1
|
Abdel-Samiee M, Ibrahim ES, Kohla M, Abdelsameea E, Salama M. Regression of hepatic fibrosis after pharmacological therapy for nonalcoholic steatohepatitis. World J Gastrointest Pharmacol Ther 2024; 15:97381. [PMID: 39534523 PMCID: PMC11551621 DOI: 10.4292/wjgpt.v15.i6.97381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
The global incidence of nonalcoholic fatty liver disease (NAFLD) is escalating considerably. NAFLD covers a range of liver conditions from simple steatosis to the more severe form known as nonalcoholic steatohepatitis, which involves chronic liver inflammation and the transformation of hepatic stellate cells into myofibroblasts that generate excess extracellular matrix, leading to fibrosis. Hepatocyte ballooning is a key catalyst for fibrosis progression, potentially advancing to cirrhosis and its decompensated state. Fibrosis is a critical prognostic factor for outcomes in patients with NAFLD; therefore, those with substantial fibrosis require timely intervention. Although liver biopsy is the most reliable method for fibrosis detection, it is associated with certain risks and limitations, particularly in routine screening. Consequently, various noninvasive diagnostic techniques have been introduced. This review examines the increasing prevalence of NAFLD, evaluates the noninvasive diagnostic techniques for fibrosis, and assesses their efficacy in staging the disease. In addition, it critically appraises current and emerging antifibrotic therapies, focusing on their mechanisms, efficacy, and potential in reversing fibrosis. This review underscores the urgent need for effective therapeutic strategies, given the dire consequences of advanced fibrosis.
Collapse
Affiliation(s)
- Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Essam Salah Ibrahim
- Department of Medicine, RCSI Medical University of Bahrain, Adliya 15503, Bahrain
| | - Mohamed Kohla
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| | - Mohsen Salama
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom 32511, Egypt
| |
Collapse
|
2
|
Attia SH, Saadawy SF, El-Mahroky SM, Nageeb MM. Alleviation of pulmonary fibrosis by the dual PPAR agonist saroglitazar and breast milk mesenchymal stem cells via modulating TGFß/SMAD pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5953-5974. [PMID: 38376539 PMCID: PMC11329427 DOI: 10.1007/s00210-024-03004-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Pulmonary fibrosis (PF) is a complex disorder with high morbidity and mortality. Limited efficacies of the available drugs drive researchers to seek for new therapies. Saroglitazar (Saro), a full (PPAR α/γ) agonist, is devoid of known PPAR-mediated adverse effects. Breast milk mesenchymal stem cells (BrMSCs) are contemplated to be the ideal cell type harboring differentiation/anti-inflammatory/immunosuppressive properties. Accordingly, our aims were to investigate the potential roles of Saro and/or BrMSCs in PF and to spot their underlying protective mechanisms. In this study, PF was induced by bleomycin (BLM) via intratracheal instillation. Treatment started 14 days later. Animals were treated with oral saroglitazar (3 mg/kg daily) or intraperitoneal single BrMSCs injection (0.5 ml phosphate buffer saline (PBS) containing 2 × 107 cells) or their combination with same previous doses. At the work end, 24 h following the 6 weeks of treatment period, the levels of oxidative (MDA, SOD), inflammatory (IL-1ß, IL-10), and profibrotic markers (TGF-ß, αSMA) were assessed. The autophagy-related genes (LC3, Beclin) and the expression of PPAR-α/γ and SMAD-3/7 were evaluated. Furthermore, immunohistochemical and histological work were evaluated. Our study revealed marked lung injury influenced by BLM with severe oxidative/inflammatory/fibrotic damage, autophagy inhibition, and deteriorated lung histology. Saro and BrMSCs repaired the lung structure worsened by BLM. Treatments greatly declined the oxidative/inflammatory markers. The pro-fibrotic TGF-ß, αSMA, and SMAD-3 were decreased. Contrarily, autophagy markers were increased. SMAD-7 and PPAR α/γ were activated denoting their pivotal antifibrotic roles. Co-administration of Saro and BrMSCs revealed the top results. Our findings support the study hypothesis that Saro and BrMSCs can be proposed as potential treatments for IPF.
Collapse
Affiliation(s)
- Seba Hassan Attia
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Sara F Saadawy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa M El-Mahroky
- Medical Histology and Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahitab M Nageeb
- Clinical Pharmacology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Ezhilarasan D. Deciphering the molecular pathways of saroglitazar: A dual PPAR α/γ agonist for managing metabolic NAFLD. Metabolism 2024; 155:155912. [PMID: 38609038 DOI: 10.1016/j.metabol.2024.155912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Saroglitazar (SARO), a dual peroxisome proliferator activated receptor (PPAR)-α/γ agonist, has been used to treat metabolic diseases such as insulin resistance and diabetic dyslipidemia in patients with non-alcoholic fatty liver disease (NAFLD). SARO, administered at a dose of 4 mg/day, has been consistently studied in clinical trials with different time points ranging from 4 to 24 weeks with NAFLD patients. Due to its PPAR-γ agonistic action, SARO prevents adipose tissue-mediated fatty acid delivery to the liver by increasing insulin sensitivity and regulating adiponectin and leptin levels in adipose tissue. In hepatocytes, SARO induces fatty acid β-oxidation in mitochondria and transcriptionally activates lipid metabolizing genes in peroxisomes. SARO inhibits insulin resistance, thereby preventing the activation of sterol regulatory element-binding proteins -1c and carbohydrate response element binding protein in hepatocytes through its PPAR-α agonistic action. SARO treatment reduces lipotoxicity-mediated oxidative stress by activating the nuclear factor erythroid 2-related factor 2 and transcriptionally expressing the antioxidants from the antioxidant response element in the nucleus through its PPAR-γ agonistic action. SARO provides a PPAR-α/γ-mediated anti-inflammatory effect by preventing the phosphorylation of mitogen-activated protein kinases (JNK and ERK) and nuclear factor kappa B in hepatocytes. Additionally, SARO interferes with transforming growth factor-β/Smad downstream signaling, thereby reducing liver fibrosis progression through its PPAR-α/γ agonistic actions. Thus, SARO improves insulin resistance and dyslipidemia in NAFLD, reduces lipid accumulation in the liver, and thereby prevents mitochondrial toxicity, oxidative stress, inflammation, and fibrosis progression. This review summarizes the possible molecular mechanism of SARO in the NAFLD.
Collapse
Affiliation(s)
- Devaraj Ezhilarasan
- Department of Pharmacology, Hepatology and Molecular Medicine Lab, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 600 077, India.
| |
Collapse
|
4
|
Abd-Allah H, Abdel Jaleel GA, Hassan A, El Madani M, Nasr M. Ferulic acid nanoemulsion as a promising anti-ulcer tool: in vitro and in vivo assessment. Drug Dev Ind Pharm 2024; 50:460-469. [PMID: 38602337 DOI: 10.1080/03639045.2024.2341786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
OBJECTIVE Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1β and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.
Collapse
Affiliation(s)
- Hend Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| | | | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | | | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain shams University, Cairo, Egypt
| |
Collapse
|
5
|
Yuan J, Wang Y, Gao J, Zhang X, Xing J. Eicosapentaenoic Acid Alleviates Inflammatory Response and Insulin Resistance in Pregnant Mice With Gestational Diabetes Mellitus. Physiol Res 2024; 73:57-68. [PMID: 38466005 PMCID: PMC11019622 DOI: 10.33549/physiolres.935113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/13/2023] [Indexed: 04/26/2024] Open
Abstract
This study investigated the effect of eicosapentaenoic acid (EPA) on insulin resistance in pregnant mice with gestational diabetes mellitus (GDM) and underlying mechanism. C57BL/6 mice fed with a high-fat diet for 4 weeks and the newly gestated were selected and injected with streptozotocin for GDM modeling. We demonstrated that the fasting insulin levels (FINS) and insulin sensitivity index (ISI) in serum and blood glucose level were significantly higher in GDM group than in normal control (NC) group. The low or high dose of EPA intervention reduced these levels, and the effect of high dose intervention was more significant. The area under the curve in GDM group was higher than that of NC group, and then gradually decreased after low or high dose of EPA treatment. The serum levels of TC, TG and LDL were increased in GDM group, while decreased in EPA group. GDM induced down-regulation of HDL level, and the low or high dose of EPA gradually increased this level. The levels of p-AKT2Ser, p-IRS-1Tyr, GLUT4, and ratios of pIRS-1Tyr/IRS-1 and pAKT2Ser/AKT2 in gastrocnemius muscle were reduced in GDM group, while low or high dose of EPA progressively increased these alterations. GDM enhanced TLR4, NF-kappaB p65, IL-1beta, IL-6 and TNF-alpha levels in placental tissues, and these expressions were declined at different dose of EPA, and the decrease was greater at high dose. We concluded that EPA receded the release of inflammatory factors in the placental tissues by inhibiting the activation of TLR4 signaling, thereby alleviating the IR.
Collapse
Affiliation(s)
- J Yuan
- Department of Obstetrics and Gynecology, North China University of Science and Technology Affiliated Hospital, Lubei District, Tangshan, Hebei, People's Republic of China.
| | | | | | | | | |
Collapse
|
6
|
Amer AE, Ghoneim HA, Abdelaziz RR, Shehatou GSG, Suddek GM. Saroglitazar mitigated NASH-associated hepatic injury in dexamethasone-treated rats via modulating autophagy, apoptosis, and necroptosis. Toxicol Appl Pharmacol 2024; 482:116774. [PMID: 38040297 DOI: 10.1016/j.taap.2023.116774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
This study aimed to evaluate the possible ameliorative effects of saroglitazar (SAR) on aspects of hepatic injury in dexamethasone (DEX)-induced nonalcoholic steatohepatitis (NASH) in rats. Wistar rats received SAR (2 or 4 mg/kg/day, orally) or metformin (MET, 500 mg/kg/day, orally) for one week before and concurrently with DEX administration (8 mg/kg/day, i.p., for 6 days. Control and drug control groups received vehicle or the higher dose of SAR, respectively. At the end of the experiment, an oral glucose tolerance test (OGTT) was conducted, serum hepatic function parameters and lipid profile were assessed, and hepatic histological changes were evaluated. Moreover, hepatic p-Akt/Akt ratios, malondialdehyde (MDA) content, SREBP-1, FOXO1, LC3, cleaved caspase-3, and p-MLKL protein levels were determined. Furthermore, hepatic immunohistochemical expressions of FOXO1, caspase-3, Bcl-2, LC3, and P62 were examined. SAR (mainly at 4 mg/kg/day) significantly improved Area under the OGTT curve (P < 0.0001), hepatic function parameters, lipid profile, and hepatic histopathological features in DEX-administered rats. Moreover, SAR significantly attenuated DEX-induced increases in hepatic MDA content (P < 0.05), SREBP-1 levels (P < 0.0001), and nuclear FOXO1, caspase-3, LC3, P62, and p-MLKL protein expressions (P < 0.0001). Furthermore, SAR significantly enhanced hepatic p-Akt/Akt ratio and Bcl-2 protein expression in DEX-administered rats (P < 0.0001). The higher dose of SAR showed greater hepatoprotective effects compared to its corresponding lower dose and MET in most assessments, approaching levels similar to the control group. SAR mitigated hepatic injury associated with DEX-induced NASH in rats, suggesting it might be a potential hepatoprotective drug for patients with or at high risk of NASH.
Collapse
Affiliation(s)
- Ahmed E Amer
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya 11152, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hamdy A Ghoneim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - George S G Shehatou
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, International Coastal Road, Gamasa City, Dakahliya 11152, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
7
|
Roy A, Tewari B, Giri S, Goenka M. Saroglitazar in Non-alcoholic Fatty Liver Disease From Bench to Bedside: A Comprehensive Review and Sub-group Meta-Analysis. Cureus 2023; 15:e47493. [PMID: 38022283 PMCID: PMC10663873 DOI: 10.7759/cureus.47493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most common causes of liver diseases globally, with a projected exponential rise. In contrast to the exponential rise in disease burden, there are limited options in the pharmacotherapeutic armamentarium against NAFLD. Saroglitazar belongs to the class of drugs known as peroxisome proliferator-activated receptor (PPAR) agonists, initially introduced for managing diabetic dyslipidemia. However, based on translational and clinical studies, it has been shown to be efficacious in NAFLD. It has been shown to modify key parameters in NAFLD, including reduction of transaminase levels, improvement in overall metabolic health, reduction of liver fat content, and improvement of liver stiffness and histology. Given the promising results, it has been made a part of society's guidelines in the therapeutic management of NAFLD. However, there remains a dearth of detailed reviews encompassing both pre-clinical and clinical data on the effectiveness of saroglitazar in NAFLD. In this review, we comprehensively review the pharmacology, pre-clinical data, and clinical studies on saroglitazar usage in NAFLD and conduct a subgroup meta-analysis of studies focussing on the impact of saroglitazar on liver stiffness changes.
Collapse
Affiliation(s)
- Akash Roy
- Gastroenterology, Apollo Multispeciality Hospitals, Kolkata, IND
| | - Bikram Tewari
- Pharmacology, Sikkim Manipal Institute of Medical Sciences, Gangtok, IND
| | - Suprabhat Giri
- Gastroenterology and Hepatology, Kalinga Institute of Medical Sciences, Bhubaneshwar, IND
| | - Mahesh Goenka
- Gastroenterology, Apollo Multispeciality Hospitals, Kolkata, IND
| |
Collapse
|
8
|
Tidwell J, Balassiano N, Shaikh A, Nassar M. Emerging therapeutic options for non-alcoholic fatty liver disease: A systematic review. World J Hepatol 2023; 15:1001-1012. [PMID: 37701920 PMCID: PMC10494562 DOI: 10.4254/wjh.v15.i8.1001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/18/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become a prevalent cause of chronic liver disease and ranks third among the causes of transplantation. In the United States alone, annual medical costs are approximately 100 billion dollars. Unfortunately, there is no Federal Drug Administration (FDA)-approved medication for its treatment. However, various clinical trials are investigating several therapeutic classes that could potentially treat NAFLD. It is valuable to have a compilation of the data available on their efficacy. AIM To assess the efficacy of cyclophilin inhibitors, fibroblast growth factor 21 analogs (FGF21), and dual and pan peroxisome proliferator-activated receptor (PPAR) agonists for treating NAFLD. METHODS A comprehensive literature search using keywords including cyclophilin inhibitor, FGF agonist, pan-PPAR agonists, dual-PPAR agonist, NAFLD, non-alcoholic steatohepatitis, and fatty liver was conducted on October 29, 2022, in PubMed, EMBASE, Cochrane Library, Scopus and Web of Science. Animal and human research, case reports, and published articles in English from all countries with patients aged 18 and above were included. Only articles with a National Institutes of Health (NIH) Quality Assessment score of five or higher out of eight points were included. Articles that were narrative or systematic reviews, abstracts, not in English, focused on patients under 18 years old, did not measure outcomes of interest, were inaccessible, or had a low NIH Quality Assessment score were excluded. Each article was screened by two independent researchers evaluating relevance and quality. Resources were scored based on the NIH Quality Assessment Score; then, pertinent data was extracted in a spreadsheet and descriptively analyzed. RESULTS Of the 681 records screened, 29 met the necessary criteria and were included in this review. These records included 12 human studies and 17 animal studies. Specifically, there were four studies on cyclophilin inhibitors, four on FGF agonists/analogs, eleven on pan-PPAR agonists, and ten on dual-PPAR agonists. Different investigational products were assessed: The most common cyclophilin inhibitor was NV556; FGF agonists and analogs was Efruxifermin; pan-PPAR agonists was Lanifibranor; and dual-PPAR agonists was Saroglitazar. All classes were found to be statistically efficacious for the treatment of NAFLD, with animal studies demonstrating improvement in steatosis and/or fibrosis on biopsy and human studies evidencing improvement in different metabolic parameters and/or steatosis and fibrosis on FibroScan (P < 0.05). CONCLUSION The data analyzed in this review showed clinically significant improvement in individual histological features of NAFLD in both animal and human trials for all four classes, as well as good safety profiles (P < 0.05). We believe this compilation of information will have positive clinical implications in obtaining an FDA-approved therapy for NAFLD.
Collapse
Affiliation(s)
- Jasmine Tidwell
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06032, United States
| | - Natalie Balassiano
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai/NYC Health+Hospitals/Queens, New York, NY 11432, United States
| | - Anjiya Shaikh
- Department of Internal Medicine, University of Connecticut, Farmington, CT 06032, United States
| | - Mahmoud Nassar
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY 14221, United States.
| |
Collapse
|
9
|
Bandyopadhyay S, Samajdar SS, Das S. Effects of saroglitazar in the treatment of non-alcoholic fatty liver disease or non-alcoholic steatohepatitis: A systematic review and meta-analysis. Clin Res Hepatol Gastroenterol 2023; 47:102174. [PMID: 37380128 DOI: 10.1016/j.clinre.2023.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/14/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
AIM This systematic review and meta-analysis was conducted to evaluate the efficacy and safety of 4 mg saroglitazar treatment in patients with non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH). METHODS PubMed, Embase, Scopus, Cochrane CENTRAL, medRxiv (pre-print), bioRxiv (pre-print), and ClinicalTrials.gov databases were searched for relevant studies. The primary outcome was the change in the serum alanine transaminase (ALT) level. The secondary outcomes were changes in liver stiffness, liver function test parameters, and metabolic parameters. Pooled mean differences were calculated using random-effects models. RESULTS Of 331 studies that were screened, ten were included. Treatment with adjunct saroglitazar showed a reduction in ALT [mean difference: 26.01 U/L (95% CI: 10.67 to 41.35); p = 0.009; i2: 98%; moderate GRADE evidence] and aspartate transaminase [mean difference: 19.68 U/L (95% CI: 8.93 to 30.43); p<0.001; i2: 97%; moderate GRADE evidence] levels. There was a significant improvement in liver stiffness [mean difference: 2.22 kPa (95% CI: 0.80 to 3.63); p = 0.002; i2: 99%; moderate GRADE evidence]. There were significant improvements in glycated hemoglobin [mean difference: 0.59% (95% CI: 0.32 to 0.86); p<0.001; i2: 78%; moderate GRADE evidence], total cholesterol [mean difference: 19.20 (95% CI: 1.54 to 36.87); p = 0.03; i2: 95%; moderate GRADE evidence], and triglyceride [mean difference: 105.49 mg/dL (95% CI: 11.18 to 199.80); p = 0.03; i2: 100%; moderate GRADE evidence] levels. Saroglitazar treatment was safe. CONCLUSION Treatment with adjunct 4 mg saroglitazar could significantly improve liver enzymes, reduce liver stiffness, and improve metabolic parameters (serum glucose and lipid profile) in patients with NAFLD or NASH.
Collapse
Affiliation(s)
| | - Shambo Samrat Samajdar
- Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, India
| | - Saibal Das
- Indian Council of Medical Research - Centre for Ageing and Mental Health, Kolkata, India; Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
10
|
Sedik AA, Hassan A, Saleh DO. Neuromodulatory role of L-arginine: nitric oxide precursor against thioacetamide-induced-hepatic encephalopathy in rats via downregulation of NF-κB-mediated apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84791-84804. [PMID: 37378730 PMCID: PMC10359237 DOI: 10.1007/s11356-023-28184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023]
Abstract
The aim of the present study was to investigate the impact of arginine (ARG), a nitric oxide (NO) precursor, on thioacetamide (TAA)-induced hepatic encephalopathy (HE) in rats by injection of TAA (100 mg/kg, i.p) three times per week for six consecutive weeks. TAA-injected rats were administered ARG (100 mg/kg; p.o.) concurrently with TAA for the six consecutive weeks. Blood samples were withdrawn, and rats were sacrificed; liver and brain tissues were isolated. Results of the present study demonstrated that ARG administration to TAA-injected rats revealed a restoration in the serum and brain ammonia levels as well as serum aspartate transaminase, alanine transaminase, and alkaline phosphatase and total bilirubin levels as well as behavioral alterations evidenced by restoration in locomotor activity, motor skill performance, and memory impairment. ARG showed also improvement in the hepatic and neuro-biochemical values, pro-inflammatory cytokines, and oxidative stress biomarkers. All these results were confirmed by histopathological evaluation as well as ultrastructural imaging of the cerebellum using a transmission electron microscope. Furthermore, treatment with ARG could ameliorate the immunological reactivity of nuclear factor erythroid-2-related factor 2 (Nrf2) and cleaved caspase-3 proteins in the cerebellum and hepatic tissues. From all the previous results, it can be fulfilled that ARG showed a beneficial role in modulating the adverse complications associated with TAA-induced HE in rats via reducing hyperammonemia and downregulating nuclear factor kappa B (NF-κB)-mediated apoptosis.
Collapse
Affiliation(s)
- Ahmed A Sedik
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Cairo, Egypt.
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Cairo, Egypt
| |
Collapse
|
11
|
Francis MR, El-Sheakh AR, Suddek GM. Saroglitazar, a dual PPAR-α/γ agonist, alleviates LPS-induced hepatic and renal injury in rats. Int Immunopharmacol 2023; 115:109688. [PMID: 36681027 DOI: 10.1016/j.intimp.2023.109688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/18/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS), an endotoxin within gram-negative bacteria, is associated with systemic acute inflammatory response after invading living tissues and results in sepsis. The liver and kidney are both major target organs in sepsis. Septic acute hepatic-renal injury is a serious clinical condition with high risk of morbidity and mortality. Nevertheless, effective treatment is still lacking. AIM This study highlights saroglitazar (SAR), a dual PPAR-α/γ agonist, as a proposed prophylactic drug against LPS-induced hepatic-renal injury. MAIN METHODS Rats were pretreated with SAR (2 and 4 mg/kg/day) for 15 days, while sepsis was induced by LPS injection (10 mg/kg) on day 15 one hour following SAR oral administration. KEY FINDINGS SAR pretreatment could successfully mitigate LPS-induced hepatic-renal injury, evidenced by enhancement of renal and hepatic functions and a decrease of tissue pathological injury. Meanwhile, SAR alleviated LPS-induced oxidative stress; it reduced malondialdehyde (MDA) levels and ameliorated decreased levels of superoxide dismutase (SOD) and glutathione (GSH). LPS-induced elevations in hepatic and renal nuclear factor-kappa B (NF-κB), phosphorylated inhibitor of kappa B alpha (p-IκBα), interferon-beta (IFN-β), and hepatic high mobility group box-1 (HMGB-1) contents were significantly attenuated in SAR-treated groups. SAR showed an advantageous impact against LPS-induced activation of non-canonical inflammasome and pyroptosis via a significant reduction in cysteinyl aspartate-specific proteinase-11 (Caspase-11) and gasdermin D (GSDMD) expressions. Moreover, Nucleotide-Binding Oligomerization Domain (NOD)-Like Receptor Protein 3 (NLRP3) inflammasome activation with concomitant expression and activation of caspase-1 and release of interleukin-1beta (IL-1β) were considerably diminished following SAR pretreatment. SIGNIFICANCE SAR could be considered a prophylactic anti-inflammatory antioxidant drug against LPS-induced liver and kidney injury.
Collapse
Affiliation(s)
- Marina R Francis
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Ahmed R El-Sheakh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Ghada M Suddek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Si MD, Wu M, Cheng XZ, Ma ZH, Zheng YG, Li J, Li S, Song YX, Ma D. Swertia mussotii prevents high-fat diet-induced non-alcoholic fatty liver disease in rats by inhibiting expression the TLR4/MyD88 and the phosphorylation of NF-κB. PHARMACEUTICAL BIOLOGY 2022; 60:1960-1968. [PMID: 36205548 PMCID: PMC9559049 DOI: 10.1080/13880209.2022.2127153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/27/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Swertia mussotii Franch. (Gentianaceae) is a source of the traditional Tibetan medicine, ZangYinChen, and is used to treat chronic hepatitis and many types of jaundice. OBJECTIVE This study explored the therapeutic effects and mechanism of S. mussotii on non-alcoholic fatty liver disease in diet-induced hypercholesterolaemia. MATERIALS AND METHODS After a week of adaptive feeding, 32 Sprague-Dawley rats were divided into four groups: (1) Control, (2) Control-S, (3) Model, and (4) Model-S. During the 12 experimental weeks, we established the Model using a high-fat diet. Control-S and Model-S were given 1.0 g/kg S. mussotii water extract via gavage starting in the fifth week until the end of experiment. RESULTS When compared with Model rats, the S. mussotii water extract led to a reduction in high-density lipoproteins (43.9%) and albumin (13.9%) and a decrease in total cholesterol (54.0%), triglyceride (45.6%), low-density lipoproteins (8.6%), aspartate aminotransferase (11.0%), alanine aminotransferase (15.5%), alkaline phosphatase (19.1%), total protein (6.4%), and glucose (20.8%) in serum. A reduction in three cytokines (IL-1β, IL-6, and TNFα) was detected. Histopathological examination showed that liver steatosis was significantly relieved in S. mussotii-treated high-fat diet rats. S. mussotii also caused a downregulation in the expression of TLR4 (43.2%), MyD88 (33.3%), and a decrease in phosphorylation of NF-κB. DISCUSSION AND CONCLUSIONS Our findings indicate that S. mussotii may act as a potential anti-inflammation drug via inhibition of the TLR4/MyD88/NF-κB pathway. Further in vivo and in vitro studies are needed to validate its potential in clinical medicine.
Collapse
Affiliation(s)
- Ming Dong Si
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Meng Wu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Zhen Cheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhi Hong Ma
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yu Guang Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Shijiazhuang, China
| | - Jing Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Si Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yong Xing Song
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| | - Donglai Ma
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Higher Education Institute Applied Technology Research Center on TCM Formula Preparation, Shijiazhuang, China
| |
Collapse
|
13
|
Zhao H, Gao X, Liu Z, Zhang L, Fang X, Sun J, Zhang Z, Sun Y. Sodium Alginate Prevents Non-Alcoholic Fatty Liver Disease by Modulating the Gut-Liver Axis in High-Fat Diet-Fed Rats. Nutrients 2022; 14:nu14224846. [PMID: 36432531 PMCID: PMC9697635 DOI: 10.3390/nu14224846] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
Previous studies have suggested that the sodium alginate (SA) is beneficial for the treatment of non-alcoholic fatty liver disease (NAFLD), while the potential mechanisms are largely unknown. The present study aimed to clarify the effects and potential mechanisms of SA in preventing NAFLD via the gut−liver axis. Thirty-two male Sprague−Dawley rats were randomly divided into four groups: normal control group (NC); high-fat diet group (HFD); HFD with 50 mg/kg/d sodium alginate group (LSA); HFD with 150 mg/kg/d sodium alginate group (HSA). After 16 weeks, the rats were scarified to collect blood and tissues. The results indicated that SA significantly reduced their body weight, hepatic steatosis, serum triglyceride (TG), alanine transaminase (ALT) and tumor necrosis factor α (TNF-α) levels and increased serum high-density lipoprotein-cholesterol (HDL-C) levels in comparison with HFD group (p < 0.05). The elevated mRNA and protein expression of genes related to the toll-like receptor 4 (TLR-4)/nuclear factor-kappa B (NF-κB)/nod-like receptor protein 3 (NLRP3) inflammatory signaling pathway in the liver of HFD-fed rats was notably suppressed by SA. In terms of the gut microbiota, the LSA group showed a significantly higher fecal abundance of Oscillospiraceae_UCG_005, Butyricicoccaceae_UCG_009 and Colidextribacter compared with the HFD group (p < 0.05). The rats in the HSA group had a higher abundance of unclassified_Lachnospiraceae, Colidextribacter and Oscillibacter compared with the HFD-associated gut community (p < 0.05). In addition, rats treated with SA showed a significant increase in fecal short chain fatty acids (SCFAs) levels and a decline in serum lipopolysaccharide (LPS) levels compared with the HFD group (p < 0.05). Moreover, the modulated bacteria and microbial metabolites were notably correlated with the amelioration of NAFLD-related indices and activation of the hepatic TLR4/NF-κB/NLRP3 pathway. In conclusion, SA prevented NAFLD and the potential mechanism was related to the modulation of the gut−liver axis.
Collapse
Affiliation(s)
- Hui Zhao
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China
| | - Zhizuo Liu
- Women and Children’s Hospital Affiliated to Qingdao University, Qingdao 266071, China
| | - Lei Zhang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Xuan Fang
- Qingdao Institute for Food and Drug Control, Qingdao 266071, China
| | - Jianping Sun
- Qingdao Centers for Disease Control and Prevention, Qingdao 266033, China
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory of Food Safety Toxicology Research and Evaluation, Beijing 100191, China
- Correspondence: (Z.Z.); (Y.S.); Tel.: +86-10-82801575 (Z.Z.); +86-138-63980712 (Y.S.)
| | - Yongye Sun
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao 266071, China
- Correspondence: (Z.Z.); (Y.S.); Tel.: +86-10-82801575 (Z.Z.); +86-138-63980712 (Y.S.)
| |
Collapse
|
14
|
Khanmohammadi S, Kuchay MS. Toll-like receptors and metabolic (dysfunction)-associated fatty liver disease. Pharmacol Res 2022; 185:106507. [DOI: 10.1016/j.phrs.2022.106507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
15
|
Kolieb E, Maher SA, Shalaby MN, Alsuhaibani AM, Alharthi A, Hassan WA, El-Sayed K. Vitamin D and Swimming Exercise Prevent Obesity in Rats under a High-Fat Diet via Targeting FATP4 and TLR4 in the Liver and Adipose Tissue. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13740. [PMID: 36360622 PMCID: PMC9656563 DOI: 10.3390/ijerph192113740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/05/2022]
Abstract
The prevalence of obesity has risen in the last decades, and it has caused massive health burdens on people's health, especially metabolic and cardiovascular issues. The risk of vitamin D insufficiency is increased by obesity, because adipose tissue alters both the requirements for and bioavailability of vitamin D. Exercise training is acknowledged as having a significant and long-term influence on body weight control; the favorable impact of exercise on obesity and obesity-related co-morbidities has been demonstrated via various mechanisms. The current work illustrated the effects of vitamin D supplementation and exercise on obesity induced by a high-fat diet (HFD) and hepatic steatosis in rats and explored how fatty acid transport protein-4 (FATP4) and Toll-like receptor-4 antibodies (TLR4) might be contributing factors to obesity and related hepatic steatosis. Thirty male albino rats were divided into five groups: group 1 was fed a normal-fat diet, group 2 was fed an HFD, group 3 was fed an HFD and given vitamin D supplementation, group 4 was fed an HFD and kept on exercise, and group 5 was fed an HFD, given vitamin D, and kept on exercise. The serum lipid profile adipokines, interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) were analyzed, and the pathological changes in adipose and liver tissues were examined. In addition, the messenger-ribonucleic acid (mRNA) expression of FATP4 and immunohistochemical expression of TLR4 in adipose and liver tissues were evaluated. Vitamin D supplementation and exercise improved HFD-induced weight gain and attenuated hepatic steatosis, along with improving the serum lipid profile, degree of inflammation, and serum adipokine levels. The expression of FATP4 and TLR4 in both adipose tissue and the liver was downregulated; it was noteworthy that the group that received vitamin D and was kept on exercise showed also improvement in the histopathological picture of this group. According to the findings of this research, the protective effect of vitamin D and exercise against obesity and HFD-induced hepatic steatosis is associated with the downregulation of FATP4 and TLR4, as well as a reduction in inflammation.
Collapse
Affiliation(s)
- Eman Kolieb
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Shymaa Ahmed Maher
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center of Excellence in Molecular and Cellular Medicine (CEMCM), Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Mohammed Nader Shalaby
- Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia 41522, Egypt
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Afaf Alharthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wael A. Hassan
- Department of Pathology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Basic Sciences, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah 52726, Saudi Arabia
| | - Karima El-Sayed
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
16
|
Katoch S, Sharma V, Patial V. Peroxisome proliferator-activated receptor gamma as a therapeutic target for hepatocellular carcinoma: Experimental and clinical scenarios. World J Gastroenterol 2022; 28:3535-3554. [PMID: 36161051 PMCID: PMC9372809 DOI: 10.3748/wjg.v28.i28.3535] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/25/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of liver cancer worldwide. Viral hepatitis is a significant risk factor for HCC, although metabolic syndrome and diabetes are more frequently associated with the HCC. With increasing prevalence, there is expected to be > 1 million cases annually by 2025. Therefore, there is an urgent need to establish potential therapeutic targets to cure this disease. Peroxisome-proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that plays a crucial role in the patho-physiology of HCC. Many synthetic agonists of PPARγ suppress HCC in experimental studies and clinical trials. These synthetic agonists have shown promising results by inducing cell cycle arrest and apoptosis in HCC cells and preventing the invasion and metastasis of HCC. However, some synthetic agonists also pose severe side effects in addition to their therapeutic efficacy. Thus natural PPARγ agonists can be an alternative to exploit this potential target for HCC treatment. In this review, the regulatory role of PPARγ in the pathogenesis of HCC is elucidated. Furthermore, the experimental and clinical scenario of both synthetic and natural PPARγ agonists against HCC is discussed. Most of the available literature advocates PPARγ as a potential therapeutic target for the treatment of HCC.
Collapse
Affiliation(s)
- Swati Katoch
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| | - Vinesh Sharma
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| | - Vikram Patial
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, UP, India
| |
Collapse
|
17
|
Wu J, Chen P, Ju L, Gao R, Li S, Huang Z, Cheng Y, Gui S, Qiu Z, Cheng J, Huang F. Corydalis saxicola Bunting Total Alkaloids ameliorate diet-induced non-alcoholic steatohepatitis by regulating hepatic PI3K/Akt and TLR4/NF-κB pathways in mice. Biomed Pharmacother 2022; 151:113132. [PMID: 35623174 DOI: 10.1016/j.biopha.2022.113132] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022] Open
Abstract
Corydalis saxicola Bunting (Yanhuanglian), distributed in Southwest China, is mainly used for treatment of hepatitis, oral mucosal erosion, conjunctivitis, dysentery, acute abdominal pain and hemorrhoids in the folk. Corydalis saxicola Bunting Total Alkaloids (CSBTA) are the active ingredients extracted from the root of C. saxicola bunting. Non-alcoholic steatohepatitis (NASH) is the hinge between steatosis and cirrhosis in the spectrum of Non-alcoholic fatty liver disease (NAFLD), which has become one of the most common chronic liver diseases in the world. CSBTA can reduce tumors and brain diseases through anti-inflammatory and antioxidant pathways. Our study was designed to clarify the effects of CSBTA on the HFHC (High fat and high carbohydrate drinking) diet induced mice. In our research, A HFHC diet induced NASH mice model was applied to investigate the effects of CSBTA in vivo and obeticholic acid (OA) was set as positive control. Moreover, the underlying mechanisms were explored by palmitic acid (PA) and lipopolysaccharide (LPS) stimulated HepG2 cells in vitro. The in vivo study illustrated that CSBTA could alleviate mice away from the onset of NASH, and reduce intrahepatocellular lipid accumulation and hepatocyte inflammation under high fat condition. Further in vitro analysis confirmed that CSBTA attenuated inflammation and hepatic lipid accumulation by improving hepatic PI3K/Akt and suppressing hepatic TLR4/NF-κB pathways. In summary, this study demonstrated that CSBTA might be a promising compound for the treatment of NAFLD.
Collapse
Affiliation(s)
- Jiejie Wu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Ping Chen
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Linjie Ju
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Renhao Gao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Silu Li
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Ziqian Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Yiqiu Cheng
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Shuqi Gui
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China; Nanjing Zhongshan Pharmaceutical Co, Ltd., 21 Hengfa Road, Nanjing Economic and Technological Development Zone, Nanjing, PR China
| | - Zhixia Qiu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China
| | - Jun Cheng
- Nanjing Zhongshan Pharmaceutical Co, Ltd., 21 Hengfa Road, Nanjing Economic and Technological Development Zone, Nanjing, PR China
| | - Fang Huang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 639 Longmian avenue, Nanjing, PR China.
| |
Collapse
|
18
|
Mohammed MA, Ibrahim BMM, Abdel-Latif Y, Hassan AH, El Raey MA, Hassan EM, El-Gengaihi SE. Pharmacological and metabolomic profiles of Musa acuminata wastes as a new potential source of anti-ulcerative colitis agents. Sci Rep 2022; 12:10595. [PMID: 35732649 PMCID: PMC9218116 DOI: 10.1038/s41598-022-14599-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/09/2022] [Indexed: 12/02/2022] Open
Abstract
Musa acuminata (MA) is a popular fruit peels in the world. Non-food parts of the plant have been investigated for their antioxidant and anti-ulcerative colitis activity. Metabolomic approaches were found to be informative as a screening tool. It discovered different metabolites depending on statistical analysis. The antioxidant activity content was measured by colorimetric method. Seventy six investigated metabolites were observed. The identities of some of these markers were confirmed based on their MS2 fragmentation and NMR spectroscopy. These include: cinnamic acid and its dimer 2-hydroxy-4-(4-methoxyphenyl)-1H-phenalen-1-one beside; gallic acid and flavonoids; quercetin, quercetin-3-O-β-d-glucoside, luteolin-7-O-β-d-glucopyranoside. GC/MS analysis of MA peels essential oil led to identification of 37 compounds. The leaves, pseudostem and fruit peels extracts were tested for their safety and their anti-ulcerative colitis efficacy in rats. Rats were classified into: normal, positive, prednisolone reference group, MA extracts pretreated groups (250–500 mg/kg) for 2 weeks followed by induction of ulcerative colitis by per-rectal infusion of 8% acetic acid. Macroscopic and microscopic examinations were done. Inflammatory markers (ANCA, CRP and Ilβ6) were measured in sera. The butanol extracts showed good antioxidant and anti-inflammatory activities as they ameliorated macroscopic and microscopic signs of ulcerative colitis and lowered the inflammatory markers compared to untreated group. MA wastes can be a potential source of bioactive metabolites for industrial use and future employment as promising anti-ulcerative colitis food supplements.
Collapse
Affiliation(s)
- Mona A Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt.
| | - Bassant M M Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Yasmin Abdel-Latif
- Medical Biochemistry Department, Medicine and Clinical Studies Research Institute, National Research Centre, Cairo, 12622, Egypt.,Faculty of Biotechnology, October University for Modern Sciences and Arts, 6th October, Giza, Egypt
| | - Azza H Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, 12622, Egypt
| | - Emad M Hassan
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt
| | - Souad E El-Gengaihi
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, 12622, Egypt.
| |
Collapse
|
19
|
Komeili-Movahhed T, Bassirian M, Changizi Z, Moslehi A. SIRT1/NFκB pathway mediates anti-inflammatory and anti-apoptotic effects of rosmarinic acid on in a mouse model of nonalcoholic steatohepatitis (NASH). J Recept Signal Transduct Res 2022; 42:241-250. [PMID: 33787460 DOI: 10.1080/10799893.2021.1905665] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/07/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is considered as a common liver disease. SIRT1, a pivotal sensor, controls activation of metabolic, inflammatory and apoptotic pathways. Rosmarinic acid (RA) has positive effects on the liver injuries; nevertheless, its mechanisms are not completely studied. The aim of this study was to explore the role of rosmarinic acid on the pathways involved by SIRT1 for amelioration of a mouse model of NASH. To do this, C57/BL6 mice were divided into four equal groups (6 in each group). Animals received saline and rosmarinic acid as the control groups. NASH was induced by methionine-choline-deficient (MCD) diet. In the NASH + RA group, Rosmarinic acid was injected daily in mice fed on an MCD diet. Rosmarinic acid decreased plasma triglyceride, cholesterol, liver Steatosis and oxidative stress. Rosmarinic acid administration also increased SIRT1, Nrf2 and PPARα and decreased SREBP1c, FAS, NFκB and caspase3 expressions. Moreover, TNFα, IL6, P53, Bax/Bcl2 ratio and caspase3 expressions decreased. Our study demonstrated that remarkable effects of rosmarinic acid on the mice with NASH might be due to activation of SIRT1/Nrf2, SIRT1/NFκB and SIRT1/PPARα pathways, which alleviate hepatic steatosis, oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
| | - Mahdi Bassirian
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | | | - Azam Moslehi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
20
|
Saleh DO, Nasr M, Hassan A, El‐Awdan SA, Abdel Jaleel GA. Curcumin nanoemulsion ameliorates brain injury in diabetic rats. J Food Biochem 2022; 46:e14104. [DOI: 10.1111/jfbc.14104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/14/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Dalia O. Saleh
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy Ain Shams University Cairo Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine Cairo University Cairo Egypt
| | - Sally A. El‐Awdan
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| | - Gehad A. Abdel Jaleel
- Department of Pharmacology Medical Research and Clinical Studies Institute, National Research Centre Giza Egypt
| |
Collapse
|
21
|
Abdel-Rafei MK, Thabet NM, El Tawel G, El Bakary NM, El Fatih NM, Sh Azab K. Role of leptin/STAT3 signaling and RIP-kinases in fucoxanthin influences on mice exposed to LPS and gamma radiation. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.2008451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohamed K. Abdel-Rafei
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Noura M. Thabet
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ghada El Tawel
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nermeen M. El Bakary
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Neama M. El Fatih
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Khaled Sh Azab
- Radiation Biology Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
22
|
Mostafa RE, Shaffie NM, Allam RM. Panax Ginseng alleviates thioacetamide-induced liver injury in ovariectomized rats: Crosstalk between inflammation and oxidative stress. PLoS One 2021; 16:e0260507. [PMID: 34843587 PMCID: PMC8629276 DOI: 10.1371/journal.pone.0260507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
Liver diseases impose a substantial health problem. Female hormones play a crucial role in the protection against chronic inflammatory diseases. Fifty female rats were allocated into five groups (n = 10). Group I comprised sham-operated rats. The remaining groups underwent ovariectomy at the beginning of the experiment. Group II served as the ovariectomy-control group. Groups III, IV & V received thioacetamide (TAA; 300 mg/kg; i.p.) to induce liver injury 6 weeks after ovariectomy. Group III served as the TAA-control group. Groups IV & V received panax ginseng (100 and 300 mg/kg/day, p.o.) for 6 weeks post TAA administration. All groups were investigated for liver function tests along with total antioxidant capacity (TAC), tumor necrosis factor-α (TNF-α) and advanced glycation end products (AGEs). Histopathological examination of liver tissues was performed followed by immunohistochemical staining for nuclear factor kappa-B (NF-kβ p65) and myeloperoxidase (MPO). Ovariectomized-rats showed a non-significant change in the measured parameters while TAA administration resulted in significant liver damage. Panax ginseng at both dose levels significantly improved the serum liver function tests and TAC along with decreasing the AGEs and TNF-α. It also restored the histopathological picture of liver tissue and decreased hepatic tissue inflammation via reduction of MPO and NF-kβ p65 immunoreactivity. The current study is the first to elucidate the effect of panax ginseng against TAA-induced liver injury in ovariectomized rats which mimic aged post-menopausal estrogen-deficient females. The study demonstrates the crosstalk between AGEs, NF-kβ and MPO in the modulation of inflammation. Panax ginseng possesses antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Rasha E. Mostafa
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Nermeen M. Shaffie
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Rasha M. Allam
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
23
|
Mostafa RE, Morsi AH, Asaad GF. Anti-inflammatory effects of saxagliptin and vildagliptin against doxorubicin-induced nephrotoxicity in rats: attenuation of NLRP3 inflammasome up-regulation and tubulo-interstitial injury. Res Pharm Sci 2021; 16:547-558. [PMID: 34522201 PMCID: PMC8407158 DOI: 10.4103/1735-5362.323920] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/25/2020] [Accepted: 05/23/2021] [Indexed: 12/27/2022] Open
Abstract
Background and purpose: The clinical use of the chemotherapeutic drug, doxorubicin (DXR), is significantly limited by its extensive multi-organ toxicity. Dipeptidyl peptidase-4 (DPP4) is over-expressed in oxidative stress, inflammation and apoptosis. DPP4 inhibitors have proven pleiotropic effects. The study investigates the protective effects of some DDP4 inhibitors; namely, saxagliptin (SAX) and vildagliptin (VIL) against DXR-induced nephrotoxicity in rats. Experimental approach: Forty rats were divided into 4 groups. Group I served as normal control. Nephrotoxicity was induced in the remaining 3 groups by single-DXR injection (15 mg/kg, i.p.). Groups III and IV administered oral SAX (10 mg/kg) and VIL (10 mg/kg) for 2 weeks. Findings/Results: DXR-control rats showed deteriorated renal functions, elevated renal inflammatory parameters (tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and inducible nitric oxide synthase (iNOS)), up-regulated nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and significant tubulointerstitial injury manifested by elevated neutrophil gelatinase-associated lipocalin concentration and distorted renal histopathological pictures. Immunohistochemical studies showed increased iNOS and Bax positivity in renal tissues of DXR-control rats. Treatment with SAX and VIL significantly attenuated DXR-induced nephrotoxicity via alleviation of all the above-mentioned parameters when compared to DXR-control rats. Conclusion and implications: The study elucidated the possible mechanisms beyond DXR-induced nephrotoxicity to be through inflammation plus tubulointerstitial injury. DXR nephrotoxicity has been linked to TNF-α, IL-1β, and NLRP3 inflammasome up-regulation and iNOS expression. The protective role of SAX and VIL in mitigating the tubular injury and inflammatory effects of DXR on renal tissues has been tested and proved.
Collapse
Affiliation(s)
- Rasha Ezzat Mostafa
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| | - Azza Hassan Morsi
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gihan Farag Asaad
- Pharmacology Department, Medical Research Division, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
24
|
Resveratrol and Quercetin as Regulators of Inflammatory and Purinergic Receptors to Attenuate Liver Damage Associated to Metabolic Syndrome. Int J Mol Sci 2021; 22:ijms22168939. [PMID: 34445644 PMCID: PMC8396326 DOI: 10.3390/ijms22168939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered a manifestation of metabolic syndrome (MS) and is characterized by the accumulation of triglycerides and a varying degree of hepatic injury, inflammation, and repair. Moreover, peroxisome-proliferator-activated receptors (PPARs) play a critical role in the pathophysiological processes in the liver. There is extensive evidence of the beneficial effect of polyphenols such as resveratrol (RSV) and quercetin (QRC) on the treatment of liver pathology; however, the mechanisms underlying their beneficial effects have not been fully elucidated. In this work, we show that the mechanisms underlying the beneficial effects of RSV and QRC against inflammation in liver damage in our MS model are due to the activation of novel pathways which have not been previously described such as the downregulation of the expression of toll-like receptor 4 (TLR4), neutrophil elastase (NE) and purinergic receptor P2Y2. This downregulation leads to a decrease in apoptosis and hepatic fibrosis with no changes in hepatocyte proliferation. In addition, PPAR alpha and gamma expression were altered in MS but their expression was not affected by the treatment with the natural compounds. The improvement of liver damage by the administration of polyphenols was reflected in the normalization of serum transaminase activities.
Collapse
|
25
|
Current and Emerging Approaches for Hepatic Fibrosis Treatment. Gastroenterol Res Pract 2021; 2021:6612892. [PMID: 34326871 PMCID: PMC8310447 DOI: 10.1155/2021/6612892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 07/10/2021] [Indexed: 02/07/2023] Open
Abstract
Liver fibrosis resulting from chronic liver injury is a key factor to develop liver cirrhosis and risk of hepatocellular carcinoma (HCC) which are major health burden worldwide. Therefore, it is necessary for antifibrotic therapies to prevent chronic liver disease progression and HCC development. There has been tremendous progress in understanding the mechanisms of liver fibrosis in the last decade, which has created new opportunities for the treatment of this condition. In this review, we aim to make an overview on information of different potential therapies (drug treatment, cell therapy, and liver transplantation) for the liver fibrosis and hope to provide the therapeutic options available for the treatment of liver fibrosis and discuss novel approaches.
Collapse
|
26
|
Wang Y, Zou XM, Pan QM, Zhong LP. Clinical significance of changes of TLR4/MyD88/NF-κB signaling pathway in peripheral blood mononuclear cells of gastric cancer patients with Helicobacter pylori infection. Shijie Huaren Xiaohua Zazhi 2021; 29:319-324. [DOI: 10.11569/wcjd.v29.i6.319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The correlation between Helicobacter pylori (H. pylori) and gastric cancer has been widely recognized in the world. The abnormal expression of TLR4/MyD88/NF-κB signaling pathway related factors is obvious in gastric cancer patients, suggesting that this pathway is closely related to the occurrence and development of gastric cancer. However, there is also a correlation between the TLR4/MyD88/NF-κB signaling pathway and H. pylori infection in gastric cancer patients.
AIM To investigate the clinical significance of changes of the TLR4/MyD88/NF-κB signaling pathway in peripheral blood mononuclear cells (PBMCs) of patients with gastric cancer infected by H. pylori.
METHODS Eighty gastric cancer patients treated at Huzhou Third People's Hospital from October 2017 to October 2020 were selected as a study group, and 50 healthy ts volunteers were selected as a control group. The expression levels of TLR-4, NF-κB, and myeloid differentiation factor (MyD88) in PBMCs of gastric cancer patients with different pathological characteristics and H. pylori infection status were compared between the two groups, and the correlation between TLR-4, NF-κB, and MyD88 protein levels and H. pylori infection was analyzed.
RESULTS Compared with the control group, the expression levels of TLR-4, NF-κB, and MyD88 in the study group were significantly higher than those of the control group (P < 0.05). The expression of TLR4/MyD88/NF-κB signaling pathway related molecules differed significantly in gastric cancer patients with different clinical stages, lymph node metastasis status, and depth of invasion (P < 0.05), and TLR4/MyD88/NF-κB expression differed significantly in different gender and age groups (P < 0.05). The expression of TLR-4, NF-κB, and MyD88 in the H. pylori positive group was significantly higher than that of the H. pylori negative group (P < 0.05). Pearson analysis showed that H. pylori infection was positively correlated with the expression of TLR-4, NF-κB, and MyD88 (r = 0.726, 0.684, and 0.631, P < 0.01).
CONCLUSION The expression levels of TLR4/MyD88/NF-κB signaling pathway related molecules in peripheral blood mononuclear cells (PBMCs) of patients with gastric cancer increase significantly, and are significantly different among groups with different pathological characteristics and parameters. It is speculated that H. pylori infection may participate in the occurrence and development of gastric cancer by inducing the abnormal expression of the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Wang
- Department of Respiration and Digestion, Huzhou Third People's Hospital, Huzhou 313000, Zhejiang Province, China
| | - Xin-Mei Zou
- Department of Respiration and Digestion, Huzhou Third People's Hospital, Huzhou 313000, Zhejiang Province, China
| | - Qin-Mei Pan
- Department of Respiration and Digestion, Huzhou Third People's Hospital, Huzhou 313000, Zhejiang Province, China
| | - Li-Ping Zhong
- Department of Oncology, Huzhou Central Hospital, Huzhou 313000, Zhejiang Province, China
| |
Collapse
|
27
|
Sharma M, Premkumar M, Kulkarni AV, Kumar P, Reddy DN, Rao NP. Drugs for Non-alcoholic Steatohepatitis (NASH): Quest for the Holy Grail. J Clin Transl Hepatol 2021; 9:40-50. [PMID: 33604254 PMCID: PMC7868704 DOI: 10.14218/jcth.2020.00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a global epidemic that is likely to become the most common cause of chronic liver disease in the next decade, worldwide. Though numerous drugs have been evaluated in clinical trials, most of them have returned inconclusive results and shown poorly-tolerated adverse effects. None of the drugs have been approved by the Food and Drug Administration for treating biopsy-proven non-alcoholic steatohepatitis (NASH). Vitamin E and pioglitazone have been extensively used in treatment of biopsy-proven nondiabetic NASH patients. Although some amelioration of inflammation has been seen, these drugs did not improve the fibrosis component of NASH. Therefore, dietary modification and weight reduction have remained the cornerstone of treatment of NASH; moreover, they have shown to improve histological activity as well as fibrosis. The search for an ideal drug or 'Holy Grail' within this landscape of possible agents continues, as weight reduction is achieved only in less than 10% of patients. In this current review, we summarize the drugs for NASH which are under investigation, and we provide a critical analysis of their up-to-date results and outcomes.
Collapse
Affiliation(s)
- Mithun Sharma
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | | | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
- Correspondence to: Dr. Anand V Kulkarni, Department of Hepatology and Liver Transplantation, Asian Institute of Gastroenterology, Hyderabad, India. Tel: +91-40-42444222, E-mail:
| | - Pramod Kumar
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - D Nageshwar Reddy
- Department of Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Nagaraja Padaki Rao
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| |
Collapse
|
28
|
El-Shiekh RA, Salem MA, Mouneir SM, Hassan A, Abdel-Sattar E. A mechanistic study of Solenostemma argel as anti-rheumatic agent in relation to its metabolite profile using UPLC/HRMS. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113341. [PMID: 32891814 DOI: 10.1016/j.jep.2020.113341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Solenostemma argel (Argel) is a traditional perennial edible herb that is commonly used in folkloric medicine for the treatment of rheumatic pain, inflammation, bronchitis, cold, diabetes, gastrointestinal cramps, and urinary tract infections. No previous reports traced the mechanistic activity of this plant for treatment of rheumatoid arthritis in relation to its chemical constituents. AIM OF THE STUDY The present study was designed to substantiate the anti-arthritic potential of S. argel and identification of its secondary metabolites responsible for the action using ultra-performance liquid chromatography coupled to high resolution mass spectrometry (UPLC/HRMS). MATERIALS AND METHODS The air-dried powder of S. argel was subjected to liquid-liquid fractionation method to yield polar metabolites fraction (PMF) and nonpolar metabolites fraction (NPMF) where the metabolites that represent each fraction were identified using UPLC/HRMS. The in-vitro anti-arthritic effects of both fractions were tested using protein denaturation, membrane stabilization and proteinase inhibition assays, in addition to in-vitro enzyme inhibition assays of COXs, LOX and collagenases. Adjuvant-induced arthritis (AIA) model was also established to evaluate their anti-arthritic effects in-vivo at two doses (200 and 400 mg/kg) in compared to the standard ibuprofen (5 mg/kg). Physical changes with hind paw edema and body weight gain as well as the assessment of serum rheumatoid biomarkers, inflammatory cytokines, oxidative stress markers, and the activity of hyaluronidase and β-glucouronidase enzymes were studied. The histopathological study of ankle and knee joints and immunohistochemistry of caspase-3 and TNF-α in joint synovium were also examined. RESULTS The PMF significantly (P < 0.05) reduced paw edema, serum rheumatoid markers, pro-inflammatory mediators, degeneration enzymes of cartilage and bone, and oxidative stress biomarkers. Interestingly, flavonoid glycosides and phenolic acids dominated the polar fraction, which showed the promising anti-arthritic activity of Argel compared to the NPMF which was dominated by pregnane glycosides. CONCLUSIONS Since arthritis is a chronic disease and there are imperative needs for a lifelong treatment with desirable pharmacological action and lower cost than the currently approved synthetic drugs having severe side effects, the PMF of Argel could be used as a potent anti-rheumatic agent.
Collapse
Affiliation(s)
- Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr St., Shibin Elkom, 32511, Menoufia, Egypt.
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza Square, Giza, 12211, Egypt.
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, El-Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
29
|
Asaad GF, Hassan A, Mostafa RE. Anti-oxidant impact of Lisinopril and Enalapril against acute kidney injury induced by doxorubicin in male Wistar rats: involvement of kidney injury molecule-1. Heliyon 2021; 7:e05985. [PMID: 33506137 PMCID: PMC7814155 DOI: 10.1016/j.heliyon.2021.e05985] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/18/2020] [Accepted: 01/11/2021] [Indexed: 01/08/2023] Open
Abstract
Doxorubicin (DOX) is a standard anticancer agent exerting devastating effects as nephrotoxicity, hepatotoxicity and cardiotoxicity. The purpose of this study was to increase the clinical use of DOX through decreasing its detrimental effects via combination with ACE inhibitors to ameliorate the induced acute kidney injury (AKI). AKI was induced by a single injection of DOX (7.5 mg/kg; i.p.) as Group 1; control (vehicle), Group 2; DOX (7.5 mg/kg; i.p.) single dose, Group 3 and 4; Lisinopril (Lis, 20 mg/kg) and Enalapril (Enal, 40 mg/kg) orally administration for 15 consecutive days after DOX injection, respectively. Serum samples were used to measure creatinine and BUN, tissue samples were extracted to determine myeloperoxidase (MPO), malondialdehyde (MDA), total antioxidant capacity (TAC) and kidney injury molecule (KIM-1) using ELISA technique. Heme oxygenase (HO-1) RNA expression was quantified in tissue using real time polymerase chain reaction (PCR). Parts of the kidney tissue were kept in formalin for immunohistochemical demonstration of Cleaved Caspase-3 and NF-κβ immune staining and the other part was used for pathological examination. Oral treatment with Lis (20 mg/kg) and Enal (40 mg/kg) for 15 consecutive days reversed DOX effects as they reduced the serum creatinine and BUN, kidney levels of MPO and MDA, whereas the drugs increased tissue TAC. The administration of Lis and Enal with DOX also reduced KIM-1and HO-1 RNA expression. A significant decrease in cleaved caspase-3 and NF-κβ immunostainings in conjunction with pronounced amelioration in pathologies in the rat kidney were observed. We concluded that DOX adverse effects can be controlled by Lis and Enal.
Collapse
Affiliation(s)
- Gihan F Asaad
- Pharmacology Department, Medical Research Division, National Research Centre (ID: 60014618), 33 EL Bohouth Street, P.O. 12622, Dokki, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Rasha E Mostafa
- Pharmacology Department, Medical Research Division, National Research Centre (ID: 60014618), 33 EL Bohouth Street, P.O. 12622, Dokki, Giza, Egypt
| |
Collapse
|
30
|
Yahia H, Hassan A, El-Ansary MR, Al-Shorbagy MY, El-Yamany MF. IL-6/STAT3 and adipokine modulation using tocilizumab in rats with fructose-induced metabolic syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2279-2292. [PMID: 32651660 DOI: 10.1007/s00210-020-01940-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022]
Abstract
Metabolic syndrome (MetS) is a low-grade inflammation state that results from an interplay between genetic and environmental factors. The incidence of MetS among individuals with insulin resistance, dyslipidemia, elevated blood pressure, and obesity, which constitute the syndrome, is 40% in the Middle East. The absence of an approved therapeutic agent for MetS is one reason to investigate tocilizumab (TCZ), which might be effective in the treatment of MetS. Results have implicated interleukin 6 (IL-6) in the development of MetS, identifying inflammation as a critical factor in its etiology and offering hope for new therapeutic approaches development. Here, we evaluate whether tocilizumab can be used for metabolic syndrome treatment. We assigned rats to three groups, 8 rats each: a negative-control group, provided with standard rodent chow and water; a fructose-fed group, provided with standard rodent chow and 10% fructose in drinking water for 22 weeks; and a treatment group, fed as per the metabolic syndrome group but treated with tocilizumab (5 mg/kg/week, intraperitoneal) for the final 5 weeks. Treatment with TCZ successfully ameliorated the damaging effects of fructose by stabilizing body weight gain and through the normalization of serum biochemical parameters and histopathological examination. Significant differences in adipokine levels were perceived, resulting in a significant decline in serum leptin and interleukin 6 (IL-6) levels concurrent with adiponectin normalization. Tocilizumab might be an effective agent for the treatment of metabolic syndrome. However, further investigations on human subjects are needed before the clinical application of tocilizumab for this indication.
Collapse
Affiliation(s)
- Haneen Yahia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Al-Mokattam, Cairo, Egypt.
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mona R El-Ansary
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Muhammad Y Al-Shorbagy
- School of Pharmacy, Newgiza University, Giza, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed F El-Yamany
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Saleh DO, Jaleel GAA, Al-Awdan SW, Hassan A, Asaad GF. Melatonin suppresses the brain injury after cerebral ischemia/reperfusion in hyperglycaemic rats. Res Pharm Sci 2020; 15:418-428. [PMID: 33628283 PMCID: PMC7879790 DOI: 10.4103/1735-5362.297844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 06/10/2020] [Accepted: 10/02/2020] [Indexed: 11/04/2022] Open
Abstract
Background and purpose Diabetes mellitus is a disorder accompanied by oxidative and inflammatory responses, that might exacerbate vascular complications. The purpose of this study was to investigate the potential antioxidant and anti-inflammatory effects of melatonin (MLN) on streptozotocin (STZ)-induced diabetic rats subjected to middle cerebral artery occlusion followed by reperfusion (MCAO/Re). Experimental approach Diabetes was induced in rats by a single injection of STZ (55 mg/kg; i.p.). The cerebral injury was then induced by MCAO/Re after six weeks. After 24 h of MCAO/Re the MLN (10 mg/kg) was administered orally for 14 days. Serum and tissue samples were extracted to determine malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), interleukin-1β (IL-1β), and the tumor necrosis factor- α (TNF-α). Part of the brain tissue was kept in formalin for pathological and immunohistochemical studies to determine nuclear factor kappa B (NF-kB) and cyclooxygenase-2 (COX-2) immune reactivity. Findings/Results MCAO/Re in STZ-induced hyperglycaemic rats caused a decrease in brain GSH, an increase in brain MDA, and NO was increased in both serum and brain tissue. Rats showed a prominent increase in the serum and brain inflammatory markers viz. IL-1β and TNF-α. Oral treatment with MLN (10 mg/kg) for two weeks reduced the brain levels of MDA, NO, IL-1β, and TNF-α. Impressive amelioration in pathological findings, as well as a significant decrease in NF-kB and COX2 immune stained cells of the cerebral cortex, hippocampus, and cerebellum, occurred after treatment with MLN. It also succeeded to suppress the exacerbation of damage in the brain of hyperglycaemic rats. Conclusion and implications Daily intake of MLN attenuates the exacerbation of cerebral ischemic injury in a diabetic state.
Collapse
Affiliation(s)
- Dalia O Saleh
- Pharmacology Department, National Research Centre, Dokki, Giza, Egypt
| | | | - Sally W Al-Awdan
- Pharmacology Department, National Research Centre, Dokki, Giza, Egypt
| | - Azza Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Gihan F Asaad
- Pharmacology Department, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
32
|
Wallert M, Börmel L, Lorkowski S. Inflammatory Diseases and Vitamin E-What Do We Know and Where Do We Go? Mol Nutr Food Res 2020; 65:e2000097. [PMID: 32692879 DOI: 10.1002/mnfr.202000097] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/26/2020] [Indexed: 12/14/2022]
Abstract
Inflammation-driven diseases and related comorbidities, such as the metabolic syndrome, obesity, fatty liver disease, and cardiovascular diseases cause significant global burden. There is a growing body of evidence that nutrients alter inflammatory responses and can therefore make a decisive contribution to the treatment of these diseases. Recently, the inflammasome, a cytosolic multiprotein complex, has been identified as a key player in inflammation and the development of various inflammation-mediated disorders, with nucleotide-binding domain and leucine-rich repeat pyrin domain (NLRP) 3 being the inflammasome of interest. Here an overview about the cellular signaling pathways underlying nuclear factor "kappa-light-chain-enhancer" of activated B-cells (NF-κB)- and NLRP3-mediated inflammatory processes, and the pathogenesis of the inflammatory diseases atherosclerosis and non-alcoholic fatty liver disease (NAFLD) is provided; next, the current state of knowledge for drug-based and dietary-based interventions for treating cardiovascular diseases and NAFLD is discussed. To date, one of the most important antioxidants in the human diet is vitamin E. Various in vitro and in vivo studies suggest that the different forms of vitamin E and also their derivatives have anti-inflammatory activity. Recent publications suggest that vitamin E-and possibly metabolites of vitamin E-are a promising therapeutic approach for treating inflammatory diseases such as NAFLD.
Collapse
Affiliation(s)
- Maria Wallert
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Lisa Börmel
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| | - Stefan Lorkowski
- Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Science, Friedrich Schiller University Jena, Jena, 07743, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD), Halle-Jena-Leipzig, Germany
| |
Collapse
|
33
|
Afifi NA, Ramadan A, Erian EY, Sedik AA, Amin MM, Hassan A, Saleh DO. Synergistic effect of aminoguanidine and l-carnosine against thioacetamide-induced hepatic encephalopathy in rats: behavioral, biochemical, and ultrastructural evidence. Can J Physiol Pharmacol 2020; 99:332-347. [PMID: 32721224 DOI: 10.1139/cjpp-2020-0212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatic encephalopathy depicts the cluster of neurological alterations that occur during acute or chronic hepatic injury. Hyperammonemia, inflammatory injury, and oxidative stress are the main predisposing factors for the direct and indirect changes in cerebral metabolism causing encephalopathy. The aim of this study was to evaluate the possible synergistic effect between aminoguanidine (AG; 100 mg/kg, p.o.) and l-carnosine (CAR; 200 mg/kg, p.o.) on hepatic encephalopathy that was induced by thioacetamide (TAA; 100 mg/kg, i.p.) administered three times weekly for six weeks. Behavioral changes, biochemical parameters, histopathological analysis, and immunohistochemical and ultrastructural studies were conducted 24 h after the last treatment. Combining AG with CAR improved TAA-induced locomotor impairment and motor incoordination evidenced by reduced locomotor activity and decline in motor skill performance, as well as ameliorated cognitive deficits. Moreover, both drugs restored the levels of serum hepatic enzymes and serum and brain levels of ammonia. In addition, the combination significantly modulated hepatic and brain oxidative stress biomarkers, inflammatory cytokines, and cleaved caspase-3 expression. Furthermore, they succeeded in activating nuclear erythroid 2-related factor 2 (Nrf2) expression and heme oxygenase-1 (HO-1) activity and ameliorating markers of hepatic encephalopathy, including hepatic necrosis and brain astrocyte swelling. This study shows that combining AG with CAR exerted a new intervention for hepatic and brain damage in hepatic encephalopathy due to their complementary antioxidant, anti-inflammatory effects and hypoammonemic effects via Nrf2/HO-1 activation and NO inhibition.
Collapse
Affiliation(s)
- Nehal A Afifi
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - A Ramadan
- Pharmacology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Emad Y Erian
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ahmed A Sedik
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Mohamed M Amin
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Azza Hassan
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Dalia O Saleh
- Pharmacology Department, Medical Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
34
|
Fougerat A, Montagner A, Loiseau N, Guillou H, Wahli W. Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells 2020; 9:E1638. [PMID: 32650421 PMCID: PMC7408116 DOI: 10.3390/cells9071638] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/26/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major health issue worldwide, frequently associated with obesity and type 2 diabetes. Steatosis is the initial stage of the disease, which is characterized by lipid accumulation in hepatocytes, which can progress to non-alcoholic steatohepatitis (NASH) with inflammation and various levels of fibrosis that further increase the risk of developing cirrhosis and hepatocellular carcinoma. The pathogenesis of NAFLD is influenced by interactions between genetic and environmental factors and involves several biological processes in multiple organs. No effective therapy is currently available for the treatment of NAFLD. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that regulate many functions that are disturbed in NAFLD, including glucose and lipid metabolism, as well as inflammation. Thus, they represent relevant clinical targets for NAFLD. In this review, we describe the determinants and mechanisms underlying the pathogenesis of NAFLD, its progression and complications, as well as the current therapeutic strategies that are employed. We also focus on the complementary and distinct roles of PPAR isotypes in many biological processes and on the effects of first-generation PPAR agonists. Finally, we review novel and safe PPAR agonists with improved efficacy and their potential use in the treatment of NAFLD.
Collapse
Affiliation(s)
- Anne Fougerat
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Alexandra Montagner
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Institut National de la Santé et de la Recherche Médicale (Inserm), Institute of Metabolic and Cardiovascular Diseases, UMR1048 Toulouse, France
- Institute of Metabolic and Cardiovascular Diseases, University of Toulouse, UMR1048 Toulouse, France
| | - Nicolas Loiseau
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Hervé Guillou
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
| | - Walter Wahli
- Institut National de la Recherche Agronomique (INRAE), ToxAlim, UMR1331 Toulouse, France; (A.M.); (N.L.); (H.G.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore
- Center for Integrative Genomics, Université de Lausanne, Le Génopode, CH-1015 Lausanne, Switzerland
| |
Collapse
|
35
|
Chen L, Zhang L, Wang W, Qiu W, Liu L, Ning A, Cao J, Huang M, Zhong M. Polysaccharides isolated from Cordyceps Sinensis contribute to the progression of NASH by modifying the gut microbiota in mice fed a high-fat diet. PLoS One 2020; 15:e0232972. [PMID: 32512581 PMCID: PMC7279895 DOI: 10.1371/journal.pone.0232972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023] Open
Abstract
Various dietary fibers are considered to prevent obesity by modulating the gut microbiota. Cordyceps sinensis polysaccharide (CSP) is a soluble dietary fiber known to have protective effects against obesity and related diseases, but whether these effects induce any side effects remains unknown. The function and safety of CSP were tested in high-fat diet (HFD)-feding C57BL/6J mice. The results revealed that even though CSP supplementation could prevent an increase in body weight, it aggravated liver fibrosis and steatosis as evidenced by increased inflammation, lipid metabolism markers, insulin resistance (IR) and alanine aminotransferase (ALT) in HFD-induced obesity. 16S rDNA gene sequencing was used to analyze the gut microbiota composition, and the relative abundance of the Actinobacteria phylum, including the Olsenella genus, was significantly higher in CSP-treated mice than in HFD-fed mice. CSP supplementation may increase the proportion of Actinobacteria, which can degrade CSP. The high level of Actinobacteria aggravated the disorder of the intestinal flora and contributed to the progression from obesity to nonalcoholic steatohepatitis (NASH) and related diseases.
Collapse
Affiliation(s)
- Lei Chen
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Liangyu Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Wendong Wang
- First Affiliated Hospital of Dalian Medical University, Dalian, PR China
| | - Wei Qiu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Lei Liu
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Anhong Ning
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Jing Cao
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Min Huang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
| | - Mintao Zhong
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, PR China
- * E-mail:
| |
Collapse
|