1
|
Rahdar M, Hajisoltani R, Davoudi S, Karimi SA, Borjkhani M, Khatibi VA, Hosseinmardi N, Behzadi G, Janahmadi M. Alterations in the intrinsic discharge activity of CA1 pyramidal neurons associated with possible changes in the NADPH diaphorase activity in a rat model of autism induced by prenatal exposure to valproic acid. Brain Res 2022; 1792:148013. [PMID: 35841982 DOI: 10.1016/j.brainres.2022.148013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 11/02/2022]
Abstract
Autism spectrum disorder is a neurodevelopmental disorder characterized by sensory abnormalities, social skills impairment and cognitive deficits. Although recent evidence indicated that induction of autism-like behavior in animal models causes abnormal neuronal excitability, the impact of autism on neuronal properties is still an important issue. Thus, new findings at the cellular level may shed light on the pathophysiology of autism and may help to find effective treatment strategies. Here, we investigated the behavioral, electrophysiological and histochemical impacts of prenatal exposure to valproic acid (VPA) in rats. Findings revealed that VPA exposure caused a significant increase in the hot plate response latency. The novel object recognition ability was also impaired in VPA-exposed rats. Along with these behavioral alterations, neurons from VPA-exposed animals exhibited altered excitability features in response to depolarizing current injections relative to control neurons. In the VPA-exposed group, these changes consisted of a significant increase in the amplitude, evoked firing frequency and the steady-state standard deviation of spike timing of action potentials (APs). Moreover, the half-width, the AHP amplitude and the decay time constant of APs were significantly decreased in this group. These changes in the evoked electrophysiological properties were accompanied by intrinsic hyperexcitability and lower spike-frequency adaptation and also a significant increase in the number of NADPH-diaphorase stained neurons in the hippocampal CA1 area of the VPA-exposed rats. Taken together, findings demonstrate that abnormal nociception and recognition memory is associated with alterations in the neuronal responsiveness and nitrergic system in a rat model of autism-like.
Collapse
Affiliation(s)
- Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Razieh Hajisoltani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Asaad Karimi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Tehran, Iran
| | - Mehdi Borjkhani
- Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran
| | - Vahid Ahli Khatibi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Shui L, Yi RN, Wu YJ, Bai SM, Si Q, Bo AG, Wuyun GR, Si LG, Chen YS, Lu J. Effects of Mongolian Warm Acupuncture on iNOS/NO and Inflammatory Cytokines in the Hippocampus of Chronic Fatigue Rats. Front Integr Neurosci 2020; 13:78. [PMID: 32082125 PMCID: PMC7006054 DOI: 10.3389/fnint.2019.00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
The inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling pathway and inflammatory cytokines play important roles in the pathogenesis of exercise-induced fatigue. Studies have found that Mongolian warm acupuncture (WA) could alleviate exercise-induced fatigue. However, the exact mechanisms underlying its effects remain unclear. In the present study, we investigated the effects of Mongolian WA on iNOS/NO signaling pathway and proinflammatory cytokines in a chronic exhaustive swimming-induced fatigue rat model. Animals were randomly divided into Control group, Ctrl + WA group, Model group, and Model + WA group. The body weight, exhaustive swimming time test, and Morris water maze test were performed before and after the chronic exhaustive swimming. The serum levels of interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and iNOS were detected by enzyme linked immunosorbent assay (ELISA). The mRNA expressions of IL-1β, IL-6, TNF-α, IFN-γ, and iNOS in the hippocampus were measured by real-time polymerase chain reaction (RT-PCR). Moreover, the protein expression of iNOS in the hippocampus was measured by western blot, and the NO productions in the serum and hippocampus were detected by Griess reaction system. Chronic exhaustive exercise significantly reduced the body weight and exhaustive swimming time, and induced impairment in learning and memory, and which were reversed by WA treatment. Chronic exhaustive exercise also increased the expressions of iNOS and proinflammatory cytokines, while WA treatment significantly decreased the level of iNOS and proinflammatory cytokines. However, chronic exhaustive exercise did not affect the NO production. These findings demonstrated that WA could alleviate the chronic exhaustive swimming-induced fatigue and improve the learning and memory ability, and the actions might be related to the reduction of inflammatory response and iNOS expression.
Collapse
Affiliation(s)
- Ling Shui
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ru-Na Yi
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yong-Jie Wu
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Shu-Mei Bai
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Qin Si
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - A-gula Bo
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ge-Rile Wuyun
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Leng-Ge Si
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Ying-Song Chen
- College of Traditional Mongolia Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Jun Lu
- School of Acupuncture-Moxibustion and Tui Na, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
3
|
Matsuka Y, Afroz S, Dalanon JC, Iwasa T, Waskitho A, Oshima M. The role of chemical transmitters in neuron-glia interaction and pain in sensory ganglion. Neurosci Biobehav Rev 2020; 108:393-399. [DOI: 10.1016/j.neubiorev.2019.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/20/2019] [Accepted: 11/25/2019] [Indexed: 01/10/2023]
|
4
|
Sun L, Zhuang LP, Wu WF. Aerobic exercise repairs neurological function after cerebral ischaemia by regulating the nitric oxide. AN ACAD BRAS CIENC 2019; 91:e20190068. [PMID: 31508664 DOI: 10.1590/0001-3765201920190068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
To investigate the mechanism of different exercise patterns on neurological function after focal cerebral ischaemia in rats. Rats with focal cerebral cerebral ischaemia were randomly divided into an aerobic exercise group, an exhaustive exercise group and a control group, with 8 rats in each group. A score for nerve function in each group was calculated, and the ultrastructure of nerve cells was observed. Levels of NO and NOS in the brain motor area of the rats were measured in each group. The aerobic exercise group had lower nerve function scores than the exhaustive exercise group and higher scores than the control group (P<0.05). Under transmission electron microscopy, irregular shapes and organs were observed in nerve cells in the control group, while regular cell shapes and organs were observed in the aerobic exercise group. The aerobic exercise group and exhaustive exercise group had higher measures of NO content, NOS activity and eNOS, nNOS and iNOS gene expression than the control group, but eNOS expression in the aerobic exercise group and iNOS expression in the exhaustive exercise group were clearly higher according to RT-PCR (P<0.05). Aerobic exercise can promote the expression of NOS, mainly in eNOS, which can promote nerve repair.
Collapse
Affiliation(s)
- Lei Sun
- Sports Teaching and Research Department, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Lv-Ping Zhuang
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Wei-Feng Wu
- Sports Teaching and Research Department, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
5
|
He Y, Fan W, Xu Y, Liu YL, He H, Huang F. Distribution and colocalization of melatonin 1a-receptor and NADPH-d in the trigeminal system of rat. PeerJ 2019; 7:e6877. [PMID: 31106073 PMCID: PMC6500374 DOI: 10.7717/peerj.6877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/31/2019] [Indexed: 01/15/2023] Open
Abstract
Melatonin and nitric oxide (NO) are involved in orofacial signal processing in the trigeminal sensory system. The aim of the present study was to examine the distribution of melatonin 1a-receptor (MT1) and its colocalization with nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the spinal trigeminal nucleus (STN), the trigeminal ganglion (TG), and the mesencephalic trigeminal nucleus (MTN) in the rat, using histochemistry and immunohistochemistry. Our results show that MT1-positive neurons are widely distributed in the TG and the subnucleus caudalis of the STN. Furthermore, we found that MT1 colocalizes with NADPH-d throughout the TG and MTN, most extensively in the TG. The distribution pattern of MT1 and its colocalization with NADPH-d indicate that melatonin might play an important role in the trigeminal sensory system, which could be responsible for the regulation of NO levels.
Collapse
Affiliation(s)
- Yifan He
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yue Xu
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Yong Liang Liu
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Hongwen He
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Fang Huang
- Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Okada S, Saito H, Matsuura Y, Mikuzuki L, Sugawara S, Onose H, Asaka J, Ohara K, Lee J, Iinuma T, Katagiri A, Iwata K. Upregulation of calcitonin gene-related peptide, neuronal nitric oxide synthase, and phosphorylated extracellular signal-regulated kinase 1/2 in the trigeminal ganglion after bright light stimulation of the eye in rats. J Oral Sci 2019; 61:146-155. [PMID: 30918211 DOI: 10.2334/josnusd.18-0031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bright light stimulation of the eye activates trigeminal subnucleus caudalis (Vc) neurons in rats. Sensory information is conveyed to the Vc via the trigeminal ganglion (TG). Thus, it is likely that TG neurons respond to photic stimulation and are involved in photic hypersensitivity. However, the mechanisms underlying this process are unclear. Therefore, the hypothesis in this study is bright light stimulation enhances the excitability of TG neurons involved in photic hypersensitivity. Expressions of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase (nNOS) were significantly higher in TG neurons from 5 min to 12 h after photic stimulation of the eye. Phosphorylation of extracellular signal-regulated kinase1/2 (pERK1/2) was enhanced in TG neurons within 5 min after photic stimulation, while pERK1/2 immunoreactivity in satellite glial cells (SGCs) persisted for more than 12 h after the stimulus. Activation of SGCs was observed from 5 min to 2 h. Expression of CGRP, nNOS, and pERK1/2 was observed in small and medium TG neurons, and activation of SGCs and pERK1/2-immunoreactive SGCs encircling large TG neurons was accelerated after stimulation. These results suggest that upregulation of CGRP, nNOS, and pERK1/2 within the TG is involved in photic hypersensitivity.
Collapse
Affiliation(s)
- Shinji Okada
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Hiroto Saito
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry.,Department of Physiology, Nihon University School of Dentistry
| | - Yutaka Matsuura
- Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Lou Mikuzuki
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Shiori Sugawara
- Department of Physiology, Nihon University School of Dentistry.,Department of Psychosomatic Dentistry, Tokyo Medical and Dental University, Graduate School
| | - Hiroki Onose
- Department of Physiology, Nihon University School of Dentistry
| | - Junichi Asaka
- Department of Physiology, Nihon University School of Dentistry
| | - Kinuyo Ohara
- Department of Endodontics, Nihon University School of Dentistry
| | - Jun Lee
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Toshimitsu Iinuma
- Department of Complete Denture Prosthodontics, Nihon University School of Dentistry
| | - Ayano Katagiri
- Department of Physiology, Nihon University School of Dentistry.,Department of Oral Physiology, Osaka University Graduate School of Dentistry
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry
| |
Collapse
|
7
|
Bulboacă AE, Bolboacă SD, Stănescu IC, Sfrângeu CA, Porfire A, Tefas L, Bulboacă AC. The effect of intravenous administration of liposomal curcumin in addition to sumatriptan treatment in an experimental migraine model in rats. Int J Nanomedicine 2018; 13:3093-3103. [PMID: 29872296 PMCID: PMC5975613 DOI: 10.2147/ijn.s162087] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Curcumin has antioxidative properties that could be useful in various diseases due to its ability to act on multiple targets of various cellular pathways. We aimed to assess the efficacy of liposomal curcumin compared with curcumin solution, when in addition to sumatriptan (ST) treatment, in an experimental migraine model induced with nitroglycerin (NTG) in rats. METHODS Seven groups of 9 rats each were investigated: control group without migraine (1 mL saline solution intraperitoneal injection [ip]), control group with induced migraine, NTG+ST group (ST), NTG+ST+curcumin1 (CC1) group - 1 mg/100 g body weight (bw), NTG+ST+CC2 - 2 mg/100 g bw, NTG+ST+liposomal curcumin1 (lCC1) group - 1 mg/100 g bw, and NTG+ST+lCC2 (lCC2) group - 2 mg/100 g bw. NTG and ST were administered as 1 mL ip NTG | 1 mg/100 g bw and 1 mL ip ST | 1 mg/100 g bw, respectively. Plasma total oxidative stress (TOS), malondialdehyde (MDA), nitric oxide (NOx), thiol levels, as well as total antioxidative capacity (TAC) were assessed. The nociception process was assessed by counting the number of flinches and shakes after the formalin test. RESULTS The plasma TOS, MDA, and NOx levels, as oxidative stress parameters, were significantly decreased in the curcumin-treated groups, especially where curcumin was in liposomal form. The thiol and TAC were also improved by the curcumin treatment, with the best results obtained for the liposomal curcumin. The closest number of flinches and shakes to the control group was obtained for the group treated with liposomal curcumin at a dose of 2 mg/100 g bw. CONCLUSION Liposomal curcumin in a dose of 2 mg/100 g bw when in addition to ST treatment could be an optimum therapeutic strategy for migraine attacks and could represent a base for future clinical research and application.
Collapse
Affiliation(s)
- Adriana E Bulboacă
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Sorana D Bolboacă
- Department of Medical Informatics and Biostatistics, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Ioana C Stănescu
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Carmen A Sfrângeu
- Department of Pathophysiology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu-Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Lucia Tefas
- Department of Pharmaceutical Technology and Biopharmaceutics, Iuliu-Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| | - Angelo C Bulboacă
- Department of Neurology and Pediatric Neurology, Iuliu Haţieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Zhang H, Lai Q, Li Y, Liu Y, Yang M. Learning and memory improvement and neuroprotection of Gardenia jasminoides (Fructus gardenia) extract on ischemic brain injury rats. JOURNAL OF ETHNOPHARMACOLOGY 2017; 196:225-235. [PMID: 27940085 DOI: 10.1016/j.jep.2016.11.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/18/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gardenia jasminoides Ellis is a traditional Chinese medicine (TCM) that containing a variety of effective active ingredients and exhibits diverse pharmacological functions, such as anti-inflammatory, antioxidant and nerve protection. AIM OF THE STUDY This study investigated the effect of Gardenia jasminoides extract (GJE) and Geniposide on learning and memory improvement and neuroprotection in a rat model with chronic cerebral ischemia, as well as explore the underlying mechanisms. MATERIALS AND METHODS The crude GJE was prepared using the methods of water extraction and alcohol precipitation, and refined by macroporous adsorption resin. The chronic cerebral ischemia model was simulated by permanent occlusion of bilateral common carotid arteries in rats. GJE was taken at three doses groups (150mg/kg, 100mg/kg, 50mg/kg), Geniposide group (50mg/kg), and oral administration for 30 days. Memory function was assessed using Morris water maze test. The morphological changes of hippocampus and related parts of brain in rats by Hematoxylin and Eosin (HE) staining were observed. Moreover, the levels of Acetylcholin Esterase (AchE), Nitric Oxide Synthase (NOS), Malondialdehyde (MDA), Superoxide Dismutase (SOD) in the brain tissue were quantified. RESULTS GJE contained 27% gardenoside and 72% total iridoid glycoside. The chronic cerebral ischemia rat model has been proved successfully. The memory function of the rats assessed using Morris water maze test showed that GJE significantly shortened the escape latency of rats, but had no significant improvement on the number of times crossing the platform and the percentage of time spent in the target quadrant. HE staining showed that the apoptosis and necrosis of the cortex and hippocampus in the GJE group were significantly reduced. In addition, it was found that GJE could significantly improved the content of SOD, inhibited NOS and AchE activity in brain tissue, but did not show a significant reduction in the content of MDA. The effect of medium dosage of GJE was the best among these three dose groups and also better than Geniposide according to the results of all the detection index. CONCLUSIONS GJE had the functions of learning and memory improvement and the neuroprotection on chronic cerebral ischemia model rats. The mechanisms were found to be strongly correlated with antioxygen free radical, reduction of NO toxicity and AChE activity, and brain neuron protective effect. GJE could be able to play a better effect on improving chronic cerebral ischemia than Geniposide.
Collapse
Affiliation(s)
- Haiyan Zhang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China.
| | - Qiong Lai
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Yan Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Nanchang 330006, China.
| | - Yang Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of TCM, Nanchang 330004, China; Chengdu University of TCM, Chengdu 610075, China
| |
Collapse
|
9
|
Liu Q, Gao Z, Zhu X, Wu Z, Li D, He H, Huang F, Fan W. Changes in nitric oxide synthase isoforms in the trigeminal ganglion of rat following chronic tooth pulp inflammation. Neurosci Lett 2016; 633:240-245. [PMID: 27687716 DOI: 10.1016/j.neulet.2016.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/23/2016] [Accepted: 09/24/2016] [Indexed: 11/24/2022]
Abstract
Nitric oxide (NO) possibly plays an important role in the events resulting in hyperalgesia. NO synthase (NOS) is a key enzyme in the production of NO. Changes in NOS expression in primary sensory neurons may be involved in the persistent sensory abnormalities that can be induced by inflammation. To assess the possible roles of NOS in trigeminal sensory system, we studied changes in the expression of NOS isoforms in the trigeminal ganglion (TG) following chronic inflammation after pulp exposure (PX) in rats. The neurons innervating injured tooth in the TG were labeled by fluoro-gold (FG). Immunohistochemical staining was used to reveal the presence of NOS. The results showed that within the FG-labeled population, neuron counts revealed a significant increase in the proportion of NOS neurons following PX, in which the frequency of iNOS and nNOS-positive neurons started to increase at 3 and 7day, respectively, and peaked at 28day. There was no eNOS expression observed in the control group and PX-treated groups. The results demonstrate that PX-induced chronic pulpal inflammation results in significant increase of nNOS and iNOS in the TG. It suggests that nNOS and iNOS could be involved in mediation of peripheral processing of nociceptive information following chronic tooth pulp inflammation.
Collapse
Affiliation(s)
- Qin Liu
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhixiong Gao
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Xiao Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, China
| | - Zhi Wu
- Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Dongpei Li
- Department of Neuroscience and Regenerative Medicine, Georgia Regents University, Augusta, GA 30912, USA
| | - Hongwen He
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Fang Huang
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Pediatric Dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Wenguo Fan
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China; Department of Anesthesiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Kim YS, Kim TH, McKemy DD, Bae YC. Expression of vesicular glutamate transporters in transient receptor potential melastatin 8 (TRPM8)-positive dental afferents in the mouse. Neuroscience 2015; 303:378-88. [PMID: 26166724 DOI: 10.1016/j.neuroscience.2015.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 01/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is activated by innocuous cool and noxious cold and plays a crucial role in cold-induced acute pain and pain hypersensitivity. To help understand the mechanism of TRPM8-mediated cold perception under normal and pathologic conditions, we used light microscopic immunohistochemistry and Western blot analysis in mice expressing a genetically encoded axonal tracer in TRPM8-positive (+) neurons. We investigated the coexpression of TRPM8 and vesicular glutamate transporter 1 (VGLUT1) and VGLUT2 in the trigeminal ganglion (TG) and the dental pulp before and after inducing pulpal inflammation. Many TRPM8+ neurons in the TG and axons in the dental pulp expressed VGLUT2, while none expressed VGLUT1. TRPM8+ axons were dense in the pulp horn and peripheral pulp and also frequently observed in the dentinal tubules. Following pulpal inflammation, the proportion of VGLUT2+ and of VGLUT2+/TRPM8+ neurons increased significantly, whereas that of TRPM8+ neurons remained unchanged. Our findings suggest the existence of VGLUT2 (but not VGLUT1)-mediated glutamate signaling in TRPM8+ neurons possibly underlying the cold-induced acute pain and hypersensitivity to cold following pulpal inflammation.
Collapse
Affiliation(s)
- Y S Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - T H Kim
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea
| | - D D McKemy
- Neurobiology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Y C Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu 700-412, South Korea.
| |
Collapse
|
11
|
Wild V, Messlinger K, Fischer MJM. Hydrogen sulfide determines HNO-induced stimulation of trigeminal afferents. Neurosci Lett 2015; 602:104-9. [PMID: 26149232 DOI: 10.1016/j.neulet.2015.06.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/14/2015] [Accepted: 06/29/2015] [Indexed: 10/23/2022]
Abstract
Endogenous NO and hydrogen sulfide form HNO, which causes CGRP release via TRPA1 channel activation in sensory nerves. In the present study, stimulation of intact trigeminal afferent neuron preparations with NO donors, Na2S or both was analyzed by measuring CGRP release as an index of mass activation. Combined stimulation was able to activate all parts of the trigeminal system and acted synergistic compared to stimulation with both substances alone. To investigate the contribution of both substances, we varied their ratio and tracked intracellular calcium in isolated neurons. Our results demonstrate that hydrogen sulfide is the rate-limiting factor for HNO formation. CGRP has a key role in migraine pathophysiology and HNO formation at all sites of the trigeminal system should be considered for this novel means of activation.
Collapse
Affiliation(s)
- Vanessa Wild
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michael J M Fischer
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
12
|
Gamper N, Ooi L. Redox and nitric oxide-mediated regulation of sensory neuron ion channel function. Antioxid Redox Signal 2015; 22:486-504. [PMID: 24735331 PMCID: PMC4323017 DOI: 10.1089/ars.2014.5884] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species (ROS and RNS, respectively) can intimately control neuronal excitability and synaptic strength by regulating the function of many ion channels. In peripheral sensory neurons, such regulation contributes towards the control of somatosensory processing; therefore, understanding the mechanisms of such regulation is necessary for the development of new therapeutic strategies and for the treatment of sensory dysfunctions, such as chronic pain. RECENT ADVANCES Tremendous progress in deciphering nitric oxide (NO) and ROS signaling in the nervous system has been made in recent decades. This includes the recognition of these molecules as important second messengers and the elucidation of their metabolic pathways and cellular targets. Mounting evidence suggests that these targets include many ion channels which can be directly or indirectly modulated by ROS and NO. However, the mechanisms specific to sensory neurons are still poorly understood. This review will therefore summarize recent findings that highlight the complex nature of the signaling pathways involved in redox/NO regulation of sensory neuron ion channels and excitability; references to redox mechanisms described in other neuron types will be made where necessary. CRITICAL ISSUES The complexity and interplay within the redox, NO, and other gasotransmitter modulation of protein function are still largely unresolved. Issues of specificity and intracellular localization of these signaling cascades will also be addressed. FUTURE DIRECTIONS Since our understanding of ROS and RNS signaling in sensory neurons is limited, there is a multitude of future directions; one of the most important issues for further study is the establishment of the exact roles that these signaling pathways play in pain processing and the translation of this understanding into new therapeutics.
Collapse
Affiliation(s)
- Nikita Gamper
- 1 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom
| | | |
Collapse
|
13
|
Huang F, He H, Fan W, Liu Y, Zhou H, Cheng B. Orofacial inflammatory pain affects the expression of MT1 and NADPH-d in rat caudal spinal trigeminal nucleus and trigeminal ganglion. Neural Regen Res 2014; 8:2991-3002. [PMID: 25206619 PMCID: PMC4146210 DOI: 10.3969/j.issn.1673-5374.2013.32.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/11/2013] [Indexed: 12/26/2022] Open
Abstract
Very little is known about the role of melatonin in the trigeminal system, including the function of melatonin receptor 1. In the present study, adult rats were injected with formaldehyde into the right vibrissae pad to establish a model of orofacial inflammatory pain. The distribution of melatonin receptor 1 and nicotinamide adenine dinucleotide phosphate diaphorase in the caudal spinal trigeminal nucleus and trigeminal ganglion was determined with immunohistochemistry and histochemistry. The results show that there are significant differences in melatonin receptor 1 expression and nicotinamide adenine dinucleotide phosphate diaphorase expression in the trigeminal ganglia and caudal spinal nucleus during the early stage of orofacial inflammatory pain. Our findings suggest that when melatonin receptor 1 expression in the caudal spinal nucleus is significantly reduced, melatonin's regulatory effect on pain is attenuated.
Collapse
Affiliation(s)
- Fang Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Hongwen He
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Wenguo Fan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Yongliang Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Hongyu Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| | - Bin Cheng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, Guangdong Province, China
| |
Collapse
|
14
|
Tang Q, Han R, Xiao H, Li J, Shen J, Luo Q. Protective effect of tanshinone IIA on the brain and its therapeutic time window in rat models of cerebral ischemia-reperfusion. Exp Ther Med 2014; 8:1616-1622. [PMID: 25289069 PMCID: PMC4186358 DOI: 10.3892/etm.2014.1936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 06/18/2014] [Indexed: 12/27/2022] Open
Abstract
The aims of the present study were to investigate the protective effect of tanshinone IIA on the brain and its therapeutic time window in a rat model of cerebral ischemia-reperfusion. The rat model of cerebral ischemia-reperfusion was established by suture occlusion. In an initial experiment, male Sprague-Dawley (SD) rats were randomly divided into control cerebral ischemia-reperfusion rat model, tanshinone IIA1 (TSA1), tanshinone IIA4 (TSA4), tanshinone IIA6 (TSA6) and tanshinone IIA12 (TSA12) groups (n=8 per group). The rats in the control group were given 4 ml phosphate-buffered saline (PBS) intraperitoneally following suture occlusion. The other groups were respectively treated with 25 mg/kg tanshinone IIA intraperitoneally at 1, 4, 6 and 12 h following the initiation of reperfusion and once a day for a total of three days. The grades of neurologic impairment and volume of cerebral infarction of each group were measured 72 h after suture occlusion. In another experiment, 16 male SD rats were randomly divided into a 6 h reperfusion group and a 24 h reperfusion group following drug administration. The rats in each group were further divided into a control subgroup (4 ml PBS) and a tanshinone IIA subgroup (25 mg/kg). The rats were immediately administered their respective treatments following the establishment of the model. The rats were decapitated 6 and 24 h after the initiation of reperfusion. The expression levels of cytoplasmic thioredoxin (Trx-1) and mitochondrial thioredoxin (Trx-2) in the ischemic penumbra were determined by western blot analysis. The nitric oxide (NO) levels, and total NO synthase (tNOS) and inducible NO synthase (iNOS) activities in the rat blood were measured using a reagent kit. The changes in cerebral blood flow were evaluated by Doppler imaging. The grade of neurological impairment of the TSA1 group was statistically lower than that of the other groups (P<0.05). The cerebral infarction volume results showed that the volumes of infarction in the TSA1 and TSA4 groups were lower than those in the other groups (P<0.05). Tanshinone IIA significantly increased cerebral blood flow compared with that of the control group (P<0.05). Moreover, tanshinone IIA significantly increased the expression levels of Trx-1 and Trx-2 compared with those in the control group (P<0.05). Tanshinone IIA significantly decreased the NO levels and iNOS and tNOS activities compared with those of the control group (P<0.05). However, the iNOS activity in the rats in the 6 h reperfusion group was not statistically significantly different from that of the respective control group (P>0.05). Tanshinone IIA has a protective effect on the cranial nerves when administered during the initial stages of cerebral ischemia. This protective effect is associated with an improvement of cerebral blood flow as well as an increase in anti-oxygen radical and anti-inflammatory activities.
Collapse
Affiliation(s)
- Qiqiang Tang
- Department of Neurology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ruodong Han
- Department of Neurology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Han Xiao
- Department of Neurology, Affiliated Provincial Hospital, Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jilong Shen
- Institute of Clinical Pharmacology, Anhui Medical University, The Key Laboratories of Zoonoses and Pathogen Biology, Hefei, Anhui 230022, P.R. China
| | - Qingli Luo
- Institute of Clinical Pharmacology, Anhui Medical University, The Key Laboratories of Zoonoses and Pathogen Biology, Hefei, Anhui 230022, P.R. China
| |
Collapse
|
15
|
Petho G, Reeh PW. Sensory and signaling mechanisms of bradykinin, eicosanoids, platelet-activating factor, and nitric oxide in peripheral nociceptors. Physiol Rev 2013; 92:1699-775. [PMID: 23073630 DOI: 10.1152/physrev.00048.2010] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Peripheral mediators can contribute to the development and maintenance of inflammatory and neuropathic pain and its concomitants (hyperalgesia and allodynia) via two mechanisms. Activation or excitation by these substances of nociceptive nerve endings or fibers implicates generation of action potentials which then travel to the central nervous system and may induce pain sensation. Sensitization of nociceptors refers to their increased responsiveness to either thermal, mechanical, or chemical stimuli that may be translated to corresponding hyperalgesias. This review aims to give an account of the excitatory and sensitizing actions of inflammatory mediators including bradykinin, prostaglandins, thromboxanes, leukotrienes, platelet-activating factor, and nitric oxide on nociceptive primary afferent neurons. Manifestations, receptor molecules, and intracellular signaling mechanisms of the effects of these mediators are discussed in detail. With regard to signaling, most data reported have been obtained from transfected nonneuronal cells and somata of cultured sensory neurons as these structures are more accessible to direct study of sensory and signal transduction. The peripheral processes of sensory neurons, where painful stimuli actually affect the nociceptors in vivo, show marked differences with respect to biophysics, ultrastructure, and equipment with receptors and ion channels compared with cellular models. Therefore, an effort was made to highlight signaling mechanisms for which supporting data from molecular, cellular, and behavioral models are consistent with findings that reflect properties of peripheral nociceptive nerve endings. Identified molecular elements of these signaling pathways may serve as validated targets for development of novel types of analgesic drugs.
Collapse
Affiliation(s)
- Gábor Petho
- Pharmacodynamics Unit, Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | | |
Collapse
|
16
|
Aggarwal M, Puri V, Puri S. Serotonin and CGRP in migraine. Ann Neurosci 2012; 19:88-94. [PMID: 25205974 PMCID: PMC4117050 DOI: 10.5214/ans.0972.7531.12190210] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Revised: 01/30/2012] [Accepted: 03/02/2012] [Indexed: 12/21/2022] Open
Abstract
Migraine is defined as recurrent attack of headache that are commonly unilateral and accompanied by gastrointestinal and visual disorders. Migraine is more prevalent in females than males with a ratio of 3:1. It is primarily a complex neurovascular disorder involving local vasodilation of intracranial, extracerebral blood vessels and simultaneous stimulation of surrounding trigeminal sensory nervous pain pathway that results in headache. The activation of 'trigeminovascular system' causes release of various vasodilators, especially calcitonin gene-related peptide (CGRP) that induces pain response. At the same time, decreased levels of neurotransmitter, serotonin have been observed in migraineurs. Serotonin receptors have been found on the trigeminal nerve and cranial vessels and their agonists especially triptans prove effective in migraine treatment. It has been found that triptans act on trigeminovascular system and bring the elevated serum levels of key molecules like calcitonin gene related peptide (CGRP) to normal. Currently CGRP receptor antagonists, olcegepant and telcagepant are under consideration for antimigraine therapeutics. It has been observed that varying levels of ovarian hormones especially estrogen influence serotonin neurotransmission system and CGRP levels making women more predisposed to migraine attacks. This review provides comprehensive information about the role of serotonin and CGRP in migraine, specifically the menstrual migraine.
Collapse
Affiliation(s)
- Milan Aggarwal
- Department of Biochemistry, Panjab University, Chandigarh 160014
| | - Veena Puri
- Centre for Systems biology & Bioinformatics, Panjab University, Chandigarh
| | - Sanjeev Puri
- Biotechnology Branch (U.I.E.T)
- Centre for Stem Cell & Tissue Engineering Panjab University, Chandigarh 160014, INDIA
| |
Collapse
|
17
|
XU XINYING, YU ZHUQIN, SHUAI LI, GUO YUNLIANG, DUAN DELIN, FU PENGFEI. THE EFFECT OF KELP ON SERUM LIPIDS OF HYPERLIPIDEMIA IN RATS. J Food Biochem 2011. [DOI: 10.1111/j.1745-4514.2011.00606.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Fan W, Huang F, Wu Z, Zhu X, Li D, He H. The role of nitric oxide in orofacial pain. Nitric Oxide 2011; 26:32-7. [PMID: 22138296 DOI: 10.1016/j.niox.2011.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/31/2011] [Accepted: 11/08/2011] [Indexed: 11/27/2022]
Abstract
Nitric oxide (NO) is a free radical gas that has been shown to be produced by nitric oxide synthase (NOS) in different cell types and recognized to act as a neurotransmitter or neuromodulator in the nervous system. NOS isoforms are expressed and/or can be induced in the related structures of trigeminal nerve system, in which the regulation of NOS biosynthesis at different levels of gene expression may allow for a fine control of NO production. Several lines of evidence suggest that NO may play a role through multiple mechanisms in orofacial pain processing. This report will review the latest evidence for the role of NO involved in orofacial pain and the potential cellular mechanisms are also discussed.
Collapse
Affiliation(s)
- Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
19
|
Canzobre MC, Ríos H. Nicotinamide adenine dinucleotide phosphate/neuronal nitric oxide synthase-positive neurons in the trigeminal subnucleus caudalis involved in tooth pulp nociception. J Neurosci Res 2011; 89:1478-88. [PMID: 21608012 DOI: 10.1002/jnr.22676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/22/2011] [Accepted: 03/29/2011] [Indexed: 12/19/2022]
Abstract
Sensory information on facial structures, including teeth pulp, periodontium, and gingiva, is relayed in the trigeminal complex. Tooth pulp inflammation constitutes a common clinical problem, and this peripheral injury can induce neuroplastic changes in trigeminal nociceptive neurons. There is considerable evidence that the trigeminal subnucleus caudalis (Vc) is the principal relay for trigeminal nociceptive information as well as modulation of the painful stimuli. Glutamatergic primary afferents innervating the tooth pulp project to the most superficial laminae of the Vc. N-methyl-D-aspartate receptor stimulation leads to the activation of the enzyme nitric oxide synthase (NOS), which synthesizes the free radical nitric oxide (NO). This enzyme is expressed mainly in lamina II interneurons, and in a small number of cells in lamina I as well as in deep laminae projection neurons of Vc. In the present study, we analyzed the temporal changes in neuronal NOS (nNOS) in Vc local circuitries after unilateral intermediate molar pulp injury. Our results demonstrate that a peripheral dental pulp injury leads to neuroplastic changes in the relative amount and activity of nNOS enzyme. Moreover, after a period of time, the nitrergic system shifts to the initial values, independently of the persistence of inflammation in the pulp tissues.
Collapse
Affiliation(s)
- Mariela C Canzobre
- Instituto de Biología Celular y Neurociencias Prof. E. De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | | |
Collapse
|
20
|
Nitroxidergic system in human trigeminal ganglia neurons: a quantitative evaluation. Acta Histochem 2010; 112:444-51. [PMID: 19732945 DOI: 10.1016/j.acthis.2009.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 04/16/2009] [Accepted: 04/21/2009] [Indexed: 12/24/2022]
Abstract
The trigeminal ganglia are involved in transmission of orofacial sensitivity. The free radical gas nitric oxide (NO) has recently been found to function as a messenger molecule in both central and peripheral trigeminal primary afferent neurons. NO is produced within neurons mainly by two enzymes: a constitutive (neuronal) form of NO synthase (nNOS) or an inducible form of NOS (iNOS). The aim of the study was to evaluate the distribution of trigeminal neurons according to size (small, medium and large neurons) and to correlate the percentage of NOS-immunopositive neurons with regard to neuronal size. The results showed a significant relationship between the percentage of nNOS-immunopositive neurons and the size of neurons. Evaluation of the percentage of nNOS-immunopositive neurons showed that they constitute about 50% of the total number of neurons and that they are represented mainly as large-sized neurons. The iNOS immunolabelling was very faint in all neuronal types. Since the nitroxidergic system is well represented in human trigeminal ganglia, this study indicates that it could play a relevant role in trigeminal neurotransmission.
Collapse
|
21
|
Drebrin (developmentally regulated brain protein) is associated with axo-somatic synapses and neuronal gap junctions in rat mesencephalic trigeminal nucleus. Neurosci Lett 2009; 461:95-9. [DOI: 10.1016/j.neulet.2009.06.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/06/2009] [Accepted: 06/12/2009] [Indexed: 11/21/2022]
|
22
|
Histochemical characterisation of trigeminal neurons that innervate monkey extraocular muscles. PROGRESS IN BRAIN RESEARCH 2009. [PMID: 18718277 DOI: 10.1016/s0079-6123(08)00603-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Sensory trigeminal innervation is a consistent feature of extraocular muscles across species, in spite of a variable occurrence of muscle spindles. We studied the histochemical properties of trigeminal ganglion (TG) cells projecting to the extraocular eye muscles to obtain more information about their function. In monkey TG neurons were retrogradely filled by tracer injections (cholera toxin subunit B; wheat-germ agglutinin) into the belly or myotendinous junction of eye muscles; one conjunctival injection served as a control. Retrogradely labelled TG neurons were processed for the presence of parvalbumin (PV), substance P (SP), or nitric oxide synthase (NOS) by double-immunofluorescence. The results indicate that approximately 10% of trigeminal afferents to all parts of the eye muscle are PV-positive, whereas around 20% are SP-positive. Twice as many SP-positive TG projection neurons were counted after a conjunctival tracer injection, presumably relaying nociceptive signals. A surprisingly large population of NOS-positive TG cells (30%) was found only after distal tracer injections. Up to now none of these TG cell groups could be related to the palisade endings located at the myotendinous junction.
Collapse
|
23
|
Nassar PO, Nassar CA, Guimarães MR, Aquino SG, Andia DC, Muscara MN, Spolidorio DMP, Rossa C, Spolidorio LC. Simvastatin therapy in cyclosporine A-induced alveolar bone loss in rats. J Periodontal Res 2008; 44:479-88. [PMID: 19076990 DOI: 10.1111/j.1600-0765.2008.01143.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Cyclosporine A treatment is important in the therapy of a number of medical conditions; however, alveolar bone loss is an important negative side-effect of this drug. As such, we evaluated whether concomitant administration of simvastatin would minimize cyclosporine A-associated alveolar bone loss in rats subjected, or not, to experimental periodontal disease. MATERIAL AND METHODS Groups of 10 rats each were treated with cyclosporine A (10 mg/kg/day), simvastatin (20 mg/kg/day), cyclosporine A and simvastatin concurrently (cyclosporine A/simvastatin) or vehicle for 30 days. Four other groups of 10 rats each received a cotton ligature around the lower first molar and were treated similarly with cyclosporine A, simvastatin, cyclosporine A/simvastatin or vehicle. Calcium (Ca(2+)), phosphorus and alkaline phosphatase levels were evaluated in serum. Expression levels of interleukin-1beta, prostaglandin E(2) and inducible nitric oxide synthase were evaluated in the gingivomucosal tissues. Bone volume and numbers of osteoblasts and osteoclasts were also analyzed. RESULTS Treatment with cyclosporine A in rats, with or without ligature, was associated with bone loss, represented by a lower bone volume and an increase in the number of osteoclasts. Treatment with cyclosporine A was associated with bone resorption, whereas simvastatin treatment improved cyclosporine A-associated alveolar bone loss in all parameters studied. In addition, simvastatin, in the presence of inflammation, can act as an anti-inflammatory agent. CONCLUSION This study shows that simvastatin therapy leads to a reversal of the cyclosporine A-induced bone loss, which may be mediated by downregulation of interleukin-1beta and prostaglandin E(2) production.
Collapse
Affiliation(s)
- P O Nassar
- Department of Periodontology, Dental School of Araraquara, State University of São Paulo (UNESP), Araraquara, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fan W, Huang F, Li C, Qu H, Gao Z, Leng S, Li D, He H. Involvement of NOS/NO in the development of chronic dental inflammatory pain in rats. ACTA ACUST UNITED AC 2008; 59:324-32. [PMID: 19013482 DOI: 10.1016/j.brainresrev.2008.10.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Revised: 10/09/2008] [Accepted: 10/11/2008] [Indexed: 12/29/2022]
Abstract
Nitric oxide (NO) is believed to be an important messenger molecule in nociceptive transmission. To assess the possible roles of NO in trigeminal sensory system, we examined the distribution and density of histochemical staining for nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS), and immunohistochemical staining for c-Fos, a neuronal activity marker, in the trigeminal ganglion (TG) and trigeminal nucleus caudalis (Vc) following pulp exposure (PX) injured rats. The neurons innervating injured tooth in TG were labeled by the retrograde transport of fluoro-gold (FG). Teeth were processed for H&E staining. We found that NADPH-d activity increased significantly in the TG and Vc following PX pretreatment (7-28 days, especially in 21-28 days). Such changes were closely corresponding to the pattern of c-Fos detected by immunocytochemistry. The results demonstrate that PX-induced chronic pulpal inflammation results in significant alterations in the TG cells and in the Vc, and such changes may underlie the observed NADPH-d activity. It suggests that NOS/NO may play an active role in both peripheral and central processing of nociceptive information following chronic tooth inflammation.
Collapse
Affiliation(s)
- Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Expression and colocalization of NADPH-diaphorase and heme oxygenase-2 in trigeminal ganglion and mesencephalic trigeminal nucleus of the rat. J Mol Histol 2008; 39:427-33. [DOI: 10.1007/s10735-008-9181-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 07/03/2008] [Indexed: 12/19/2022]
|
26
|
Yamada K, Park H, Sato S, Onozuka M, Kubo K, Yamamoto T. Dynorphin-A immunoreactive terminals on the neuronal somata of rat mesencephalic trigeminal nucleus. Neurosci Lett 2008; 438:150-4. [DOI: 10.1016/j.neulet.2008.04.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 04/02/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|
27
|
Morphologic evaluation and expression of matrix metalloproteinases-2 and 9 and nitric oxide during experimental periodontal disease in rat. J Mol Histol 2008; 39:275-82. [PMID: 18247145 DOI: 10.1007/s10735-008-9163-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
Abstract
The immunopathologic and inflammatory mechanisms involved in periodontal disease (PD) include the participation of host resident, inflammatory cells and chemical mediators. Metalloproteinases (MMPs) and nitric oxide (NO) play essential role in extracellular matrix turnover of periodontal tissue destruction. In this study, by means of RT-PCR through semi-quantitative densitometric scanning methods, the expression of MMPs -2 and -9 and inducible NO synthase (iNOS) was temporally and spatially investigated during the destructive mechanisms of experimentally induced PD in rats. Samples from different periods were microscopically analyzed and compared with the contralateral side (control). Our results showed significant expression of MMP-9 and iNOS in tissues affected by PD, as compared with controls, three days after PD induction, simultaneously with the beginning of alveolar bone loss. At 7 days post induction, only the MMP-9 mRNA presented a significantly higher expression, as compared with the respective controls. Thus, in the rat ligature-induced PD, MMP-9 and iNOS might importantly participate in the early stages of the disease, including inflammatory cell migration, tissue destruction and alveolar bone resorption. Also, we may suggest that the exuberant presence of PMNs may be related to the important expression of iNOS and MMP-9 found at 3 days post induction.
Collapse
|
28
|
Lazarov NE. Neurobiology of orofacial proprioception. ACTA ACUST UNITED AC 2007; 56:362-83. [PMID: 17915334 DOI: 10.1016/j.brainresrev.2007.08.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 08/22/2007] [Indexed: 12/29/2022]
Abstract
Primary sensory fibers innervating the head region derive from neurons of both the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN). The trigeminal primary proprioceptors have their cell bodies in the MTN. Unlike the TG cells, MTN neuronal somata are centrally located within the brainstem and receive synaptic inputs that potentially modify their output. They are a crucial component of the neural circuitry responsible for the generation and control of oromotor activities. Gaining an insight into the chemical neuroanatomy of the MTN is, therefore, of fundamental importance for the understanding of neurobiology of the head proprioceptive system. This paper summarizes the recent advances in our knowledge of pre- and postsynaptic mechanisms related to orofacial proprioceptive signaling in mammals. It first briefly describes the neuroanatomy of the MTN, which is involved in the processing of proprioceptive information from the face and oral cavity, and then focuses on its neurochemistry. In order to solve the puzzle of the chemical coding of the mammalian MTN, we review the expression of classical neurotransmitters and their receptors in mesencephalic trigeminal neurons. Furthermore, we discuss the relationship of neuropeptides and their corresponding receptors in relaying of masticatory proprioception and also refer to the interactions with other atypical neuromessengers and neurotrophic factors. In extension of previous inferences, we provide conclusive evidence that the levels of transmitters vary according to the environmental conditions thus implying the neuroplasticity of mesencephalic trigeminal neurons. Finally, we have also tried to give an integrated functional account of the MTN neurochemical profiles.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy and Histology, Faculty of Medicine, Medical University-Sofia, 2, Zdrave Street, BG-1431 Sofia, Bulgaria.
| |
Collapse
|
29
|
Huynh P, Boyd SK. Nitric Oxide Synthase and NADPH Diaphorase Distribution in the Bullfrog (Rana catesbeiana) CNS: Pathways and Functional Implications. BRAIN, BEHAVIOR AND EVOLUTION 2007; 70:145-63. [PMID: 17595535 DOI: 10.1159/000104306] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/07/2006] [Indexed: 11/19/2022]
Abstract
The gas nitric oxide (NO) is emerging as an important regulator of normal physiology and pathophysiology in the central nervous system (CNS). The distribution of cells releasing NO is poorly understood in non-mammalian vertebrates. Nitric oxide synthase immunocytochemistry (NOS ICC) was thus used to identify neuronal cells that contain the enzyme required for NO production in the amphibian brain and spinal cord. NADPH-diaphorase (NADPHd) histochemistry was also used because the presence of NADPHd serves as a reliable indicator of nitrergic cells. Both techniques revealed stained cells in all major structures and pathways in the bullfrog brain. Staining was identified in the olfactory glomeruli, pallium and subpallium of the telencephalon; epithalamus, thalamus, preoptic area, and hypothalamus of the diencephalon; pretectal area, optic tectum, torus semicircularis, and tegmentum of the mesencephalon; all layers of the cerebellum; reticular formation; nucleus of the solitary tract, octaval nuclei, and dorsal column nuclei of the medulla; and dorsal and motor fields of the spinal cord. In general, NADPHd histochemistry provided better staining quality, especially in subpallial regions, although NOS ICC tended to detect more cells in the olfactory bulb, pallium, ventromedial thalamus, and cerebellar Purkinje cell layer. NOS ICC was also more sensitive for motor neurons and consistently labeled them in the vagus nucleus and along the length of the rostral spinal cord. Thus, nitrergic cells were ubiquitously distributed throughout the bullfrog brain and likely serve an essential regulatory function.
Collapse
Affiliation(s)
- Phuong Huynh
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
30
|
Kolesár D, Kolesárová M, Schreiberová A, Lacková M, Marsala J. Distribution of NADPH diaphorase-exhibiting primary afferent neurons in the trigeminal ganglion and mesencephalic trigeminal nucleus of the rabbit. Cell Mol Neurobiol 2006; 26:1265-79. [PMID: 16773444 DOI: 10.1007/s10571-006-9079-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 04/24/2006] [Indexed: 12/30/2022]
Abstract
1. Nitric oxide (NO) is highly reactive gaseous molecule to which many physiological and pathological functions have been attributed in the central (CNS) and peripheral (PNS) nervous system. The present investigation was undertaken to map the distribution pattern of the enzyme responsible for the synthesis of NO, nitric oxide synthase (NOS), and especially its neuronal isoform (nNOS) in the population of primary afferent neurons of the trigeminal ganglion (TG) and mesencephalic trigeminal nucleus (MTN) of the rabbit. 2. In order to identify neuronal structures expressing nNOS we applied histochemistry to its specific histochemical marker nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd). 3. We found noticeable amount of NADPHd-exhibiting primary afferent neurons in TG of the rabbit under physiological conditions. The intensity of the histochemical reaction was highly variable reaching the maximum in the subpopulation of small-to-medium-sized neurons. The large-sized neurons were only weakly stained or actually did not posses any NADPHd-activity. In addition, NADPHd-positive nerve fibers were detected between clusters of the ganglionic cells and in the peripheral branches of the trigeminal nerve (TN). NADPHd-exhibiting MTN neurons were noticed in the whole rostrocaudal extent of the nucleus even though some differences were found concerning the ratio of NADPHd-positive versus NADPHd-negative cell bodies. Similarly, we observed striking diversity in the intensity of NADPHd histochemical reaction in the subpopulations of small-, medium-, and large-sized MTN neurons. 4. The predominant localization of NADPHd in the subpopulation of small-to-medium-sized TG neurons which are generally considered to be nociceptive suggests that NO probably takes part in the modulation of nociceptive inputs from the head and face. Furthermore, we tentatively assume that NADPHd-exhibiting MTN neurons probably participate in transmission and modulation of the proprioceptive impulses from muscle spindles of the masticatory muscles and mechanoreceptors of the periodontal ligaments and thus provide sensory feedback of the masticatory reflex arc.
Collapse
Affiliation(s)
- Dalibor Kolesár
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovak Republic.
| | | | | | | | | |
Collapse
|
31
|
Berman NEJ, Puri V, Chandrala S, Puri S, Macgregor R, Liverman CS, Klein RM. Serotonin in Trigeminal Ganglia of Female Rodents: Relevance to Menstrual Migraine. Headache 2006; 46:1230-45. [PMID: 16942467 DOI: 10.1111/j.1526-4610.2006.00528.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We examined changes in the serotonin system across the estrous cycle in trigeminal ganglia of female rodents to determine which components are present and which are regulated by the variations in levels of ovarian steroids that occur during the estrous cycle. BACKGROUND Migraine is 2-3 times more prevalent in women than in men and attacks are often timed with the menstrual cycle, suggesting a mechanistic link with ovarian steroids. Serotonin has been implicated in the pathogenesis of migraine, and the effectiveness of triptans, selective 5HT-1B/D/F agonists, has provided further support for this concept. It is not known whether serotonin, its rate-limiting enzyme tryptophan hydroxylase (TPH), or its receptors are regulated by ovarian steroids in trigeminal ganglia. METHODS We used reverse transcription-polymerase chain reaction to examine gene expression in cycling mice, Western blots to examine protein expression, double-labeling immunohistochemistry using markers of nociceptors and nonnociceptors and confocal microscopy to identify specific types of neurons, and primary tissue culture to examine effects of estrogen on trigeminal neurons in vitro. RESULTS In C57/BL6 mice mRNA levels of TPH-1, the rate-limiting enzyme in serotonin synthesis, were over 2-fold higher and protein levels were 1.4-fold higher at proestrus, the high estrogen stage of the cycle than at diestrus, the low estrogen stage. TPH protein also was present in primary trigeminal cultures obtained from female Sprague-Dawley rats, but levels were not affected by 24-hour treatment with physiological levels (10(-9) M) of 17beta-estradiol. Gene expression of 5HT-1B and 5HT-1D receptors in trigeminal ganglia was not regulated by the estrous cycle. Serotonin was present in trigeminal neurons containing CGRP, a potent vasoactive neuropeptide, peripherin, an intermediate filament present in neurons with unmyelinated axons, neurofilament H, which is present in neurons with myelinated axons, and in neurons binding IB4, a marker of nonpeptidergic nociceptors. Serotonin was also present in neurons containing 5HT-1B. The serotonin-positive population was significantly larger in diameter than the serotonin-negative population. Conclusions.-Expression of the rate-limiting enzyme required for serotonin synthesis is regulated during the natural estrous cycle, and serotonin is present in larger trigeminal neurons of all the major subtypes. Colocalization of serotonin with 5HT-1B suggests that this receptor functions as an autoreceptor to regulate serotonin release. Cyclical changes in serotonin levels in trigeminal ganglia could contribute to the pathogenesis of menstrual migraine.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Estradiol/pharmacology
- Estrous Cycle/genetics
- Estrous Cycle/metabolism
- Female
- Gene Expression/drug effects
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Migraine Disorders/genetics
- Migraine Disorders/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1B/genetics
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT1D/genetics
- Receptor, Serotonin, 5-HT1D/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Serotonin/analysis
- Serotonin/metabolism
- Tissue Culture Techniques
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/metabolism
- Tryptophan Hydroxylase/genetics
- Tryptophan Hydroxylase/metabolism
Collapse
Affiliation(s)
- Nancy E J Berman
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | | | | | | | | | | | | |
Collapse
|