1
|
Jorrin-Novo JV, Aroca R, Rey MD, Truniger V, Martínez-Gómez P. State-of-the-Art Molecular Plant Biology Research in Spain. Int J Mol Sci 2023; 24:16557. [PMID: 38068878 PMCID: PMC10706402 DOI: 10.3390/ijms242316557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Molecular plant biology is the study of the molecular basis of plant life [...].
Collapse
Affiliation(s)
- Jesús V. Jorrin-Novo
- Department of Biochemistry and Molecular Biology, University of Cordoba (UCO), Campus de Excelencia Internacional A3 (CeiA3), E-14014 Cordoba, Spain; (J.V.J.-N.); (M.-D.R.)
| | - Ricardo Aroca
- Department of Soil and Plant Microbiology and Symbiotic Systems, EEZ-CSIC (Estación Experimental del Zaidin-Consejo Superior de Investigaciones Científicas), E-18100 Granada, Spain;
| | - María-Dolores Rey
- Department of Biochemistry and Molecular Biology, University of Cordoba (UCO), Campus de Excelencia Internacional A3 (CeiA3), E-14014 Cordoba, Spain; (J.V.J.-N.); (M.-D.R.)
| | - Verónica Truniger
- Department of Stress Biology and Pathology, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain;
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
2
|
Vahdati K, Sadat-Hosseini M, Martínez-Gómez P, Germanà MA. Production of Haploid and Doubled Haploid Lines in Nut Crops: Persian Walnut, Almond, and Hazelnut. Methods Mol Biol 2021; 2289:179-198. [PMID: 34270071 DOI: 10.1007/978-1-0716-1331-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This chapter deals with induction of haploidy via parthenogenesis in Persian walnut and via microspore embryogenesis in almond and hazelnut. Haploid induction through in situ parthenogenesis using pollination with irradiated pollen to stimulate the embryogenic development of the egg cell, followed by in vitro culture of the immature haploid embryos. Microspore embryogenesis allows the induction of immature pollen grains (microspores), to move away from the normal gametophytic developmental route in the direction of the sporophytic one, yielding homozygous organisms (embryos in this case). Unlike other fruit crops (such as Citrus), regeneration of entire plants has not yet been obtained in our studied nut crops; however, it gives the methodology should be used to continue the roadmap.
Collapse
Affiliation(s)
- Kourosh Vahdati
- Department of Horticulture, College of Aburaihan, University of Tehran, Tehran, Iran.
| | | | | | - Maria Antonietta Germanà
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Sudi di Palermo, Palermo, Italy
| |
Collapse
|
3
|
García-Gómez BE, Salazar JA, Nicolás-Almansa M, Razi M, Rubio M, Ruiz D, Martínez-Gómez P. Molecular Bases of Fruit Quality in Prunus Species: An Integrated Genomic, Transcriptomic, and Metabolic Review with a Breeding Perspective. Int J Mol Sci 2020; 22:E333. [PMID: 33396946 PMCID: PMC7794732 DOI: 10.3390/ijms22010333] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023] Open
Abstract
In plants, fruit ripening is a coordinated developmental process that requires the change in expression of hundreds to thousands of genes to modify many biochemical and physiological signal cascades such as carbohydrate and organic acid metabolism, cell wall restructuring, ethylene production, stress response, and organoleptic compound formation. In Prunus species (including peaches, apricots, plums, and cherries), fruit ripening leads to the breakdown of complex carbohydrates into sugars, fruit firmness reductions (softening by cell wall degradation and cuticle properties alteration), color changes (loss of green color by chlorophylls degradation and increase in non-photosynthetic pigments like anthocyanins and carotenoids), acidity decreases, and aroma increases (the production and release of organic volatile compounds). Actually, the level of information of molecular events at the transcriptional, biochemical, hormonal, and metabolite levels underlying ripening in Prunus fruits has increased considerably. However, we still poorly understand the molecular switch that occurs during the transition from unripe to ripe fruits. The objective of this review was to analyze of the molecular bases of fruit quality in Prunus species through an integrated metabolic, genomic, transcriptomic, and epigenetic approach to better understand the molecular switch involved in the ripening process with important consequences from a breeding point of view.
Collapse
Affiliation(s)
- Beatriz E. García-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Juan A. Salazar
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - María Nicolás-Almansa
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Mitra Razi
- Department of Horticulture, Faculty of Agriculture, University of Zajan, Zanjan 45371-38791, Iran;
| | - Manuel Rubio
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - David Ruiz
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, CEBAS-CSIC, P.O. Box 164, 30100 Murcia, Spain; (B.E.G.-G.); (J.A.S.); (M.N.-A.); (M.R.); (D.R.)
| |
Collapse
|
4
|
Wu X, Gong Q, Ni X, Zhou Y, Gao Z. UFGT: The Key Enzyme Associated with the Petals Variegation in Japanese Apricot. FRONTIERS IN PLANT SCIENCE 2017; 8:108. [PMID: 28223989 PMCID: PMC5293763 DOI: 10.3389/fpls.2017.00108] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 01/19/2017] [Indexed: 05/21/2023]
Abstract
Japanese apricot (Prunus mume Sieb.et Zucc.) is an important ornamental plant in China. One of the traits of petals color variegation is attractive, but its formation mechanism is unclear. In our study, RNA-seq technology was employed to characterize the transcriptome response to the mutation of "Fuban Tiaozhi" associated with petals variegation in Japanese apricot. As a result, 4,579,040 (white-flowered, WF) and 7,269,883 (red-flowered, RF) reads were mapped to P. persica genes, while 5,006,676 (WF) and 7,907,436 (RF) were mapped to P. persica genomes. There were 960 differentially expressed genes (DEGs) identified. Gene ontology analysis showed that these genes involved in 37 functional groups including 19 biological processes, 10 cellular components and eight molecular functions. Pathway enrichment annotation demonstrated that highly ranked genes were associated with flavonoid biosynthesis, anthocyanin biosynthesis, anthocyanins transports, plant hormone signal transduction, and transcriptional factors. The expression patterns part of them were validated by qRT-PCR. We found that UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene showed differential expression pattern. The UFGT enzyme activities in RF had a significantly higher than that of WF and lower in the initial stage and increased when the red appeared in the petals, which is identical to the accumulation of anthocyanins. And we also validated the SNPs, leading to the nonsynonymous mutations, in the UFGT by Sanger sequencing which may affect the enzyme activity. In summary, our results provide molecular candidates for better understanding the mechanisms of the variegation in Japanese Apricot.
Collapse
Affiliation(s)
- Xinxin Wu
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic ImprovementNanjing, China
| | - Qinghua Gong
- The Administration Bureau of Sun Yat-sen's MausoleumNanjing, China
| | - Xiaopeng Ni
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yong Zhou
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Zhihong Gao
- Laboratory of Fruit Tree Biotechnology, College of Horticulture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Zhihong Gao
| |
Collapse
|
5
|
Kanjana W, Suzuki T, Ishii K, Kozaki T, Iigo M, Yamane K. Transcriptome analysis of seed dormancy after rinsing and chilling in ornamental peaches (Prunus persica (L.) Batsch). BMC Genomics 2016; 17:575. [PMID: 27501791 PMCID: PMC4977653 DOI: 10.1186/s12864-016-2973-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 07/28/2016] [Indexed: 11/24/2022] Open
Abstract
Background Ornamental peaches cv. ‘Yaguchi’ (Prunus persica (L.) Batsch) can be propagated via seeds. The establishment of efficient seed treatments for early germination and seedling growth is required to shorten nursery and breeding periods. It is important, therefore, to identify potential candidate genes responsible for the effects of rinsing and chilling on seed germination. We hypothesized that longer rinsing combined with chilling of seeds can alter the genes expression in related to dormancy and then raise the germination rate in the peach. To date, most molecular studies in peaches have involved structural genomics, and few transcriptome studies of seed germination have been conducted. In this study, we investigated the function of key seed dormancy-related genes using next-generation sequencing to profile the transcriptomes involved in seed dormancy in peaches. De novo assembly and analysis of the transcriptome identified differentially expressed and unique genes present in this fruit. Results De novo RNA-sequencing of peach was performed using the Illumina Miseq 2000 system. Paired-end sequence from mRNAs generated high quality sequence reads (9,049,964, 10,026,362 and 10,101,918 reads) from ‘Yaguchi’ peach seeds before rinsed (BR) and after rinsed for 2 or 7 days with a chilling period of 4 weeks (termed 2D4W and 7D4W), respectively. The germination rate of 7D4W was significantly higher than that of 2D4W. In total, we obtained 51,366 unique sequences. Differential expression analysis identified 7752, 8469 and 506 differentially expressed genes from BR vs 2D4W, BR vs 7D4W and 2D4W vs 7D4W libraries respectively, filtered based on p-value and an adjusted false discovery rate of less than 0.05. This study identified genes associated with the rinsing and chilling process that included those associated with phytohormones, the stress response and transcription factors. 7D4W treatment downregulated genes involved in ABA synthesis, catabolism and signaling pathways, which eventually suppressed abscisic acid activity and consequently promoted germination and seedling growth. Stress response genes were also downregulated by the 7D4W treatment, suggesting that this treatment released seeds from endodormancy. Transcription factors were upregulated by the BR and 2D4W treatment, suggesting that they play important roles in maintaining seed dormancy. Conclusions This work indicated that longer rinsing combined with chilling affects gene expression and germination rate, and identified potential candidate genes responsible for dormancy progression in seeds of ‘Yaguchi’ peach. The results could be used to develop breeding programs and will aid future functional genomic research in peaches and other fruit trees. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2973-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Worarad Kanjana
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan.,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Tomohiro Suzuki
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kazuo Ishii
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Toshinori Kozaki
- Department of Applied Biological Science, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Masayuki Iigo
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Kenji Yamane
- Bioscience Education and Research Center, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan. .,Faculty of Agriculture, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan.
| |
Collapse
|
6
|
Sorkheh K, Prudencio AS, Ghebinejad A, Dehkordi MK, Erogul D, Rubio M, Martínez-Gómez P. In silico search, characterization and validation of new EST-SSR markers in the genus Prunus. BMC Res Notes 2016; 9:336. [PMID: 27389023 PMCID: PMC4937603 DOI: 10.1186/s13104-016-2143-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Simple sequence repeats (SSRs) are defined as sequence repeat units between 1 and 6 bp that occur in both coding and non-coding regions abundant in eukaryotic genomes, which may affect the expression of genes. In this study, expressed sequence tags (ESTs) of eight Prunus species were analyzed for in silico mining of EST-SSRs, protein annotation, and open reading frames (ORFs), and the identification of codon repetitions. RESULTS A total of 316 SSRs were identified using MISA software. Dinucleotide SSR motifs (26.31 %) were found to be the most abundant type of repeats, followed by tri- (14.58 %), tetra- (0.53 %), and penta- (0.27 %) nucleotide motifs. An attempt was made to design primer pairs for 316 identified SSRs but these were successful for only 175 SSR sequences. The positions of SSRs with respect to ORFs were detected, and annotation of sequences containing SSRs was performed to assign function to each sequence. SSRs were also characterized (in terms of position in the reference genome and associated gene) using the two available Prunus reference genomes (mei and peach). Finally, 38 SSR markers were validated across peach, almond, plum, and apricot genotypes. This validation showed a higher transferability level of EST-SSR developed in P. mume (mei) in comparison with the rest of species analyzed. CONCLUSIONS Findings will aid analysis of functionally important molecular markers and facilitate the analysis of genetic diversity.
Collapse
Affiliation(s)
- Karim Sorkheh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P.O. Box. 61355/144, Ahvaz, Iran
| | - Angela S Prudencio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100, Espinardo-Murcia, Spain
| | - Azim Ghebinejad
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahid Chamran University of Ahvaz, P.O. Box. 61355/144, Ahvaz, Iran
| | - Mehrana Kohei Dehkordi
- Department of Agronomy, Faculty of Agriculture, Payame Noor University, P.O. Box. 19395-3697, Tehran, Iran
| | - Deniz Erogul
- Department of Horticulture, Faculty of Agriculture, University of Ege, Bornova, 35100, Izmir, Turkey
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100, Espinardo-Murcia, Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100, Espinardo-Murcia, Spain.
| |
Collapse
|
7
|
Ksouri N, Jiménez S, Wells CE, Contreras-Moreira B, Gogorcena Y. Transcriptional Responses in Root and Leaf of Prunus persica under Drought Stress Using RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2016; 7:1715. [PMID: 27933070 PMCID: PMC5120087 DOI: 10.3389/fpls.2016.01715] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/31/2016] [Indexed: 05/02/2023]
Abstract
Prunus persica L. Batsch, or peach, is one of the most important crops and it is widely established in irrigated arid and semi-arid regions. However, due to variations in the climate and the increased aridity, drought has become a major constraint, causing crop losses worldwide. The use of drought-tolerant rootstocks in modern fruit production appears to be a useful method of alleviating water deficit problems. However, the transcriptomic variation and the major molecular mechanisms that underlie the adaptation of drought-tolerant rootstocks to water shortage remain unclear. Hence, in this study, high-throughput sequencing (RNA-seq) was performed to assess the transcriptomic changes and the key genes involved in the response to drought in root tissues (GF677 rootstock) and leaf tissues (graft, var. Catherina) subjected to 16 days of drought stress. In total, 12 RNA libraries were constructed and sequenced. This generated a total of 315 M raw reads from both tissues, which allowed the assembly of 22,079 and 17,854 genes associated with the root and leaf tissues, respectively. Subsets of 500 differentially expressed genes (DEGs) in roots and 236 in leaves were identified and functionally annotated with 56 gene ontology (GO) terms and 99 metabolic pathways, which were mostly associated with aminobenzoate degradation and phenylpropanoid biosynthesis. The GO analysis highlighted the biological functions that were exclusive to the root tissue, such as "locomotion," "hormone metabolic process," and "detection of stimulus," indicating the stress-buffering role of the GF677 rootstock. Furthermore, the complex regulatory network involved in the drought response was revealed, involving proteins that are associated with signaling transduction, transcription and hormone regulation, redox homeostasis, and frontline barriers. We identified two poorly characterized genes in P. persica: growth-regulating factor 5 (GRF5), which may be involved in cellular expansion, and AtHB12, which may be involved in root elongation. The reliability of the RNA-seq experiment was validated by analyzing the expression patterns of 34 DEGs potentially involved in drought tolerance using quantitative reverse transcription polymerase chain reaction. The transcriptomic resources generated in this study provide a broad characterization of the acclimation of P. persica to drought, shedding light on the major molecular responses to the most important environmental stressor.
Collapse
Affiliation(s)
- Najla Ksouri
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | - Sergio Jiménez
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
| | | | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Department of Genetics and Plant Production, Estación Experimental de Aula Dei – Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Yolanda Gogorcena, Bruno Contreras-Moreira,
| | - Yolanda Gogorcena
- Department of Pomology, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones CientíficasZaragoza, Spain
- *Correspondence: Yolanda Gogorcena, Bruno Contreras-Moreira,
| |
Collapse
|
8
|
Rubio M, Ballester AR, Olivares PM, Castro de Moura M, Dicenta F, Martínez-Gómez P. Gene Expression Analysis of Plum pox virus (Sharka) Susceptibility/Resistance in Apricot (Prunus armeniaca L.). PLoS One 2015; 10:e0144670. [PMID: 26658051 PMCID: PMC4684361 DOI: 10.1371/journal.pone.0144670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/20/2015] [Indexed: 11/18/2022] Open
Abstract
RNA-Seq has proven to be a very powerful tool in the analysis of the Plum pox virus (PPV, sharka disease)/Prunus interaction. This technique is an important complementary tool to other means of studying genomics. In this work an analysis of gene expression of resistance/susceptibility to PPV in apricot is performed. RNA-Seq has been applied to analyse the gene expression changes induced by PPV infection in leaves from two full-sib apricot genotypes, “Rojo Pasión” and “Z506-7”, resistant and susceptible to PPV, respectively. Transcriptomic analyses revealed the existence of more than 2,000 genes related to the pathogen response and resistance to PPV in apricot. These results showed that the response to infection by the virus in the susceptible genotype is associated with an induction of genes involved in pathogen resistance such as the allene oxide synthase, S-adenosylmethionine synthetase 2 and the major MLP-like protein 423. Over-expression of the Dicer protein 2a may indicate the suppression of a gene silencing mechanism of the plant by PPV HCPro and P1 PPV proteins. On the other hand, there were 164 genes involved in resistance mechanisms that have been identified in apricot, 49 of which are located in the PPVres region (scaffold 1 positions from 8,050,804 to 8,244,925), which is responsible for PPV resistance in apricot. Among these genes in apricot there are several MATH domain-containing genes, although other genes inside (Pleiotropic drug resistance 9 gene) or outside (CAP, Cysteine-rich secretory proteins, Antigen 5 and Pathogenesis-related 1 protein; and LEA, Late embryogenesis abundant protein) PPVres region could also be involved in the resistance.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Ana Rosa Ballester
- Department of Food Science, Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Avda. Agustín Escardino 7, 46980 Paterna (Valencia) Spain
| | - Pedro Manuel Olivares
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Manuel Castro de Moura
- aScidea Computational Biology Solutions, S.L. Parc de Reserca UAB, Edifici Eureka. 08193 Bellaterra (Cerdanyola del Vallés), Barcelona, Spain
| | - Federico Dicenta
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100 Espinardo (Murcia) Spain
- * E-mail:
| |
Collapse
|
9
|
Bianchi VJ, Rubio M, Trainotti L, Verde I, Bonghi C, Martínez-Gómez P. Prunus transcription factors: breeding perspectives. FRONTIERS IN PLANT SCIENCE 2015; 6:443. [PMID: 26124770 PMCID: PMC4464204 DOI: 10.3389/fpls.2015.00443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/29/2015] [Indexed: 05/18/2023]
Abstract
Many plant processes depend on differential gene expression, which is generally controlled by complex proteins called transcription factors (TFs). In peach, 1533 TFs have been identified, accounting for about 5.5% of the 27,852 protein-coding genes. These TFs are the reference for the rest of the Prunus species. TF studies in Prunus have been performed on the gene expression analysis of different agronomic traits, including control of the flowering process, fruit quality, and biotic and abiotic stress resistance. These studies, using quantitative RT-PCR, have mainly been performed in peach, and to a lesser extent in other species, including almond, apricot, black cherry, Fuji cherry, Japanese apricot, plum, and sour and sweet cherry. Other tools have also been used in TF studies, including cDNA-AFLP, LC-ESI-MS, RNA, and DNA blotting or mapping. More recently, new tools assayed include microarray and high-throughput DNA sequencing (DNA-Seq) and RNA sequencing (RNA-Seq). New functional genomics opportunities include genome resequencing and the well-known synteny among Prunus genomes and transcriptomes. These new functional studies should be applied in breeding programs in the development of molecular markers. With the genome sequences available, some strategies that have been used in model systems (such as SNP genotyping assays and genotyping-by-sequencing) may be applicable in the functional analysis of Prunus TFs as well. In addition, the knowledge of the gene functions and position in the peach reference genome of the TFs represents an additional advantage. These facts could greatly facilitate the isolation of genes via QTL (quantitative trait loci) map-based cloning in the different Prunus species, following the association of these TFs with the identified QTLs using the peach reference genome.
Collapse
Affiliation(s)
- Valmor J. Bianchi
- Department of Plant Physiology, Instituto de Biologia, Universidade Federal de PelotasPelotas-RS, Brazil
| | - Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| | | | - Ignazio Verde
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CRA) - Centro di ricerca per la frutticolturaRoma, Italy
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, and Environment (DAFNAE). University of PaduaPadova, Italy
| | - Pedro Martínez-Gómez
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones CientíficasMurcia, Spain
| |
Collapse
|
10
|
Rubio M, Rodríguez-Moreno L, Ballester AR, de Moura MC, Bonghi C, Candresse T, Martínez-Gómez P. Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. MOLECULAR PLANT PATHOLOGY 2015; 16:164-76. [PMID: 24989162 PMCID: PMC6638525 DOI: 10.1111/mpp.12169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Differences in gene expression were studied after Plum pox virus (PPV, sharka disease) infection in peach GF305 leaves with and without sharka symptoms using RNA-Seq. For each sample, more than 80% of 100-nucleotide paired-end (PE) Illumina reads were aligned on the peach reference genome. In the symptomatic sample, a significant proportion of reads were mapped to PPV reference genomes (1.04% compared with 0.00002% in non-symptomatic leaves), allowing for the ultra-deep assembly of the complete genome of the PPV isolate used (9775 nucleotides, missing only 11 nucleotides at the 5' genome end). In addition, significant alternative splicing events were detected in 359 genes and 12 990 single nucleotide polymorphisms (SNPs) were identified, 425 of which could be annotated. Gene ontology annotation revealed that the high-ranking mRNA target genes associated with the expression of sharka symptoms are mainly related to the response to biotic stimuli, to lipid and carbohydrate metabolism and to the negative regulation of catalytic activity. A greater number of differentially expressed genes were observed in the early asymptomatic phase of PPV infection in comparison with the symptomatic phase. These early infection events were associated with the induction of genes related to pathogen resistance, such as jasmonic acid, chitinases, cytokinin glucosyl transferases and Lys-M proteins. Once the virus had accumulated, the overexpression of Dicer protein 2a genes suggested a gene silencing plant response that was suppressed by the virus HCPro and P1 proteins. These results illustrate the dynamic nature of the peach-PPV interaction at the transcriptome level and confirm that sharka symptom expression is a complex process that can be understood on the basis of changes in plant gene expression.
Collapse
Affiliation(s)
- Manuel Rubio
- Department of Plant Breeding, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), PO Box 164, E-30100, Espinardo-Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
11
|
Di Santo MC, Ilina N, Pagano EA, Sozzi GO. A Japanese plum α-l-arabinofuranosidase/β-D-xylosidase gene is developmentally regulated by alternative splicing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:173-183. [PMID: 25576002 DOI: 10.1016/j.plantsci.2014.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
A full-length cDNA clone named PsARF/XYL was obtained from Prunus salicina Lindl., and determined to encode a putative α-l-arabinofuranosidase/β-d-xylosidase belonging to glycoside hydrolase (GH, EC 3.2.1.-) family 3. Two related PsARF/XYL cDNAs were amplified, one from a fully-spliced transcript (PsARF/XYLa) and another one from an intron-retained transcript (PsARF/XYLb). The protein deduced from PsARF/XYLb is a truncated peptide at C-terminus that conserves the active-site amino acid sequence. High levels of PsARF/XYLa and PsARF/XYLb transcripts are detectable in several plant tissues. PsARF/XYLb transcripts accumulate progressively during the phase of exponential fruit growth but they become barely noticeable during on-tree ripening, or after a 6-h exposure of preclimacteric full-size plums to ethylene. In contrast, PsARF/XYLa is expressed throughout fruit development, and transcript accumulation parallels the climacteric rise in ethylene production during ripening. PsARF/XYLa expression is strongly induced in preclimacteric full-size plums after a 6-h treatment with physiologically active concentrations of ethylene. These findings suggest that PsARF/XYL gene is post-transcriptionally regulated by alternative splicing during development and that ethylene may be involved in this regulation. The isolation of a partial cDNA clone, PsARF1, is also reported. It encodes a putative cell-wall α-l-arabinofuranosidase, and its transcription is rapidly inhibited by ethylene in mature green plums.
Collapse
Affiliation(s)
- M Carolina Di Santo
- Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina.
| | - Natalia Ilina
- Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Eduardo A Pagano
- Facultad de Agronomía, Universidad de Buenos Aires, Avenida San Martín 4453, C1417DSE Buenos Aires, Argentina
| | - Gabriel O Sozzi
- Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
12
|
Sanhueza D, Vizoso P, Balic I, Campos-Vargas R, Meneses C. Transcriptomic analysis of fruit stored under cold conditions using controlled atmosphere in Prunus persica cv. "Red Pearl". FRONTIERS IN PLANT SCIENCE 2015; 6:788. [PMID: 26483806 PMCID: PMC4586424 DOI: 10.3389/fpls.2015.00788] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/11/2015] [Indexed: 05/20/2023]
Abstract
Cold storage (CS) can induce a physiological disorder known as chilling injury (CI) in nectarine fruits. The main symptom is mealiness that is perceived as non-juicy fruit by consumers. Postharvest treatments such as controlled atmosphere (CA; a high CO2 concentration and low O2) have been used under cold conditions to avoid this disorder. With the objective of exploring the mechanisms involved in the CA effect on mealiness prevention, we analyzed transcriptomic changes under six conditions of "Red Pearl" nectarines by RNA-Seq. Our analysis included just harvested nectarines, juicy non-stored fruits, fruits affected for CI after CS and fruits stored in a combination of CA plus CS without CI phenotype. Nectarines stored in cold conditions combined with CA treatment resulted in less mealiness; we obtained 21.6% of juice content compared with just CS fruits (7.7%; mealy flesh). RNA-Seq data analyses were carried out to study the gene expression for different conditions assayed. During ripening, we detected that nectarines exposed to CA treatment expressed a similar number of genes compared with fruits that were not exposed to cold conditions. Firm fruits have more differentially expressed genes than soft fruits, which suggest that most important changes occur during CS. On the other hand, gene ontology analysis revealed enrichment mainly in metabolic and cellular processes. Differentially expressed genes analysis showed that low O2 concentrations combined with cold conditions slows the metabolic processes more than just the cold storage, resulting mainly in the suppression of primary metabolism and cold stress response. This is a significant step toward unraveling the molecular mechanism that explains the effectiveness of CA as a tool to prevent CI development on fruits.
Collapse
Affiliation(s)
- Dayan Sanhueza
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Paula Vizoso
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
- FONDAP Center for Genome RegulationSantiago, Chile
| | - Iván Balic
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
| | - Reinaldo Campos-Vargas
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
| | - Claudio Meneses
- Facultad Ciencias Biológicas, Centro de Biotecnología Vegetal, Universidad Andres BelloSantiago, Chile
- *Correspondence: Claudio Meneses, Centro de Biotecnología Vegetal, Universidad Andrés Bello, República 217, 8370146 Santiago, Chile
| |
Collapse
|
13
|
Wu HX, Jia HM, Ma XW, Wang SB, Yao QS, Xu WT, Zhou YG, Gao ZS, Zhan RL. Transcriptome and proteomic analysis of mango (Mangifera indica Linn) fruits. J Proteomics 2014; 105:19-30. [PMID: 24704857 DOI: 10.1016/j.jprot.2014.03.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Here we used Illumina RNA-seq technology for transcriptome sequencing of a mixed fruit sample from 'Zill' mango (Mangifera indica Linn) fruit pericarp and pulp during the development and ripening stages. RNA-seq generated 68,419,722 sequence reads that were assembled into 54,207 transcripts with a mean length of 858bp, including 26,413 clusters and 27,794 singletons. A total of 42,515(78.43%) transcripts were annotated using public protein databases, with a cut-off E-value above 10(-5), of which 35,198 and 14,619 transcripts were assigned to gene ontology terms and clusters of orthologous groups respectively. Functional annotation against the Kyoto Encyclopedia of Genes and Genomes database identified 23,741(43.79%) transcripts which were mapped to 128 pathways. These pathways revealed many previously unknown transcripts. We also applied mass spectrometry-based transcriptome data to characterize the proteome of ripe fruit. LC-MS/MS analysis of the mango fruit proteome was using tandem mass spectrometry (MS/MS) in an LTQ Orbitrap Velos (Thermo) coupled online to the HPLC. This approach enabled the identification of 7536 peptides that matched 2754 proteins. Our study provides a comprehensive sequence for a systemic view of transcriptome during mango fruit development and the most comprehensive fruit proteome to date, which are useful for further genomics research and proteomic studies. BIOLOGICAL SIGNIFICANCE Our study provides a comprehensive sequence for a systemic view of both the transcriptome and proteome of mango fruit, and a valuable reference for further research on gene expression and protein identification. This article is part of a Special Issue entitled: Proteomics of non-model organisms.
Collapse
Affiliation(s)
- Hong-xia Wu
- Department of Horticulture, State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou 310058, China; Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Hui-min Jia
- Department of Horticulture, State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou 310058, China
| | - Xiao-wei Ma
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Song-biao Wang
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Quan-sheng Yao
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Wen-tian Xu
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Yi-gang Zhou
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| | - Zhong-shan Gao
- Department of Horticulture, State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou 310058, China.
| | - Ru-lin Zhan
- Ministry of Agriculture Key Laboratory of Tropical Fruit Biology, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, Guangdong, China
| |
Collapse
|
14
|
Abstract
The availability of many genomic resources such as genome sequences, functional genomics resources including microarrays and RNA-seq, sufficient numbers of molecular markers, express sequence tags (ESTs) and high-density genetic maps is causing a rapid acceleration of genetics and genomic research of many fruit plants. This is leading to an increase in our knowledge of the genes that are linked to many horticultural and agronomically important traits. Recently, some progress has also been made on the identification and functional analysis of miRNAs in some fruit plants. This is one of the most active research fields in plant sciences. The last decade has witnessed development of genomic resources in many fruit plants such as apple, banana, citrus, grapes, papaya, pears, strawberry etc.; however, many of them are still not being exploited. Furthermore, owing to lack of resources, infrastructure and research facilities in many lesser-developed countries, development of genomic resources in many underutilized or less-studied fruit crops, which grow in these countries, is limited. Thus, research emphasis should be given to those fruit crops for which genomic resources are relatively scarce. The development of genomic databases of these less-studied fruit crops will enable biotechnologists to identify target genes that underlie key horticultural and agronomical traits. This review presents an overview of the current status of the development of genomic resources in fruit plants with the main emphasis being on genome sequencing, EST resources, functional genomics resources including microarray and RNA-seq, identification of quantitative trait loci and construction of genetic maps as well as efforts made on the identification and functional analysis of miRNAs in fruit plants.
Collapse
Affiliation(s)
- Manoj K Rai
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| | - N S Shekhawat
- a Department of Botany , Biotechnology Centre, Jai Narain Vyas University , Jodhpur , Rajasthan , India
| |
Collapse
|
15
|
Sánchez-Pérez R, Del Cueto J, Dicenta F, Martínez-Gómez P. Recent advancements to study flowering time in almond and other Prunus species. FRONTIERS IN PLANT SCIENCE 2014; 5:334. [PMID: 25071812 PMCID: PMC4093751 DOI: 10.3389/fpls.2014.00334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/24/2014] [Indexed: 05/21/2023]
Abstract
Flowering time is an important agronomic trait in almond since it is decisive to avoid the late frosts that affect production in early flowering cultivars. Evaluation of this complex trait is a long process because of the prolonged juvenile period of trees and the influence of environmental conditions affecting gene expression year by year. Consequently, flowering time has to be studied for several years to have statistical significant results. This trait is the result of the interaction between chilling and heat requirements. Flowering time is a polygenic trait with high heritability, although a major gene Late blooming (Lb) was described in "Tardy Nonpareil." Molecular studies at DNA level confirmed this polygenic nature identifying several genome regions (Quantitative Trait Loci, QTL) involved. Studies about regulation of gene expression are scarcer although several transcription factors have been described as responsible for flowering time. From the metabolomic point of view, the integrated analysis of the mechanisms of accumulation of cyanogenic glucosides and flowering regulation through transcription factors open new possibilities in the analysis of this complex trait in almond and in other Prunus species (apricot, cherry, peach, plum). New opportunities are arising from the integration of recent advancements including phenotypic, genetic, genomic, transcriptomic, and metabolomics studies from the beginning of dormancy until flowering.
Collapse
Affiliation(s)
- Raquel Sánchez-Pérez
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Faculty of Science, University of CopenhagenCopenhagen, Denmark
- *Correspondence: Raquel Sánchez-Pérez, Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871 Copenhagen, Denmark e-mail:
| | | | | | | |
Collapse
|
16
|
Jung S, Main D. Genomics and bioinformatics resources for translational science in Rosaceae. PLANT BIOTECHNOLOGY REPORTS 2014; 8:49-64. [PMID: 24634697 PMCID: PMC3951882 DOI: 10.1007/s11816-013-0282-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 04/22/2013] [Indexed: 05/22/2023]
Abstract
Recent technological advances in biology promise unprecedented opportunities for rapid and sustainable advancement of crop quality. Following this trend, the Rosaceae research community continues to generate large amounts of genomic, genetic and breeding data. These include annotated whole genome sequences, transcriptome and expression data, proteomic and metabolomic data, genotypic and phenotypic data, and genetic and physical maps. Analysis, storage, integration and dissemination of these data using bioinformatics tools and databases are essential to provide utility of the data for basic, translational and applied research. This review discusses the currently available genomics and bioinformatics resources for the Rosaceae family.
Collapse
Affiliation(s)
- Sook Jung
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
17
|
Wang L, Zhao S, Gu C, Zhou Y, Zhou H, Ma J, Cheng J, Han Y. Deep RNA-Seq uncovers the peach transcriptome landscape. PLANT MOLECULAR BIOLOGY 2013; 83:365-77. [PMID: 23783411 DOI: 10.1007/s11103-013-0093-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/15/2013] [Indexed: 05/18/2023]
Abstract
Peach (Prunus persica) is one of the most important of deciduous fruit trees worldwide. To facilitate isolation of genes controlling important horticultural traits of peach, transcriptome sequencing was conducted in this study. A total of 133 million pair-end RNA-Seq reads were generated from leaf, flower, and fruit, and 90 % of reads were mapped to the peach draft genome. Sequence assembly revealed 1,162 transcription factors and 2,140 novel transcribed regions (NTRs). Of these 2,140 NTRs, 723 contain an open reading frame, while the rest 1,417 are non-coding RNAs. A total of 9,587 SNPs were identified across six peach genotypes, with an average density of one SNP per ~5.7 kb. The top of chromosome 2 has higher density of expressed SNPs than the rest of the peach genome. The average density of SSR is 312.5/Mb, with tri-nucleotide repeats being the most abundant. Most of the detected SSRs are AT-rich repeats and the most common di-nucleotide repeat is CT/TC. The predominant type of alternative splicing (AS) events in peach is exon-skipping isoforms, which account for 43 % of all the observed AS events. In addition, the most active transcribed regions in peach genome were also analyzed. Our study reveals for the first time the complexity of the peach transcriptome, and our results will be helpful for functional genomics research in peach.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden of the Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China,
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y. Transcriptomic analysis of 'Suli' pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics 2012; 13:700. [PMID: 23234335 PMCID: PMC3562153 DOI: 10.1186/1471-2164-13-700] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/07/2012] [Indexed: 12/21/2022] Open
Abstract
Background Bud dormancy is a critical developmental process that allows perennial plants to survive unfavorable environmental conditions. Pear is one of the most important deciduous fruit trees in the world, but the mechanisms regulating bud dormancy in this species are unknown. Because genomic information for pear is currently unavailable, transcriptome and digital gene expression data for this species would be valuable resources to better understand the molecular and biological mechanisms regulating its bud dormancy. Results We performed de novo transcriptome assembly and digital gene expression (DGE) profiling analyses of ‘Suli’ pear (Pyrus pyrifolia white pear group) using the Illumina RNA-seq system. RNA-Seq generated approximately 100 M high-quality reads that were assembled into 69,393 unigenes (mean length = 853 bp), including 14,531 clusters and 34,194 singletons. A total of 51,448 (74.1%) unigenes were annotated using public protein databases with a cut-off E-value above 10-5. We mainly compared gene expression levels at four time-points during bud dormancy. Between Nov. 15 and Dec. 15, Dec. 15 and Jan. 15, and Jan. 15 and Feb. 15, 1,978, 1,024, and 3,468 genes were differentially expressed, respectively. Hierarchical clustering analysis arranged 190 significantly differentially-expressed genes into seven groups. Seven genes were randomly selected to confirm their expression levels using quantitative real-time PCR. Conclusions The new transcriptomes offer comprehensive sequence and DGE profiling data for a dynamic view of transcriptomic variation during bud dormancy in pear. These data provided a basis for future studies of metabolism during bud dormancy in non-model but economically-important perennial species.
Collapse
Affiliation(s)
- Guoqin Liu
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, 310058,, Zhejiang Province, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Martínez-Gómez P, Sánchez-Pérez R, Rubio M. Clarifying omics concepts, challenges, and opportunities for Prunus breeding in the postgenomic era. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2012; 16:268-83. [PMID: 22394278 DOI: 10.1089/omi.2011.0133] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The recent sequencing of the complete genome of the peach, together with the availability of new high-throughput genome, transcriptome, proteome, and metabolome analysis technologies, offers new possibilities for Prunus breeders in what has been described as the postgenomic era. In this context, new biological challenges and opportunities for the application of these technologies in the development of efficient marker-assisted selection strategies in Prunus breeding include genome resequencing using DNA-Seq, the study of RNA regulation at transcriptional and posttranscriptional levels using tilling microarray and RNA-Seq, protein and metabolite identification and annotation, and standardization of phenotype evaluation. Additional biological opportunities include the high level of synteny among Prunus genomes. Finally, the existence of biases presents another important biological challenge in attaining knowledge from these new high-throughput omics disciplines. On the other hand, from the philosophical point of view, we are facing a revolution in the use of new high-throughput analysis techniques that may mean a scientific paradigm shift in Prunus genetics and genomics theories. The evaluation of scientific progress is another important question in this postgenomic context. Finally, the incommensurability of omics theories in the new high-throughput analysis context presents an additional philosophical challenge.
Collapse
|