1
|
Bosshard AB, Burkart JM, Merlo P, Cathcart C, Townsend SW, Bickel B. Beyond bigrams: call sequencing in the common marmoset ( Callithrix jacchus) vocal system. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240218. [PMID: 39507993 PMCID: PMC11537759 DOI: 10.1098/rsos.240218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Over the last two decades, an emerging body of research has demonstrated that non-human animals exhibit the ability to combine context-specific calls into larger sequences. These structures have frequently been compared with language's syntax, whereby linguistic units are combined to form larger structures, and leveraged to argue that syntax might not be unique to language. Currently, however, the overwhelming majority of examples of call combinations are limited to simple sequences comprising just two calls which differ dramatically from the open-ended hierarchical structuring of the syntax found in language. We revisit this issue by taking a whole-repertoire approach to investigate combinatoriality in common marmosets (Callithrix jacchus). We use Markov chain models to quantify the vocal sequences produced by marmosets providing evidence for structures beyond the bigram, including three-call and even combinations of up to eight or nine calls. Our analyses of these longer vocal sequences are suggestive of potential further internal organization, including some amount of recombination, nestedness and non-adjacent dependencies. We argue that data-driven, whole-repertoire analyses are fundamental to uncovering the combinatorial complexity of non-human animals and will further facilitate meaningful comparisons with language's combinatoriality.
Collapse
Affiliation(s)
- Alexandra B. Bosshard
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Judith M. Burkart
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Paola Merlo
- Department of Linguistics, University of Geneva, Geneva, Switzerland
- Idiap Research Institute, Martigny, Switzerland
| | - Chundra Cathcart
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
| | - Simon W. Townsend
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
- Department of Evolutionary Anthropology, University of Zurich, Zurich, Switzerland
| | - Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Gilliland RL, Selvanayagam J, Zanini A, Johnston KD, Everling S. Neural activity for complex sounds in the marmoset anterior cingulate cortex. Commun Biol 2024; 7:1310. [PMID: 39394433 PMCID: PMC11470068 DOI: 10.1038/s42003-024-07019-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024] Open
Abstract
Vocalizations play an important role in the daily life of nonhuman primates and are likely precursors of human language. Recent functional imaging studies in the highly vocal common marmoset (Callithrix jacchus) have suggested that anterior cingulate cortex (ACC) area 32 may be a part of a vocalization-processing network but the response properties of area 32 neurons to auditory stimuli remain unknown. Here we perform electrophysiological recordings in area 32 in marmosets with high-density Neuropixels probes and characterize neuronal responses to a variety of sounds including conspecific vocalizations. Nearly half of the neurons in area 32 respond to conspecific vocalizations and other complex auditory stimuli. These responses exhibit dynamics consisting of an initially non-selective reduction in neural activity, followed by an increase in activity that immediately conveys sound selectivity. Our findings demonstrate that primate ACC area 32 processes species-specific and biologically relevant sounds.
Collapse
Affiliation(s)
- Rebekah L Gilliland
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Janahan Selvanayagam
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kevin D Johnston
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
3
|
Varella TT, Takahashi DY, Ghazanfar AA. Active sampling as an information seeking strategy in primate vocal interactions. Commun Biol 2024; 7:1098. [PMID: 39242819 PMCID: PMC11379854 DOI: 10.1038/s42003-024-06764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Active sensing is a behavioral strategy for exploring the environment. In this study, we show that contact vocal behaviors can be an active sensing mechanism that uses sampling to gain information about the social environment, in particular, the vocal behavior of others. With a focus on the real-time vocal interactions of marmoset monkeys, we contrast active sampling to a vocal accommodation framework in which vocalizations are adjusted simply to maximize responses. We conduct simulations of a vocal accommodation and an active sampling policy and compare them with actual vocal interaction data. Our findings support active sampling as the best model for real-time marmoset monkey vocal exchanges. In some cases, the active sampling model was even able to partially predict the distribution of vocal durations for individuals to approximate the optimal call duration. These results suggest a non-traditional function for primate vocal interactions in which they are used by animals to seek information about their social environments.
Collapse
Affiliation(s)
- Thiago T Varella
- Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton, NJ, 08544, USA
| | - Daniel Y Takahashi
- Brain Institute Federal University of Rio Grande do Norte (UFRN) Av, Nascimento de Castro, 2155-Morro Branco, Natal, RN, 59056-450, Brazil
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
4
|
Oren G, Shapira A, Lifshitz R, Vinepinsky E, Cohen R, Fried T, Hadad GP, Omer D. Vocal labeling of others by nonhuman primates. Science 2024; 385:996-1003. [PMID: 39208084 DOI: 10.1126/science.adp3757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Humans, dolphins, and elephants are the only known species that vocally label their conspecifics. It remains unclear whether nonhuman primates share this ability. We recorded spontaneous "phee-call" dialogues between pairs of marmoset monkeys. We discovered that marmosets use these calls to vocally label their conspecifics. Moreover, they respond more consistently and correctly to calls that are specifically directed at them. Analysis of calls from multiple monkeys revealed that family members use similar calls and acoustic features to label others and perform vocal learning. These findings shed light on the complexities of social vocalizations among nonhuman primates and suggest that marmoset vocalizations may provide a model for understanding aspects of human language, thereby offering new insights into the evolution of social communication.
Collapse
Affiliation(s)
- Guy Oren
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aner Shapira
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Lifshitz
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ehud Vinepinsky
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roni Cohen
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tomer Fried
- Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy P Hadad
- Benin School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Omer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Grijseels DM, Fairbank DA, Miller CT. A model of marmoset monkey vocal turn-taking. Proc Biol Sci 2024; 291:20240150. [PMID: 38955229 PMCID: PMC11334984 DOI: 10.1098/rspb.2024.0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024] Open
Abstract
Vocal turn-taking has been described in a diversity of species. Yet, a model that is able to capture the various processes underlying this social behaviour across species has not been developed. To this end, here we recorded a large and diverse dataset of marmoset monkey vocal behaviour in social contexts comprising one, two and three callers and developed a model to determine the keystone factors that affect the dynamics of these natural communicative interactions. Notably, marmoset turn-taking did not abide by coupled-oscillator dynamics, but rather call timing was overwhelmingly stochastic in these exchanges. Our features-based model revealed four key factors that encapsulate the majority of patterns evident in the behaviour, ranging from internal processes, such as particular states of the individual driving increased calling, to social context-driven suppression of calling. These findings indicate that marmoset vocal turn-taking is affected by a broader suite of mechanisms than previously considered and that our model provides a predictive framework with which to further explicate this natural behaviour at both the behavioural and neurobiological levels, and for direct comparisons with the analogous behaviour in other species.
Collapse
Affiliation(s)
- Dori M. Grijseels
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, USA
| | - Daniella A. Fairbank
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, USA
| | - Cory T. Miller
- Cortical Systems and Behavior Lab, University of California San Diego, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Dureux A, Zanini A, Everling S. Mapping of facial and vocal processing in common marmosets with ultra-high field fMRI. Commun Biol 2024; 7:317. [PMID: 38480875 PMCID: PMC10937914 DOI: 10.1038/s42003-024-06002-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Primate communication relies on multimodal cues, such as vision and audition, to facilitate the exchange of intentions, enable social interactions, avoid predators, and foster group cohesion during daily activities. Understanding the integration of facial and vocal signals is pivotal to comprehend social interaction. In this study, we acquire whole-brain ultra-high field (9.4 T) fMRI data from awake marmosets (Callithrix jacchus) to explore brain responses to unimodal and combined facial and vocal stimuli. Our findings reveal that the multisensory condition not only intensifies activations in the occipito-temporal face patches and auditory voice patches but also engages a more extensive network that includes additional parietal, prefrontal and cingulate areas, compared to the summed responses of the unimodal conditions. By uncovering the neural network underlying multisensory audiovisual integration in marmosets, this study highlights the efficiency and adaptability of the marmoset brain in processing facial and vocal social signals, providing significant insights into primate social communication.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada.
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5K8, Canada
| |
Collapse
|
7
|
Nagarajan G, Matrov D, Pearson AC, Yen C, Bradley SP, Chudasama Y. Cingulate cortex shapes early postnatal development of social vocalizations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.17.580738. [PMID: 38529485 PMCID: PMC10962701 DOI: 10.1101/2024.02.17.580738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The social dynamics of vocal behavior has major implications for social development in humans. We asked whether early life damage to the anterior cingulate cortex (ACC), which is closely associated with socioemotional regulation more broadly, impacts the normal development of vocal expression. The common marmoset provides a unique opportunity to study the developmental trajectory of vocal behavior, and to track the consequences of early brain damage on aspects of social vocalizations. We created ACC lesions in neonatal marmosets and compared their pattern of vocalization to that of age-matched controls throughout the first 6 weeks of life. We found that while early life ACC lesions had little influence on the production of vocal calls, developmental changes to the quality of social contact calls and their associated syntactical and acoustic characteristics were compromised. These animals made fewer social contact calls, and when they did, they were short, loud and monotonic. We further determined that damage to ACC in infancy results in a permanent alteration in downstream brain areas known to be involved in social vocalizations, such as the amygdala and periaqueductal gray. Namely, in the adult, these structures exhibited diminished GABA-immunoreactivity relative to control animals, likely reflecting disruption of the normal inhibitory balance following ACC deafferentation. Together, these data indicate that the normal development of social vocal behavior depends on the ACC and its interaction with other areas in the vocal network during early life.
Collapse
|
8
|
Tsunada J, Eliades SJ. Frontal-Auditory Cortical Interactions and Sensory Prediction During Vocal Production in Marmoset Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.28.577656. [PMID: 38352422 PMCID: PMC10862695 DOI: 10.1101/2024.01.28.577656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The control of speech and vocal production involves the calculation of error between the intended vocal output and the resulting auditory feedback. Consistent with this model, recent evidence has demonstrated that the auditory cortex is suppressed immediately before and during vocal production, yet is still sensitive to differences between vocal output and altered auditory feedback. This suppression has been suggested to be the result of top-down signals containing information about the intended vocal output, potentially originating from motor or other frontal cortical areas. However, whether such frontal areas are the source of suppressive and predictive signaling to the auditory cortex during vocalization is unknown. Here, we simultaneously recorded neural activity from both the auditory and frontal cortices of marmoset monkeys while they produced self-initiated vocalizations. We found increases in neural activity in both brain areas preceding the onset of vocal production, notably changes in both multi-unit activity and local field potential theta-band power. Connectivity analysis using Granger causality demonstrated that frontal cortex sends directed signaling to the auditory cortex during this pre-vocal period. Importantly, this pre-vocal activity predicted both vocalization-induced suppression of the auditory cortex as well as the acoustics of subsequent vocalizations. These results suggest that frontal cortical areas communicate with the auditory cortex preceding vocal production, with frontal-auditory signals that may reflect the transmission of sensory prediction information. This interaction between frontal and auditory cortices may contribute to mechanisms that calculate errors between intended and actual vocal outputs during vocal communication.
Collapse
Affiliation(s)
- Joji Tsunada
- Chinese Institute for Brain Research, Beijing, China
- Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | - Steven J. Eliades
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
9
|
Lefevre A, Meza J, Miller CT. Long range projections of oxytocin neurons in the marmoset brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573953. [PMID: 38260560 PMCID: PMC10802265 DOI: 10.1101/2024.01.02.573953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The neurohormone oxytocin (OT) has become a major target for the development of novel therapeutic strategies to treat psychiatric disorders such as autism spectrum disorder because of its integral role in governing many facets of mammalian social behavior. Whereas extensive work in rodents has produced much of our knowledge of OT, we lack basic information about its neurobiology in primates making it difficult to interpret the limited effects that OT manipulations have had in human patients. In fact, previous studies have revealed only limited OT fibers in primate brains. Here, we investigated the OT connectome in marmoset using immunohistochemistry, and mapped OT fibers throughout the brains of adult male and female marmoset monkeys. We found extensive OT projections reaching limbic and cortical areas that are involved in the regulation of social behaviors, such as the amygdala, the medial prefrontal cortex and the basal ganglia. The pattern of OT fibers observed in marmosets is notably similar to the OT connectomes described in rodents. Our findings here contrast with previous results by demonstrating a broad distribution of OT throughout the marmoset brain. Given the prevalence of this neurohormone in the primate brain, methods developed in rodents to manipulate endogenous OT are likely to be applicable in marmosets.
Collapse
Affiliation(s)
- Arthur Lefevre
- Cortical Systems and Behavior Laboratory, University of California San Diego, La Jolla, California, USA
- Institute of cognitive sciences Marc Jeannerod, CNRS and University of Lyon, Bron, France
| | - Jazlynn Meza
- Cortical Systems and Behavior Laboratory, University of California San Diego, La Jolla, California, USA
| | - Cory T. Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego, La Jolla, California, USA
- Neuroscience graduate program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
10
|
Varella TT, Takahashi DY, Ghazanfar AA. Active Sampling in Primate Vocal Interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570161. [PMID: 38106107 PMCID: PMC10723297 DOI: 10.1101/2023.12.05.570161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Active sensing is a behavioral strategy for exploring the environment. In this study, we show that contact vocal behaviors can be an active sensing mechanism that uses sampling to gain information about the social environment, in particular, the vocal behavior of others. With a focus on the realtime vocal interactions of marmoset monkeys, we contrast active sampling to a vocal accommodation framework in which vocalizations are adjusted simply to maximize responses. We conducted simulations of a vocal accommodation and an active sampling policy and compared them with real vocal exchange data. Our findings support active sampling as the best model for marmoset monkey vocal exchanges. In some cases, the active sampling model was even able to predict the distribution of vocal durations for individuals. These results suggest a new function for primate vocal interactions in which they are used by animals to seek information from social environments.
Collapse
Affiliation(s)
- Thiago T Varella
- Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton NJ 08544, USA
| | - Daniel Y Takahashi
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Av. Nascimento de Castro, 2155 - Morro Branco, Natal, RN 59056-450, Brasil
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute & Department of Psychology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
11
|
Zhao L, Wang X. Frontal cortex activity during the production of diverse social communication calls in marmoset monkeys. Nat Commun 2023; 14:6634. [PMID: 37857618 PMCID: PMC10587070 DOI: 10.1038/s41467-023-42052-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 09/28/2023] [Indexed: 10/21/2023] Open
Abstract
Vocal communication is essential for social behaviors in humans and non-human primates. While the frontal cortex is crucial to human speech production, its role in vocal production in non-human primates has long been questioned. It is unclear whether activities in the frontal cortex represent diverse vocal signals used in non-human primate communication. Here we studied single neuron activities and local field potentials (LFP) in the frontal cortex of male marmoset monkeys while the animal engaged in vocal exchanges with conspecifics in a social environment. We found that both single neuron activities and LFP were modulated by the production of each of the four major call types. Moreover, neural activities showed distinct patterns for different call types and theta-band LFP oscillations showed phase-locking to the phrases of twitter calls, suggesting a neural representation of vocalization features. Our results suggest important functions of the marmoset frontal cortex in supporting the production of diverse vocalizations in communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurological Surgery, University of California, San Francisco, CA, 94158, USA.
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
13
|
Risueno-Segovia C, Dohmen D, Gultekin YB, Pomberger T, Hage SR. Linguistic law-like compression strategies emerge to maximize coding efficiency in marmoset vocal communication. Proc Biol Sci 2023; 290:20231503. [PMID: 37752844 PMCID: PMC10523061 DOI: 10.1098/rspb.2023.1503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/29/2023] [Indexed: 09/28/2023] Open
Abstract
Human language follows statistical regularities or linguistic laws. For instance, Zipf's law of brevity states that the more frequently a word is used, the shorter it tends to be. All human languages adhere to this word structure. However, it is unclear whether Zipf's law emerged de novo in humans or whether it also exists in the non-linguistic vocal systems of our primate ancestors. Using a vocal conditioning paradigm, we examined the capacity of marmoset monkeys to efficiently encode vocalizations. We observed that marmosets adopted vocal compression strategies at three levels: (i) increasing call rate, (ii) decreasing call duration and (iii) increasing the proportion of short calls. Our results demonstrate that marmosets, when able to freely choose what to vocalize, exhibit vocal statistical regularities consistent with Zipf's law of brevity that go beyond their context-specific natural vocal behaviour. This suggests that linguistic laws emerged in non-linguistic vocal systems in the primate lineage.
Collapse
Affiliation(s)
- Cristina Risueno-Segovia
- Neurobiology of Social Communication, Department of Otolaryngology—Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Deniz Dohmen
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Yasemin B. Gultekin
- Neurobiology of Social Communication, Department of Otolaryngology—Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Thomas Pomberger
- Neurobiology of Social Communication, Department of Otolaryngology—Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
- Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Steffen R. Hage
- Neurobiology of Social Communication, Department of Otolaryngology—Head and Neck Surgery, Hearing Research Centre, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Best P, Paris S, Glotin H, Marxer R. Deep audio embeddings for vocalisation clustering. PLoS One 2023; 18:e0283396. [PMID: 37428759 PMCID: PMC10332598 DOI: 10.1371/journal.pone.0283396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/25/2023] [Indexed: 07/12/2023] Open
Abstract
The study of non-human animals' communication systems generally relies on the transcription of vocal sequences using a finite set of discrete units. This set is referred to as a vocal repertoire, which is specific to a species or a sub-group of a species. When conducted by human experts, the formal description of vocal repertoires can be laborious and/or biased. This motivates computerised assistance for this procedure, for which machine learning algorithms represent a good opportunity. Unsupervised clustering algorithms are suited for grouping close points together, provided a relevant representation. This paper therefore studies a new method for encoding vocalisations, allowing for automatic clustering to alleviate vocal repertoire characterisation. Borrowing from deep representation learning, we use a convolutional auto-encoder network to learn an abstract representation of vocalisations. We report on the quality of the learnt representation, as well as of state of the art methods, by quantifying their agreement with expert labelled vocalisation types from 8 datasets of other studies across 6 species (birds and marine mammals). With this benchmark, we demonstrate that using auto-encoders improves the relevance of vocalisation representation which serves repertoire characterisation using a very limited number of settings. We also publish a Python package for the bioacoustic community to train their own vocalisation auto-encoders or use a pretrained encoder to browse vocal repertoires and ease unit wise annotation.
Collapse
Affiliation(s)
- Paul Best
- Université de Toulon, Aix Marseille Univ, CNRS, LIS, Toulon, France
| | - Sébastien Paris
- Université de Toulon, Aix Marseille Univ, CNRS, LIS, Toulon, France
| | - Hervé Glotin
- Université de Toulon, Aix Marseille Univ, CNRS, LIS, Toulon, France
| | - Ricard Marxer
- Université de Toulon, Aix Marseille Univ, CNRS, LIS, Toulon, France
| |
Collapse
|
15
|
Jafari A, Dureux A, Zanini A, Menon RS, Gilbert KM, Everling S. A vocalization-processing network in marmosets. Cell Rep 2023; 42:112526. [PMID: 37195863 DOI: 10.1016/j.celrep.2023.112526] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/19/2023] Open
Abstract
Vocalizations play an important role in the daily life of primates and likely form the basis of human language. Functional imaging studies have demonstrated that listening to voices activates a fronto-temporal voice perception network in human participants. Here, we acquired whole-brain ultrahigh-field (9.4 T) fMRI in awake marmosets (Callithrix jacchus) and demonstrate that these small, highly vocal New World primates possess a similar fronto-temporal network, including subcortical regions, that is activated by the presentation of conspecific vocalizations. The findings suggest that the human voice perception network has evolved from an ancestral vocalization-processing network that predates the separation of New and Old World primates.
Collapse
Affiliation(s)
- Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
16
|
Löschner J, Pomberger T, Hage SR. Marmoset monkeys use different avoidance strategies to cope with ambient noise during vocal behavior. iScience 2023; 26:106219. [PMID: 36915693 PMCID: PMC10006620 DOI: 10.1016/j.isci.2023.106219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Multiple strategies have evolved to compensate for masking noise, leading to changes in call features. One call adjustment is the Lombard effect, an increase in call amplitude in response to noise. Another strategy involves call production in periods where noise is absent. While mechanisms underlying vocal adjustments have been well studied, mechanisms underlying noise avoidance strategies remain largely unclear. We systematically perturbed ongoing phee calls of marmosets to investigate noise avoidance strategies. Marmosets canceled their calls after noise onset and produced longer calls after noise-phases ended. Additionally, the number of uttered syllables decreased during noise perturbation. This behavior persisted beyond the noise-phase. Using machine learning techniques, we found that a fraction of single phees were initially planned as double phees and became interrupted after the first syllable. Our findings indicate that marmosets use different noise avoidance strategies and suggest vocal flexibility at different complexity levels in the marmoset brain.
Collapse
Affiliation(s)
- Julia Löschner
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Thomas Pomberger
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences - International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074 Tübingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Hearing Research Center, University of Tübingen, Medical Center, Elfriede-Aulhorn-Strasse 5, 72076 Tübingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| |
Collapse
|
17
|
Performance on inhibitory tasks does not relate to handedness in several small groups of Callitrichids. Anim Cogn 2023; 26:415-423. [PMID: 36038804 DOI: 10.1007/s10071-022-01682-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 11/01/2022]
Abstract
Brain lateralization, a trait ubiquitous in vertebrates and invertebrates, refers to structural differences between the left and right sides of the brain or to the left and right sides controlling different functions or processing information in different ways. Many studies have looked into the advantages of lateralized brains and discovered that cerebral lateralization confers a fitness advantage. Enhancing cognitive ability has been proposed as one of the potential benefits of the lateralized brain, however, this has not been widely validated. In this study, we investigated the handedness of 34 subjects from four groups of Callitrichids, as well as their performance in two inhibitory control tasks (the revised A-not-B task and the cylinder task). The subjects had strong individual hand preferences, and only a few zoo-born individuals were ambidextrous. Sex and generation influence the strength of hand preference. In the cylinder task, the subjects showed differences between groups, and the performance of the second-generation was better than that of the first-generation. We found that neither the strength of hand preferences (ABS-HI) or direction of hand preferences (HI) was linked with success on the two inhibitory tasks. That is, we were unable to support the enhanced cognitive function hypothesis. We believe that individual ontogeny and the type of cognitive task have an impact on the support of this hypothesis. The advantages of lateralized brain may be reflected in tests that require multiple cognitive abilities.
Collapse
|
18
|
Acoustic Monitoring of Black-Tufted Marmosets in a Tropical Forest Disturbed by Mining Noise. Animals (Basel) 2023; 13:ani13030352. [PMID: 36766242 PMCID: PMC9913379 DOI: 10.3390/ani13030352] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
All habitats have noise, but anthropogenic sounds often differ from natural sounds in terms of frequency, duration and intensity, and therefore may disrupt animal vocal communication. This study aimed to investigate whether vocalizations emitted by black-tufted marmosets (Callithrix penicillata) were affected by the noise produced by mining activity. Through passive acoustic monitoring, we compared the noise levels and acoustic parameters of the contact calls of marmosets living in two study areas (with two sampling points within each area)-one near and one far from an opencast mine in Brazil. The near area had higher anthropogenic background noise levels and the marmosets showed greater calling activity compared to the far area. Calls in the near area had significantly lower minimum, maximum and peak frequencies and higher average power density and bandwidth than those in the far area. Our results indicate that the mining noise affected marmoset vocal communication and may be causing the animals to adjust their acoustic communication patterns to increase the efficiency of signal propagation. Given that vocalizations are an important part of social interactions in this species, concerns arise about the potential negative impact of mining noise on marmosets exposed to this human activity.
Collapse
|
19
|
Abreu F, Pika S. Turn-taking skills in mammals: A systematic review into development and acquisition. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.987253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
How human language evolved remains one of the most intriguing questions in science, and different approaches have been used to tackle this question. A recent hypothesis, the Interaction Engine Hypothesis, postulates that language was made possible through the special capacity for social interaction involving different social cognitive skills (e.g., joint attention, common ground) and specific characteristics such as face-to-face interaction, mutual gaze and turn-taking, the exchange of rapid communicative turns. Recently, it has been argued that this turn-taking infrastructure may be a foundational and ancient mechanism of the layered system of language because communicative turn-taking has been found in human infants and across several non-human primate species. Moreover, there is some evidence for turn-taking in different mammalian taxa, especially those capable of vocal learning. Surprisingly, however, the existing studies have mainly focused on turn-taking production of adult individuals, while little is known about its emergence and development in young individuals. Hence, the aim of the current paper was 2-fold: First, we carried out a systematic review of turn-taking development and acquisition in mammals to evaluate possible research bias and existing gaps. Second, we highlight research avenues to spur more research into this domain and investigate if distinct turn-taking elements can be found in other non-human animal species. Since mammals exhibit an extended development period, including learning and strong parental care, they represent an excellent model group in which to investigate the acquisition and development of turn-taking abilities. We performed a systematic review including a wide range of terms and found 21 studies presenting findings on turn-taking abilities in infants and juveniles. Most of these studies were from the last decade, showing an increased interest in this field over the years. Overall, we found a considerable variation in the terminologies and methodological approaches used. In addition, studies investigating turn-taking abilities across different development periods and in relation to different social partners were very rare, thereby hampering direct, systematic comparisons within and across species. Nonetheless, the results of some studies suggested that specific turn-taking elements are innate, while others are acquired during development (e.g., flexibility). Finally, we pinpoint fruitful research avenues and hypotheses to move the field of turn-taking development forward and improve our understanding of the impact of turn-taking on language evolution.
Collapse
|
20
|
Girard-Buttoz C, Bortolato T, Laporte M, Grampp M, Zuberbühler K, Wittig RM, Crockford C. Population-specific call order in chimpanzee greeting vocal sequences. iScience 2022; 25:104851. [PMID: 36034222 PMCID: PMC9399282 DOI: 10.1016/j.isci.2022.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Primates rarely learn new vocalizations, but they can learn to use their vocalizations in different contexts. Such "vocal usage learning," particularly in vocal sequences, is a hallmark of human language, but remains understudied in non-human primates. We assess usage learning in four wild chimpanzee communities of Taï and Budongo Forests by investigating population differences in call ordering of a greeting vocal sequence. Whilst in all groups, these sequences consisted of pant-hoots (long-distance contact call) and pant-grunts (short-distance submissive call), the order of the two calls differed across populations. Taï chimpanzees consistently commenced greetings with pant-hoots, whereas Budongo chimpanzees started with pant-grunts. We discuss different hypotheses to explain this pattern and conclude that higher intra-group aggression in Budongo may have led to a local pattern of individuals signaling submission first. This highlights how within-species variation in social dynamics may lead to flexibility in call order production, possibly acquired via usage learning.
Collapse
Affiliation(s)
- Cédric Girard-Buttoz
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Tatiana Bortolato
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Marion Laporte
- Histoire naturelle de l'Homme préhistorique, UMR 7194, PaleoFED, Muséum National d'Histoire Naturelle, 17 place du Trocadéro et du 11 Novembre, 75116 Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, Paris, France
| | - Mathilde Grampp
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Klaus Zuberbühler
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Scotland
- Budongo Conservation Field Station, Masindi, Uganda
| | - Roman M. Wittig
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Crockford
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
21
|
Burkart JM, Adriaense JEC, Brügger RK, Miss FM, Wierucka K, van Schaik CP. A convergent interaction engine: vocal communication among marmoset monkeys. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210098. [PMID: 35876206 PMCID: PMC9315454 DOI: 10.1098/rstb.2021.0098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/26/2022] [Indexed: 09/14/2023] Open
Abstract
To understand the primate origins of the human interaction engine, it is worthwhile to focus not only on great apes but also on callitrichid monkeys (marmosets and tamarins). Like humans, but unlike great apes, callitrichids are cooperative breeders, and thus habitually engage in coordinated joint actions, for instance when an infant is handed over from one group member to another. We first explore the hypothesis that these habitual cooperative interactions, the marmoset interactional ethology, are supported by the same key elements as found in the human interaction engine: mutual gaze (during joint action), turn-taking, volubility, as well as group-wide prosociality and trust. Marmosets show clear evidence of these features. We next examine the prediction that, if such an interaction engine can indeed give rise to more flexible communication, callitrichids may also possess elaborate communicative skills. A review of marmoset vocal communication confirms unusual abilities in these small primates: high volubility and large vocal repertoires, vocal learning and babbling in immatures, and voluntary usage and control. We end by discussing how the adoption of cooperative breeding during human evolution may have catalysed language evolution by adding these convergent consequences to the great ape-like cognitive system of our hominin ancestors. This article is part of the theme issue 'Revisiting the human 'interaction engine': comparative approaches to social action coordination'.
Collapse
Affiliation(s)
- J. M. Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| | - J. E. C. Adriaense
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - R. K. Brügger
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - F. M. Miss
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - K. Wierucka
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - C. P. van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Center for the Interdisciplinary Study of Language Evolution ISLE, University of Zurich, Affolternstrasse 56, 8050 Zurich, Switzerland
| |
Collapse
|
22
|
Samandra R, Haque ZZ, Rosa MGP, Mansouri FA. The marmoset as a model for investigating the neural basis of social cognition in health and disease. Neurosci Biobehav Rev 2022; 138:104692. [PMID: 35569579 DOI: 10.1016/j.neubiorev.2022.104692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/23/2023]
Abstract
Social-cognitive processes facilitate the use of environmental cues to understand others, and to be understood by others. Animal models provide vital insights into the neural underpinning of social behaviours. To understand social cognition at even deeper behavioural, cognitive, neural, and molecular levels, we need to develop more representative study models, which allow testing of novel hypotheses using human-relevant cognitive tasks. Due to their cooperative breeding system and relatively small size, common marmosets (Callithrix jacchus) offer a promising translational model for such endeavours. In addition to having social behavioural patterns and group dynamics analogous to those of humans, marmosets have cortical brain areas relevant for the mechanistic analysis of human social cognition, albeit in simplified form. Thus, they are likely suitable animal models for deciphering the physiological processes, connectivity and molecular mechanisms supporting advanced cognitive functions. Here, we review findings emerging from marmoset social and behavioural studies, which have already provided significant insights into executive, motivational, social, and emotional dysfunction associated with neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Ranshikha Samandra
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Zakia Z Haque
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| | - Farshad Alizadeh Mansouri
- Cognitive Neuroscience Laboratory, Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia; ARC Centre for Integrative Brain Function, Monash University, Australia.
| |
Collapse
|
23
|
Correia-Caeiro C, Burrows A, Wilson DA, Abdelrahman A, Miyabe-Nishiwaki T. CalliFACS: The common marmoset Facial Action Coding System. PLoS One 2022; 17:e0266442. [PMID: 35580128 PMCID: PMC9113598 DOI: 10.1371/journal.pone.0266442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/21/2022] [Indexed: 11/19/2022] Open
Abstract
Facial expressions are subtle cues, central for communication and conveying emotions in mammals. Traditionally, facial expressions have been classified as a whole (e.g. happy, angry, bared-teeth), due to automatic face processing in the human brain, i.e., humans categorise emotions globally, but are not aware of subtle or isolated cues such as an eyebrow raise. Moreover, the same facial configuration (e.g. lip corners pulled backwards exposing teeth) can convey widely different information depending on the species (e.g. humans: happiness; chimpanzees: fear). The Facial Action Coding System (FACS) is considered the gold standard for investigating human facial behaviour and avoids subjective interpretations of meaning by objectively measuring independent movements linked to facial muscles, called Action Units (AUs). Following a similar methodology, we developed the CalliFACS for the common marmoset. First, we determined the facial muscular plan of the common marmoset by examining dissections from the literature. Second, we recorded common marmosets in a variety of contexts (e.g. grooming, feeding, play, human interaction, veterinary procedures), and selected clips from online databases (e.g. YouTube) to identify their facial movements. Individual facial movements were classified according to appearance changes produced by the corresponding underlying musculature. A diverse repertoire of 33 facial movements was identified in the common marmoset (15 Action Units, 15 Action Descriptors and 3 Ear Action Descriptors). Although we observed a reduced range of facial movement when compared to the HumanFACS, the common marmoset's range of facial movements was larger than predicted according to their socio-ecology and facial morphology, which indicates their importance for social interactions. CalliFACS is a scientific tool to measure facial movements, and thus, allows us to better understand the common marmoset's expressions and communication. As common marmosets have become increasingly popular laboratory animal models, from neuroscience to cognition, CalliFACS can be used as an important tool to evaluate their welfare, particularly in captivity.
Collapse
Affiliation(s)
| | - Anne Burrows
- Department of Physical Therapy, Duquesne University, Pittsburgh, Pennsylvania, United States of America
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Duncan Andrew Wilson
- Primate Research Institute, Kyoto University, Inuyama, Japan
- Graduate School of Letters, Kyoto University, Kyoto, Japan
| | - Abdelhady Abdelrahman
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | | |
Collapse
|
24
|
Girard-Buttoz C, Zaccarella E, Bortolato T, Friederici AD, Wittig RM, Crockford C. Chimpanzees produce diverse vocal sequences with ordered and recombinatorial properties. Commun Biol 2022; 5:410. [PMID: 35577891 PMCID: PMC9110424 DOI: 10.1038/s42003-022-03350-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/10/2022] [Indexed: 02/06/2023] Open
Abstract
The origins of human language remains a major question in evolutionary science. Unique to human language is the capacity to flexibly recombine a limited sound set into words and hierarchical sequences, generating endlessly new sentences. In contrast, sequence production of other animals appears limited, stunting meaning generation potential. However, studies have rarely quantified flexibility and structure of vocal sequence production across the whole repertoire. Here, we used such an approach to examine the structure of vocal sequences in chimpanzees, known to combine calls used singly into longer sequences. Focusing on the structure of vocal sequences, we analysed 4826 recordings of 46 wild adult chimpanzees from Taï National Park. Chimpanzees produced 390 unique vocal sequences. Most vocal units emitted singly were also emitted in two-unit sequences (bigrams), which in turn were embedded into three-unit sequences (trigrams). Bigrams showed positional and transitional regularities within trigrams with certain bigrams predictably occurring in either head or tail positions in trigrams, and predictably co-occurring with specific other units. From a purely structural perspective, the capacity to organize single units into structured sequences offers a versatile system potentially suitable for expansive meaning generation. Further research must show to what extent these structural sequences signal predictable meanings.
Collapse
Affiliation(s)
- Cédric Girard-Buttoz
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, 67 Boulevard Pinel, 69675 BRON, Lyon, France.
- Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique, Abidjan, Ivory Coast.
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| | - Emiliano Zaccarella
- Department of Neuropsychology, Max Planck Institute for Human Cognitive Sciences, 04103, Leipzig, Germany
| | - Tatiana Bortolato
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, 67 Boulevard Pinel, 69675 BRON, Lyon, France
- Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique, Abidjan, Ivory Coast
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive Sciences, 04103, Leipzig, Germany
| | - Roman M Wittig
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, 67 Boulevard Pinel, 69675 BRON, Lyon, France
- Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique, Abidjan, Ivory Coast
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - Catherine Crockford
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, 67 Boulevard Pinel, 69675 BRON, Lyon, France.
- Taï Chimpanzee Project, Centre Suisse de Recherche Scientifique, Abidjan, Ivory Coast.
- Department of Human Behaviour, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany.
| |
Collapse
|
25
|
Banerjee A, Vallentin D. Convergent behavioral strategies and neural computations during vocal turn-taking across diverse species. Curr Opin Neurobiol 2022; 73:102529. [DOI: 10.1016/j.conb.2022.102529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 01/20/2023]
|
26
|
Ruthig P, Schönwiesner M. Common principles in the lateralisation of auditory cortex structure and function for vocal communication in primates and rodents. Eur J Neurosci 2022; 55:827-845. [PMID: 34984748 DOI: 10.1111/ejn.15590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/24/2021] [Indexed: 11/27/2022]
Abstract
This review summarises recent findings on the lateralisation of communicative sound processing in the auditory cortex (AC) of humans, non-human primates, and rodents. Functional imaging in humans has demonstrated a left hemispheric preference for some acoustic features of speech, but it is unclear to which degree this is caused by bottom-up acoustic feature selectivity or top-down modulation from language areas. Although non-human primates show a less pronounced functional lateralisation in AC, the properties of AC fields and behavioral asymmetries are qualitatively similar. Rodent studies demonstrate microstructural circuits that might underlie bottom-up acoustic feature selectivity in both hemispheres. Functionally, the left AC in the mouse appears to be specifically tuned to communication calls, whereas the right AC may have a more 'generalist' role. Rodents also show anatomical AC lateralisation, such as differences in size and connectivity. Several of these functional and anatomical characteristics are also lateralized in human AC. Thus, complex vocal communication processing shares common features among rodents and primates. We argue that a synthesis of results from humans, non-human primates, and rodents is necessary to identify the neural circuitry of vocal communication processing. However, data from different species and methods are often difficult to compare. Recent advances may enable better integration of methods across species. Efforts to standardise data formats and analysis tools would benefit comparative research and enable synergies between psychological and biological research in the area of vocal communication processing.
Collapse
Affiliation(s)
- Philip Ruthig
- Faculty of Life Sciences, Leipzig University, Leipzig, Sachsen.,Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig
| | | |
Collapse
|
27
|
Watanabe S, Kurotani T, Oga T, Noguchi J, Isoda R, Nakagami A, Sakai K, Nakagaki K, Sumida K, Hoshino K, Saito K, Miyawaki I, Sekiguchi M, Wada K, Minamimoto T, Ichinohe N. Functional and molecular characterization of a non-human primate model of autism spectrum disorder shows similarity with the human disease. Nat Commun 2021; 12:5388. [PMID: 34526497 PMCID: PMC8443557 DOI: 10.1038/s41467-021-25487-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a multifactorial disorder with characteristic synaptic and gene expression changes. Early intervention during childhood is thought to benefit prognosis. Here, we examined the changes in cortical synaptogenesis, synaptic function, and gene expression from birth to the juvenile stage in a marmoset model of ASD induced by valproic acid (VPA) treatment. Early postnatally, synaptogenesis was reduced in this model, while juvenile-age VPA-treated marmosets showed increased synaptogenesis, similar to observations in human tissue. During infancy, synaptic plasticity transiently increased and was associated with altered vocalization. Synaptogenesis-related genes were downregulated early postnatally. At three months of age, the differentially expressed genes were associated with circuit remodeling, similar to the expression changes observed in humans. In summary, we provide a functional and molecular characterization of a non-human primate model of ASD, highlighting its similarity to features observed in human ASD.
Collapse
Affiliation(s)
- Satoshi Watanabe
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Tohru Kurotani
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Tomofumi Oga
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Jun Noguchi
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Risa Isoda
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Akiko Nakagami
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan ,grid.411827.90000 0001 2230 656XDepartment of Psychology, Japan Women’s University, Kawasaki, Kanagawa Japan
| | - Kazuhisa Sakai
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Keiko Nakagaki
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Kayo Sumida
- grid.459996.e0000 0004 0376 2692Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan
| | - Kohei Hoshino
- grid.417741.00000 0004 1797 168XPreclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Koichi Saito
- grid.459996.e0000 0004 0376 2692Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Konohana-ku, Osaka, Japan
| | - Izuru Miyawaki
- grid.417741.00000 0004 1797 168XPreclinical Research Laboratories, Sumitomo Dainippon Pharma Co., Ltd., Konohana-ku, Osaka, Japan
| | - Masayuki Sekiguchi
- grid.419280.60000 0004 1763 8916Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Keiji Wada
- grid.419280.60000 0004 1763 8916Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| | - Takafumi Minamimoto
- grid.482503.80000 0004 5900 003XDepartment of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Chiba, Japan
| | - Noritaka Ichinohe
- grid.419280.60000 0004 1763 8916Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo Japan
| |
Collapse
|
28
|
Adriaense JEC, Šlipogor V, Hintze S, Marshall L, Lamm C, Bugnyar T. Watching others in a positive state does not induce optimism bias in common marmosets (Callithrix jacchus), but leads to behaviour indicative of competition. Anim Cogn 2021; 24:1039-1056. [PMID: 33725202 PMCID: PMC8360889 DOI: 10.1007/s10071-021-01497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 11/02/2022]
Abstract
Emotional contagion is suggested to facilitate group life by enhancing synchronized responses to the environment. Cooperative breeders are an example of a social system that requires such intricate coordination between individuals. Therefore, we studied emotional contagion in common marmosets by means of a judgement bias test. Demonstrators were exposed to an emotion manipulation (i.e., positive, negative, control), and observers perceived only the demonstrator's behaviour. We predicted that the positive or negative states of the demonstrator would induce matching states in the observer, indicating emotional contagion. All subjects' emotional states were assessed through behaviour and cognition, the latter by means of a judgement bias test. Behavioural results showed a successful emotion manipulation of demonstrators, with manipulation-congruent expressions (i.e., positive calls in the positive condition, and negative calls and pilo-erect tail in the negative condition). Observers showed no manipulation-congruent expressions, but showed more scratching and arousal after the positive manipulation. Concerning the judgement bias test, we predicted that subjects in a positive state should increase their response to ambiguous cues (i.e., optimism bias), and subjects in a negative state should decrease their response (i.e., pessimism bias). This prediction was not supported as neither demonstrators nor observers showed such bias in either manipulation. Yet, demonstrators showed an increased response to the near-positive cue, and additional analyses showed unexpected responses to the reference cues, as well as a researcher identity effect. We discuss all results combined, including recently raised validation concerns of the judgement bias test, and inherent challenges to empirically studying emotional contagion.
Collapse
Affiliation(s)
- J E C Adriaense
- Evolutionary Cognition Group, Department of Anthropology, University of Zürich, Zürich, Switzerland.
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - V Šlipogor
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, University of South Bohemia, Budweiss, Czech Republic
| | - S Hintze
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - L Marshall
- Bristol Veterinary School, Langford House, University of Bristol, Bristol, UK
| | - C Lamm
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - T Bugnyar
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
Zürcher Y, Willems EP, Burkart JM. Trade-offs between vocal accommodation and individual recognisability in common marmoset vocalizations. Sci Rep 2021; 11:15683. [PMID: 34344939 PMCID: PMC8333328 DOI: 10.1038/s41598-021-95101-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/27/2021] [Indexed: 11/21/2022] Open
Abstract
Recent studies find increasing evidence for vocal accommodation in nonhuman primates, indicating that this form of vocal learning is more prevalent than previously thought. Convergent vocal accommodation (i.e. becoming more similar to partners) indicates social closeness. At the same time, however, becoming too similar may compromise individual recognisability. This is especially problematic if individual recognisability is an important part of the call function, like in long-distance contact calls. In contrast, in calls with a different function, the trade-off between signalling social closeness and individual recognisability might be less severe. We therefore hypothesized that the extent and consequences of accommodation depend on the function of a given call, and expected (1) more accommodation in calls for which individual identity is less crucial and (2) that individual identity is less compromised in calls that serve mainly to transmit identity compared to calls where individual recognisability is less important. We quantified vocal accommodation in three call types over the process of pair formation in common marmoset monkeys (Callithrix jacchus, n = 20). These three call types have different functions and vary with the degree to which they refer to individual identity of the caller. In accordance with our predictions, we found that animals converged most in close contact calls (trill calls), but less in calls where individual identity is more essential (phee- and food calls). In two out of three call types, the amount of accommodation was predicted by the initial vocal distance. Moreover, accommodation led to a drop in statistical individual recognisability in trill calls, but not in phee calls and food calls. Overall, our study shows that patterns of vocal accommodation vary between call types with different functions, suggestive of trade-offs between signalling social closeness and individual recognisability in marmoset vocalizations.
Collapse
Affiliation(s)
- Y Zürcher
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, Zurich, Switzerland.
| | - E P Willems
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, Zurich, Switzerland
| | - J M Burkart
- Department of Anthropology, University of Zürich, Winterthurerstrasse 190, Zurich, Switzerland
| |
Collapse
|
30
|
Varella TT, Ghazanfar AA. Cooperative care and the evolution of the prelinguistic vocal learning. Dev Psychobiol 2021; 63:1583-1588. [PMID: 33826142 PMCID: PMC8355020 DOI: 10.1002/dev.22108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/12/2021] [Accepted: 01/17/2021] [Indexed: 11/06/2022]
Abstract
The development of the earliest vocalizations of human infants is influenced by social feedback from caregivers. As these vocalizations change, they increasingly elicit such feedback. This pattern of development is in stark contrast to that of our close phylogenetic relatives, Old World monkeys and apes, who produce mature-sounding vocalizations at birth. We put forth a scenario to account for this difference: Humans have a cooperative breeding strategy, which pressures infants to compete for the attention from caregivers. Humans use this strategy because large brained human infants are energetically costly and born altricial. An altricial brain accommodates vocal learning. To test this hypothetical scenario, we present findings from New World marmoset monkeys indicating that, through convergent evolution, this species adopted a largely identical developmental system-one that includes vocal learning and cooperative breeding.
Collapse
Affiliation(s)
- Thiago T. Varella
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
| | - Asif A. Ghazanfar
- Department of Psychology, Princeton University, Princeton NJ 08544, USA
- Princeton Neuroscience Institute, Princeton University, Princeton NJ 08544, USA
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
31
|
Selvanayagam J, Johnston KD, Wong RK, Schaeffer D, Everling S. Ketamine disrupts gaze patterns during face viewing in the common marmoset. J Neurophysiol 2021; 126:330-339. [PMID: 34133232 DOI: 10.1152/jn.00078.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Faces are stimuli of critical importance for primates. The common marmoset (Callithrix jacchus) is a promising model for investigations of face processing, as this species possesses oculomotor and face-processing networks resembling those of macaques and humans. Face processing is often disrupted in neuropsychiatric conditions such as schizophrenia (SZ), and thus, it is important to recapitulate underlying circuitry dysfunction preclinically. The N-methyl-d-aspartate (NMDA) noncompetitive antagonist ketamine has been used extensively to model the cognitive symptoms of SZ. Here, we investigated the effects of a subanesthetic dose of ketamine on oculomotor behavior in marmosets during face viewing. Four marmosets received systemic ketamine or saline injections while viewing phase-scrambled or intact videos of conspecifics' faces. To evaluate effects of ketamine on scan paths during face viewing, we identified regions of interest in each face video and classified locations of saccade onsets and landing positions within these areas. A preference for the snout over eye regions was observed following ketamine administration. In addition, regions in which saccades landed could be significantly predicted by saccade onset region in the saline but not the ketamine condition. Effects on saccade control were limited to an increase in saccade peak velocity in all conditions and a reduction in saccade amplitudes during viewing of scrambled videos. Thus, ketamine induced a significant disruption of scan paths during viewing of conspecific faces but limited effects on saccade motor control. These findings support the use of ketamine in marmosets for investigating changes in neural circuits underlying social cognition in neuropsychiatric disorders.NEW & NOTEWORTHY Face processing, an important social cognitive ability, is impaired in neuropsychiatric conditions such as schizophrenia. The highly social common marmoset model presents an opportunity to investigate these impairments. We administered subanesthetic doses of ketamine to marmosets to model the cognitive symptoms of schizophrenia. We observed a disruption of scan paths during viewing of conspecifics' faces. These findings support the use of ketamine in marmosets as a model for investigating social cognition in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Janahan Selvanayagam
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Kevin D Johnston
- Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - Raymond K Wong
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| | - David Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stefan Everling
- Graduate Program in Neuroscience, Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada.,Center for Functional and Metabolic Mapping, Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
32
|
Testard C, Tremblay S, Platt M. From the field to the lab and back: neuroethology of primate social behavior. Curr Opin Neurobiol 2021; 68:76-83. [PMID: 33567386 PMCID: PMC8243779 DOI: 10.1016/j.conb.2021.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022]
Abstract
Social mammals with more numerous and stronger social relationships live longer, healthier lives. Despite the established importance of social relationships, our understanding of the neurobiological mechanisms by which they are pursued, formed, and maintained in primates remains largely confined to highly controlled laboratory settings which do not allow natural, dynamic social interactions to unfold. In this review, we argue that the neurobiological study of primate social behavior would benefit from adopting a neuroethological approach, that is, a perspective grounded in natural, species-typical behavior, with careful selection of animal models according to the scientific question at hand. We highlight macaques and marmosets as key animal models for human social behavior and summarize recent findings in the social domain for both species. We then review pioneering studies of dynamic social behaviors in small animals, which can inspire studies in larger primates where the technological landscape is now ripe for an ethological overhaul.
Collapse
Affiliation(s)
- Camille Testard
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Sébastien Tremblay
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Psychology Department, University of Pennsylvania, Philadelphia, PA 19104, USA; Marketing Department, The Wharton School of Business, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
Gultekin YB, Hildebrand DGC, Hammerschmidt K, Hage SR. High plasticity in marmoset monkey vocal development from infancy to adulthood. SCIENCE ADVANCES 2021; 7:7/27/eabf2938. [PMID: 34193413 PMCID: PMC8245035 DOI: 10.1126/sciadv.abf2938] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 05/17/2021] [Indexed: 05/21/2023]
Abstract
The vocal behavior of human infants undergoes marked changes across their first year while becoming increasingly speech-like. Conversely, vocal development in nonhuman primates has been assumed to be largely predetermined and completed within the first postnatal months. Contradicting this assumption, we found a dichotomy between the development of call features and vocal sequences in marmoset monkeys, suggestive of a role for experience. While changes in call features were related to physical maturation, sequences of and transitions between calls remained flexible until adulthood. As in humans, marmoset vocal behavior developed in stages correlated with motor and social development stages. These findings are evidence for a prolonged phase of plasticity during marmoset vocal development, a crucial primate evolutionary preadaptation for the emergence of vocal learning and speech.
Collapse
Affiliation(s)
- Yasemin B Gultekin
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - David G C Hildebrand
- Laboratory of Neural Systems, The Rockefeller University, New York, NY 10065, USA
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, 37077 Göttingen, Germany
| | - Steffen R Hage
- Neurobiology of Social Communication, Department of Otolaryngology - Head and Neck Surgery, Medical Center, University of Tübingen, 72076 Tübingen, Germany.
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Brügger RK, Willems EP, Burkart JM. Do marmosets understand others' conversations? A thermography approach. SCIENCE ADVANCES 2021; 7:7/6/eabc8790. [PMID: 33536207 PMCID: PMC7857675 DOI: 10.1126/sciadv.abc8790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 12/16/2020] [Indexed: 05/31/2023]
Abstract
What information animals derive from eavesdropping on interactions between conspecifics, and whether they assign value to it, is difficult to assess because overt behavioral reactions are often lacking. An inside perspective of how observers perceive and process such interactions is thus paramount. Here, we investigate what happens in the mind of marmoset monkeys when they hear playbacks of positive or negative third-party vocal interactions, by combining thermography to assess physiological reactions and behavioral preference measures. The physiological reactions show that playbacks were perceived and processed holistically as interactions rather than as the sum of the separate elements. Subsequently, the animals preferred those individuals who had been simulated to engage in positive, cooperative vocal interactions during the playbacks. By using thermography to disentangle the mechanics of marmoset sociality, we thus find that marmosets eavesdrop on and socially evaluate vocal exchanges and use this information to distinguish between cooperative and noncooperative conspecifics.
Collapse
Affiliation(s)
- R K Brügger
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - E P Willems
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - J M Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
35
|
Abstract
The common marmoset (Callithrix jacchus), a small New World primate, is receiving substantial attention in the neuroscience and biomedical science fields because its anatomical features, functional and behavioral characteristics, and reproductive features and its amenability to available genetic modification technologies make it an attractive experimental subject. In this review, I outline the progress of marmoset neuroscience research and summarize both the current status (opportunities and limitations) of and the future perspectives on the application of marmosets in neuroscience and disease modeling.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan; .,Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-shi, Saitama 351-0198, Japan
| |
Collapse
|
36
|
Domestication Phenotype Linked to Vocal Behavior in Marmoset Monkeys. Curr Biol 2020; 30:5026-5032.e3. [PMID: 33065007 DOI: 10.1016/j.cub.2020.09.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/01/2020] [Accepted: 09/15/2020] [Indexed: 12/28/2022]
Abstract
The domestication syndrome refers to a set of traits that are the by-products of artificial selection for increased tolerance toward humans [1-3]. One hypothesis is that some species, like humans and bonobos, "self-domesticated" and have been under selection for that same suite of domesticated phenotypes [4-8]. However, the evidence for this has been largely circumstantial. Here, we provide evidence that, in marmoset monkeys, the size of a domestication phenotype-a white facial fur patch-is linked to their degree of affiliative vocal responding. During development, the amount of parental vocal feedback experienced influences the rate of growth of this facial white patch, and this suggests a mechanistic link between the two phenotypes, possibly via neural crest cells. Our study provides evidence for links between vocal behavior and the development of morphological phenotypes associated with domestication in a nonhuman primate.
Collapse
|
37
|
For emergency only: terrestrial feeding in Coimbra-Filho's titis reflects seasonal arboreal resource availability. Primates 2020; 62:199-206. [PMID: 32862373 DOI: 10.1007/s10329-020-00859-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/14/2020] [Indexed: 10/23/2022]
Abstract
Terrestriality in Platyrrhine primates is primarily associated with low arboreal resource availability, low predation risk when on the ground and increased contact time with human observers. To test the relationship between these variables and ground use frequency, we studied a group of endangered Coimbra-Filho's titi monkeys (Callicebus coimbrai) in a 14-ha forest fragment in north-eastern Brazil. Terrestriality data were collected on a monthly basis (33 months) using scan sampling procedures from July 2008 to July 2012. Overall, Coimbra-Filho's titi monkeys were recorded during 0.6% of observation time (113 out of 18,164 scans) on the ground. Most of the time on the ground was spent feeding on young leaves (71 records) and the least amount of time on fruits (14 records). Availability of arboreal foods, rainfall, and time of contact with human observers did not influence overall terrestrial behaviour (ground use). However, the timing and nature of the monkeys' terrestrial feeding was strongly related to the absence of arboreal fruit (β-estimate = -3.078) and young leaf (β-estimate = -3.515) food resources. We suggest that terrestrial feeding by Coimbra-Filho's titi monkeys could be an adaptation to low arboreal fruit availability and the exploitation of alternative food resources.
Collapse
|
38
|
Ash H, Ziegler TE, Colman RJ. Early learning in the common marmoset (Callithrix jacchus): Behavior in the family group is related to preadolescent cognitive performance. Am J Primatol 2020; 82:e23159. [PMID: 32515834 PMCID: PMC7440670 DOI: 10.1002/ajp.23159] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/15/2020] [Accepted: 05/24/2020] [Indexed: 12/16/2022]
Abstract
Early environment can have a major impact on development, with family life known to play an important role. Longitudinal studies can therefore help increase our understanding of variance in cognitive abilities in young animals, as well as over time. We followed 22 marmosets (11 male and 11 female) from infancy through to early adolescence. At 3 months old, the marmosets were trained to reliably touch a rewarded stimulus. At 5 months, behavior was observed within the natal group. At 9 months, the marmosets were given a visual discrimination task to assess learning ability. Mann-Whitney U tests found no sex or family size differences in number of errors at 3 or 9 months. While no significant relationships were found between behavior in the family and learning at 3 months, significant negative correlations were found between duration spent in locomotion and learning errors (p = .05), as well as between frequency of calm vocalizations and learning errors (p = .001) at 9 months. A U-shape curve was found between amount of social play and learning at 9 months. Positive family interactions, including moderate amounts of play, as well as calm individual behavior, may therefore be important in learning. This study sheds light on cognitive development in much younger marmosets than previously studied, and helps increase understanding of how individual differences in learning may arise.
Collapse
Affiliation(s)
- Hayley Ash
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Toni E. Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Ricki J. Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Wisconsin Institutes for Medical Research, 1111 Highland Avenue, Madison, WI, USA
| |
Collapse
|
39
|
Gonçalves FB, Gonçalves BSB, Cavalcante JS, Azevedo CVM. Aging-related changes on social synchronization of circadian activity rhythm in a diurnal primate ( Callithrix jacchus). Chronobiol Int 2020; 37:980-992. [PMID: 32573282 DOI: 10.1080/07420528.2020.1773495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The input of environmental time cues and expression of circadian activity rhythms may change with aging. Among nonphotic zeitgebers, social cues from conspecific vocalizations may contribute to the stability and survival of individuals of social species, such as nonhuman primates. We evaluated aging-related changes on social synchronization of the circadian activity rhythm (CAR) in a social diurnal primate, the common marmoset. The activity of 18 male marmosets was recorded by actiwatches in two conditions. (1) Experimental - 4 young adult (5 ± 2 yrs of age) and 4 older (10 ± 2 yrs of age) animals maintained under LD 12/12 h and LL in a room with full insulation for light but only partial insulation for sound from vocalizations of conspecifics maintained outdoors in the colony; and (2) Control - 10 young adult animals maintained outdoors in the colony (5 animals as a control per age group). In LL, the CAR of young adults showed more stable synchronization with controls. Among the aged marmosets, two free-ran with τ > 24 h, whereas the other two showed relative coordination during the first 30 days in LL, but free-ran thereafter. These differences were reflected in the "social" phase angles (ψon and ψoff ) between rhythms of experimental and control animal groups. Moreover, the activity patterns of aged animals showed lower social synchrony with controls compared to young adults, with the time lags of the time series between each experimental group and control group being negative in aged and positive in young adult animals (t-test, p < 0.05). The index of stability of the CAR showed no differences according to age, while the intradaily variability of the CAR was higher in the aged animals during LD-resynchronization, who took additional days to resynchronize. Thus, the social modulation on CAR may vary with age in marmosets. In the aged group, there was a lower effect of social synchronization, which may be associated with aging-related changes in the synchronization and generation of the CAR as well as in system outputs.
Collapse
Affiliation(s)
- Fabiana B Gonçalves
- Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte , Caicó, RN, Brazil
| | - Bruno S B Gonçalves
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo , São Paulo, SP, Brazil
| | - Jeferson S Cavalcante
- Laboratório de Estudos Neuroquímicos, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| | - Carolina V M Azevedo
- Laboratório de Cronobiologia, Departamento de Fisiologia e Comportamento, Universidade Federal do Rio Grande do Norte , Natal, RN, Brazil
| |
Collapse
|
40
|
Abstract
AbstractCoping styles describe behavioral differences during stressful or challenging situations. Coping styles are stable over time but little is known about early life manifestation and development of these behavioral differences. We aimed to investigate if differences in the way marmosets produce vocalizations at an early age are related to their coping style in the future. We studied 14 common marmosets (Callithrix jacchus) from three social groups housed at the marmoset colony at Universidad Autónoma de Madrid. We recorded the vocalizations of each marmoset in isolation at 15–17 days of age, analyzing latency to vocalize and calling rate of phee and tsik calls. To measure coping style, we introduced a novel stimulus to the group cages when infants were 3 months old and recorded exploration, headcocking, and approaches to the stimulus. The results showed negative relationships between the latency of phee call (a long-range contact call) at 15–17 days and frequency of exploration and approach to the novel stimulus at 3 months, although both correlations fall above the cut-off points for the false discovery rate. Marmosets that gave long-range calls sooner at 15–17 days of age also showed more exploratory behaviors at 3 months. The results also showed group differences in exploration at 3 months, and twins were more similar to each other than to other infants in the sample. There were no group differences in early vocalizations and no sex differences in any variable. These findings suggest that coping style is stable from as early as 15–17 days after birth and suggest that the group can influence exploration in marmosets.
Collapse
|
41
|
Wakita M. Common marmosets (Callithrix jacchus) cannot recognize global configurations of sound patterns but can recognize adjacent relations of sounds. Behav Processes 2020; 176:104136. [PMID: 32404248 DOI: 10.1016/j.beproc.2020.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 03/30/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
Processing the temporal configuration of discrete sounds to extract a regular pattern is fundamental to humans' faculties of perceiving words and musical phrases. To investigate such auditory pattern perception in monkeys, I trained two common marmosets to discriminate between AB-AB and AA-BB patterns under two training paradigms. One was an absolute discrimination task, in which the discrimination between these stimuli without reference cues was required. The other was a relative discrimination task, in which the detection of a change from one stimulus to the other was required. The marmosets failed in the absolute discrimination task but achieved the relative discrimination task. Failure in the absolute task indicated that the marmosets were unable to form a representation of the global sound patterns in their long-term memory stores. In contrast, success in the relative task indicated that the marmosets had short-term memory of ongoing sounds that enabled an online monitoring to detect deviations between incoming sounds and the anticipated upcoming sounds. Thus, the current findings imply that marmosets can at least perceive adjacent tone relations in an auditory stream regardless of the temporal configuration of the global sound patterns.
Collapse
Affiliation(s)
- Masumi Wakita
- Cognitive Neuroscience Section, Primate Research Institute, Kyoto University, Kanrin 41-2, Inuyama, Aichi 484-8506, Japan.
| |
Collapse
|
42
|
Close-range vocal interaction in the common marmoset (Callithrix jacchus). PLoS One 2020; 15:e0227392. [PMID: 32298305 PMCID: PMC7161973 DOI: 10.1371/journal.pone.0227392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/31/2020] [Indexed: 11/26/2022] Open
Abstract
Vocal communication in animals often involves taking turns vocalizing. In humans, turn-taking is a fundamental rule in conversation. Among non-human primates, the common marmoset is known to engage in antiphonal calling using phee calls and trill calls. Calls of the trill type are the most common, yet difficult to study, because they are not very loud and uttered in conditions when animals are in close proximity to one another. Here we recorded trill calls in captive pair-housed marmosets using wearable microphones, while the animals were together with their partner or separated, but within trill call range. Trills were exchanged mainly with the partner and not with other animals in the room. Animals placed outside the home cage increased their trill call rate and uttered more trills in response to their partner compared to strangers. The fundamental frequency, F0, of trills increased when animals were placed outside the cage. Our results indicate that trill calls can be monitored using wearable audio equipment and that minor changes in social context affect trill call interactions and spectral properties of trill calls.
Collapse
|
43
|
Quah SKL, Cockcroft GJ, McIver L, Santangelo AM, Roberts AC. Avoidant Coping Style to High Imminence Threat Is Linked to Higher Anxiety-Like Behavior. Front Behav Neurosci 2020; 14:34. [PMID: 32218725 PMCID: PMC7078632 DOI: 10.3389/fnbeh.2020.00034] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/18/2020] [Indexed: 11/24/2022] Open
Abstract
Human studies with self-reported measures have suggested a link between an avoidant coping style and high anxiety. Here, using the common marmoset as a model, we characterize the latent factors underlying behavioral responses of these monkeys towards low and high imminence threat and investigate if a predominantly avoidant behavioral response to high imminence threat is associated with greater anxiety-like behavior in a context of low imminence threat. Exploratory factor analysis (EFA) of the human intruder test of low imminence threat revealed a single factor in which a combination of active vigilance and avoidance responses underpinned anxiety-like behavior. In contrast, two negatively-associated factors were revealed in the model snake test reflecting active and avoidant coping to high imminence threat. Subsequent analysis showed that animals with a predominantly avoidant coping style on the model snake test displayed higher anxiety-like behavior on the human intruder test, findings consistent with those described in humans. Together they illustrate the richness of the behavioral repertoire displayed by marmosets in low and high imminence threatening contexts and the additional insight that factor analysis can provide by identifying the latent factors underlying these complex behavioral datasets. They also highlight the translational value of this approach when studying the neural circuits underlying complex anxiety-like states in this primate model.
Collapse
Affiliation(s)
- Shaun K L Quah
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Gemma J Cockcroft
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lauren McIver
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.,Behavioral and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
Fischer J, Hammerschmidt K. Towards a new taxonomy of primate vocal production learning. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190045. [PMID: 31735147 PMCID: PMC6895554 DOI: 10.1098/rstb.2019.0045] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2019] [Indexed: 11/12/2022] Open
Abstract
The extent to which vocal learning can be found in nonhuman primates is key to reconstructing the evolution of speech. Regarding the adjustment of vocal output in relation to auditory experience (vocal production learning in the narrow sense), effects on the ontogenetic trajectory of vocal development as well as adjustment to group-specific call features have been found. Yet, a comparison of the vocalizations of different primate genera revealed striking similarities in the structure of calls and repertoires in different species of the same genus, indicating that the structure of nonhuman primate vocalizations is highly conserved. Thus, modifications in relation to experience only appear to be possible within relatively tight species-specific constraints. By contrast, comprehension learning may be extremely rapid and open-ended. In conjunction, these findings corroborate the idea of an ancestral independence of vocal production and auditory comprehension learning. To overcome the futile debate about whether or not vocal production learning can be found in nonhuman primates, we suggest putting the focus on the different mechanisms that may mediate the adjustment of vocal output in response to experience; these mechanisms may include auditory facilitation and learning from success. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, Göttingen, Niedersachsen 37077, Germany
- Department of Primate Cognition, Georg August University Göttingen, Göttingen, Niedersachsen, Germany
- Leibniz Science Campus Primate Cognition, Göttingen, Germany
| | - Kurt Hammerschmidt
- Cognitive Ethology Laboratory, German Primate Center, Kellnerweg 4, Göttingen, Niedersachsen 37077, Germany
- Leibniz Science Campus Primate Cognition, Göttingen, Germany
| |
Collapse
|
45
|
Zhao L, Roy S, Wang X. Rapid modulations of the vocal structure in marmoset monkeys. Hear Res 2019; 384:107811. [PMID: 31678893 DOI: 10.1016/j.heares.2019.107811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Humans and some animal species show flexibility in vocal production either voluntarily or in response to environmental cues. Studies have shown rapid spectrotemporal changes in speech or vocalizations during altered auditory feedback in humans, songbirds and bats. Non-human primates, however, have long been considered lacking the ability to modify spectrotemporal structures of their vocalizations. Here we tested the ability of the common marmoset (Callithrix jacchus), a highly vocal New World primate species to alter spectral and temporal structures of their species-specific vocalizations in the presence of perturbation signals. By presenting perturbation noises while marmosets were vocalizing phee calls, we showed that they were able to change in real-time the duration or spectral trajectory of an ongoing phee phrase by either terminating it before its completion, making rapid shifts in fundamental frequency or in some cases prolonging the duration beyond the natural range of phee calls. In some animals, we observed fragmented phee calls which were not produced by marmosets in their natural environment. Interestingly, some perturbation-induced changes persisted even in the absence of the perturbation noises. These observations provide further evidence that marmoset monkeys are capable of rapidly modulating their vocal structure and suggested potential voluntary vocal control by this non-human primate species.
Collapse
Affiliation(s)
- Lingyun Zhao
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sabyasachi Roy
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
46
|
Zürcher Y, Willems EP, Burkart JM. Are dialects socially learned in marmoset monkeys? Evidence from translocation experiments. PLoS One 2019; 14:e0222486. [PMID: 31644527 PMCID: PMC6808547 DOI: 10.1371/journal.pone.0222486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/01/2019] [Indexed: 11/19/2022] Open
Abstract
The acoustic properties of vocalizations in common marmosets differ between populations. These differences may be the result of social vocal learning, but they can also result from environmental or genetic differences between populations. We performed translocation experiments to separately quantify the influence of a change in the physical environment (experiment 1), and a change in the social environment (experiment 2) on the acoustic properties of calls from individual captive common marmosets. If population differences were due to genetic differences, we expected no change in the vocalizations of the translocated marmosets. If differences were due to environmental factors, we expected vocalizations to permanently change contingent with environmental changes. If social learning was involved, we expected that the vocalizations of animals translocated to a new population with a different dialect would become more similar to the new population. In experiment 1, we translocated marmosets to a different physical environment without changing the social composition of the groups or their neighbours. Immediately after the translocation to the new facility, one out of three call types showed a significant change in call structure, but 5-6 weeks later, the calls were no longer different from before the translocation. Thus, the novel physical environment did not induce long lasting changes in the vocalizations of the marmosets. In experiment 2, we translocated marmosets to a new population with a different dialect. Importantly, our previous work had shown that these two populations differed significantly in vocalization structure. The translocated marmosets were still housed in their original social group, but after translocation they were surrounded by the vocalizations from neighbouring groups of the new population. The vocal distance between the translocated individuals and the new population decreased for two out of three call types over 16 weeks. Thus, even without direct social contact or interaction, the vocalizations of the translocated animals converged towards the new population, indicating that common marmosets can modify their calls due to acoustic input from conspecifics alone, via crowd vocal learning. To our knowledge, this is the first study able to distinguish between different explanations for vocal dialects as well as to show crowd vocal learning in a primate species.
Collapse
Affiliation(s)
- Yvonne Zürcher
- Department of Anthropology, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| | - Erik P. Willems
- Department of Anthropology, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| | - Judith M. Burkart
- Department of Anthropology, University of Zurich, Winterthurerstrasse, Zürich, Switzerland
| |
Collapse
|
47
|
Zhang YS, Takahashi DY, Liao DA, Ghazanfar AA, Elemans CPH. Vocal state change through laryngeal development. Nat Commun 2019; 10:4592. [PMID: 31597928 PMCID: PMC6785551 DOI: 10.1038/s41467-019-12588-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 09/13/2019] [Indexed: 01/26/2023] Open
Abstract
Across vertebrates, progressive changes in vocal behavior during postnatal development are typically attributed solely to developing neural circuits. How the changing body influences vocal development remains unknown. Here we show that state changes in the contact vocalizations of infant marmoset monkeys, which transition from noisy, low frequency cries to tonal, higher pitched vocalizations in adults, are caused partially by laryngeal development. Combining analyses of natural vocalizations, motorized excised larynx experiments, tensile material tests and high-speed imaging, we show that vocal state transition occurs via a sound source switch from vocal folds to apical vocal membranes, producing louder vocalizations with higher efficiency. We show with an empirically based model of descending motor control how neural circuits could interact with changing laryngeal dynamics, leading to adaptive vocal development. Our results emphasize the importance of embodied approaches to vocal development, where exploiting biomechanical consequences of changing material properties can simplify motor control, reducing the computational load on the developing brain.
Collapse
Affiliation(s)
- Yisi S Zhang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Daniel Y Takahashi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Diana A Liao
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Asif A Ghazanfar
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, 08544, USA.
- Department of Psychology, Princeton University, Princeton, NJ, 08544, USA.
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA.
| | - Coen P H Elemans
- Department of Biology, University of Southern Denmark, 5230, Odense M, Denmark.
| |
Collapse
|
48
|
Pomberger T, Risueno-Segovia C, Gultekin YB, Dohmen D, Hage SR. Cognitive control of complex motor behavior in marmoset monkeys. Nat Commun 2019; 10:3796. [PMID: 31439849 PMCID: PMC6706403 DOI: 10.1038/s41467-019-11714-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/30/2019] [Indexed: 02/04/2023] Open
Abstract
Marmosets have attracted significant interest in the life sciences. Similarities with human brain anatomy and physiology, such as the granular frontal cortex, as well as the development of transgenic lines and potential for transferring rodent neuroscientific techniques to small primates make them a promising neurodegenerative and neuropsychiatric model system. However, whether marmosets can exhibit complex motor tasks in highly controlled experimental designs—one of the prerequisites for investigating higher-order control mechanisms underlying cognitive motor behavior—has not been demonstrated. We show that marmosets can be trained to perform vocal behavior in response to arbitrary visual cues in controlled operant conditioning tasks. Our results emphasize the marmoset as a suitable model to study complex motor behavior and the evolution of cognitive control underlying speech. Whether marmosets can exhibit complex motor tasks in controlled experimental designs has not yet been demonstrated. Here, the authors show that marmoset monkeys can be trained to call on command in controlled operant conditioning tasks.
Collapse
Affiliation(s)
- Thomas Pomberger
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Cristina Risueno-Segovia
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Yasemin B Gultekin
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Deniz Dohmen
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.,Graduate School of Neural & Behavioural Sciences, International Max Planck Research School, University of Tübingen, Österberg-Str. 3, 72074, Tübingen, Germany
| | - Steffen R Hage
- Neurobiology of Vocal Communication, Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller-Str. 25, 72076, Tübingen, Germany.
| |
Collapse
|
49
|
Abstract
Humans exhibit a high level of vocal plasticity in speech production, which allows us to acquire both native and foreign languages and dialects, and adapt to local accents in social communication. In comparison, non-human primates exhibit limited vocal plasticity, especially in adulthood, which would limit their ability to adapt to different social and environmental contexts in vocal communication. Here, we quantitatively examined the ability of adult common marmosets (Callithrix jacchus), a highly vocal New World primate species, to modulate their vocal production in social contexts. While recent studies have demonstrated vocal learning in developing marmosets, we know much less about the extent of vocal learning and plasticity in adult marmosets. We found, in the present study, that marmosets were able to adaptively modify the spectrotemporal structure of their vocalizations when they encountered interfering sounds. Our experiments showed that marmosets shifted the spectrum of their vocalizations away from the spectrum of the interfering sounds in order to avoid the overlap. More interestingly, we found that marmosets made predictive and long-lasting spectral shifts in their vocalizations after they had experienced a particular type of interfering sound. These observations provided evidence for directional control of the vocalization spectrum and long-term vocal plasticity by adult marmosets. The findings reported here have important implications for the ability of this New World primate species in voluntarily and adaptively controlling their vocal production in social communication.
Collapse
Affiliation(s)
- Lingyun Zhao
- 1 Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
| | - Bahar Boroumand Rad
- 2 Department of Biological Sciences, Towson University , Towson, MD 21252 , USA
| | - Xiaoqin Wang
- 1 Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine , Baltimore, MD 21205 , USA
| |
Collapse
|
50
|
Hara T, Osakada F. [Cell-type-specific targeting strategies for elucidating neural circuits and pathophysiological mechanisms in the marmoset brain]. Nihon Yakurigaku Zasshi 2019; 153:210-218. [PMID: 31092753 DOI: 10.1254/fpj.153.210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
As a primate animal model for neuroscience research, the common marmoset (Callithrix jacchus) provides an unprecedented opportunity to gain a better understanding of the human brain function and pathophysiology of neurological and psychiatric disorders, thereby helping in the diagnosis and treatment of those disorders. The marmoset is particularly useful in studying the neural mechanisms underlying social behavior, as their prosocial behavior and visual and vocal communication systems are well-developed. Despite recent advances in biotechnology such as the creation of genetically engineered marmosets, our understanding of the marmoset brain, including its dysfunction in disease, at the circuit level remains limited due to the lack of comprehensive knowledge of the neuronal connections in the marmoset brain. Here we describe the development of genetic and viral engineering techniques for a particular type of neuron in non-transgenic animals. These approaches, combined with rabies viral tracing, imaging, and electrophysiology, will make it possible to map the connectome and relate neuronal connectivity to function in the marmoset brain. Such circuit-level studies will open a new avenue for non-human primate research that can bridge the gap between basic research and human studies.
Collapse
Affiliation(s)
- Taiki Hara
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University.,Sohyaku Innovative Research Division, Mitsubishi Tanabe Pharma Corporation
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University
| |
Collapse
|