.
Collapse
Affiliation(s)
- Joaquín de Lapuente
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science ParkBarcelona, Spain
| | - Joana Lourenço
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago. Aveiro, Portugal
| | - Sónia A. Mendo
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago. Aveiro, Portugal
| | - Miquel Borràs
- Unit of Experimental Toxicology and Ecotoxicology (UTOX-CERETOX), Barcelona Science ParkBarcelona, Spain
| | - Marta G. Martins
- Departamento de Ciências e Engenharia do Ambiente, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| | - Pedro M. Costa
- Departamento de Ciências e Engenharia do Ambiente, MARE – Marine and Environmental Sciences Centre, Faculdade de Ciências e Tecnologia da Universidade Nova de LisboaCaparica, Portugal
| | - Mário Pacheco
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago. Aveiro, Portugal
| |
Collapse
|
32
|
Sayed AEDH, Zaki RM, El-Dean AMK, Abdulrazzaq AY. The biological activity of new thieno[2,3-c]pyrazole compounds as anti-oxidants against toxicity of 4-nonylphenol in Clarias gariepinus. Toxicol Rep 2015; 2:1445-1453. [PMID: 28962487 PMCID: PMC5598507 DOI: 10.1016/j.toxrep.2015.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/12/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
Synthesis of bi functionally substituted thieno[2,3-c]pyrazole compounds was carried out by a new method. The substituted group at position five is namely (carbonitrile, carboxamide, N-(substitutedphenyl) carboxamide and benzoyl group). Chloroacetylation of the amino thieno[2,3-c]pyrazolecarboxamide compound afforded the chloroacetyl amino derivative. The chemical structure of the newly synthesized compounds was established by elemental and spectral analysis including IR, 1H NMR spectra in addition to 13C NMR and mass spectra for most of them. In the present work, we assessed the role of the new synthesized thieno[2,3-c]pyrazole compounds as antioxidants against the toxicity of the 4-nonylphenol on the red blood cells of the most economically important Nile fishes namely African catfish (Clarias gariepinus). The erythrocytes alterations were used as biological indicators to detect those effects. After exposure to 4-nonylphenol, the erythrocytes malformations (swelled cells, sickle cells, tear drop like cells, acanthocytes, and vacuolated cells) were recorded in highest number in comparison with other groups control and those injected with thieno[2,3-c]pyrazole compounds. So, the new thieno[2,3-c]pyrazole compounds can be used as antioxidants against toxicity of 4-nonylphenol on fishes.
Collapse
Affiliation(s)
- Alaa El-Din H. Sayed
- Zoology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Corresponding author. Fax: +20 882342708.
| | - Remon M. Zaki
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | | | | |
Collapse
|
33
|
Ibrahim ATA. Negative impacts of ultraviolet-A radiation on antioxidant and oxidative stress biomarkers of African catfish Clarias gariepinus. Photochem Photobiol Sci 2015; 14:1337-45. [DOI: 10.1039/c5pp00112a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present study was carried out to evaluate the ultraviolet-A (UVA) effects on biochemical, oxidative stress and antioxidant changes using aquatic species.
Collapse
|
34
|
Dugo MA, Han F, Tchounwou PB. Persistent polar depletion of stratospheric ozone and emergent mechanisms of ultraviolet radiation-mediated health dysregulation. REVIEWS ON ENVIRONMENTAL HEALTH 2012; 27:103-16. [PMID: 23023879 PMCID: PMC3768272 DOI: 10.1515/reveh-2012-0026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 08/27/2012] [Indexed: 05/06/2023]
Abstract
Year 2011 noted the first definable ozone "hole" in the Arctic region, serving as an indicator to the continued threat of dangerous ultraviolet radiation (UVR) exposure caused by the deterioration of stratospheric ozone in the northern hemisphere. Despite mandates of the Montreal Protocol to phase out the production of ozone-depleting chemicals (ODCs), the relative stability of ODCs validates popular notions of persistent stratospheric ozone for several decades. Moreover, increased UVR exposure through stratospheric ozone depletion is occurring within a larger context of physiologic stress and climate change across the biosphere. In this review, we provide commentaries on stratospheric ozone depletion with relative comparisons between the well-known Antarctic ozone hole and the newly defined ozone hole in the Arctic. Compared with the Antarctic region, the increased UVR exposure in the Northern Hemisphere poses a threat to denser human populations across North America, Europe, and Asia. In this context, we discuss emerging targets of UVR exposure that can potentially offset normal biologic rhythms in terms of taxonomically conserved photoperiod-dependent seasonal signaling and entrainment of circadian clocks. Consequences of seasonal shifts during critical life history stages can alter fitness and condition, whereas circadian disruption is increasingly becoming associated as a causal link to increased carcinogenesis. We further review the significance of genomic alterations via UVR-induced modulations of phase I and II transcription factors located in skin cells, the aryl hydrocarbon receptor (AhR), and the nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), with emphasis on mechanism that can lead to metabolic shifts and cancer. Although concern for adverse health consequences due to increased UVR exposure are longstanding, recent advances in biochemical research suggest that AhR and Nrf2 transcriptional regulators are likely targets for UVR-mediated dysregulations of rhythmicity and homeostasis among animals, including humans.
Collapse
|
35
|
Mekkawy IA, Mahmoud UM, Sayed AEDH. Effects of 4-nonylphenol on blood cells of the African catfish Clarias gariepinus (Burchell, 1822). Tissue Cell 2011; 43:223-9. [PMID: 21501852 DOI: 10.1016/j.tice.2011.03.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 02/07/2023]
Abstract
In the present work, the destructive effects of the 4-nonylphenol on one of the most economically important Nile fishes, namely African catfish (Clarias gariepinus) were studied. Apoptosis, erythrocytes alterations, micronucleus test and blood parameters count were used as biological indicators to detect those effects. After exposure to sublethal concentrations of 4-nonylphenol (0, 0.05, 0.08 and 0.1mg/l), apoptotic red blood cells with many malformations and micronucleated erythrocytes were recorded. Decrease in the blood parameters such as red blood cells (RBCs), hemoglobin (Hb), package cell volume (PCV), mean corpuscular hemoglobin concentration (MCHC), platelets, white blood cells (WBCs), lymphocytes, basophils, monocytes and increase in mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), neutrophils, eosinophils indicated the negative effects of 4-nonylphenol. It was concluded that, the 4-nonylphenol caused genotoxicity in erythrocytes with many malformations in shape and number indicated with other blood parameters.
Collapse
Affiliation(s)
- Imam A Mekkawy
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | | | | |
Collapse
|
36
|
El-Bakary ZA, Sayed AEDH. Effects of short time UV-A exposures on compound eyes and haematological parameters in Procambarus clarkii (Girad, 1852). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2011; 74:960-6. [PMID: 21315454 DOI: 10.1016/j.ecoenv.2011.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/13/2011] [Accepted: 01/16/2011] [Indexed: 02/07/2023]
Abstract
The amount of ultraviolet radiation (UVR) reaching the Earth's surface has been increasing as a result of an increasingly thinner ozone layer. The UV-A component of the UVR is able to generate oxidative stress in the compound eye and haemolymph of Procambarus clarkii when the latter was exposed for as little as 15 min daily for one week to UV-A. Changes in the eye involved corneal material, crystalline cones, pigments in cone stalks and retinula cells, rhabdom integrity, haemocyte infiltration, and haemal spaces. UV-A had significant impacts on haemolymph iron and glucose, whereas Ca ions were unaffected. Total protein and Cu-ions showed only insignificant changes following UV-A radiation. Involvement of lipid peroxidation and DNA fragmentation was significant with regard to the tissue damage cause by the UV-A. UV-A furthermore induced biological effects on serum electrophoretic patterns: some fractions either increased in size or others decreased. The described changes can be used as reference guidelines in evaluations of UV-A induced stress effects in P. clarkii.
Collapse
Affiliation(s)
- Zeinab A El-Bakary
- Zoology Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | | |
Collapse
|
37
|
Osman AGM, Koutb M, Sayed AEDH. Use of hematological parameters to assess the efficiency of quince (Cydonia oblonga Miller) leaf extract in alleviation of the effect of ultraviolet--A radiation on African catfish Clarias gariepinus (Burchell, 1822). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2010; 99:1-8. [PMID: 20206545 DOI: 10.1016/j.jphotobiol.2010.01.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/30/2009] [Accepted: 01/06/2010] [Indexed: 02/07/2023]
Abstract
The present study aimed to elucidate the negative impacts of UVA on some biochemical and hematological variables of the economically important African catfish, Clarias gariepinus and investigates the putative role of quince (Cydonia oblonga Miller) leaf extract in protection and/or alleviation of such negative impacts. Changes in the hematological and blood biochemical values often reflect alteration of physiological state. Blood parameters can be useful for the measurement of physiological disturbances in stressed fish and thus provide information about the level of damage in the fish. We found a significant (P<0.05) decrease in the red blood cell counts, hemoglobin and hematocrit in the groups exposed to UVA compared to the control groups. Exposure to UVA induced marked red cell shrinkage (increased mean cell hemoglobin concentration) and showed an elevation in mean cell volume and mean cell hemoglobin in the blood of the exposed fish compared to the control. A significant (P<0.05) reduction in the total white blood cells was recorded in the exposed fish compared to the control. The biochemical parameters (blood glucose, total plasma protein, blood cholesterol, plasma creatinine, aspartic amino transferase and alanine amino transferase) exhibited a significant increase in the blood of fish exposed to UVA. Methanolic extract of quince leaf before ripening of the fruits was analyzed by GC/MS. To investigate the biological impact of this extract and its biologically active components, this extract was tested for its putative role in alleviation of UVA effect on catfish. Quince leaf extract had the ability to prevent hematotoxic stress induced by UVA and resulted in enhancement of the immune system of catfish represented by significant (P<0.05) increase in the number of white blood cells and lymphocytes of the catfish. Quince extract also protected the red blood cells from UVA damage. To our knowledge this is the first report of the effect of quince leaf extract on an aquatic organism.
Collapse
Affiliation(s)
- Alaa G M Osman
- Zoology Department, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt.
| | | | | |
Collapse
|
38
|
Jezierska B, Ługowska K, Witeska M. The effects of heavy metals on embryonic development of fish (a review). FISH PHYSIOLOGY AND BIOCHEMISTRY 2009; 35:625-40. [PMID: 19020985 DOI: 10.1007/s10695-008-9284-4] [Citation(s) in RCA: 229] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 10/20/2008] [Indexed: 05/06/2023]
Abstract
Early developmental stages of fish are particularly sensitive to water pollution. Heavy metals may affect various developmental processes during the embryonic period, which results in a reduction of offspring quantity and quality. Waterborne metals may accumulate in the gonads of spawners and adversely affect gamete production and viability, or exert direct toxic influence upon developing embryos. The egg shell does not fully protect the embryo against metal penetration, particularly during the swelling phase; thus, metals may accumulate in the egg. The results depend on metal concentration and range from developmental disturbances to death of the embryo. Metals disturb various processes of fish embryonic development and affect the development rate. Early stages just after fertilization are particularly sensitive to metal intoxication, when most disturbances and the highest embryonic mortality occur. Waterborne metals also promote developmental anomalies during organogenesis, including body malformations. Heavy metals often induce a delay in the hatching process, premature hatching, deformations and death of newly hatched larvae. All these disturbances result in reduced numbers and poor quality of the larvae, which show small body size, high frequency of malformations and reduced viability.
Collapse
Affiliation(s)
- Barbara Jezierska
- Department of Animal Physiology, University of Podlasie, Prusa 12, 08110, Siedlce, Poland
| | | | | |
Collapse
|