1
|
Villalba AM, De la Llave-Propín Á, De la Fuente J, Pérez C, de Chavarri EG, Díaz MT, Cabezas A, González-Garoz R, Torrent F, Villarroel M, Bermejo-Poza R. Using underwater currents as an occupational enrichment method to improve the stress status in rainbow trout. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:463-475. [PMID: 38060080 DOI: 10.1007/s10695-023-01277-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
This study investigated the effects of occupational enrichment, specifically underwater currents, on the stress status of rainbow trout (Oncorhynchus mykiss). A total of 540 fish were divided into three groups: control tanks without artificial currents (CO), tanks with randomly fired underwater currents (RFC), and tanks with continuous current throughout the day (CT). After 30 days, half of the fish in each group underwent a 5-day pre-slaughter fasting (5D), while the others were fed until the day before slaughter (0D). Fish in the RFC group exhibited lower levels of plasma cortisol and acetylcholinesterase enzyme activity in hypothalamus and optic tract than other groups, suggesting an improved stress status. RFC group also showed higher levels of non-esterified fatty acids (NEFA) in 5D fish and higher liver glycogen stores, suggesting improved energy reserves. In comparison, the CT group had higher LDH levels, possibly due to their increased swimming activity. The CO group had significantly lower NEFA levels at 5D compared to the RFC group, suggesting lower energy reserves. The RFC fish had darker and yellow-reddish skin and liver color, suggesting an improved stress status and lower lipid reserves, respectively. Overall, although a significant stress response was not observed in fasted individuals, possibly due to the relatively short fasting period, the study suggests that providing occupational enrichment using randomly fired underwater currents for 1 month helped to improve stress status in rainbow trout, indicating that occupational enrichment during the grow-out phase can positively impact the welfare of rainbow trout during routine handling procedures.
Collapse
Affiliation(s)
- Andrea Martínez Villalba
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Álvaro De la Llave-Propín
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
- CEIGRAM-ETSIAAB, Universidad Politécnica de Madrid, Avenida Complutense 3, 28040, Madrid, Spain
| | - Jesús De la Fuente
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Concepción Pérez
- Departamento de Fisiología Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Elisabet González de Chavarri
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - María Teresa Díaz
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Almudena Cabezas
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Roberto González-Garoz
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain
| | - Fernando Torrent
- Departamento de Ingeniería y Gestión Forestal y Ambiental, Escuela Técnica Superior de Ingeniería de Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, Ciudad Universitaria S/N, 28040, Madrid, Spain
| | - Morris Villarroel
- CEIGRAM-ETSIAAB, Universidad Politécnica de Madrid, Avenida Complutense 3, 28040, Madrid, Spain
| | - Rubén Bermejo-Poza
- Departamento de Producción Animal, Universidad Complutense de Madrid, Avenida Puerta de Hierro S/N, 28040, VeterinariaMadrid, Spain.
| |
Collapse
|
2
|
Chen J, Zeng M, Liang XF, Peng D, Xie R, Wu D. Dietary supplementation of VA enhances growth, feed utilization, glucose and lipid metabolism, appetite, and antioxidant capacity of Chinese perch (Siniperca chuatsi). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:225-237. [PMID: 37594622 DOI: 10.1007/s10695-023-01221-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/11/2023] [Indexed: 08/19/2023]
Abstract
The aim of this study was to investigate the effect of dietary vitamin A on juvenile Chinese perch (Siniperca chuatsi). Chinese perch were fed with five experimental diets containing 0, 20, 40, 60, and 80 mg VA·kg-1 for 8 weeks. Results showed that dietary vitamin A significantly influenced the fish's growth, feed utilization, glucose and lipid metabolism, appetite, and antioxidant capacity. Vitamin A-supplemented groups had higher weight gain rate (WGR) and specific growth rate (SGR) compared to the control group. Feed conversion ratio (FCR) was also lower in the vitamin A-supplemented groups. Dietary vitamin A had no significant effect on the survival rate (SR). Compared to the control group, fish fed with vitamin A had increased feed intake (FI), and the expression of appetite-promoting genes (npy and agrp) was significantly higher in the 40 mg VA·kg-1 group. Vitamin A also enhanced the utilization of dietary protein by Chinese perch. The serum glucose content of the fish fed with 40 mg VA·kg-1 diet was significantly higher than that of the control group and 20 mg VA·kg-1 diet, indicating that the promoting effect of VA on gluconeogenesis was greater than that on glycolysis. Additionally, dietary vitamin A increased the expression of lipid metabolism-related genes (hl and fas) and antioxidant genes (nrf2 and gpx) in the fish. These results suggest that the optimal vitamin A requirement of juvenile Chinese perch bream was estimated to be 37.32 mg VA·kg-1 based on broken-line regression analysis of WGR. In conclusion, this study provides valuable insights into the potential benefits of dietary vitamin A on the growth, metabolism, and antioxidant capacity of Chinese perch.
Collapse
Affiliation(s)
- Junliang Chen
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ming Zeng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Ruipeng Xie
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Dongliang Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, Wuhan, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| |
Collapse
|
3
|
Jiang Q, Ji P, Ao S, Gao X, Zhang X. Effects of Starvation and Refeeding on Glucose Metabolism and Immune Responses in Macrobrachium rosenbergii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023:10.1007/s10126-023-10218-3. [PMID: 37249812 DOI: 10.1007/s10126-023-10218-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 05/31/2023]
Abstract
Starvation is a common challenge for aquatic animals in both natural and cultured environments. To investigate the effects of starvation and refeeding on glucose metabolism and immunity in Macrobrachium rosenbergii, prawns were starved for 14 days and then refed for 7 days. Results showed that both glucose and trehalose levels decreased significantly at the beginning of starvation, followed by a significant decrease in glycogen content in the hepatopancreas and muscle. Triglyceride and total protein reserves were also mobilized under starvation, with a slightly quicker response from triglycerides. The mRNA levels of glycolysis (glucokinase) and anabolism-related enzymes (glycogen branching enzyme, diacylglycerol acyltransferase, and transpeptidase) decreased during starvation, while gluconeogenic potential was induced, as indicated by up-regulated transcriptional levels of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase) and catabolism-related enzymes (glycogen debranching enzyme, adipose triglyceride lipase, and cathepsin B). Starvation also stimulated the expression of the crustacean hyperglycemic hormone and inhibited insulin-like peptide expression, indicating their potential role in glucose metabolism regulation. In addition, starvation increased the mRNA levels of superoxide dismutase and prophenoloxidase, indicating an influence on the immune system. After bacterial infection, starved prawns showed enhanced activity of non-specific immunological parameters and reduced mortality. Refeeding for 7 days led to a recovery of physiological and biochemical indices and transcriptional levels of metabolism/immune-related genes. Our findings provide a better understanding of the mechanisms underlying energy utilization, metabolic adaptation, and immune response to starvation in M. rosenbergii.
Collapse
Affiliation(s)
- Qun Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Peng Ji
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shiqi Ao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaojian Gao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaojun Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
4
|
Dai Y, Shen Y, Guo J, Yang H, Chen F, Zhang W, Wu W, Xu X, Li J. Glycolysis and gluconeogenesis are involved of glucose metabolism adaptation during fasting and re-feeding in black carp (Mylopharyngodon piceus). AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Karatas T, Onalan S, Yildirim S. Effects of prolonged fasting on levels of metabolites, oxidative stress, immune-related gene expression, histopathology, and DNA damage in the liver and muscle tissues of rainbow trout (Oncorhynchus mykiss). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1119-1132. [PMID: 34057672 DOI: 10.1007/s10695-021-00949-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
This study was conducted to assess the impacts of prolonged fasting (70 and 120 days) on the morphological, biochemical, oxidative stress responses, immune-related gene expression, histopathology, and DNA damage in rainbow trout. Final weight (FW), hepatosomatic index (HSI), and condition factor (CF) significantly decreased in both 70 and 120 days of fasting compared to the pre-fasting group (p < 0.05). Fasting led to a significant reduction in serum blood metabolites (glucose, total protein, triglyceride, T. cholesterol, high-density lipoprotein (HDL), and low-density lipoprotein (LDL)) and endogenous reserves (protein and lipid). However, plasma acetylcholinesterase (AChE) activity, aspartate aminotransferase (AST), alanine aminotransferase (ALT), interleukin (IL1), tumor necrosis factor (TNF1α), and transferrin (TF) increased significantly (p < 0.05). While malondialdehyde (MDA) levels compared to the pre-fasting group increased in the liver and muscle tissues (70 and 120 days), glutathione (GSH) enzyme activities decreased significantly in both tissues (p < 0.05). Histopathologically, both fasting groups (70 and 120 days) when compared to the pre-fasting group led to steatosis, necrosis and degeneration in hepatocytes, inflammation and hyperemia in the liver tissue and hyaline degeneration, atrophy, and inflammation in muscle tissue. Additionally, 8-OHdG levels of the liver and muscle tissues at 120 days' fasting were more severe according to 70 days' fasting. Finally, blood, the liver, and muscle tissues may be helpful to assess the impacts of fasting and fasting stress in rainbow trout.
Collapse
Affiliation(s)
- Tayfun Karatas
- Health Services Vocational School, Agri Ibrahim Cecen University, TR-04100, Agri, Turkey.
| | - Sukru Onalan
- Department of Fish Disease, Faculty of Fisheries, Van Yüzüncü Yıl University, 65080, Van, Turkey
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, 25240, Erzurum, Turkey
| |
Collapse
|
6
|
Ren Y, Li X, Han G, Wang M, Xi M, Shen J, Li Y, Li C. Dynamic variations in serum amino acid and the related gene expression in liver, ovary, and oviduct of pigeon during one egg-laying cycle. Poult Sci 2021; 100:101184. [PMID: 34089936 PMCID: PMC8182434 DOI: 10.1016/j.psj.2021.101184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/06/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022] Open
Abstract
The present study was carried to investigate dynamic variations in serum amino acid (AA) contents and the relative mRNA abundance of the AA transporters and AA synthesis-related enzymes in liver, ovary and oviduct of pigeons during one egg-laying cycle (ELC). In experiment 1, seventy laying pigeons (American Silver King) were randomly divided into 14 groups by different days of one ELC (DELC) and arranged as a 2 × 7 factorial design, which included 2 ages (6-mo-old or 12-mo-old) and 7 DELCs. For experiment 2, 35 six-mo-old laying pigeons (American Silver King) were randomly divided into 7 groups by different DELCs and immediately treated with a 12-h fasting. Dynamic variations in serum AAs were detected during one ELC, characterized by high levels of Lys, Met, Leu, Phe, Tyr, Asp, Ser, Glu, Ala, and TAA on day 1 (D1) of one ELC (P < 0.05). Fasting caused obvious decreases in serum levels of Leu, Ile, Val, Phe, Tyr, and TAA from day 2 (D2) to day 7 (D7) (P < 0.05). Relative organ weights of ovary and oviduct increased to the peak values on day 13 (D13) (P < 0.05). Serum calcium decreased to the lowest level on day 4 (D4) (P < 0.05) and serum total triglyceride was kept in a high level on D1, D7, day 10 (D10), and D13 (P < 0.05). Relative mRNA expression of the AA synthesis genes and the AA transport genes exhibited different variation patterns in liver, ovary and oviduct, but Pearson correlation test showed the percentage of positive r values with significant differences were much higher in oviduct than those in liver or ovary. In conclusion, dynamic variations of serum AAs during one ELC were positively related with the expression of the AA transport genes and AA synthesis genes in oviduct, suggesting the upregulated serum AAs might be necessary to meet the AAs requirement for egg white formation in pigeon.
Collapse
Affiliation(s)
- Yu Ren
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Xiaotong Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Guofeng Han
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Mingli Wang
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Mengxue Xi
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Jiakun Shen
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| | - Yansen Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China.
| | - Chunmei Li
- Research Center for Livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, China
| |
Collapse
|
7
|
Meador JP, Bettcher LF, Ellenberger MC, Senn TD. Metabolomic profiling for juvenile Chinook salmon exposed to contaminants of emerging concern. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141097. [PMID: 32781313 DOI: 10.1016/j.scitotenv.2020.141097] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
Both targeted and non-targeted metabolomic analyses were conducted on juvenile ocean-type fall Chinook salmon (Oncorhynchus tshawytscha) residing in two estuaries receiving wastewater treatment plant (WWTP) effluent and one reference estuary. The data show that the metabolome patterns for fish from the two WWTP-receiving estuaries were more similar to each other compared to that for the reference site fish. Also, a comparison of the metabolome for fish from the reference site and fish from a hatchery upstream of one of the effluent-receiving estuaries indicated no differences, implying that residency for fish in the contaminated estuary resulted in major changes to the metabolome. Based on general health parameters including whole-body lipid content and condition factor, plus the availability of prey for these fish, we conclude that juvenile Chinook salmon in these contaminated estuaries may have been experiencing metabolic disruption without any overt signs of impairment. Additionally, a non-targeted analysis was performed on hatchery summer Chinook salmon from a laboratory study where fish were dosed for 32 days with feed containing 16 of the most common contaminants of emerging concern (CECs) detected in wild fish. In the laboratory experiment a relationship was observed between dose and the number of liver metabolites that were different between control and treatment fish. Laboratory fish were exposed to only 16 CECs, but are generally exposed to hundreds of these compounds in contaminated aquatic environments. These results have implications for the health of juvenile Chinook salmon and the likelihood of a successful life cycle when exposed to effluent-related chemicals.
Collapse
Affiliation(s)
- James P Meador
- Ecotoxicology Program, Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98195, USA.
| | - Lisa F Bettcher
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Mathew C Ellenberger
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Taurence D Senn
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
8
|
Ghisaura S, Pagnozzi D, Melis R, Biosa G, Slawski H, Uzzau S, Anedda R, Addis MF. Liver proteomics of gilthead sea bream (Sparus aurata) exposed to cold stress. J Therm Biol 2019; 82:234-241. [PMID: 31128654 DOI: 10.1016/j.jtherbio.2019.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/25/2019] [Accepted: 04/12/2019] [Indexed: 11/29/2022]
Abstract
The gilthead sea bream (Sparus aurata, L.) is very sensitive to low temperatures, which induce fasting and reduced growth performances. There is a strong interest in understanding the impact of cold on fish metabolism to foster the development and optimization of specific aquaculture practices for the winter period. In this study, an 8 week feeding trial was carried out on gilthead sea bream juveniles reared in a Recirculated Aquaculture System (RAS) by applying a temperature ramp in two phases of four weeks each: a cooling phase from 18 °C to 11 °C and a cold maintenance phase at 11 °C. Liver protein profiles were evaluated with a shotgun proteomics workflow based on filter-aided sample preparation (FASP) and liquid chromatography-mass spectrometry (LC-ESI-Q-TOF MS/MS) followed by label-free differential analysis. Along the whole trial, sea breams underwent several changes in liver protein abundance. These occurred mostly during the cooling phase when catabolic processes were mainly observed, including protein and lipid degradation, together with a reduction in protein synthesis and amino acid metabolism. A decrease in protein mediators of oxidative stress protection was also seen. Liver protein profiles changed less during cold maintenance, but pathways such as the methionine cycle and sugar metabolism were significantly affected. These results provide novel insights on the dynamics and extent of the metabolic shift occurring in sea bream liver with decreasing water temperature, supporting future studies on temperature-adapted feed formulations. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD011059.
Collapse
Affiliation(s)
- S Ghisaura
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - D Pagnozzi
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - R Melis
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | - G Biosa
- Porto Conte Ricerche, Tramariglio, Alghero, Italy
| | | | - S Uzzau
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Department of Biomedical Sciences, University of Sassari, Italy
| | - R Anedda
- Porto Conte Ricerche, Tramariglio, Alghero, Italy.
| | - M F Addis
- Porto Conte Ricerche, Tramariglio, Alghero, Italy; Department of Veterinary Medicine, University of Milan, Italy.
| |
Collapse
|
9
|
Oyarzún R, Vargas-Lagos C, Martínez D, Muñoz J, Dantagnan L, Vargas-Chacoff L. The effects of intraperitoneal administration of Francisella noatunensis subsp. noatunensis on hepatic intermediary metabolism and indicators of stress in Patagonian blennie Eleginops maclovinus. Comp Biochem Physiol B Biochem Mol Biol 2019; 230:48-56. [DOI: 10.1016/j.cbpb.2019.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
|
10
|
Koelmel JP, Ulmer CZ, Fogelson S, Jones CM, Botha H, Bangma JT, Guillette TC, Luus-Powell WJ, Sara JR, Smit WJ, Albert K, Miller HA, Guillette MP, Olsen BC, Cochran JA, Garrett TJ, Yost RA, Bowden JA. Lipidomics for wildlife disease etiology and biomarker discovery: a case study of pansteatitis outbreak in South Africa. Metabolomics 2019; 15:38. [PMID: 30838461 PMCID: PMC11005104 DOI: 10.1007/s11306-019-1490-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/13/2019] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Lipidomics is an emerging field with great promise for biomarker and mechanistic studies due to lipids diverse biological roles. Clinical research applying lipidomics is drastically increasing, with research methods and tools developed for clinical applications equally promising for wildlife studies. OBJECTIVES Limited research to date has applied lipidomics, especially of the intact lipidome, to wildlife studies. Therefore, we examine the application of lipidomics for in situ studies on Mozambique tilapia (Oreochromis mossambicus) in Loskop Dam, South Africa. Wide-scale mortality events of aquatic life associated with an environmentally-derived inflammatory disease, pansteatitis, have occurred in this area. METHODS The lipidome of adipose tissue (n = 31) and plasma (n = 51) from tilapia collected from Loskop Dam were characterized using state of the art liquid chromatography coupled to high-resolution tandem mass spectrometry. RESULTS Lipid profiles reflected pansteatitis severity and were significantly different between diseased and healthy individuals. Over 13 classes of lipids associated with inflammation, cell death, and/or oxidative damage were upregulated in pansteatitis-affected adipose tissue, including ether-lipids, short-chained triglyceride oxidation products, sphingolipids, and acylcarnitines. Ceramides showed a 1000-fold increase in the most affected adipose tissues and were sensitive to disease severity. In plasma, triglycerides were found to be downregulated in pansteatitis-affected tilapia. CONCLUSION Intact lipidomics provided useful mechanistic data and possible biomarkers of pansteatitis. Lipids pointed to upregulated inflammatory pathways, and ceramides serve as promising biomarker candidates for pansteatitis. As comprehensive coverage of the lipidome aids in the elucidation of possible disease mechanisms, application of lipidomics could be applied to the understanding of other environmentally-derived inflammatory conditions, such as those caused by obesogens.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Dr, Gainesville, FL, 32610, USA
| | - Candice Z Ulmer
- Marine Biochemical Sciences Group, Hollings Marine Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Susan Fogelson
- Department of Pathology, Fishhead Labs LLC, 5658 SE Pine Ave, Stuart, FL, 34997, USA
| | - Christina M Jones
- Organic Chemical Measurement Science Group, Chemical Sciences Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Hannes Botha
- Scientific Services, Mpumalanga Tourism and Parks Agency, Nelspruit, 1200, South Africa
- Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| | - Jacqueline T Bangma
- Department of Obstetrics and Gynecology, Medical University of South Carolina, 221 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Theresa C Guillette
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, 127 David Clark labs, Raleigh, NC, 27695, USA
| | | | - Joseph R Sara
- Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| | - Willem J Smit
- Department of Biodiversity, University of Limpopo, Sovenga, 0727, South Africa
| | - Korin Albert
- National Science Foundation Research Experience for Undergraduates Program, College of Charleston, Charleston, SC, 29424, USA
| | - Harmony A Miller
- Rosemary Birthing Home, 800 Central Ave, Sarasota, FL, 34236, USA
| | - Matthew P Guillette
- Department of Biological Sciences, North Carolina State University, 127 David Clark Labs, Raleigh, NC, 27695, USA
| | - Berkley C Olsen
- College of Public Health and Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL, 32611, USA
| | - Jason A Cochran
- College of Engineering, University of Florida, 412 Newell Dr., Gainesville, FL, 32611, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Dr, Gainesville, FL, 32610, USA
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - Richard A Yost
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, 1395 Center Dr, Gainesville, FL, 32610, USA
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL, 32611, USA
| | - John A Bowden
- Marine Biochemical Sciences Group, Hollings Marine Laboratory, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC, 29412, USA.
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Bermejo-Poza R, Fernández-Muela M, De la Fuente J, Pérez C, de Chavarri EG, Díaz MT, Torrent F, Villarroel M. Physio-metabolic response of rainbow trout during prolonged food deprivation before slaughter. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:253-265. [PMID: 30140961 DOI: 10.1007/s10695-018-0559-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Fish normally undergo periods of food deprivation that are longer than non-hibernating mammals. In aquacultured rainbow trout (Oncorhynchus mykiss), it is unclear how fasting may affect their physiological adaptative response, especially when they are normally fed daily. In addition, that response may vary with temperature, making it necessary to express fasting duration in terms of degree days. In the current study, trout were fasted for 5, 10, and 20 days (55, 107, and 200 degree days (°C d), respectively). To assess the physiological response of fish to fasting, different biometric, blood, plasma, and metabolic parameters were measured, as well as liver fatty acid composition. The fish weight, condition factor, and the hepato-somatic index of 5-day fasted trout were not significantly different from those of control fish. Gastric pH increased as fasting progressed while plasma concentrations of glucose, triglycerides, and total proteins decreased significantly after 10 days of fasting, while the percentage of non-esterified fatty acids increased. There were no significant differences in plasma ions (sodium, potassium, and calcium), except for chloride ion which decreased after 5 days of fasting. Liver glycogen decreased after 5 days of fasting while glycogen concentration in muscle did not decrease until 20 days of fasting. Liver color presented a higher chroma after 5 days of fasting, suggesting a mobilization of reserves. Finally, acetylcholinesterase activity in the brain was not affected by food deprivation but increased after 10 days of fasting in liver and muscle, suggesting the mobilization of body reserves, but without severely affecting basal metabolism.
Collapse
Affiliation(s)
- Rubén Bermejo-Poza
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Montserrat Fernández-Muela
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Jesús De la Fuente
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Concepción Pérez
- Department of Physiology, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Elisabet González de Chavarri
- Department of Animal Production, Veterinary School, Complutense University of Madrid, Avenida Puerta de Hierro s/n, 28040, Madrid, Spain
| | - María Teresa Díaz
- Department of Food Technology, INIA, Ctra. La Coruña, Km 7500, 28040, Madrid, Spain
| | - Fernando Torrent
- Department of Forestry and Fisheries, College of Forestry Engineering, Technical University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Morris Villarroel
- Department of Animal Science, College of Agricultural Engineering, Technical University of Madrid, Avenida Puerta de Hierro 2, 28040, Madrid, Spain
| |
Collapse
|
12
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
13
|
Jafari N, Falahatkar B, Sajjadi MM. Growth performance and plasma metabolites in juvenile Siberian sturgeon Acipenser baerii (Brandt, 1869) subjected to various feeding strategies at different sizes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:1363-1374. [PMID: 29909519 DOI: 10.1007/s10695-018-0527-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The effect of various feeding strategies was evaluated on growth performance and biochemical parameters in two sizes of Siberian sturgeon (465.75 ± 11.18 and 250.40 ± 12 g) during 45 days. Fish were distributed into six experimental treatments including large fish with satiation feeding (LA), small fish with satiation feeding (SA), large fish with 50% satiation feeding (LR), small fish with 50% satiation feeding (SR), large starved fish (LS), and small starved fish (SS). Differences in final weight between LA and LR treatments were not noticeable, whereas SA and SR treatments showed significant differences. Growth parameters were more affected in small fish. In condition factor and weight gain in starved treatments, a considerable reduction occurred by interaction between feeding strategies and fish size, so the lowest values were obtained in SS treatment. Glucose levels significantly decreased in small fish during the starvation. Interaction between feeding strategy and fish size indicated the highest and lowest albumin level in SA and SS treatment, respectively. Cholesterol, triglyceride, total protein, and globulin showed no significant differences. It can be deduced that small fish are more sensitive to starvation than the large fish. Since glucose and albumin showed significant decrease in starved small fish, these parameters can help to monitor nutritional status and feeding practices. It was indicated that in both sizes of Siberian sturgeon, feeding 50% satiation reduced the food cost without negative impact on physiological condition, and it can be considered as an appropriate strategy to face unfavorable circumstances.
Collapse
Affiliation(s)
- Naghmeh Jafari
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| | - Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran.
- Department of Marine Sciences, The Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran.
| | - Mir Masoud Sajjadi
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran
| |
Collapse
|
14
|
Meador JP, Yeh A, Gallagher EP. Adverse metabolic effects in fish exposed to contaminants of emerging concern in the field and laboratory. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:850-861. [PMID: 29471284 PMCID: PMC5858870 DOI: 10.1016/j.envpol.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/18/2018] [Accepted: 02/04/2018] [Indexed: 05/03/2023]
Abstract
Several metabolic parameters were assessed in juvenile Chinook salmon (Oncorhynchus tshawytscha) and staghorn sculpin (Leptocottus armatus) residing in two estuaries receiving wastewater treatment effluent and one reference estuary. We also conducted a laboratory study with fish dosed for 32 days with 16 of the most common contaminants of emerging concern (CECs) detected in feral fish. Several blood chemistry parameters and other indicators of health were measured in fish from the field and laboratory study that were used to assess potential metabolic disruption. The blood chemistry values observed in feral juvenile Chinook salmon were relatively consistent among fish collected from effluent-impacted sites and substantially different compared to reference site fish. These responses were more pronounced in Chinook salmon, which is supported by the disparity in accumulated CECs. The blood chemistry results for juvenile Chinook salmon collected at effluent-impacted sites exhibited a pattern generally consistent with starvation because of similarities to observations from studies of food-deprived fish; however, this response is not consistent with physical starvation but may be contaminant induced. The altered blood chemistry parameters are useful as an early indicator of metabolic stress, even though organismal characteristics (lipid content and condition factor) were not different among sites indicating an early response. Evidence of metabolic disruption was also observed in juvenile Chinook salmon that were exposed in the laboratory to a limited mixture of CECs; however, the plasma parameters were qualitatively different possibly due to exposure route, season, or the suite of CECs. Growth was impaired in the high-dose fish during the dosing phase and the low- and medium-dose fish assayed after 2 weeks of depuration. Overall, these results are consistent with metabolic disruption for fish exposed to CECs, which may result in early mortality or an impaired ability to compete for limited resources.
Collapse
Affiliation(s)
- James P Meador
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. East, Seattle, WA 98112, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, USA.
| | - Andrew Yeh
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, USA.
| | - Evan P Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA 98105, USA.
| |
Collapse
|
15
|
Chatzifotis S, Clavero S, Kounna C, Soumalevris A, Feidantsis K, Antonopoulou E. Effects of long-term feed deprivation on body weight loss, muscle composition, plasma metabolites, and intermediate metabolism of meagre (Argyrosomus regius) under different water temperatures. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:527-542. [PMID: 29255942 DOI: 10.1007/s10695-017-0451-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
The effect of feed deprivation at four water temperatures (17, 20, 23, 26 °C) was investigated in meagre (Argyrosomus regius) of initial mean weight ± SD, 116.16 ± 4.74 g, in triplicate groups. Fish were deprived of feed for a period of 60 days and sampled on days 0, 14, 41, and 60, during which body weight, specific growth rate, somatic indices, muscle proximate composition, plasma metabolite levels (total lipids, proteins, cholesterol, triglycerides, glucose), and liver and muscle enzymatic activities [L-lactate dehydrogenase (L-LDH), citrate synthase (CS), malate dehydrogenase (MDH)] were evaluated. Long-term feed deprivation resulted in a significant decrease in body weight, condition factor (CF), hepatosomatic index (HSI), muscle lipids, and plasma metabolites (all except proteins) and increase in muscle moisture. Plasma glucose concentration decreased with time and became significantly lower at 41 and 60 days. Glucose concentration and weight loss expressed a different response in the short term (14 days) than in the long term (14 and 60 days) of feed deprivation, suggesting a change in glucose metabolic profile. After 60 days of feed deprivation, there was an increase in the L-LDH activity in the liver at all temperature levels, which reflects a rising glycolytic potential by activating the carbohydrate metabolism and an ATP-dependent demand. MDH activity increased in the liver and muscle, except at 17 °C in the muscle, which indicates aerobic glycolysis and lipolysis. CS activity in the liver increased after the 60 days, whereas that in the muscle decreased, indicating the muscle is less dependent on aerobic oxidation for energy reserves.
Collapse
Affiliation(s)
- Stavros Chatzifotis
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture, Heraklion, Greece.
| | - Sofia Clavero
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture, Heraklion, Greece
| | - Christiana Kounna
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology Biotechnology and Aquaculture, Heraklion, Greece
| | - Alexandros Soumalevris
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Konstantinos Feidantsis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Efthimia Antonopoulou
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Faculty of Science, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| |
Collapse
|
16
|
Skrzynska AK, Martos-Sitcha JA, Martínez-Rodríguez G, Mancera JM. Unraveling vasotocinergic, isotocinergic and stress pathways after food deprivation and high stocking density in the gilthead sea bream. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:35-44. [PMID: 29079226 DOI: 10.1016/j.cbpa.2017.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/03/2017] [Accepted: 10/06/2017] [Indexed: 02/07/2023]
Abstract
The influence of chronic stress, induced by food deprivation (FD) and/or high stocking density (HSD), was assessed on stress, vasotocinergic and isotocinergic pathways of the gilthead sea bream (Sparus aurata). Fish were randomly assigned to one of the following treatments: (1) fed at low stocking density (LSD-F; 5kg·m-3); (2) fed at high stocking density (HSD-F, 40kg·m-3); (3) food-deprived at LSD (LSD-FD); and (4) food-deprived at HSD (HSD-FD). After 21days, samples from plasma, liver, hypothalamus, pituitary and head-kidney were collected. Both stressors (FD and HSD) induced a chronic stress situation, as indicated by the elevated cortisol levels, the enhancement in corticotrophin releasing hormone (crh) expression and the down-regulation in corticotrophin releasing hormone binding protein (crhbp) expression. Changes in plasma and liver metabolites confirmed a metabolic adjustment to cope with energy demand imposed by stressors. Changes in avt and it gene expression, as well as in their specific receptors (avtrv1a, avtrv2 and itr) at central (hypothalamus and pituitary) and peripheral (liver and head-kidney) levels, showed that vasotocinergic and isotocinergic pathways are involved in physiological changes induced by FD or HSD, suggesting that different stressors are handled through different stress pathways in S. aurata.
Collapse
Affiliation(s)
- Arleta Krystyna Skrzynska
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Cádiz, Spain
| | - Juan Antonio Martos-Sitcha
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain; Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, E-12595 Castellón, Spain.
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), 11519 Puerto Real, Cádiz, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Campus de Excelencia Internacional del Mar (CEI-MAR), University of Cádiz, 11519 Puerto Real, Cádiz, Spain
| |
Collapse
|
17
|
Morshedi V, Kochanian P, Bahmani M, Yazdani M, Pourali H, Ashouri G, Pasha-Zanoosi H. Cyclical short-term starvation and refeeding provokes compensatory growth in sub-yearling Siberian sturgeon, Acipenser baerii Brandt, 1869. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2016.10.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Marques C, Roberto VP, Granadeiro L, Trindade M, Gavaia PJ, Laizé V, Cancela ML, Fernández I. The xenobiotic sensor PXR in a marine flatfish species (Solea senegalensis): Gene expression patterns and its regulation under different physiological conditions. MARINE ENVIRONMENTAL RESEARCH 2017; 130:187-199. [PMID: 28768576 DOI: 10.1016/j.marenvres.2017.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/06/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor belonging to the NR1I sub-family and a known master regulator of xenobiotic metabolism. New roles have been recently proposed in mammals through its activation by vitamin K (VK) such as regulation of glucose metabolism, bone homeostasis, reproduction, neuronal development and cognitive capacities. In marine fish species little is known about PXR and its potential roles. Here, expression patterns of pxr transcripts and conservation of protein domains were determined in the Senegalese sole (Solea senegalensis), a marine flatfish model species in aquatic ecotoxicology. In addition to a full coding sequence transcript (sspxr1), two variants lacking DNA and/or ligand binding domains (sspxr2 and sspxr3) were also identified. The expression of sspxr1 during early development and in adult tissues was ubiquitous, but highest levels were observed in liver, intestine and skin. Expression was also detected by in situ hybridization in chondrocytes and cells from the granular and inner nuclear layers in three month old fish. Finally, sspxr1 expression was shown to be differentially regulated under physiological conditions related with fasting, VK and warfarin metabolism. The present work provides new and basic knowledge regarding pxr sequence and expression patterns in a marine flatfish species to unveil the potential impact of xenobiotics on marine fish physiology, and will allow a better and more ecosystemic environmental risk assessment of different pollutants over the marine environments with the development of reporter assays using PXR sequences from evolutionary distantly marine species (such as vertebrate and invertebrate marine species).
Collapse
Affiliation(s)
- Carlos Marques
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vânia P Roberto
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Luís Granadeiro
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marlene Trindade
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Paulo J Gavaia
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Vincent Laizé
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - M Leonor Cancela
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Departamento de Ciências Biomédicas e Medicina (DCBM), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; Algarve Biomedical Center (ABC), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ignacio Fernández
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
19
|
Threonine deficiency decreased intestinal immunity and aggravated inflammation associated with NF-κB and target of rapamycin signalling pathways in juvenile grass carp (Ctenopharyngodon idella) after infection with Aeromonas hydrophila. Br J Nutr 2017; 118:92-108. [PMID: 28820083 DOI: 10.1017/s0007114517001830] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This study aimed to investigate the impacts of dietary threonine on intestinal immunity and inflammation in juvenile grass carp. Six iso-nitrogenous semi-purified diets containing graded levels of threonine (3·99-21·66 g threonine/kg) were formulated and fed to fishes for 8 weeks, and then challenged with Aeromonas hydrophila for 14 d. Results showed that, compared with optimum threonine supplementation, threonine deficiency (1) decreased the ability of fish against enteritis, intestinal lysozyme activities (except in the distal intestine), acid phosphatase activities, complement 3 (C3) and C4 contents and IgM contents (except in the proximal intestine (PI)), and it down-regulated the transcript abundances of liver-expressed antimicrobial peptide (LEAP)-2A, LEAP-2B, hepcidin, IgZ, IgM and β-defensin1 (except in the PI) (P<0·05); (2) could up-regulate intestinal pro-inflammatory cytokines TNF-α, IL-1β, IL-6, IL-8 and IL-17D mRNA levels partly related to NF-κB signalling; (3) could down-regulate intestinal anti-inflammatory cytokine transforming growth factor (TGF)-β1, TGF-β2, IL-4/13A (not IL-4/13B) and IL-10 mRNA levels partly by target of rapamycin signalling. Finally, on the basis of the specific growth rate, against the enteritis morbidity and IgM contents, the optimum threonine requirements were estimated to be 14·53 g threonine/kg diet (4·48 g threonine/100 g protein), 15.05 g threonine/kg diet (4·64 g threonine/100 g protein) and 15·17 g threonine/kg diet (4·68 g threonine/100 g protein), respectively.
Collapse
|
20
|
Forsatkar MN, Nematollahi MA, Rafiee G, Farahmand H, Lawrence C. Effects of the prebiotic mannan-oligosaccharide on the stress response of feed deprived zebrafish (Danio rerio). Physiol Behav 2017; 180:70-77. [PMID: 28821445 DOI: 10.1016/j.physbeh.2017.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Feed deprivation has deleterious effects on fish behavior and stress physiology which may susceptible them to disease outbreak. Functional ingredients in diets may substantially impact the physiology and stress responses of host organisms. Here, we hypothesized that the administration of a dietary prebiotic might attenuate the negative influences of feed deprivation on the behavioral profile of anxiety and physiological responses to stress in zebrafish (Danio rerio). Fish were fed with either basal or mannan-oligosaccharide supplemented (0.4% MOS/kg diet) diets, once per day (normal-control: CN, and normal-prebiotic: PN) or once every other day (starved-control: CS, and starved-prebiotic: PS) for 8weeks. Afterwards, fish were subjected to a novel tank test to measure anxiety. Fish from the CS treatment exhibited more pronounced bottom-dwelling behavior than the other treatments. The number of transitions from the bottom to the top third of the novel tank was significantly higher in PN fish than the CS specimens. No significant differences were found between the CN and PS treatments in all of the anxiety behaviors. CS fish showed higher baseline cortisol levels than the other treatments, which was in line with higher expression of CRH gene in fish subjected to this treatment. Cortisol levels and CRH gene expression of the subjects were also measured after induction of two routine aquaculture stressors. CN and PS fish exhibited similar patterns of cortisol responses at most of the sampling times after stress, and PN specimens showed a significantly lower concentration of cortisol than the other treatments in most cases. Expression of the CRH gene was higher in feed deprived fish immediately after stress induction. Overall, the results show that feed deprivation in some cases influenced anxiety-like behaviors and elevated stress response in zebrafish juveniles; however, the addition of MOS to the diet helped deprived fish exhibit behaviors more typical of normally fed animals.
Collapse
Affiliation(s)
| | | | - Gholamreza Rafiee
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Farahmand
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
21
|
Lawrence MJ, Eliason EJ, Brownscombe JW, Gilmour KM, Mandelman JW, Cooke SJ. An experimental evaluation of the role of the stress axis in mediating predator-prey interactions in wild marine fish. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:21-29. [DOI: 10.1016/j.cbpa.2017.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/20/2017] [Accepted: 02/01/2017] [Indexed: 02/03/2023]
|
22
|
Waagbø R, Jørgensen SM, Timmerhaus G, Breck O, Olsvik PA. Short-term starvation at low temperature prior to harvest does not impact the health and acute stress response of adult Atlantic salmon. PeerJ 2017; 5:e3273. [PMID: 28462060 PMCID: PMC5410150 DOI: 10.7717/peerj.3273] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 04/04/2017] [Indexed: 11/20/2022] Open
Abstract
A period of starvation is regarded as a sound practice in aquaculture prior to handling, transportation and harvest, to minimise impacts on welfare and ensure proper hygiene after harvest. However, documentation of welfare issues such as stress following starvation and handling in adult Atlantic salmon are lacking. This study aimed to examine gut emptying and potential stress during a two week starvation period, and whether this starvation period changed the tolerance for physical stress. The study confirmed slower emptying of the gut segments at low temperature. Plasma and bile cortisol, and selected clinical analyses were used to characterize potential stress, as well as the response to acute physical crowding stress during the starvation period. Neither the general stress level nor the ability to cope with handling stress was affected by a 14 day starvation period. Down-regulation of selected nutritional related gene markers in liver indicated classical starvation responses, with reduced metabolism and oxidative pressure, and sparing of nutrients. The response to acute handling stress was not affected by two weeks of starvation. There were minor effects of starvation on stress and health markers, as evaluated by plasma lysozyme activity and gene expression of selected inflammation marker proteins in heart and skin tissues.
Collapse
Affiliation(s)
- Rune Waagbø
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | | | | | | - Pål A Olsvik
- National Institute of Nutrition and Seafood Research, Bergen, Norway
| |
Collapse
|
23
|
Dias W, Baviera AM, Zanon NM, Galban VD, Garófalo MAR, Machado CR, Bailão EFLC, Kettelhut IC. Lipolytic response of adipose tissue and metabolic adaptations to long periods of fasting in red tilapia (Oreochromis sp., Teleostei: Cichlidae). AN ACAD BRAS CIENC 2016; 88:1743-1754. [PMID: 27556329 DOI: 10.1590/0001-3765201620150484] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/07/2015] [Indexed: 05/29/2023] Open
Abstract
Adaptive changes of carbohydrate and lipid metabolism induced by 7, 15, 30, 60, 90, 150 and 200 days of fasting were investigated in red tilapia (Oreochromis sp.). Plasma glucose, lactate and free fatty acids (FFA) levels, liver and muscle glycogen and total lipid contents and rates of FFA release from mesenteric adipose tissue (MAT) were measured. Plasma glucose levels showed significant differences only after 90 days of fasting, when glycemia was 34% lower (50±5mg.dL-1) than fed fish values (74±1mg.dL-1), remaining relatively constant until 200 days of fasting. The content of liver glycogen ("15%) in fed tilapia fell 40% in 7 days of food deprivation. In 60, 90 and 150 days of fasting, plasma FFA levels increased 49%, 64% and 90%, respectively, compared to fed fish values. In agreement with the increase in plasma FFA, fasting induced a clear increase in lipolytic activity of MAT incubated in vitro. Addition of isobutylmethylxanthine (cAMP-phosphodiesterase inhibitor) and isoproterenol (non selective beta adrenergic agonist) to the incubation medium induced a reduction of lipolysis in fasted fish, differently to what was observed in mammal adipose tissue. This study allowed a physiological assessment of red tilapia response to starvation.
Collapse
Affiliation(s)
- Walter Dias
- Laboratório de Fisiologia e Bioquímica Toxicológica, Faculdade de Enfermagem, Universidade Estadual de Goiás/UEG, Campus de Ceres, Rua Lucas Marcelino dos Santos, Qd34 Lt03, 76300-000 Ceres, GO, Brasil
| | - Amanda M Baviera
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas de Araraquara, Universidade Estadual Paulista Júlio de Mesquita Filho/UNESP, Rua Expedicionários do Brasil, 1621, 14801-136 Araraquara, SP, Brasil
| | - Neusa M Zanon
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo/FMRP-USP, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brasil
| | - Victor D Galban
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo/FMRP-USP, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brasil
| | - Maria Antonieta R Garófalo
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo/FMRP-USP, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brasil
| | - Celio R Machado
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo/FMRP-USP, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brasil
| | - Elisa F L C Bailão
- Faculdade de Farmácia, Universidade Estadual de Goiás/UEG, Câmpus Henrique Santillo, Campus CCET, BR 153, 30105, Fazenda Barreiro do Meio, 75132-903 Anápolis, GO, Brasil
| | - Isis C Kettelhut
- Departamento de Bioquímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo/FMRP-USP, Av. Bandeirantes, 3900, Monte Alegre, 14049-900 Ribeirão Preto, SP, Brasil
| |
Collapse
|
24
|
Rocha F, Dias J, Geurden I, Dinis MT, Panserat S, Engrola S. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:189-199. [PMID: 27475301 DOI: 10.1016/j.cbpa.2016.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 07/06/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (P<0.05). Our metabolic data suggests that the early glucose stimuli may alter carbohydrate utilization in seabream juveniles.
Collapse
Affiliation(s)
- Filipa Rocha
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jorge Dias
- SPAROS Lda, Area Empresarial de Marim, Lote C. 8700-221 Olhão, Portugal
| | - Inge Geurden
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Maria Teresa Dinis
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Stephane Panserat
- INRA, UR1067 Nutrition Metabolism Aquaculture, F-64310 Saint-Pée-sur-Nivelle, France
| | - Sofia Engrola
- CCMAR- Center of Marine Sciences, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
25
|
Effect of starvation on growth, biochemical, hematological and non-specific immune parameters in two different size groups of grey mullet, Mugil cephalus (Linnaeus, 1758). ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.chnaes.2016.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Eslamloo K, Morshedi V, Azodi M, Akhavan SR. Effect of starvation on some immunological and biochemical parameters in tinfoil barb (Barbonymus schwanenfeldii). JOURNAL OF APPLIED ANIMAL RESEARCH 2016. [DOI: 10.1080/09712119.2015.1124329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Khalil Eslamloo
- Fisheries Department, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Guilan, Iran
| | - Vahid Morshedi
- Member of Young Researchers Chub, Ilam Azad University, Ilam, Iran
| | - Maryam Azodi
- Persian Gulf Research and Study Centre, Persian Gulf University, Bushehr, Iran
| | - Sobhan R Akhavan
- Department of Fisheries, Faculty of Marine Natural Resources, Khoramshahr University of Marine Science and Technology, Khorramshahr, Iran
| |
Collapse
|
27
|
Starving/re-feeding processes induce metabolic modifications in thick-lipped grey mullet (Chelon labrosus, Risso 1827). Comp Biochem Physiol B Biochem Mol Biol 2015; 180:57-67. [DOI: 10.1016/j.cbpb.2014.10.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 11/24/2022]
|
28
|
Martos-Sitcha JA, Wunderink YS, Straatjes J, Skrzynska AK, Mancera JM, Martínez-Rodríguez G. Different stressors induce differential responses of the CRH-stress system in the gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2014; 177:49-61. [DOI: 10.1016/j.cbpa.2014.07.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 11/16/2022]
|
29
|
Kim JH, Jeong MH, Jun JC, Kim TI. Changes in Hematological, Biochemical and Non-specific Immune Parameters of Olive Flounder, Paralichthys olivaceus, Following Starvation. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1360-7. [PMID: 25178381 PMCID: PMC4150204 DOI: 10.5713/ajas.2014.14110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/12/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022]
Abstract
Triplicate groups of fed and starved olive flounder, Paralichthys olivaceus (body weight: 119.8±17.46 g), were examined over 42 days for physiological changes using hematological, biochemical, and non-specific immune parameters. No significant differences in concentrations of blood hemoglobin and hematocrit and plasma levels of total cholesterol, aspartate aminotransferase, alanine aminotransferase, glucose, and cortisol were detected between fed and starved groups at any sampling time throughout the experiment. In contrast, plasma total protein concentrations were significantly lower in starved fish than in fed fish from day 7 onwards. Moreover, plasma lysozyme concentrations were significantly higher in starved flounder from day 21 onwards. This result confirms that the response of olive flounder to short-term (less than about 1.5 months) starvation consists of a readjustment of metabolism rather than the activation of an alarm-stress response. The present results indicate that starvation does not significantly compromise the health status of fish despite food limitation.
Collapse
Affiliation(s)
- Jong-Hyun Kim
- Southwest Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea
| | - Min Hwan Jeong
- Southwest Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea
| | - Je-Cheon Jun
- Southwest Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea
| | - Tae-Ik Kim
- Southwest Sea Fisheries Research Institute, National Fisheries Research and Development Institute, Yeosu 556-823, Korea
| |
Collapse
|
30
|
Martins DA, Rocha F, Castanheira F, Mendes A, Pousão-Ferreira P, Bandarra N, Coutinho J, Morais S, Yúfera M, Conceição LEC, Martínez-Rodríguez G. Effects of dietary arachidonic acid on cortisol production and gene expression in stress response in Senegalese sole (Solea senegalensis) post-larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1223-1238. [PMID: 23443720 DOI: 10.1007/s10695-013-9778-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 02/18/2013] [Indexed: 06/01/2023]
Abstract
Dietary fatty acids, particularly arachidonic acid (ARA), affect cortisol and may influence the expression of genes involved in stress response in fish. The involvement of ARA on stress, lipid, and eicosanoid metabolism genes, in Senegalese sole, was tested. Post-larvae were fed Artemia presenting graded ARA levels (0.1, 0.4, 0.8, 1.7, and 2.3%, dry matter basis), from 22 to 35 days after hatch. Whole-body cortisol levels were determined, before and 3 h after a 2 min air exposure, as well as the expression of phospholipase A2 (PLA 2 ), cyclooxygenase-2 (COX-2), steroidogenic acute regulatory protein (StAR), glucocorticoid receptors (GRs), phosphoenolpyruvate carboxykinase (PEPCK), and peroxisome proliferator-activated receptor alpha (PPARα). Relative growth rate (6.0-7.8% day(-1)) and survival at the end of the experiment (91-96%) and after stress (100%) were unaffected. Fish reflected dietary ARA content and post-stress cortisol increased with ARA supply up to 1.7%, whereas 2.3% ARA seemed to enhance basal cortisol slightly and alter the response to stress. Results suggested that elevating StAR transcription might not be necessary for a short-term response to acute stress. Basal cortisol and PLA 2 expression were strongly correlated, indicating a potential role for this enzyme in steroidogenesis. Under basal conditions, larval ARA was associated with GR1 expression, whereas the glucocorticoid responsive gene PEPCK was strongly related with cortisol but not GR1 mRNA levels, suggesting the latter might not reflect the amount of GR1 protein in sole. Furthermore, a possible role for PPARα in the expression of PEPCK following acute stress is proposed.
Collapse
Affiliation(s)
- Dulce Alves Martins
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal,
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Liu L, Li C, Su B, Beck BH, Peatman E. Short-term feed deprivation alters immune status of surface mucosa in channel catfish (Ictalurus punctatus). PLoS One 2013; 8:e74581. [PMID: 24023952 PMCID: PMC3762756 DOI: 10.1371/journal.pone.0074581] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/04/2013] [Indexed: 12/31/2022] Open
Abstract
Short-term feed deprivation (or fasting) is a common occurrence in aquacultured fish species whether due to season, production strategies, or disease. In channel catfish (Ictalurus punctatus) fasting impacts susceptibility to several bacterial pathogens including Flavobacterium columnare, the causative agent of columnaris disease. As columnaris gains entry through the gills and skin of fish, we examined here changes in transcriptional regulation induced in these surface mucosal tissues due to short-term (7 day) fasting. RNA-seq expression analysis revealed a total of 1,545 genes perturbed by fasting. Fasting significantly altered expression of critical innate immune factors in a manner consistent with lower immune fitness as well as dysregulating key genes involved in energy metabolism and cell cycling/proliferation. Downregulation of innate immune actors such as iNOS2b, Lysozyme C, and peptidoglycan recognition protein 6 is predicted to impact the delicate recognition/tolerance balance for commensal and pathogenic bacteria on the skin and gill. The highlighted expression profiles reveal potential mechanistic similarities between gut and surface mucosa and underscore the complex interrelationships between nutrition, mucosal integrity, and immunity in teleost fish.
Collapse
Affiliation(s)
- Lisa Liu
- Department of Chemistry and Chemical Biology, College of Arts and Sciences, Cornell University, Ithaca, New York, United States of America
| | - Chao Li
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, United States of America
| | - Baofeng Su
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, United States of America
| | - Benjamin H. Beck
- United States Department of Agriculture, Agricultural Research Service, Stuttgart National Aquaculture Research Center, Stuttgart, Arkansas, United States of America
| | - Eric Peatman
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
32
|
Viegas I, Rito J, González JD, Jarak I, Carvalho RA, Metón I, Pardal MA, Baanante IV, Jones JG. Effects of food-deprivation and refeeding on the regulation and sources of blood glucose appearance in European seabass (Dicentrarchus labrax L.). Comp Biochem Physiol A Mol Integr Physiol 2013; 166:399-405. [PMID: 23871878 DOI: 10.1016/j.cbpa.2013.07.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/09/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Abstract
Sources of blood glucose in European seabass (initial weight 218.0±43.0g; mean±S.D., n=18) were quantified by supplementing seawater with deuterated water (5%-(2)H2O) for 72h and analyzing blood glucose (2)H-enrichments by (2)H NMR. Three different nutritional states were studied: continuously fed, 21-day of fast and 21-day fast followed by 3days of refeeding. Plasma glucose levels (mM) were 10.7±6.3 (fed), 4.8±1.2 (fasted), and 9.3±1.4 (refed) (means±S.D., n=6), showing poor glycemic control. For all conditions, (2)H-enrichment of glucose position 5 was equivalent to that of position 2 indicating that blood glucose appearance from endogenous glucose 6-phosphate (G6P) was derived by gluconeogenesis. G6P-derived glucose accounted for 65±7% and 44±10% of blood glucose appearance in fed and refed fish, respectively, with the unlabeled fraction assumed to be derived from dietary carbohydrate (35±7% and 56±10%, respectively). For 21-day fasted fish, blood glucose appearance also had significant contributions from unlabeled glucose (52±16%) despite the unavailability of dietary carbohydrates. To assess the role of hepatic enzymes in glycemic control, activity and mRNA levels of hepatic glucokinase (GK) and glucose 6-phosphatase (G6Pase) were assessed. Both G6Pase activity and expression declined with fasting indicating the absence of a classical counter-regulatory stimulation of hepatic glucose production in response to declining glucose levels. GK activities were basal during fed and fasted conditions, but were strongly stimulated by refeeding. Overall, hepatic G6Pase and GK showed limited capacity in regulating glucose levels between feeding and fasting states.
Collapse
Affiliation(s)
- Ivan Viegas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; CFE-Center for Functional Ecology, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3001-401 Coimbra, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Falahatkar B. The metabolic effects of feeding and fasting in beluga Huso huso. MARINE ENVIRONMENTAL RESEARCH 2012; 82:69-75. [PMID: 23103114 DOI: 10.1016/j.marenvres.2012.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
A six week-study was conducted to determine the effect of starvation and feeding on growth, hematology and biochemical variables in sub-yearling beluga. Fish were placed on six feeding strategies: i) starved condition for 6 weeks, ii) a 2-week starvation, 2-week feeding and 2-week starvation, iii) a 2-week feeding, 2-week starvation and 2-week feeding, iv) a 3-week starvation followed by a 3-week feeding, v) a 3-week feeding with following 3-week starvation, and vi) fed throughout the 6 weeks. After 6 weeks, hematology, triacylglycerol, cholesterol, total protein, HSI, VSI, crude fat in muscle, final weight, feed conversion, specific growth rate, and condition factor were significantly affected by feeding strategies. The results suggested that most of the growth and physiological variables responded to a short period of starvation or re-feeding. These findings indicated that beluga could partially recover in weight and some physiological indices from periods of starvation when provided subsequently ad libitum feeding.
Collapse
Affiliation(s)
- Bahram Falahatkar
- Fisheries Department, Faculty of Natural Resources, University of Guilan, P.O. Box 1144, Sowmeh Sara, Iran.
| |
Collapse
|
34
|
Wunderink YS, Martínez-Rodríguez G, Yúfera M, Martín Montero I, Flik G, Mancera JM, Klaren PH. Food deprivation induces chronic stress and affects thyroid hormone metabolism in Senegalese sole (Solea senegalensis) post-larvae. Comp Biochem Physiol A Mol Integr Physiol 2012; 162:317-22. [DOI: 10.1016/j.cbpa.2012.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/31/2012] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
|
35
|
Conceição LEC, Aragão C, Dias J, Costas B, Terova G, Martins C, Tort L. Dietary nitrogen and fish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:119-41. [PMID: 22212981 DOI: 10.1007/s10695-011-9592-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/16/2011] [Indexed: 05/12/2023]
Abstract
Little research has been done in optimizing the nitrogenous fraction of the fish diets in order to minimize welfare problems. The purpose of this review is to give an overview on how amino acid (AA) metabolism may be affected when fish are under stress and the possible effects on fish welfare when sub-optimal dietary nitrogen formulations are used to feed fish. In addition, it intends to evaluate the current possibilities, and future prospects, of using improved dietary nitrogen formulations to help fish coping with predictable stressful periods. Both metabolomic and genomic evidence show that stressful husbandry conditions affect AA metabolism in fish and may bring an increase in the requirement of indispensable AA. Supplementation in arginine and leucine, but also eventually in lysine, methionine, threonine and glutamine, may have an important role in enhancing the innate immune system. Tryptophan, as precursor for serotonin, modulates aggressive behaviour and feed intake in fish. Bioactive peptides may bring important advances in immunocompetence, disease control and other aspects of welfare of cultured fish. Fishmeal replacement may reduce immune competence, and the full nutritional potential of plant-protein ingredients is attained only after the removal or inactivation of some antinutritional factors. This review shows that AA metabolism is affected when fish are under stress, and this together with sub-optimal dietary nitrogen formulations may affect fish welfare. Furthermore, improved dietary nitrogen formulations may help fish coping with predictable stressful events.
Collapse
Affiliation(s)
- Luis E C Conceição
- CCMAR-CIMAR L.A., Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal,
| | | | | | | | | | | | | |
Collapse
|
36
|
Costas B, Aragão C, Soengas JL, Míguez JM, Rema P, Dias J, Afonso A, Conceição LE. Effects of dietary amino acids and repeated handling on stress response and brain monoaminergic neurotransmitters in Senegalese sole (Solea senegalensis) juveniles. Comp Biochem Physiol A Mol Integr Physiol 2012; 161:18-26. [DOI: 10.1016/j.cbpa.2011.08.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
|
37
|
Costas B, Conceição LEC, Dias J, Novoa B, Figueras A, Afonso A. Dietary arginine and repeated handling increase disease resistance and modulate innate immune mechanisms of Senegalese sole (Solea senegalensis Kaup, 1858). FISH & SHELLFISH IMMUNOLOGY 2011; 31:838-847. [PMID: 21820517 DOI: 10.1016/j.fsi.2011.07.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Stress is known to impair immune function and disease resistance in fish. In the present study, repeated handling was employed as a chronic stressor in order to verify whether its attributed immunosuppressive effects could be minimized by dietary arginine supplementation. Therefore, Senegalese sole (Solea senegalensis) were air exposed daily for 3 min during 14 days (handling) or left undisturbed (control). In addition, both control and handled specimens were fed 3 diets with graded levels of arginine (Arg 4.4, Arg 5.7 and Arg 6.9 g 16 g(-1) N). Following the 14 days stress challenge and feeding on those diets, fish were infected with Photobacterium damselae subsp. piscicida (strain PC566.1; LD(50) 5 × 10(3) cfu mL(-1)) and fed the same experimental diets. Respiratory burst activity and nitric oxide production of head-kidney leucocytes increased parallel to dietary arginine supplementation. HIF-1, HAMP-1, MIP1-alpha and gLYS expression values and some humoral parameters augmented in control specimens fed the Arg 5.7 and Arg 6.9 diets. Interestingly, repeated acute stress increased both disease resistance and some innate immune mechanisms in handled fish. The role of dietary arginine and repeated handling on Senegalese sole innate immunity and disease resistance are discussed.
Collapse
Affiliation(s)
- Benjamín Costas
- CIIMAR-CIMAR L.A., Centro Interdisciplinar de Investigação Marinha e Ambiental and ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-123 Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
38
|
Costas B, Aragão C, Ruiz-Jarabo I, Vargas-Chacoff L, Arjona FJ, Mancera JM, Dinis MT, Conceição LEC. Different environmental temperatures affect amino acid metabolism in the eurytherm teleost Senegalese sole (Solea senegalensis Kaup, 1858) as indicated by changes in plasma metabolites. Amino Acids 2011; 43:327-35. [PMID: 21947601 DOI: 10.1007/s00726-011-1082-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/08/2011] [Indexed: 11/24/2022]
Abstract
Senegalese sole (Solea senegalensis) is a eurytherm teleost that under natural conditions can be exposed to annual water temperature fluctuations between 12 and 26°C. This study assessed the effects of temperature on sole metabolic status, in particular in what concerns plasma free amino acid changes during thermal acclimation. Senegalese sole maintained at 18°C were acclimated to either cold (12°C) or warm (26°C) environmental temperatures for 21 days. Fish maintained at 18°C served as control. Plasma concentrations of cortisol, glucose, lactate, triglycerides, proteins, and free amino acids were assessed. Cold acclimation influenced interrenal responses of sole by increasing cortisol release. Moreover, plasma glucose and lactate concentrations increased linearly with temperature, presumably reflecting a higher metabolic activity of sole acclimated to 26°C. Acclimation temperature affected more drastically plasma concentrations of dispensable than that of indispensable amino acids, and different acclimation temperatures induced different responses. Asparagine, glutamine and ornithine seem to be of particular importance for ammonia detoxification mechanisms, synthesis of triglycerides that may be used during homeoviscous adaptation and, to a lesser extent, as energetic substrates in specimens acclimated to 12°C. When sole is acclimated to 26°C taurine, glutamate, GABA and glycine increased, which may suggest important roles as antioxidant defences, in osmoregulatory processes and/or for energetic purposes at this thermal regimen. In conclusion, acclimation to different environmental temperatures induces several metabolic changes in Senegalese sole, suggesting that amino acids may be important for thermal acclimation.
Collapse
Affiliation(s)
- Benjamín Costas
- CCMAR-CIMAR L.A., Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|