1
|
Liaci AM, Chandra N, Vodnala SM, Strebl M, Kumar P, Pfenning V, Bachmann P, Caraballo R, Chai W, Johansson E, Elofsson M, Feizi T, Liu Y, Stehle T, Arnberg N. Extended receptor repertoire of an adenovirus associated with human obesity. PLoS Pathog 2025; 21:e1012892. [PMID: 39883726 DOI: 10.1371/journal.ppat.1012892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
Human adenovirus type 36 (HAdV-D36) has been putatively linked to obesity in animals and has been associated with obesity in humans in some but not all studies. Despite extensive epidemiological research there is limited information about its receptor profile. We investigated the receptor portfolio of HAdV-D36 using a combined structural biology and virology approach. The HAdV-D36 fiber knob domain (FK), which mediates the primary attachment of many HAdVs to host cells, has a significantly elongated DG loop that alters known binding interfaces for established adenovirus receptors such as the coxsackie- and adenovirus receptor (CAR) and CD46. Our data suggest that HAdV-D36 attaches to host cells using a versatile receptor pool comprising sialic acid-containing glycans and CAR. Sialic acids are recognized at the same binding site used by other HAdVs of species D such as HAdV-D37. Using glycan microarrays, we demonstrate that HAdV-D36 displays a binding preference for glycans containing a rare sialic acid variant, 4-O,5-N-diacetylneuraminic acid, over the more common 5-N-acetylneuraminic acid. To date, this sialic acid variant has not been detected in humans, although it can be synthesized by various animal species, including a range of domestic and livestock animals. Taken together, our results indicate that HAdV-D36 has evolved to recognize a specialized set of primary attachment receptors that are different from known HAdV types and coincides with a unique host range and pathogenicity profile.
Collapse
Affiliation(s)
- A Manuel Liaci
- Interfaculty Institute of Biochemistry, University of Tuebingen: Eberhard Karls Universitat Tubingen, Tuebingen, Germany
| | - Naresh Chandra
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | | | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tuebingen: Eberhard Karls Universitat Tubingen, Tuebingen, Germany
| | - Pravin Kumar
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Vanessa Pfenning
- Interfaculty Institute of Biochemistry, University of Tuebingen: Eberhard Karls Universitat Tubingen, Tuebingen, Germany
| | - Paul Bachmann
- Interfaculty Institute of Biochemistry, University of Tuebingen: Eberhard Karls Universitat Tubingen, Tuebingen, Germany
| | - Rémi Caraballo
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Wengang Chai
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Emil Johansson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Mikael Elofsson
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
- Department of Chemistry, Umeå University, Umeå, Sweden
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tuebingen: Eberhard Karls Universitat Tubingen, Tuebingen, Germany
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Niklas Arnberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
La Rocca P, Lavota I, Piccoli M, Cirillo F, Ghiroldi A, Ciconte G, Pappone C, Allevi P, Rota P, Anastasia L. Analysis of the intramolecular 1,7-lactone of N-acetylneuraminic acid using HPLC-MS: relationship between detection and stability. Glycoconj J 2023; 40:343-354. [PMID: 37084126 DOI: 10.1007/s10719-023-10114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023]
Abstract
A subclass of the sialic acid family consists of intramolecular lactones that may function as key indicators of physiological and pathological states. However, the existence of these compounds in free form is highly improbable, since they are unlikely to exist in an aqueous solution due to their lability. Current analytical method used to detect them in biological fluids has not recognized their reactivity in solution and is prone to misidentification. However, recent advances in synthetic methods for 1,7-lactones have allowed the preparation of these sialic acid derivatives as authentic reference standards. We report here the development of a new HPLC-MS method for the simultaneous detection of the 1,7-lactone of N-acetylneuraminic acid, its γ-lactone derivative, and N-acetylneuraminic acid that overcomes the limitations of the previous analytical procedure for their identification.
Collapse
Affiliation(s)
- Paolo La Rocca
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, 20133, Italy
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
| | - Ivana Lavota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
| | - Marco Piccoli
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - Federica Cirillo
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - Andrea Ghiroldi
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - Giuseppe Ciconte
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
| | - Carlo Pappone
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy
- Arrhythmology Department, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy
- Faculty of Medicine, University of Vita-Salute San Raffaele, 20132, Milan, Italy
| | - Pietro Allevi
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Paola Rota
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy.
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan, 20133, Italy.
| | - Luigi Anastasia
- Institute for Molecular and Translational Cardiology (IMTC), San Donato Milanese, Milan, 20097, Italy.
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, San Donato Milanese, Milan, 20097, Italy.
- Faculty of Medicine, University of Vita-Salute San Raffaele, 20132, Milan, Italy.
| |
Collapse
|
3
|
Spadera L, Viola P, Pisani D, Scarpa A, Malanga D, Sorrentino G, Madini E, Laria C, Aragona T, Leopardi G, Maggiore G, Ciriolo M, Boccuto L, Pizzolato R, Abenavoli L, Cassandro C, Ralli M, Cassandro E, Chiarella G. Sudden olfactory loss as an early marker of COVID-19: a nationwide Italian survey. Eur Arch Otorhinolaryngol 2021; 278:247-255. [PMID: 32749606 PMCID: PMC7399588 DOI: 10.1007/s00405-020-06252-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023]
Abstract
PURPOSE The presence of many asymptomatic COVID-19 cases may increase the risks of disease dissemination, mainly for physicians. There are numerous reports on the frequent findings of sudden anosmia or hyposmia, before or at the same time of the typical COVID-19 symptoms onset. The aim of this study was to verify the association of olfactory impairment and COVID-19, providing a basis for subsequent research in the field of COVID-19 clinical heterogeneity. METHODS We developed a 15-item online questionnaire on "Sudden Olfactory Loss (SOL) and COVID-19" that was administered during March 2020 to Italian general practitioners registered to a social media group. RESULTS One hundred and eighty responses were received. SOL was identified as a significant sign of infection in COVID-19 patients, mainly aged between 30 and 40 years, even in the absence of other symptoms. SOL was present as an initial symptom in 46.7% of subjects, and in 16.7%, it was the only symptom. Among the COVID-19 confirmed cases, SOL occurred as the only symptom in 19.2% of patients. CONCLUSION SOL could represent a possible early symptom in otherwise asymptomatic COVID-19 subjects. Subjects affected by SOL should be considered as potential COVID-19 cases. LEVEL OF EVIDENCE 4.
Collapse
Affiliation(s)
- Lucrezia Spadera
- Otolaryngology, San Leonardo Hospital, Castellammare di Stabia, Naples, Italy
| | - Pasquale Viola
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre for Cochlear Implants and ENT Diseases, Magna Graecia University, Catanzaro, Italy
| | - Davide Pisani
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre for Cochlear Implants and ENT Diseases, Magna Graecia University, Catanzaro, Italy
| | - Alfonso Scarpa
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Donatella Malanga
- Laboratory of Molecular Oncology, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
- Interdepartmental Center of Services (CIS), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Gerardo Sorrentino
- Otolaryngology, San Leonardo Hospital, Castellammare di Stabia, Naples, Italy
| | | | - Carla Laria
- Unit of Audiology, Department of Neurosciences, Reproductives and Odontostomatologic Sciences, University of Naples “Federico II”, Naples, Italy
| | | | | | | | - Marco Ciriolo
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre for Cochlear Implants and ENT Diseases, Magna Graecia University, Catanzaro, Italy
| | - Luigi Boccuto
- Greenwood Genetic Center, Greenwood, SC USA
- Clemson University, Clemson, SC USA
| | - Raffaella Pizzolato
- Department of Neurology, University of Massachusetts, Medical School, Worcester, MA USA
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, Catanzaro, Italy
| | | | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Ettore Cassandro
- Department of Medicine and Surgery, University of Salerno, Salerno, Italy
| | - Giuseppe Chiarella
- Unit of Audiology, Department of Experimental and Clinical Medicine, Regional Centre for Cochlear Implants and ENT Diseases, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
4
|
Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, Narayanan A, Majowicz SA, Kwong EM, McVicar RN, Thacker BE, Glass CA, Yang Z, Torres JL, Golden GJ, Bartels PL, Porell RN, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser BM, Caradonna TM, Kellman BP, Martino C, Gordts PLSM, Chanda SK, Schmidt AG, Godula K, Leibel SL, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell 2020; 183:1043-1057.e15. [PMID: 32970989 PMCID: PMC7489987 DOI: 10.1016/j.cell.2020.09.033] [Citation(s) in RCA: 829] [Impact Index Per Article: 165.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/16/2020] [Accepted: 09/10/2020] [Indexed: 12/28/2022]
Abstract
We show that SARS-CoV-2 spike protein interacts with both cellular heparan sulfate and angiotensin-converting enzyme 2 (ACE2) through its receptor-binding domain (RBD). Docking studies suggest a heparin/heparan sulfate-binding site adjacent to the ACE2-binding site. Both ACE2 and heparin can bind independently to spike protein in vitro, and a ternary complex can be generated using heparin as a scaffold. Electron micrographs of spike protein suggests that heparin enhances the open conformation of the RBD that binds ACE2. On cells, spike protein binding depends on both heparan sulfate and ACE2. Unfractionated heparin, non-anticoagulant heparin, heparin lyases, and lung heparan sulfate potently block spike protein binding and/or infection by pseudotyped virus and authentic SARS-CoV-2 virus. We suggest a model in which viral attachment and infection involves heparan sulfate-dependent enhancement of binding to ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin presents new therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Mandel Clausen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark.
| | - Daniel R Sandoval
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Charlotte B Spliid
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Jessica Pihl
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department for Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; Department of Infectious Disease, Copenhagen University Hospital, 2200 Copenhagen, Denmark
| | - Hailee R Perrett
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chelsea D Painter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Anoop Narayanan
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Sydney A Majowicz
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Elizabeth M Kwong
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Rachael N McVicar
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Bryan E Thacker
- TEGA Therapeutics, Inc., 3550 General Atomics Court, G02-102, San Diego, CA 92121, USA
| | - Charles A Glass
- TEGA Therapeutics, Inc., 3550 General Atomics Court, G02-102, San Diego, CA 92121, USA
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Molecular and Cellular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jonathan L Torres
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Gregory J Golden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California, USA
| | - Phillip L Bartels
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan N Porell
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Aaron F Garretson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Logan Laubach
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jared Feldman
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xin Yin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yuan Pu
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Blake M Hauser
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | | | - Benjamin P Kellman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cameron Martino
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Philip L S M Gordts
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Aaron G Schmidt
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sandra L Leibel
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Aaron F Carlin
- Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Rota P, La Rocca P, Allevi P, Pappone C, Anastasia L. Intramolecular Lactones of Sialic Acids. Int J Mol Sci 2020; 21:E8098. [PMID: 33143039 PMCID: PMC7663150 DOI: 10.3390/ijms21218098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
The so-called "sialo-chemical-biology" has become an attractive research area, as an increasing number of natural products containing a sialic acid moiety have been shown to play important roles in biological, pathological, and immunological processes. The intramolecular lactones of sialic acids are a subclass from this crucial family that could have central functions in the discrimination of physiological and pathological conditions. In this review, we report an in-depth analysis of the synthetic achievements in the preparation of the intramolecular lactones of sialic acids (1,4-, 1,7- and γ-lactones), in their free and/or protected form. In particular, recent advances in the synthesis of the 1,7-lactones have allowed the preparation of key sialic acid derivatives. These compounds could be used as authentic reference standards for their correct determination in biological samples, thus overcoming some of the limitations of the previous analytical procedures.
Collapse
Affiliation(s)
- Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy;
| | - Paolo La Rocca
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy;
| | - Pietro Allevi
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20133 Milan, Italy;
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Milan, Italy;
- Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Luigi Anastasia
- Faculty of Medicine, University of Vita-Salute San Raffaele, 20132 Milan, Italy
- Laboratory of Stem Cells for Tissue Engineering, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Milan, Italy
| |
Collapse
|
6
|
Clausen TM, Sandoval DR, Spliid CB, Pihl J, Painter CD, Thacker BE, Glass CA, Narayanan A, Majowicz SA, Zhang Y, Torres JL, Golden GJ, Porell R, Garretson AF, Laubach L, Feldman J, Yin X, Pu Y, Hauser B, Caradonna TM, Kellman BP, Martino C, Gordts PLSM, Leibel SL, Chanda SK, Schmidt AG, Godula K, Jose J, Corbett KD, Ward AB, Carlin AF, Esko JD. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32699853 PMCID: PMC7373134 DOI: 10.1101/2020.07.14.201616] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We show that SARS-CoV-2 spike protein interacts with cell surface heparan sulfate and angiotensin converting enzyme 2 (ACE2) through its Receptor Binding Domain. Docking studies suggest a putative heparin/heparan sulfate-binding site adjacent to the domain that binds to ACE2. In vitro, binding of ACE2 and heparin to spike protein ectodomains occurs independently and a ternary complex can be generated using heparin as a template. Contrary to studies with purified components, spike protein binding to heparan sulfate and ACE2 on cells occurs codependently. Unfractionated heparin, non-anticoagulant heparin, treatment with heparin lyases, and purified lung heparan sulfate potently block spike protein binding and infection by spike protein-pseudotyped virus and SARS-CoV-2 virus. These findings support a model for SARS-CoV-2 infection in which viral attachment and infection involves formation of a complex between heparan sulfate and ACE2. Manipulation of heparan sulfate or inhibition of viral adhesion by exogenous heparin may represent new therapeutic opportunities.
Collapse
|
7
|
Barnard KN, Alford-Lawrence BK, Buchholz DW, Wasik BR, LaClair JR, Yu H, Honce R, Ruhl S, Pajic P, Daugherity EK, Chen X, Schultz-Cherry SL, Aguilar HC, Varki A, Parrish CR. Modified Sialic Acids on Mucus and Erythrocytes Inhibit Influenza A Virus Hemagglutinin and Neuraminidase Functions. J Virol 2020; 94:e01567-19. [PMID: 32051275 PMCID: PMC7163148 DOI: 10.1128/jvi.01567-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Sialic acids (Sia) are the primary receptors for influenza viruses and are widely displayed on cell surfaces and in secreted mucus. Sia may be present in variant forms that include O-acetyl modifications at C-4, C-7, C-8, and C-9 positions and N-acetyl or N-glycolyl at C-5. They can also vary in their linkages, including α2-3 or α2-6 linkages. Here, we analyze the distribution of modified Sia in cells and tissues of wild-type mice or in mice lacking CMP-N-acetylneuraminic acid hydroxylase (CMAH) enzyme, which synthesizes N-glycolyl (Neu5Gc) modifications. We also examined the variation of Sia forms on erythrocytes and in saliva from different animals. To determine the effect of Sia modifications on influenza A virus (IAV) infection, we tested for effects on hemagglutinin (HA) binding and neuraminidase (NA) cleavage. We confirmed that 9-O-acetyl, 7,9-O-acetyl, 4-O-acetyl, and Neu5Gc modifications are widely but variably expressed in mouse tissues, with the highest levels detected in the respiratory and gastrointestinal (GI) tracts. Secreted mucins in saliva and surface proteins of erythrocytes showed a high degree of variability in display of modified Sia between different species. IAV HAs from different virus strains showed consistently reduced binding to both Neu5Gc- and O-acetyl-modified Sia; however, while IAV NAs were inhibited by Neu5Gc and O-acetyl modifications, there was significant variability between NA types. The modifications of Sia in mucus may therefore have potent effects on the functions of IAV and may affect both pathogens and the normal flora of different mucosal sites.IMPORTANCE Sialic acids (Sia) are involved in numerous different cellular functions and are receptors for many pathogens. Sia come in chemically modified forms, but we lack a clear understanding of how they alter interactions with microbes. Here, we examine the expression of modified Sia in mouse tissues, on secreted mucus in saliva, and on erythrocytes, including those from IAV host species and animals used in IAV research. These Sia forms varied considerably among different animals, and their inhibitory effects on IAV NA and HA activities and on bacterial sialidases (neuraminidases) suggest a host-variable protective role in secreted mucus.
Collapse
Affiliation(s)
- Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brynn K Alford-Lawrence
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - David W Buchholz
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Justin R LaClair
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Stefan Ruhl
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Petar Pajic
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - Erin K Daugherity
- Center for Animal Resources and Education, Cornell University, Ithaca, New York, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, Davis, California, USA
| | - Stacey L Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Hector C Aguilar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, California, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Post-Glycosylation Modification of Sialic Acid and Its Role in Virus Pathogenesis. Vaccines (Basel) 2019; 7:vaccines7040171. [PMID: 31683930 PMCID: PMC6963189 DOI: 10.3390/vaccines7040171] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023] Open
Abstract
Sialic acids are a family of nine carbon keto-aldononulosonic acids presented at the terminal ends of glycans on cellular membranes. α-Linked sialoglycoconjugates often undergo post-glycosylation modifications, among which O-acetylation of N-acetyl neuraminic acid (Neu5Ac) is the most common in mammalian cells. Isoforms of sialic acid are critical determinants of virus pathogenesis. To date, the focus of viral receptor-mediated attachment has been on Neu5Ac. O-Acetylated Neu5Acs have been largely ignored as receptor determinants of virus pathogenesis, although it is ubiquitous across species. Significantly, the array of structures resulting from site-specific O-acetylation by sialic acid O-acetyltransferases (SOATs) provides a means to examine specificity of viral binding to host cells. Specifically, C4 O-acetylated Neu5Ac can influence virus pathogenicity. However, the biological implications of only O-acetylated Neu5Ac at C7-9 have been explored extensively. This review will highlight the biological significance, extraction methods, and synthetic modifications of C4 O-acetylated Neu5Ac that may provide value in therapeutic developments and targets to prevent virus related diseases.
Collapse
|
9
|
Wasik BR, Barnard KN, Ossiboff RJ, Khedri Z, Feng KH, Yu H, Chen X, Perez DR, Varki A, Parrish CR. Distribution of O-Acetylated Sialic Acids among Target Host Tissues for Influenza Virus. mSphere 2017; 2:e00379-16. [PMID: 28904995 PMCID: PMC5588038 DOI: 10.1128/msphere.00379-16] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 08/17/2017] [Indexed: 12/30/2022] Open
Abstract
Sialic acids (Sias) are important glycans displayed on the cells and tissues of many different animals and are frequent targets for binding and modification by pathogens, including influenza viruses. Influenza virus hemagglutinins bind Sias during the infection of their normal hosts, while the encoded neuraminidases and/or esterases remove or modify the Sia to allow virion release or to prevent rebinding. Sias naturally occur in a variety of modified forms, and modified Sias can alter influenza virus host tropisms through their altered interactions with the viral glycoproteins. However, the distribution of modified Sia forms and their effects on pathogen-host interactions are still poorly understood. Here we used probes developed from viral Sia-binding proteins to detect O-acetylated (4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl) Sias displayed on the tissues of some natural or experimental hosts for influenza viruses. These modified Sias showed highly variable displays between the hosts and tissues examined. The 9-O-acetyl (and 7,9-) modified Sia forms were found on cells and tissues of many hosts, including mice, humans, ferrets, guinea pigs, pigs, horses, dogs, as well as in those of ducks and embryonated chicken egg tissues and membranes, although in variable amounts. The 4-O-acetyl Sias were found in the respiratory tissues of fewer animals, being primarily displayed in the horse and guinea pig, but were not detected in humans or pigs. The results suggest that these Sia variants may influence virus tropisms by altering and selecting their cell interactions. IMPORTANCE Sialic acids (Sias) are key glycans that control or modulate many normal cell and tissue functions while also interacting with a variety of pathogens, including many different viruses. Sias are naturally displayed in a variety of different forms, with modifications at several positions that can alter their functional interactions with pathogens. In addition, Sias are often modified or removed by enzymes such as host or pathogen esterases or sialidases (neuraminidases), and Sia modifications can alter those enzymatic activities to impact pathogen infections. Sia chemical diversity in different hosts and tissues likely alters the pathogen-host interactions and influences the outcome of infection. Here we explored the display of 4-O-acetyl, 9-O-acetyl, and 7,9-O-acetyl modified Sia forms in some target tissues for influenza virus infection in mice, humans, birds, guinea pigs, ferrets, swine, horses, and dogs, which encompass many natural and laboratory hosts of those viruses.
Collapse
Affiliation(s)
- Brian R. Wasik
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Karen N. Barnard
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Robert J. Ossiboff
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Zahra Khedri
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Kurtis H. Feng
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, California, USA
| | - Daniel R. Perez
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, University of California, San Diego, La Jolla, California, USA
| | - Colin R. Parrish
- Department of Microbiology and Immunology, Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
10
|
Wasik BR, Barnard KN, Parrish CR. Effects of Sialic Acid Modifications on Virus Binding and Infection. Trends Microbiol 2016; 24:991-1001. [PMID: 27491885 PMCID: PMC5123965 DOI: 10.1016/j.tim.2016.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/29/2022]
Abstract
Sialic acids (Sias) are abundantly displayed on the surfaces of vertebrate cells, and particularly on all mucosal surfaces. Sias interact with microbes of many types, and are the targets of specific recognition by many different viruses. They may mediate virus binding and infection of cells, or alternatively can act as decoy receptors that bind virions and block virus infection. These nine-carbon backbone monosaccharides naturally occur in many different modified forms, and are attached to underlying glycans through varied linkages, creating significant diversity in the pathogen receptor forms. Here we review the current knowledge regarding the distribution of modified Sias in different vertebrate hosts, tissues, and cells, their effects on viral pathogens where those have been examined, and outline unresolved questions. Sialic acids (Sias) are components of cell-surface glycoproteins and glycolipids, as well as secreted glycoproteins and milk oligosaccharides. Sias play important roles in cell signaling, development, and host–pathogen interactions. Cellular enzymes can modify Sias, yet how modifications vary between tissues and hosts has not been fully elucidated. Many viruses use Sias as receptors, with different modifications aiding or inhibiting virus infection. How modified Sias influence viral protein evolution and determine host/tissue tropism are poorly understood, and are important areas of research. New advances in molecular glycobiology using pathogen proteins to detect varied forms allows for improved study of modified Sias that have otherwise proven difficult to isolate. This opens new avenues of inquiry for virology, as well as host interactions with bacterial and eukaryotic pathogens.
Collapse
Affiliation(s)
- Brian R Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Karen N Barnard
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Colin R Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
11
|
Rota P, Anastasia L, Allevi P. Elucidation of several neglected reactions in the GC-MS identification of sialic acids as heptafluorobutyrates calls for an urgent reassessment of previous claims. Org Biomol Chem 2015; 13:4931-9. [PMID: 25813858 DOI: 10.1039/c5ob00081e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current analytical protocol used for the GC-MS determination of free or 1,7-lactonized natural sialic acids (Sias), as heptafluorobutyrates, overlooks several transformations. Using authentic reference standards and by combining GC-MS and NMR analyses, flaws in the analytical protocol were pinpointed and elucidated, thus establishing the scope and limitations of the method. It was demonstrated that (a) Sias 1,7-lactones, even if present in biological samples, decompose under the acidic hydrolysis conditions used for their release; (b) Sias 1,7-lactones are unpredicted artifacts, accidentally generated from their parent acids; (c) the N-acetyl group is quantitatively exchanged with that of the derivatizing perfluorinated anhydride; (d) the partial or complete failure of the Sias esterification-step with diazomethane leads to the incorrect quantification and structure attribution of all free Sias. While these findings prompt an urgent correction and improvement of the current analytical protocol, they could be instrumental for a critical revision of many incorrect claims reported in the literature.
Collapse
Affiliation(s)
- Paola Rota
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, via Saldini 50, I-20133 Milan, Italy.
| | | | | |
Collapse
|
12
|
Rota P, Allevi P, Anastasia L. The Sialic Acids Waltz: Novel Stereoselective Isomerization of the 1,7-Lactones ofN-Acetylneuraminic Acids into the Corresponding γ-Lactones and Back to the Free Sialic Acids. ASIAN J ORG CHEM 2015. [DOI: 10.1002/ajoc.201500304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Paola Rota
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato; San Donato 20097 Milan Italy
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Via Saldini 50 20133 Milan Italy
| | - Pietro Allevi
- Department of Biomedical, Surgical and Dental Sciences; University of Milan; Via Saldini 50 20133 Milan Italy
| | - Luigi Anastasia
- Department of Biomedical Sciences for Health; University of Milan; Segrate 20090 Milan Italy
- Laboratory of Stem Cells for Tissue Engineering; IRCCS Policlinico San Donato; San Donato 20097 Milan Italy
| |
Collapse
|
13
|
Langereis MA, Bakkers MJG, Deng L, Padler-Karavani V, Vervoort SJ, Hulswit RJG, van Vliet ALW, Gerwig GJ, de Poot SAH, Boot W, van Ederen AM, Heesters BA, van der Loos CM, van Kuppeveld FJM, Yu H, Huizinga EG, Chen X, Varki A, Kamerling JP, de Groot RJ. Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. Cell Rep 2015; 11:1966-78. [PMID: 26095364 PMCID: PMC5292239 DOI: 10.1016/j.celrep.2015.05.044] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 05/01/2015] [Accepted: 05/22/2015] [Indexed: 12/23/2022] Open
Abstract
Sialic acids (Sias), 9-carbon-backbone sugars, are among the most complex and versatile molecules of life. As terminal residues of glycans on proteins and lipids, Sias are key elements of glycotopes of both cellular and microbial lectins and thus act as important molecular tags in cell recognition and signaling events. Their functions in such interactions can be regulated by post-synthetic modifications, the most common of which is differential Sia-O-acetylation (O-Ac-Sias). The biology of O-Ac-Sias remains mostly unexplored, largely because of limitations associated with their specific in situ detection. Here, we show that dual-function hemagglutinin-esterase envelope proteins of nidoviruses distinguish between a variety of closely related O-Ac-Sias. By using soluble forms of hemagglutinin-esterases as lectins and sialate-O-acetylesterases, we demonstrate differential expression of distinct O-Ac-sialoglycan populations in an organ-, tissue- and cell-specific fashion. Our findings indicate that programmed Sia-O-acetylation/de-O-acetylation may be critical to key aspects of cell development, homeostasis, and/or function. Virolectins detect and distinguish between closely related O-Ac-Sias in situ O-Ac-sialoglycans occur in nature in a diversity not appreciated so far O-Ac-Sias are differentially expressed in a species-, tissue-, and cell-specific fashion There is extensive cell-to-cell variability in O-Ac-Sia expression in vivo and in vitro
Collapse
Affiliation(s)
- Martijn A Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Mark J G Bakkers
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Lingquan Deng
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Vered Padler-Karavani
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Stephin J Vervoort
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Ruben J G Hulswit
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Arno L W van Vliet
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Gerrit J Gerwig
- Bio-Organic Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Stefanie A H de Poot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Willemijn Boot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Anne Marie van Ederen
- Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Balthasar A Heesters
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Chris M van der Loos
- Department of Cardiovascular Pathology, Free University Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands
| | - Hai Yu
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Eric G Huizinga
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Xi Chen
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Ajit Varki
- Glycobiology Research and Training Center, Departments of Medicine and Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0687, USA
| | - Johannis P Kamerling
- Bio-Organic Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Raoul J de Groot
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands.
| |
Collapse
|
14
|
Medzihradszky KF, Kaasik K, Chalkley RJ. Tissue-Specific Glycosylation at the Glycopeptide Level. Mol Cell Proteomics 2015; 14:2103-10. [PMID: 25995273 DOI: 10.1074/mcp.m115.050393] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Indexed: 01/01/2023] Open
Abstract
This manuscript describes the enrichment and mass spectrometric analysis of intact glycopeptides from mouse liver, which yielded site-specific N- and O-glycosylation data for ∼ 130 proteins. Incorporation of different sialic acid variants in both N- and O-linked glycans was observed, and the importance of using both collisional activation and electron transfer dissociation for glycopeptide analysis was illustrated. The N-glycan structures of predicted lysosomal, endoplasmic reticulum (ER), secreted and transmembrane proteins were compared. The data suggest that protein N-glycosylation differs depending on cellular location. The glycosylation patterns of several mouse liver and mouse brain glycopeptides were compared. Tissue-specific differences in glycosylation were observed between sites within the same protein: Some sites displayed a similar spectrum of glycan structures in both tissues, whereas for others no overlap was observed. We present comparative brain/liver glycosylation data on 50 N-glycosylation sites from 34 proteins and 13 O-glycosylation sites from seven proteins.
Collapse
Affiliation(s)
- Katalin F Medzihradszky
- From the ‡Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street Genentech Hall, N474A, Box 2240, San Francisco, California 94158-2517
| | - Krista Kaasik
- From the ‡Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street Genentech Hall, N474A, Box 2240, San Francisco, California 94158-2517
| | - Robert J Chalkley
- From the ‡Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 600 16th Street Genentech Hall, N474A, Box 2240, San Francisco, California 94158-2517
| |
Collapse
|
15
|
Urashima T, Inamori H, Fukuda K, Saito T, Messer M, Oftedal OT. 4-O-Acetyl-sialic acid (Neu4,5Ac2) in acidic milk oligosaccharides of the platypus (Ornithorhynchus anatinus) and its evolutionary significance. Glycobiology 2015; 25:683-97. [DOI: 10.1093/glycob/cwv010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/13/2015] [Indexed: 12/15/2022] Open
|
16
|
Oftedal OT, Nicol SC, Davies NW, Sekii N, Taufik E, Fukuda K, Saito T, Urashima T. Can an ancestral condition for milk oligosaccharides be determined? Evidence from the Tasmanian echidna (Tachyglossus aculeatus setosus). Glycobiology 2014; 24:826-39. [DOI: 10.1093/glycob/cwu041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Olav T Oftedal
- Smithsonian Environmental Research Center, Smithsonian Institution, Edgewater, MD 21037, USA
| | | | - Noel W Davies
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia
| | - Nobuhiro Sekii
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Epi Taufik
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kenji Fukuda
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Tadao Saito
- Graduate School of Agriculture, Tohoku University, Sendai, Miyagi 981-8555, Japan
| | - Tadasu Urashima
- Graduate School of Animal and Food Hygiene, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
17
|
Unified theory of bacterial sialometabolism: how and why bacteria metabolize host sialic acids. ISRN MICROBIOLOGY 2013; 2013:816713. [PMID: 23724337 PMCID: PMC3658417 DOI: 10.1155/2013/816713] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 09/27/2012] [Indexed: 11/18/2022]
Abstract
Sialic acids are structurally diverse nine-carbon ketosugars found mostly in humans and other animals as the terminal units on carbohydrate chains linked to proteins or lipids. The sialic acids function in cell-cell and cell-molecule interactions necessary for organismic development and homeostasis. They not only pose a barrier to microorganisms inhabiting or invading an animal mucosal surface, but also present a source of potential carbon, nitrogen, and cell wall metabolites necessary for bacterial colonization, persistence, growth, and, occasionally, disease. The explosion of microbial genomic sequencing projects reveals remarkable diversity in bacterial sialic acid metabolic potential. How bacteria exploit host sialic acids includes a surprisingly complex array of metabolic and regulatory capabilities that is just now entering a mature research stage. This paper attempts to describe the variety of bacterial sialometabolic systems by focusing on recent advances at the molecular and host-microbe-interaction levels. The hope is that this focus will provide a framework for further research that holds promise for better understanding of the metabolic interplay between bacterial growth and the host environment. An ability to modify or block this interplay has already yielded important new insights into potentially new therapeutic approaches for modifying or blocking bacterial colonization or infection.
Collapse
|
18
|
Mastrodonato M, Mentino D, Liquori GE, Ferri D. Histochemical characterization of the sialic acid residues in mouse colon mucins. Microsc Res Tech 2012; 76:156-62. [PMID: 23109168 DOI: 10.1002/jemt.22146] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022]
Abstract
The mucins of colonic murine mucus are highly O-glycosilated sulfosialoglycoproteins. We have characterized the sialylation pattern of oligosaccharide chains of colonic murine mucins by conventional histochemical methods and by lectin histochemistry combined with chemical pretreatments and sialidase digestion. Oligosaccharide chains are strongly sulphated, with an increase of sulfation from the proximal toward the distal colon and a decrease of sialic acid expression and acetylation toward the distal colon. In the goblet cells of proximal colon, sialic acid bound α2,3 to Galβ1,3GalNAc subterminal dimers is diacetylated at C7,C8;C7,C9;C8,C9 or triacetylated at C7,8,9. In the distal colon, sialic acid-linked α2,3 to Galβ1,3GalNAc subterminal dimers shows reduced O-acetylation at C7 and/or C8, while acetyl substituents at C9 and at C4 are almost absent. Sialic acid is involved in different essential physiological functions; thus, alterations of its expression and acetylation in oligosaccharide chains of intestinal mucins are generally associated with diseases, such as ulcerative colitis and cancer. Mice may represent a suitable animal model to study alterations of oligosaccharidic chains in colonic mucins and lectin histochemistry combined with chemical pretreatments, and enzyme digestion may be a valuable tool for this study. Our present work may represent a landmark for further lectin histochemical studies to evaluate alterations of mouse colon mucins under different physiological, pathological, or experimental conditions, with possible translational value in humans.
Collapse
|
19
|
Nakayama-Imaohji H, Ichimura M, Iwasa T, Okada N, Ohnishi Y, Kuwahara T. Characterization of a gene cluster for sialoglycoconjugate utilization in Bacteroides fragilis. THE JOURNAL OF MEDICAL INVESTIGATION 2012; 59:79-94. [PMID: 22449996 DOI: 10.2152/jmi.59.79] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Recent analysis of the whole genome sequence of Bacteroides fragilis revealed extensive duplication of polysaccharide utilization genes in this anaerobe. Here we analyzed a unique 27-kb gene cluster (sgu) comprised of the 13 sialoglycoconjugates-utilization genes, which include the sialidase gene (nanH1) in B. fragilis strain YCH46. The genes were tightly organized and transcribed polycistronically. Comparative PCR scanning demonstrated that the sgu locus was conserved among the Bacteroides strains tested. Based on the transcriptional profiles generated by reverse transcriptase PCR, the sgu locus can be classified into at least three regulatory units: 1) sialic acid- or sialooligosaccharide-inducible genes, 2) constitutively expressed genes that can be down-regulated by catabolite repression, and 3) constitutively expressed genes. In vitro comparison of the growth of a sgu locus deletion mutant (SGUM172941) with a wild type strain indicates that this locus is necessary for B. fragilis to efficiently utilize mucin as a carbon source. Furthermore, SGUM172941 was defective in colonization of the intestines of germ-free mice under competitive conditions. These data indicate that the sgu locus in B. fragilis plays a crucial role in the utilization of host-derived sialoglycoconjugates and the stable colonization of this anaerobe in the human gut.
Collapse
Affiliation(s)
- Haruyuki Nakayama-Imaohji
- Department of Immunology and Parasitology, Institute of Health Biosciences, the University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
21
|
Desantis S, Zizza S, Accogli G, Tufarelli V, Laudadio V. Morphometric features and glycoconjugate pattern of rabbit intestine are affected by particle size of pelleted diets. Anat Rec (Hoboken) 2011; 294:1875-89. [PMID: 21965045 DOI: 10.1002/ar.21477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 07/20/2011] [Accepted: 07/26/2011] [Indexed: 11/09/2022]
Abstract
Feed particle size effects on morphology and glycoconjugate pattern was investigated in the rabbit intestine. Rabbits fed with fine particles (2 mm) displayed more irregularly shaped, higher duodenal villi and deeper crypts in distal colon as well as higher number of goblet cells than coarse (8 mm) fed ones. Brush border expressed: (i) in duodenum, neutral/sulfated glycoconjugates and glycans binding MAL II, SNA, Con A than KOH-sialidase-PNA and DBA reactivity in fine and coarse fed rabbits, respectively, (ii) in cecum, mainly sulfoglycans in coarse fed rabbits, MAL II and PNA staining in all samples, and (iii) in distal colon few sulfoglycans and MAL II reactivity. Enterocytes bound MAL II in duodenum, Con A in cecum, DBA, and Con A in distal colon of all rabbits, SNA in distal colon of coarse fed ones. Brunner's glands displayed high presence of acidic/sulfated mucins in fine fed rabbits, neutral glycoconjugates and reactivity with MAL II, SNA, PNA, KOH-sialidase-PNA, and Con A in all rabbits. Goblet cells exhibited: (i) in duodenum neutral and sulfomucins as well as MAL II and KOH-sialidase-PNA staining, than SNA and DBA in fine and coarse fed rabbits, respectively, (ii) in cecum sulfated glycans, MAL II, SNA, KOH-sialidase-PNA, DBA reactivity, and (iii) in distal colon acidic/sulfomucins, MAL II and SNA staining, and DBA reactivity in fine fed specimens. Crypt cells exhibited neutral and PNA reactive glycoconjugates in the cecum. In the distal colon also acidic/sulfated glycans, and MAL II, KOH-sialidase-PNA, DBA; SNA staining showed weaker reactivity in fine fed rabbits, which bound Con A.
Collapse
|
22
|
Yu H, Cao H, Tiwari VK, Li Y, Chen X. Chemoenzymatic synthesis of C8-modified sialic acids and related α2-3- and α2-6-linked sialosides. Bioorg Med Chem Lett 2011; 21:5037-40. [PMID: 21592790 DOI: 10.1016/j.bmcl.2011.04.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/17/2011] [Accepted: 04/19/2011] [Indexed: 10/18/2022]
Abstract
Naturally occurring 8-O-methylated sialic acids, including 8-O-methyl-N-acetylneuraminic acid and 8-O-methyl-N-glycolylneuraminic acid, along with 8-O-methyl-2-keto-3-deoxy-d-glycero-d-galacto-nonulosonic acid (Kdn8Me) and 8-deoxy-Kdn were synthesized from corresponding 5-O-modified six-carbon monosaccharides and pyruvate using a sialic acid aldolase cloned from Pasteurella multocida strain P-1059 (PmNanA). In addition, α2-3- and α2-6-linked sialyltrisaccharides containing Neu5Ac8Me and Kdn8Deoxy were also synthesized using a one-pot multienzyme approach. The strategy reported here provides an efficient approach to produce glycans containing various C8-modified sialic acids for biological evaluations.
Collapse
Affiliation(s)
- Hai Yu
- Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, United States
| | | | | | | | | |
Collapse
|
23
|
Schauer R, Srinivasan GV, Wipfler D, Kniep B, Schwartz-Albiez R. O-Acetylated sialic acids and their role in immune defense. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 705:525-48. [PMID: 21618128 PMCID: PMC7123180 DOI: 10.1007/978-1-4419-7877-6_28] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roland Schauer
- Biochemisches Institut, Christian-Albrechts-Universität, Olshausenstr 40, D-24098 Kiel, Germany.
| | | | | | | | | |
Collapse
|
24
|
Galuska SP, Geyer H, Weinhold B, Kontou M, Röhrich RC, Bernard U, Gerardy-Schahn R, Reutter W, Münster-Kühnel A, Geyer R. Quantification of nucleotide-activated sialic acids by a combination of reduction and fluorescent labeling. Anal Chem 2010; 82:4591-8. [PMID: 20429516 DOI: 10.1021/ac100627e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Sialic acids usually represent the terminal monosaccharide of glycoconjugates and are directly involved in many biological processes. The cellular concentration of their nucleotide-activated form is one pacemaker for the highly variable sialylation of glycoconjugates. Hence, the determination of CMP-sialic acid levels is an important factor to understand the complex glycosylation machinery of cells and to standardize the production of glycotherapeutics. We have established a highly sensitive strategy to quantify the concentration of nucleotide-activated sialic acid by a combination of reduction and fluorescent labeling using the fluorophore 1,2-diamino-4,5-methylenedioxybenzene (DMB). The labeling with DMB requires free keto as well as carboxyl groups of the sialic acid molecule. Reduction of the keto group prior to the labeling process precludes the labeling of nonactivated sialic acids. Since the keto group is protected against reduction by the CMP-substitution, labeling of nucleotide-activated sialic acids is still feasible after reduction. Subsequent combination of the DMB-high-performance liquid chromatography (HPLC) application with mass spectrometric approaches, such as matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) and electrospray-ionization (ESI)-MS, allows the unambiguous identification of both natural and modified CMP-sialic acids and localization of potential substituents. Thus, the described strategy offers a sensitive detection, identification, and quantification of nucleotide-activated sialic acid derivatives in the femtomole range without the need for nucleotide-activated standards.
Collapse
Affiliation(s)
- Sebastian P Galuska
- Institute of Biochemistry, Faculty of Medicine, University of Giessen, Friedrichstrasse 24, D-35392 Giessen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Sialic acids: key determinants for invasion by the Apicomplexa. Int J Parasitol 2010; 40:1145-54. [PMID: 20430033 DOI: 10.1016/j.ijpara.2010.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/17/2010] [Accepted: 04/19/2010] [Indexed: 11/20/2022]
Abstract
Sialic acids are ubiquitously found on the surface of all vertebrate cells at the extremities of glycan chains and widely exploited by viruses and bacteria to enter host cells. Carbohydrate-bearing receptors are equally important for host cell invasion by the obligate intracellular protozoan parasites of the phylum Apicomplexa. Host cell entry is an active process relying crucially on proteins that engage with receptors on the host cell surface and promote adhesion and internalisation. Assembly into complexes, proteolytic processing and oligomerization are important requirements for the functionality of these adhesins. The combination of adhesive proteins with varying stringency in specificity confers some flexibility to the parasite in face of receptor heterogeneity and immune pressure. Sialic acids are now recognised to critically contribute to selective host cell recognition by various species of the phylum.
Collapse
|
26
|
Friedrich N, Santos JM, Liu Y, Palma AS, Leon E, Saouros S, Kiso M, Blackman MJ, Matthews S, Feizi T, Soldati-Favre D. Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by apicomplexan parasites. J Biol Chem 2009; 285:2064-76. [PMID: 19901027 DOI: 10.1074/jbc.m109.060988] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Numerous intracellular pathogens exploit cell surface glycoconjugates for host cell recognition and entry. Unlike bacteria and viruses, Toxoplasma gondii and other parasites of the phylum Apicomplexa actively invade host cells, and this process critically depends on adhesins (microneme proteins) released onto the parasite surface from intracellular organelles called micronemes (MIC). The microneme adhesive repeat (MAR) domain of T. gondii MIC1 (TgMIC1) recognizes sialic acid (Sia), a key determinant on the host cell surface for invasion by this pathogen. By complementation and invasion assays, we demonstrate that TgMIC1 is one important player in Sia-dependent invasion and that another novel Sia-binding lectin, designated TgMIC13, is also involved. Using BLAST searches, we identify a family of MAR-containing proteins in enteroparasitic coccidians, a subclass of apicomplexans, including T. gondii, suggesting that all these parasites exploit sialylated glycoconjugates on host cells as determinants for enteric invasion. Furthermore, this protein family might provide a basis for the broad host cell range observed for coccidians that form tissue cysts during chronic infection. Carbohydrate microarray analyses, corroborated by structural considerations, show that TgMIC13, TgMIC1, and its homologue Neospora caninum MIC1 (NcMIC1) share a preference for alpha2-3- over alpha2-6-linked sialyl-N-acetyllactosamine sequences. However, the three lectins also display differences in binding preferences. Intense binding of TgMIC13 to alpha2-9-linked disialyl sequence reported on embryonal cells and relatively strong binding to 4-O-acetylated-Sia found on gut epithelium and binding of NcMIC1 to 6'sulfo-sialyl Lewis(x) might have implications for tissue tropism.
Collapse
Affiliation(s)
- Nikolas Friedrich
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva Centre Medical Universitaire, 1 Rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid. J Bacteriol 2009; 191:7134-9. [PMID: 19749043 DOI: 10.1128/jb.01000-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nanATEK-yhcH, yjhATS, and yjhBC operons in Escherichia coli are coregulated by environmental N-acetylneuraminic acid, the most prevalent sialic acid in nature. Here we show that YjhS (NanS) is a probable 9-O-acetyl N-acetylneuraminic acid esterase required for E. coli to grow on this alternative sialic acid, which is commonly found in mammalian host mucosal sites.
Collapse
|
28
|
Makovitzky J, Richter S. The relevance of the aldehyde bisulfite toluidine blue reaction and its variants in the submicroscopic carbohydrate research. Acta Histochem 2009; 111:273-91. [PMID: 19157525 PMCID: PMC7172417 DOI: 10.1016/j.acthis.2008.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Carbohydrates are chemical compounds that contain only oxygen, hydrogen and carbon. They are classified by their number of sugar units: monosaccharides (such as glucose and fructose), and disaccharides (such as sucrose and lactose) are simple carbohydrates; oligosaccharides and polysaccharides (such as starch, glycogen and cellulose) are complex carbohydrates. Carbohydrates play a crucial role in diverse biological systems [Hricovín M. Structural aspects of carbohydrates and the relation with their biological properties. Curr Med Chem 2004;11:2565-83]. According to Roseman [Sugars of the cell membrane. In: Weissmann G, Clairborn E, editors. Cell membranes. Biochemistry, Cell Biology, Pathology. New York: H. P. Publ. Co; 1975. p. 55-64], two classes of glycoproteins are described. Free glycoproteins are localised in the surface coat of the membranes and form a thick mobile layer, without any association to the membrane itself. Functionally, however, they are located in a close association with the membrane (e.g. in the duodenal mucosa). The other group consists of the membrane glycoproteins, which are integral to the membranes and are located in the outer layer. The oligosaccharide chains are bound to the N-terminal part of proteins, and are situated in the hydrophilic zone. Glycoproteins have diverse functions. They are important in specific receptor functions, in immunological cell destruction and play a significant role in reactions with lectins, antibodies, as well as in cell association and mutual recognition of the cells. This paper focuses on aspects of a summary of polarisation optical investigations and biological functions of the following three groups of carbohydrates: oligosaccharides, glycoproteins and glycosaminoglycans.
Collapse
Affiliation(s)
- Josef Makovitzky
- Department of Neuropathology, University Heidelberg, Im Neuenheimer Feld 220, D-69120 Heidelberg, Germany.
| | | |
Collapse
|
29
|
Allevi P, Femia EA, Costa ML, Cazzola R, Anastasia M. Quantification of N-acetyl- and N-glycolylneuraminic acids by a stable isotope dilution assay using high-performance liquid chromatography–tandem mass spectrometry. J Chromatogr A 2008; 1212:98-105. [DOI: 10.1016/j.chroma.2008.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 10/08/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
|
30
|
Abstract
Among coronaviruses, several members are able to interact with sialic acids. For bovine coronavirus (BCoV) and related viruses, binding to cell surface components containing
N-acetyl-9-
O-acetylneuraminic acid is essential for initiation of an infection. These viruses resemble influenza C viruses because they share not only the receptor determinant, but also the presence of an acetylesterase that releases the 9-
O-acetyl group from sialic acid and thus abolishes the ability of the respective sialoglycoconjugate to function as a receptor for BCoV. As in the case of influenza viruses, the receptor-destroying enzyme of BCoV is believed to facilitate the spread of virus infection by removing receptor determinants from the surface of infected cells and by preventing the formation of virus aggregates. Another coronavirus, porcine transmissible gastroenteritis virus (TGEV) preferentially recognizes
N-glycolylneuraminic acid. TGEV does not contain a receptor-destroying enzyme and does not depend on the sialic acid binding activity for infection of cultured cells. However, binding to sialic acids is required for the enteropathogenicity of TGEV. Interaction with sialoglycoconjugates may help the virus to pass through the sialic acid-rich mucus layer that covers the viral target cells in the epithelium of the small intestine. We discuss that the BCoV group of viruses may have evolved from a TGEV-like ancestor by acquiring an acetylesterase gene through heterologous recombination.
Collapse
Affiliation(s)
- Christel Schwegmann-Weßels
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| | - Georg Herrler
- Institut für Virologie, Stiftung Tierärztliche Hochschule Hannover, Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|