1
|
Doan TNA, Cowley JM, Phillips AL, Briffa JF, Leemaqz SY, Burton RA, Romano T, Wlodek ME, Bianco-Miotto T. Imprinted gene alterations in the kidneys of growth restricted offspring may be mediated by a long non-coding RNA. Epigenetics 2024; 19:2294516. [PMID: 38126131 PMCID: PMC10761017 DOI: 10.1080/15592294.2023.2294516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Altered epigenetic mechanisms have been previously reported in growth restricted offspring whose mothers experienced environmental insults during pregnancy in both human and rodent studies. We previously reported changes in the expression of the DNA methyltransferase Dnmt3a and the imprinted genes Cdkn1c (Cyclin-dependent kinase inhibitor 1C) and Kcnq1 (Potassium voltage-gated channel subfamily Q member 1) in the kidney tissue of growth restricted rats whose mothers had uteroplacental insufficiency induced on day 18 of gestation, at both embryonic day 20 (E20) and postnatal day 1 (PN1). To determine the mechanisms responsible for changes in the expression of these imprinted genes, we investigated DNA methylation of KvDMR1, an imprinting control region (ICR) that includes the promoter of the antisense long non-coding RNA Kcnq1ot1 (Kcnq1 opposite strand/antisense transcript 1). Kcnq1ot1 expression decreased by 51% in growth restricted offspring compared to sham at PN1. Interestingly, there was a negative correlation between Kcnq1ot1 and Kcnq1 in the E20 growth restricted group (Spearman's ρ = 0.014). No correlation was observed between Kcnq1ot1 and Cdkn1c expression in either group at any time point. Additionally, there was a 11.25% decrease in the methylation level at one CpG site within KvDMR1 ICR. This study, together with others in the literature, supports that long non-coding RNAs may mediate changes seen in tissues of growth restricted offspring.
Collapse
Affiliation(s)
- Thu N. A. Doan
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - James M. Cowley
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Aaron L. Phillips
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Jessica F. Briffa
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - Shalem Y. Leemaqz
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- SAHMRI Women and Kids, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, SA, Australia
| | - Rachel A. Burton
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Tania Romano
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Mary E. Wlodek
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, & Waite Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Simmers MD, Hudson KM, Baptissart M, Cowley M. Epigenetic control of the imprinted growth regulator Cdkn1c in cadmium-induced placental dysfunction. Epigenetics 2023; 18:2088173. [PMID: 35770551 PMCID: PMC10989690 DOI: 10.1080/15592294.2022.2088173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 05/31/2022] [Indexed: 11/03/2022] Open
Abstract
Cadmium (Cd) is a toxic metal ubiquitous in the environment. In utero, Cd is inefficiently transported to the foetus but causes foetal growth restriction (FGR), likely through impairment of the placenta where Cd accumulates. However, the underlying molecular mechanisms are poorly understood. Cd can modulate the expression of imprinted genes, defined by their transcription from one parental allele, which play critical roles in placental and foetal growth. The expression of imprinted genes is governed by DNA methylation at Imprinting Control Regions (ICRs), which are susceptible to environmental perturbation. The imprinted gene Cdkn1c/CDKN1C is a major regulator of placental development, is implicated in FGR, and shows increased expression in response to Cd exposure in mice. Here, we use a hybrid mouse model of in utero Cd exposure to determine if the increase in placental Cdkn1c expression is caused by changes to ICR DNA methylation and loss of imprinting (LOI). Consistent with prior studies, Cd causes FGR and impacts placental structure and Cdkn1c expression at late gestation. Using polymorphisms to distinguish parental alleles, we demonstrate that increased Cdkn1c expression is not driven by changes to DNA methylation or LOI. We show that Cdkn1c is expressed primarily in the placental labyrinth which is proportionally increased in size in response to Cd. We conclude that the Cd-associated increase in Cdkn1c expression can be fully explained by alterations to placental structure. These results have implications for understanding mechanisms of Cd-induced placental dysfunction and, more broadly, for the study of FGR associated with increased Cdkn1c/CDKN1C expression.
Collapse
Affiliation(s)
- Mark D. Simmers
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| | - Kathleen M. Hudson
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| | - Marine Baptissart
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| | - Michael Cowley
- Center for Human Health and the Environment, and Department of Biological Sciences, North Carolina State University, Raleigh, NCUSA
| |
Collapse
|
3
|
Jedynak P, Broséus L, Tost J, Busato F, Gabet S, Thomsen C, Sakhi AK, Pin I, Slama R, Lepeule J, Philippat C. Prenatal exposure to triclosan assessed in multiple urine samples and placental DNA methylation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122197. [PMID: 37481027 DOI: 10.1016/j.envpol.2023.122197] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
A previous study reported positive associations of maternal urinary concentrations of triclosan, a synthetic phenol with widespread exposure in the general population, with placental DNA methylation of male fetuses. Given the high number of comparisons performed in -omic research, further studies were needed to validate and extend on these findings. Using a cohort of male and female fetuses with repeated maternal urine samples to assess exposure, we studied the associations between triclosan and placental DNA methylation. We assessed triclosan concentrations in two pools of 21 urine samples collected among 395 women from the SEPAGES cohort. We used Infinium Methylation EPIC arrays to measure DNA methylation in placental biopsies collected at delivery. We performed a candidate study restricted to a set of candidate CpGs (n = 500) identified in a previous work as well as an exploratory epigenome-wide association study to investigate the associations between triclosan and differentially methylated probes and regions. Analyses were conducted on the whole population and stratified by child's sex. Mediation analysis was performed to test whether heterogeneity of placental tissue may mediate the observed associations. In the candidate approach, we confirmed 18 triclosan-associated genes when both sexes were considered. After stratification for child's sex, triclosan was associated with 72 genes in females and three in males. Most of the associations were positive and several CpGs mapped to imprinted genes: FBRSL1, KCNQ1, RHOBTB3, and SMOC1. A mediation effect by placental tissue heterogeneity was identified for most of the observed associations. In the exploratory analysis, we identified a few isolated associations in the sex-stratified analysis. In line with a previous study on male placentas, our approach revealed several positive associations between triclosan exposure and placental DNA methylation. Several identified loci mapped to imprinted genes.
Collapse
Affiliation(s)
- Paulina Jedynak
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Lucile Broséus
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, University Paris Saclay, Evry, France
| | - Stephan Gabet
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; University Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483-IMPacts de L'Environnement Chimique sur La Santé (IMPECS), Lille, France
| | - Cathrine Thomsen
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Amrit K Sakhi
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Isabelle Pin
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France; Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Johanna Lepeule
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France.
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
4
|
Chen LH, Lo WC, Huang HY, Wu HM. A Lifelong Impact on Endometriosis: Pathophysiology and Pharmacological Treatment. Int J Mol Sci 2023; 24:7503. [PMID: 37108664 PMCID: PMC10139092 DOI: 10.3390/ijms24087503] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/06/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Endometriosis is a chronic inflammatory disease associated with bothersome symptoms in premenopausal women and is complicated with long-term systemic impacts in the post-menopausal stage. It is generally defined by the presence of endometrial-like tissue outside the uterine cavity, which causes menstrual disorders, chronic pelvic pain, and infertility. Endometriotic lesions can also spread and grow in extra-pelvic sites; the chronic inflammatory status can cause systemic effects, including metabolic disorder, immune dysregulation, and cardiovascular diseases. The uncertain etiologies of endometriosis and their diverse presentations limit the treatment efficacy. High recurrence risk and intolerable side effects result in poor compliance. Current studies for endometriosis have paid attention to the advances in hormonal, neurological, and immunological approaches to the pathophysiology and their potential pharmacological intervention. Here we provide an overview of the lifelong impacts of endometriosis and summarize the updated consensus on therapeutic strategies.
Collapse
Affiliation(s)
- Liang-Hsuan Chen
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wei-Che Lo
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hong-Yuan Huang
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Hsien-Ming Wu
- Department of Obstetrics and Gynecology, Linkou Medical Center, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
5
|
Salmeri N, Carbone IF, Cavoretto PI, Farina A, Morano D. Epigenetics Beyond Fetal Growth Restriction: A Comprehensive Overview. Mol Diagn Ther 2022; 26:607-626. [PMID: 36028645 DOI: 10.1007/s40291-022-00611-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2022] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction is a pathological condition occurring when the fetus does not reach the genetically determined growth potential. The etiology of fetal growth restriction is expected to be multifactorial and include fetal, maternal, and placental factors, the latter being the most frequent cause of isolated fetal growth restriction. Severe fetal growth restriction has been related to both an increased risk of perinatal morbidity and mortality, and also a greater susceptibility to developing diseases (especially cardio-metabolic and neurological disorders) later in life. In the last decade, emerging evidence has supported the hypothesis of the Developmental Origin of Health and Disease, which states that individual developmental 'programming' takes place via a delicate fine tuning of fetal genetic and epigenetic marks in response to a large variety of 'stressor' exposures during pregnancy. As the placenta is the maternal-fetal interface, it has a crucial role in fetal programming, such that any perturbation altering placental function interferes with both in-utero fetal growth and also with the adult life phenotype. Several epigenetic mechanisms have been highlighted in modulating the dynamic placental epigenome, including alterations in DNA methylation status, post-translational modification of histones, and non-coding RNAs. This review aims to provide a comprehensive and critical overview of the available literature on the epigenetic background of fetal growth restriction. A targeted research strategy was performed using PubMed, MEDLINE, Embase, and The Cochrane Library up to January 2022. A detailed and fully referenced synthesis of available literature following the Scale for the Assessment of Narrative Review Articles guidelines is provided. A variety of epigenetic marks predominantly interfering with placental development, function, and metabolism were found to be potentially associated with fetal growth restriction. Available evidence on the role of environmental exposures in shaping the placental epigenome and the fetal phenotype were also critically discussed. Because of the highly dynamic crosstalk between epigenetic mechanisms and the extra level of complexity in interpreting the final placental transcriptome, a full comprehension of these phenomenon is still lacking and advances in multi-omics approaches are urgently needed. Elucidating the role of epigenetics in the developmental origins of health and disease represents a new challenge for the coming years, with the goal of providing early interventions and prevention strategies and, hopefully, new treatment opportunities.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Ilma Floriana Carbone
- Unit of Obstetrics, Department of Woman, Child and Neonate, Mangiagalli Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Ivo Cavoretto
- Gynecology/Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Antonio Farina
- Division of Obstetrics and Prenatal Medicine, Department of Medicine and Surgery (DIMEC), IRCCS Sant'Orsola-Malpighi Hospital, University of Bologna, 40138, Bologna, Italy.
| | - Danila Morano
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Azienda Ospedaliero-Universitaria S. Anna, University of Ferrara, Cona, Ferrara, Italy
| |
Collapse
|
6
|
Doan TNA, Akison LK, Bianco-Miotto T. Epigenetic Mechanisms Responsible for the Transgenerational Inheritance of Intrauterine Growth Restriction Phenotypes. Front Endocrinol (Lausanne) 2022; 13:838737. [PMID: 35432208 PMCID: PMC9008301 DOI: 10.3389/fendo.2022.838737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/20/2022] Open
Abstract
A poorly functioning placenta results in impaired exchanges of oxygen, nutrition, wastes and hormones between the mother and her fetus. This can lead to restriction of fetal growth. These growth restricted babies are at increased risk of developing chronic diseases, such as type-2 diabetes, hypertension, and kidney disease, later in life. Animal studies have shown that growth restricted phenotypes are sex-dependent and can be transmitted to subsequent generations through both the paternal and maternal lineages. Altered epigenetic mechanisms, specifically changes in DNA methylation, histone modifications, and non-coding RNAs that regulate expression of genes that are important for fetal development have been shown to be associated with the transmission pattern of growth restricted phenotypes. This review will discuss the subsequent health outcomes in the offspring after growth restriction and the transmission patterns of these diseases. Evidence of altered epigenetic mechanisms in association with fetal growth restriction will also be reviewed.
Collapse
Affiliation(s)
- Thu Ngoc Anh Doan
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Lisa K. Akison
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Tina Bianco-Miotto
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Tina Bianco-Miotto,
| |
Collapse
|
7
|
Frincu F, Carp-Veliscu A, Petca A, Badiu DC, Bratila E, Cirstoiu M, Mehedintu C. Maternal-Fetal Outcomes in Women with Endometriosis and Shared Pathogenic Mechanisms. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1258. [PMID: 34833476 PMCID: PMC8625694 DOI: 10.3390/medicina57111258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022]
Abstract
The connection between endometriosis and pregnancy outcomes is trending among the research topics. Until recently, endometriosis and its painful symptomatology were considered to be alleviated by pregnancy. However, these beliefs have shifted, as emerging literature has demonstrated the role of this condition in affecting pregnancy evolution. The underlying pathogenesis of endometriosis is still poorly understood, all the more when pregnancy complications are involved. Debatable opinions on endometriosis associated with obstetric complications exist because of the potential bias resulting from the heterogeneity of preceding evidence. This review aims to evaluate the connection between endometriosis and adverse pregnancy outcomes and their shared pathogenic mechanisms. We searched PubMed and EMBASE and focused on the studies that include placenta praevia, premature rupture of membranes, spontaneous preterm birth, gestational hypertension, preeclampsia, obstetric hemorrhages (ante- and postpartum bleeding, abruptio placentae), miscarriage, stillbirth, neonatal death, gestational diabetes mellitus, gestational cholestasis, small for gestational age, and their association with endometriosis. Not only the risks of emergence were highlighted, but also the pathogenic connections. Epigenetic alterations of some genes were found to be mirrored both in endometriosis and obstetric complications. This review issues a warning for providing increased attention to pregnant women with endometriosis and newborns as higher risks of preeclampsia, placental issues, and preterm deliveries are associated.
Collapse
Affiliation(s)
- Francesca Frincu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.F.); (A.P.); (E.B.); (M.C.); (C.M.)
| | - Andreea Carp-Veliscu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.F.); (A.P.); (E.B.); (M.C.); (C.M.)
| | - Aida Petca
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.F.); (A.P.); (E.B.); (M.C.); (C.M.)
| | - Dumitru-Cristinel Badiu
- Department of General Surgery, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Elvira Bratila
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.F.); (A.P.); (E.B.); (M.C.); (C.M.)
| | - Monica Cirstoiu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.F.); (A.P.); (E.B.); (M.C.); (C.M.)
| | - Claudia Mehedintu
- Department of Obstetrics and Gynecology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.F.); (A.P.); (E.B.); (M.C.); (C.M.)
| |
Collapse
|
8
|
Caniçais C, Vasconcelos S, Ramalho C, Marques CJ, Dória S. Deregulation of imprinted genes expression and epigenetic regulators in placental tissue from intrauterine growth restriction. J Assist Reprod Genet 2021; 38:791-801. [PMID: 33389447 PMCID: PMC8079450 DOI: 10.1007/s10815-020-02047-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/21/2020] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Intrauterine growth restriction (IUGR) is a fetal growth complication that can be caused by ineffective nutrient transfer from the mother to the fetus via the placenta. Abnormal placental development and function have been correlated with abnormal expression of imprinted genes, which are regulated by epigenetic modifications at imprinting control regions (ICRs). In this study, we analyzed the expression of imprinted genes known to be involved in fetal growth and epigenetic regulators involved in DNA methylation, as well as DNA methylation at the KvDMR1 imprinting control region and global levels of DNA hydroxymethylation, in IUGR cases. METHODS Expression levels of imprinted genes and epigenetic regulators were analyzed in term placental samples from 21 IUGR cases and 9 non-IUGR (control) samples, by RT-qPCR. Additionally, KvDMR1 methylation was analyzed by bisulfite sequencing and combined bisulfite restriction analysis (COBRA) techniques. Moreover, global DNA methylation and hydroxymethylation levels were also measured. RESULTS We observed increased expression of PHLDA2, CDKN1C, and PEG10 imprinted genes and of DNMT1, DNMT3A, DNMT3B, and TET3 epigenetic regulators in IUGR placentas. No differences in methylation levels at the KvDMR1 were observed between the IUGR and control groups; similarly, no differences in global DNA methylation and hydromethylation were detected. CONCLUSION Our study shows that deregulation of epigenetic mechanisms, namely increased expression of imprinted genes and epigenetic regulators, might be associated with IUGR etiology. Therefore, this study adds knowledge to the molecular mechanisms underlying IUGR, which may contribute to novel prediction tools and future therapeutic options for the management of IUGR pregnancies.
Collapse
Affiliation(s)
- Carla Caniçais
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Sara Vasconcelos
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
| | - Carla Ramalho
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal
- Department of Obstetrics and Gynecology, Faculty of Medicine, Hospital São João, Porto, Portugal
| | - C Joana Marques
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| | - Sofia Dória
- Department of Genetics, Faculty of Medicine, University of Porto, 4200-319, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Porto, Portugal.
| |
Collapse
|
9
|
Mehta P, Vishvkarma R, Singh K, Rajender S. MTHFR 1298A>C Substitution is a Strong Candidate for Analysis in Recurrent Pregnancy Loss: Evidence from 14,289 Subjects. Reprod Sci 2021; 29:1039-1053. [PMID: 33742421 DOI: 10.1007/s43032-021-00530-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/01/2021] [Indexed: 12/20/2022]
Abstract
We undertook meta-analyses on MTHFR 1298A>C substitution for critically evaluating its association with recurrent pregnancy loss (RPL). MTHFR genotype data for 5888 cases and 8401 controls from 39 studies were pooled to perform this meta-analyses. Genotype data were screened, scrutinized, pooled, analysed and subjected to sensitivity analysis to carefully evaluate the association between MTHFR 1298A>C and recurrent pregnancy loss. Genetic associations were sought using dominant, recessive and co-dominant models of genetic testing with odds ratio and 95% Confidence interval (CI) as the effect measures. Further analyses were undertaken by classifying the studies into Caucasian and East Asian sub-groups. Genetic heterogeneity was tested before pooling the data across studies. For assessing publication bias, Egger's intercept test was undertaken. We found a significant association of 1298A>C substitution with increased risk of RPL in the dominant (P=0.000; OR = 1.58; 95% CI =1.25-1.99) as well as recessive (P=0.000; OR = 1.66; 95% CI =1.25-2.20) models. In sub-group analysis, we observed a significant association of the polymorphism with RPL in the Caucasian populations using dominant (P=0.000; OR = 1.98; 95% CI =1.42-2.76) and recessive (P=0.000; OR = 2.20; 95% CI =1.49-3.24) models. However, this substitution showed no association with RPL in the East Asian populations (P=0.149; OR = 1.187; 95% CI =0.94-1.50). MTHFR 1298A>C substitution shows association with the risk of recurrent pregnancy loss. The association is in a population-specific manner with the substitution being a strong risk factor only in the Caucasian populations.
Collapse
Affiliation(s)
- Poonam Mehta
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | - Rahul Vishvkarma
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India
| | | | - Singh Rajender
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
- Division of Endocrinology, Central Drug Research Institute, Lucknow, India.
| |
Collapse
|
10
|
Epigenetic mechanisms involved in intrauterine growth restriction and aberrant kidney development and function. J Dev Orig Health Dis 2020; 12:952-962. [PMID: 33349286 DOI: 10.1017/s2040174420001257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intrauterine growth restriction (IUGR) due to uteroplacental insufficiency results in a placenta that is unable to provide adequate nutrients and oxygen to the fetus. These growth-restricted babies have an increased risk of hypertension and chronic kidney disease later in life. In rats, both male and female growth-restricted offspring have nephron deficits but only males develop kidney dysfunction and high blood pressure. In addition, there is transgenerational transmission of nephron deficits and hypertension risk. Therefore, epigenetic mechanisms may explain the sex-specific programming and multigenerational transmission of IUGR-related phenotypes. Expression of DNA methyltransferases (Dnmt1and Dnmt3a) and imprinted genes (Peg3, Snrpn, Kcnq1, and Cdkn1c) were investigated in kidney tissues of sham and IUGR rats in F1 (embryonic day 20 (E20) and postnatal day 1 (PN1)) and F2 (6 and 12 months of age, paternal and maternal lines) generations (n = 6-13/group). In comparison to sham offspring, F1 IUGR rats had a 19% decrease in Dnmt3a expression at E20 (P < 0.05), with decreased Cdkn1c (19%, P < 0.05) and increased Kcnq1 (1.6-fold, P < 0.01) at PN1. There was a sex-specific difference in Cdkn1c and Snrpn expression at E20, with 29% and 34% higher expression in IUGR males compared to females, respectively (P < 0.05). Peg3 sex-specific expression was lost in the F2 IUGR offspring, only in the maternal line. These findings suggest that epigenetic mechanisms may be altered in renal embryonic and/or fetal development in growth-restricted offspring, which could alter kidney function, predisposing these offspring to kidney disease later in life.
Collapse
|
11
|
Kawashima S, Yagi H, Hirano Y, Toki M, Izumi K, Dateki S, Namba N, Kamimaki T, Muroya K, Tanaka T, Fukami M, Kagami M. Screening for imprinting disorders in 58 patients with clinically diagnosed idiopathic short stature. J Pediatr Endocrinol Metab 2020; 33:1335-1339. [PMID: 32866124 DOI: 10.1515/jpem-2020-0198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/31/2020] [Indexed: 11/15/2022]
Abstract
Objectives Imprinted genes have important roles for normal growth and development. Imprinting disorders (IDs) such as Silver-Russell syndrome and Temple syndrome are rare diseases that typically cause short children born small for gestational age (SGA). However, some patients with short stature (SS) caused by IDs were born non-SGA. To date, the contribution of IDs to idiopathic short stature (ISS) has been poorly investigated. The aim of this study was to clarify the contribution of IDs to ISS. Methods We conducted methylation analysis for 10 differentially methylated regions using pyrosequencing to detect known IDs in 58 patients (31 male and 27 female children, height standard deviation score -4.2 to -2.0) carrying a clinical diagnosis of ISS. Results We identified no patient with IDs among these patients with ISS. Conclusions These results indicate that IDs are rare in patients having ISS, and that imprinted genes affect fetal growth more than postnatal growth. Because patients with IDs born non-SGA usually have clinical features characteristic of each ID, in addition to SS, the patients with ISS as a clinical diagnosis may not be associated with IDs. It is unlikely that cases clinically diagnosed with ISS are caused by IDs leading to growth failure.
Collapse
Affiliation(s)
- Sayaka Kawashima
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| | - Hiroko Yagi
- Department of Endocrinology and Metabolism, Tokyo Metropolitan Children's Medical Center, Tokyo, Japan.,Department of Pediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuhiro Hirano
- Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka, Japan
| | - Machiko Toki
- Department of Pediatrics, Hiratsuka City Hospital, Hiratsuka, Japan.,Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kei Izumi
- Department of Pediatrics, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | - Sumito Dateki
- Department of Pediatrics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Noriyuki Namba
- Department of Pediatrics, Osaka Hospital, Japan Community Healthcare Organization, Osaka, Japan.,Division of Pediatrics and Perinatology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Tsutomu Kamimaki
- Department of Pediatrics, Shizuoka City Shimizu Hospital, Shizuoka, Japan
| | - Koji Muroya
- Department of Endocrinology and Metabolism, Kanagawa Children's Medical Center, Yokohama, Japan
| | | | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | |
Collapse
|
12
|
Argyraki M, Damdimopoulou P, Chatzimeletiou K, Grimbizis GF, Tarlatzis BC, Syrrou M, Lambropoulos A. In-utero stress and mode of conception: impact on regulation of imprinted genes, fetal development and future health. Hum Reprod Update 2020; 25:777-801. [PMID: 31633761 DOI: 10.1093/humupd/dmz025] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/04/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetic gene regulatory mechanism; disruption of this process during early embryonic development can have major consequences on both fetal and placental development. The periconceptional period and intrauterine life are crucial for determining long-term susceptibility to diseases. Treatments and procedures in assisted reproductive technologies (ART) and adverse in-utero environments may modify the methylation levels of genomic imprinting regions, including insulin-like growth factor 2 (IGF2)/H19, mesoderm-specific transcript (MEST), and paternally expressed gene 10 (PEG10), affecting the development of the fetus. ART, maternal psychological stress, and gestational exposures to chemicals are common stressors suspected to alter global epigenetic patterns including imprinted genes. OBJECTIVE AND RATIONALE Our objective is to highlight the effect of conception mode and maternal psychological stress on fetal development. Specifically, we monitor fetal programming, regulation of imprinted genes, fetal growth, and long-term disease risk, using the imprinted genes IGF2/H19, MEST, and PEG10 as examples. The possible role of environmental chemicals in genomic imprinting is also discussed. SEARCH METHODS A PubMed search of articles published mostly from 2005 to 2019 was conducted using search terms IGF2/H19, MEST, PEG10, imprinted genes, DNA methylation, gene expression, and imprinting disorders (IDs). Studies focusing on maternal prenatal stress, psychological well-being, environmental chemicals, ART, and placental/fetal development were evaluated and included in this review. OUTCOMES IGF2/H19, MEST, and PEG10 imprinted genes have a broad developmental effect on fetal growth and birth weight variation. Their disruption is linked to pregnancy complications, metabolic disorders, cognitive impairment, and cancer. Adverse early environment has a major impact on the developing fetus, affecting mostly growth, the structure, and subsequent function of the hypothalamic-pituitary-adrenal axis and neurodevelopment. Extensive evidence suggests that the gestational environment has an impact on epigenetic patterns including imprinting, which can lead to adverse long-term outcomes in the offspring. Environmental stressors such as maternal prenatal psychological stress have been found to associate with altered DNA methylation patterns in placenta and to affect fetal development. Studies conducted during the past decades have suggested that ART pregnancies are at a higher risk for a number of complications such as birth defects and IDs. ART procedures involve multiple steps that are conducted during critical windows for imprinting establishment and maintenance, necessitating long-term evaluation of children conceived through ART. Exposure to environmental chemicals can affect placental imprinting and fetal growth both in humans and in experimental animals. Therefore, their role in imprinting should be better elucidated, considering the ubiquitous exposure to these chemicals. WIDER IMPLICATIONS Dysregulation of imprinted genes is a plausible mechanism linking stressors such as maternal psychological stress, conception using ART, and chemical exposures with fetal growth. It is expected that a greater understanding of the role of imprinted genes and their regulation in fetal development will provide insights for clinical prevention and management of growth and IDs. In a broader context, evidence connecting impaired imprinted gene function to common diseases such as cancer is increasing. This implies early regulation of imprinting may enable control of long-term human health, reducing the burden of disease in the population in years to come.
Collapse
Affiliation(s)
- Maria Argyraki
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Pauliina Damdimopoulou
- Karolinska Institutet, Department of Clinical Sciences, Intervention and Technology, Unit of Obstetrics and Gynecology, K57 Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Katerina Chatzimeletiou
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Grigoris F Grimbizis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Basil C Tarlatzis
- First Department of Obstetrics and Gynecology, Unit for Human Reproduction, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| | - Maria Syrrou
- Department of Biology, Laboratory of Biology, School of Health Sciences, University of Ioannina, Dourouti University Campus, 45110, Ioannina, Greece
| | - Alexandros Lambropoulos
- First Department of Obstetrics and Gynecology, Laboratory of Genetics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Ring Road, Nea Efkarpia, 56403 Thessaloniki, Greece
| |
Collapse
|
13
|
Shared Molecular Features Linking Endometriosis and Obstetric Complications. Reprod Sci 2020; 27:1089-1096. [PMID: 32046439 DOI: 10.1007/s43032-019-00119-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Recent epidemiological research has shown the increased risk of adverse pregnancy outcomes in women with endometriosis compared with the general population. The aim of this review is to explore common pathophysiologic mechanisms between endometriosis and obstetric complications. A computerized literature search was performed to identify relevant studies. The search covered the period between January 2008 and October 2018. One of the potential mechanisms driving the initiation and progression of endometriosis is the accumulation of a variety of epigenetic changes in endometrial cells. Epigenetic control of gene expression which is considered to be responsible for the development of endometriosis is commonly seen in patients with preeclampsia, small for gestational age (SGA), or preterm birth. DLX5 and GATA3, paternally imprinted genes, and CDKN1C, a maternally imprinted gene, were aberrantly expressed in placenta tissues of the preeclampsia; CDKN1C, the growth inhibitor gene, was upregulated in human SGA placentas; and hypomethylation of PTGER2 would be associated with preterm birth. Preeclampsia, SGA, or preterm birth may share common epigenetic alterations with endometriosis, which raises the possibility that the occurrence of two conditions might be nonrandom. To date, however, there is a lack of evidence that links endometriosis and other obstetric complications, such as postpartum hemorrhage or placental abruption, at the epigenetic level. In conclusion, epigenetic changes may be a common hallmark of two conditions: endometriosis and obstetrical complications, such as preeclampsia, SGA, or preterm birth.
Collapse
|
14
|
Ding L, Blitz MJ, Wing DA, Epstein AJ, Gjessing HK, Wilson ML. PHLDA2 gene polymorphisms and risk of HELLP syndrome and severe preeclampsia. Pregnancy Hypertens 2020; 19:190-194. [PMID: 32062476 DOI: 10.1016/j.preghy.2020.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/21/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Pleckstrin homology-like domain, family A, member 2 (PHLDA2) is a maternally expressed imprinted gene. Loss of imprinting in PHLDA2 is associated with abnormal placental development and fetal growth restriction. Our objective was to determine whether genetic variation in PHLDA2 is also associated with risk of HELLP syndrome and preeclampsia (PE) with severe features. STUDY DESIGN Case (n = 162) and control (n = 33) mother-father-child triads were recruited using an internet-based method. Medical records were reviewed to verify clinical diagnosis of self-reported cases. DNA was genotyped for three polymorphisms in the PHLDA2 gene using TaqMan assays: rs13390, rs1056819, rs2583435. MAIN OUTCOME MEASURES To examine the association between minor alleles and haplotypes with HELLP syndrome and PE with severe features, relative risks and 95% confidence intervals were estimated using log-linear models, adjusting for the correlation between familial genotypes, using HAPLIN. RESULTS There was no association identified between PHLDA2 gene polymorphisms or haplotypes and HELLP syndrome and PE with severe features. No parent-of-origin effects were observed. CONCLUSION Genetic variation in the PHLDA2 gene is not associated with HELLP syndrome or PE with severe features.
Collapse
Affiliation(s)
- Li Ding
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Matthew J Blitz
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, North Shore University Hospital, Manhasset, NY, USA
| | - Deborah A Wing
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of California, Irvine, Orange, CA, USA
| | - Aaron J Epstein
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Håkon K Gjessing
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway; Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Melissa L Wilson
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
15
|
A Relationship Between Endometriosis and Obstetric Complications. Reprod Sci 2020; 27:771-778. [DOI: 10.1007/s43032-019-00118-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022]
|
16
|
Scarpato R, Testi S, Colosimo V, Garcia Crespo C, Micheli C, Azzarà A, Tozzi MG, Ghirri P. Role of oxidative stress, genome damage and DNA methylation as determinants of pathological conditions in the newborn: an overview from conception to early neonatal stage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 783:108295. [DOI: 10.1016/j.mrrev.2019.108295] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/25/2019] [Accepted: 12/24/2019] [Indexed: 12/15/2022]
|
17
|
Tozzi MG, Moscuzza F, Michelucci A, Scaramuzzo RT, Cosini C, Chesi F, Caligo MA, Ciantelli M, Ghirri P. Nutrition, epigenetic markers and growth in preterm infants. J Matern Fetal Neonatal Med 2019; 34:3963-3968. [PMID: 31842645 DOI: 10.1080/14767058.2019.1702952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background and aim: Maternal diet and early nutrition of newborns may affect the phenotype later in adulthood. Susceptibility of epigenetic mechanisms to the nutritional environment is a critical element in neonatal development. Epigenetic mechanisms could be considered as a bridge between environmental stimuli and long lasting phenotype. IC2, a key region on 11p15, is involved in the control of growth and regulates CDKN1C, PHLDA2 and KCNQ1, growth inhibitor genes. Our aim was to investigate the relationship between epigenetic markers, nutrition and postnatal growth.Methods: We enrolled 37 newborns (gestational age at birth was <34 weeks) admitted to Neonatal Intensive Care Unit at University Hospital of Pisa.Results: We observed a relationship between reduced protein and lipid intake and IC2 hypermethylation (p = .003 and p = .001 respectively) and we also investigated the correlation between growth pattern and IC2 methylation.Conclusion: The reduced growth, in part related to a reduced intake of nutrients (lipids and proteins), might be due to IC2 hypermethylation, causing an increased expression of growth inhibitor genes. IC2 hypermethylation could be a marker of reduced infants' growth and may guides us to nutritional interventional strategies for a precocious prevention of extrauterine growth restriction (EUGR).
Collapse
Affiliation(s)
- Maria Giulia Tozzi
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Francesca Moscuzza
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | | | - Rosa T Scaramuzzo
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Cinzia Cosini
- Molecular Genetics Lab, University Hospital of Pisa, Pisa, Italy
| | - Francesca Chesi
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | | | - Massimiliano Ciantelli
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| |
Collapse
|
18
|
Vasconcelos S, Ramalho C, Marques CJ, Doria S. Altered expression of epigenetic regulators and imprinted genes in human placenta and fetal tissues from second trimester spontaneous pregnancy losses. Epigenetics 2019; 14:1234-1244. [PMID: 31221015 PMCID: PMC6791697 DOI: 10.1080/15592294.2019.1634988] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/14/2019] [Accepted: 06/18/2019] [Indexed: 01/01/2023] Open
Abstract
Epigenetic mechanisms such as genomic imprinting have a fundamental role in embryo and fetal development. Hence, we here studied expression levels of epigenetic modifiers and imprinted genes in cases of ididopathic spontaneous abortion (SA). Thirty-five placental samples and 35 matched fetal tissues from second trimester SA were analysed; including 16 controls (placental and fetal infections as the known cause of spontaneous abortion) and 19 idiopathic SA cases. Transcript levels of epigenetic regulators and imprinted genes were measured by qRT-PCR and methylation at imprinted genes was studied by bisulfite genomic sequencing and MS-MLPA. Global DNA hydroxymethylation (5-hmC) levels were measured by an ELISA-based assay. We observed an upregulation of TET2 and TET3 in placental samples from idiopathic SA cases; however, no significant difference in global 5-hmC levels was observed. On the contrary, in fetal tissues, TET3 was markedly downregulated in idiopathic SA, showing an opposite trend to that observed in placental tissue. IGF2 and CDKN1C were upregulated and MEST downregulated in placentas from idiopathic SA cases; concordantly, IGF2 was also upregulated in fetal tissues from idiopathic SA cases. Although not reaching statistical significance, an increase in methylation levels of MEST, KvDMR1 and H19 DMRs was observed in idiopathic SA cases, concordantly with the observed changes in expression. Our study reveals, for the first time, deregulation of epigenetic modifiers and imprinted genes in both placental and fetal tissues from idiopathic SA cases in the second trimester of pregnancy, indicating a critical role during pregnancy.
Collapse
Affiliation(s)
- Sara Vasconcelos
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carla Ramalho
- Department of Obstetrics and Gynecology Hospital São João, Faculty of Medicine, Porto, Portugal
| | - C. Joana Marques
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sofia Doria
- Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
- I3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
19
|
Selcen Cebe F, Nur Tola E, Aslan Koşar P, Oral B. DNA methylation profiles of genes associated with angiogenesis in the samples of placenta in pregnancies complicated by intrauterine growth restriction. J Matern Fetal Neonatal Med 2019; 34:2854-2862. [PMID: 31581866 DOI: 10.1080/14767058.2019.1671344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Impairment in placental angiogenesis is blamed for the etiopathogenesis of intrauterine growth restriction (IUGR). AIM To assess the genes related to angiogenesis in placental biopsies of pregnancies complicated by IUGR that could be aberrantly methylated and adversely affect placental angiogenesis. METHODS The methylation profiles of soluble fms-like tyrosine kinase-1 (sFLT-1), vascular endothelial growth factor (VEGF), and the placental growth factor (PIGF) were evaluated using Illumina MiSeq™ System in placental biopsies from term IUGR pregnancies without preeclampsia (n = 18) and healthy controls (n = 17). DNA was isolated from samples of tissue collected from the fetal side of the placenta. In the targeted regions, we have identified 30, 24, and 29 CpG islands (CpGi) within sFLT-1, VEGF and PIGF genes, respectively. CpGi which are most methylated in the promoter regions of three genes were selected for the study from the database http://www.ensembl.org. RESULT(S) IUGR fetuses had significantly lower placental and fetal birth weight than controls. The promoter of sFLT-1 at three CpGi and VEGF at six CpGi were the regions with significant methylation differences between IUGR and control placentas. sFLT-1 was hypermethylated at 265 and 352 CpGi; however, hypermethylation was lower in IUGR group compared to control group at this position. sFLT-1 was hypomethylated at 456 CpGi in IUGR group and hypermethylated at the same region in control group. VEGF was hypomethylated at 668, 703, and 710 CpGi in control and IUGR groups; however, hypomethylation at these positions was significantly higher in control group compared to IUGR. 776, 845, and 863 CpGi of VEGF promoter were significantly hypermethylated in IUGR group whereas hypomethylated in control group. The methylation profile of PIGF did not differ between the groups. After adjustment for the factors known to affect fetal birth weight, DNA methylation of VEGF 668 CpGi had a significant negative association with fetal birth weight in the control and the IUGR group and a positive association with IUGR pregnancies. CONCLUSION(S) Our results do not support the hypothesis that altered DNA methylation in the placental angiogenic genes is a major mechanism generally involved in IUGR. Only a specific region (at 668 CpGi) corresponding to the promoter of VEGF may serve as an epigenetic marker of IUGR and may be involved in the mechanism of IUGR. Large sample-sized studies are needed to understand the effects of DNA methylation on placental gene function and how they might influence fetal growth.
Collapse
Affiliation(s)
- Fatma Selcen Cebe
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Esra Nur Tola
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Pınar Aslan Koşar
- Department of Medical Biology and Genetics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Baha Oral
- Department of Obstetrics and Gynecology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
20
|
Monteagudo-Sánchez A, Sánchez-Delgado M, Mora JRH, Santamaría NT, Gratacós E, Esteller M, de Heredia ML, Nunes V, Choux C, Fauque P, de Nanclares GP, Anton L, Elovitz MA, Iglesias-Platas I, Monk D. Differences in expression rather than methylation at placenta-specific imprinted loci is associated with intrauterine growth restriction. Clin Epigenetics 2019; 11:35. [PMID: 30808399 PMCID: PMC6390544 DOI: 10.1186/s13148-019-0630-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/08/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Genome-wide studies have begun to link subtle variations in both allelic DNA methylation and parent-of-origin genetic effects with early development. Numerous reports have highlighted that the placenta plays a critical role in coordinating fetal growth, with many key functions regulated by genomic imprinting. With the recent description of wide-spread polymorphic placenta-specific imprinting, the molecular mechanisms leading to this curious polymorphic epigenetic phenomenon is unknown, as is their involvement in pregnancies complications. RESULTS Profiling of 35 ubiquitous and 112 placenta-specific imprinted differentially methylated regions (DMRs) using high-density methylation arrays and pyrosequencing revealed isolated aberrant methylation at ubiquitous DMRs as well as abundant hypomethylation at placenta-specific DMRs. Analysis of the underlying chromatin state revealed that the polymorphic nature is not only evident at the level of allelic methylation, but DMRs can also adopt an unusual epigenetic signature where the underlying histones are biallelically enrichment of H3K4 methylation, a modification normally mutually exclusive with DNA methylation. Quantitative expression analysis in placenta identified two genes, GPR1-AS1 and ZDBF2, that were differentially expressed between IUGRs and control samples after adjusting for clinical factors, revealing coordinated deregulation at the chromosome 2q33 imprinted locus. CONCLUSIONS DNA methylation is less stable at placenta-specific imprinted DMRs compared to ubiquitous DMRs and contributes to privileged state of the placenta epigenome. IUGR-associated expression differences were identified for several imprinted transcripts independent of allelic methylation. Further work is required to determine if these differences are the cause IUGR or reflect unique adaption by the placenta to developmental stresses.
Collapse
Affiliation(s)
- Ana Monteagudo-Sánchez
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Marta Sánchez-Delgado
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose Ramon Hernandez Mora
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Tubío Santamaría
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.,Leibniz Institute on Aging, Jena, Germany
| | - Eduard Gratacós
- Fetal I+D Fetal Medicine Research Center, BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Gran via, L'Hospitalet de Llobregat, Barcelona, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| | - Miguel López de Heredia
- Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Virgina Nunes
- Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Human Molecular Genetics group, Genes, disease and Therapy Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospitalet 199-203, 08907, L'Hospitalet de Llobregat, Barcelona, Spain.,Centro de Investigaciòn Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Cecile Choux
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté - INSERM UMR1231, F-21000, Dijon, France
| | - Guiomar Perez de Nanclares
- (Epi) Genetics Laboratory, BioAraba National Health Institute, Hospital Universitario Araba-Txagorritxu, Vitoria-Gasteiz, Alava, Spain
| | - Lauren Anton
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Center for Research on Reproduction and Women's Health, University of Pennsylvania, Philadelphia, USA
| | - Isabel Iglesias-Platas
- GReN (Grup de Reçerca en Neonatologia), BCNatal - Barcelona Center for Maternal-Fetal and Neonatal Medicine, Institut de Reçerca Sant Joan de Déu, Barcelona, Spain
| | - David Monk
- Imprinting and Cancer Group, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute - IDIBELL, Av. Gran Via de L'Hospotalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
21
|
Tozzi MG, Moscuzza F, Michelucci A, Lorenzoni F, Cosini C, Ciantelli M, Ghirri P. ExtraUterine Growth Restriction (EUGR) in Preterm Infants: Growth Patterns, Nutrition, and Epigenetic Markers. A Pilot Study. Front Pediatr 2018; 6:408. [PMID: 30619799 PMCID: PMC6306451 DOI: 10.3389/fped.2018.00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/07/2018] [Indexed: 02/05/2023] Open
Abstract
Background/Aims: IntraUterine (IUGR) and ExtraUterine Growth Restriction (EUGR) may induce reprogramming mechanisms, finalized to survive before and after birth. Nutritional factors and other environmental signals could regulate gene expression through epigenetic modification, but the molecular mechanisms involved are not yet well understood. Epigenetic mechanisms could be considered as a bridge between environmental stimuli and long lasting phenotype, acquired during the intrauterine life and the first weeks of life. Our aim was to investigate the relationship between growth patterns, nutritional determinants, and epigenetic pathways. Methods: We enrolled 38 newborns admitted to Neonatal Intensive Care Unit (NICU) at University Hospital of Pisa. Gestational age at birth was <34 weeks and post-menstrual age (PMA) was 36-42 weeks at discharge. We excluded infants with malformations or clinical syndromes. EUGR was defined as the reduction in weight z score between birth and discharge >1 SD. We also evaluated DNA methylation of Imprinting Centre 1 (IC1) at birth and at discharge. Results: We observed a decrease in SD of weight and head circumference mainly during the first weeks of life. We found a correlation between EUGR for weight and for head circumference and an increased IC1 methylation (p = 0.018 and p = 0.0028, respectively). We observed a relationship between reduced protein and lipid intake and IC1 hypermethylation (p = 0.009 and p = 0.043, respectively). Conclusion: IC1 hypermethylation could be a reprogramming mechanism to promote a catch-up growth, by means of an increased Insulin-like growth factor 2 (IGF2) expression, that may have potential effects on metabolic homeostasis later in life.
Collapse
Affiliation(s)
- Maria Giulia Tozzi
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Francesca Moscuzza
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | | | - Francesca Lorenzoni
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Cinzia Cosini
- Molecular Genetics Lab, University Hospital of Pisa, Pisa, Italy
| | - Massimiliano Ciantelli
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| | - Paolo Ghirri
- Division of Neonatology and NICU, Department of Clinical and Experimental Medicine, Pisa, Italy
| |
Collapse
|
22
|
Cuellar Partida G, Laurin C, Ring SM, Gaunt TR, McRae AF, Visscher PM, Montgomery GW, Martin NG, Hemani G, Suderman M, Relton CL, Davey Smith G, Evans DM. Genome-wide survey of parent-of-origin effects on DNA methylation identifies candidate imprinted loci in humans. Hum Mol Genet 2018; 27:2927-2939. [PMID: 29860447 PMCID: PMC6077796 DOI: 10.1093/hmg/ddy206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022] Open
Abstract
Genomic imprinting is an epigenetic mechanism leading to parent-of-origin silencing of alleles. So far, the precise number of imprinted regions in humans is uncertain. In this study, we leveraged genome-wide DNA methylation in whole blood measured longitudinally at three time points (birth, childhood and adolescence) and genome-wide association studies (GWAS) data in 740 mother-child duos from the Avon Longitudinal Study of parents and children to identify candidate imprinted loci. We reasoned that cis-meQTLs at genomic regions that were imprinted would show strong evidence of parent-of-origin associations with DNA methylation, enabling the detection of imprinted regions. Using this approach, we identified genome-wide significant cis-meQTLs that exhibited parent-of-origin effects (POEs) at 82 loci, 34 novel and 48 regions previously implicated in imprinting (3.7-10<P < 10-300). Using an independent dataset from the Brisbane Systems Genetic Study, we replicated 76 out of the 82 identified loci. POEs were remarkably consistent across time points and were so strong at some loci that methylation levels enabled good discrimination of parental transmissions at these and surrounding genomic regions. The implication is that parental allelic transmissions could be modelled at many imprinted (and linked) loci in GWAS of unrelated individuals given a combination of genetic and methylation data. Novel regions showing parent of origin effects on methylation will require replication using a different technology and further functional experiments to confirm that such effects arise through a genomic imprinting mechanism.
Collapse
Affiliation(s)
- Gabriel Cuellar Partida
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Charles Laurin
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Susan M Ring
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tom R Gaunt
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Allan F McRae
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Peter M Visscher
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Grant W Montgomery
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | | | - Gibran Hemani
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M Evans
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia.,Medical Research Council (MRC) Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
23
|
Idichi T, Seki N, Kurahara H, Fukuhisa H, Toda H, Shimonosono M, Okato A, Arai T, Kita Y, Mataki Y, Kijima Y, Maemura K, Natsugoe S. Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact of passenger strand of pre-miR-148a on gene regulation. Cancer Sci 2018; 109:2013-2026. [PMID: 29660218 PMCID: PMC5989856 DOI: 10.1111/cas.13610] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/05/2023] Open
Abstract
We previously used RNA sequencing to establish the microRNA (miRNA) expression signature of pancreatic ductal adenocarcinoma (PDAC). We found that both strands of pre-miR-148a (miR-148a-5p: the passenger strand and miR-148a-3p: the guide strand) were downregulated in cancer tissues. Ectopic expression of miR-148a-5p and miR-148a-3p significantly inhibited cancer cell migration and invasion, indicating that both strands of pre-miR-148a had tumor-suppressive roles in PDAC cells. In silico database and genome-wide gene expression analyses identified a total of 15 genes that were putative targets regulated by these miRNAs. High expression of miR-148a-5p targets (PHLDA2, LPCAT2 and AP1S3) and miR-148a-3p targets (SMA, ENDOD1 and UHMK1) was associated with poor prognosis of patients with PDAC. Moreover, knockdown of PHLDA2 expression inhibited cancer cell aggressiveness, suggesting PHLDA2 acted as an oncogene in PDAC cells. Involvement of the passenger strand of pre-miR-148a (miR-148-5p) is a new concept in cancer research. Novel approaches that identify tumor-suppressive miRNA regulatory networks in lethal PDAC might provide new prognostic markers and therapeutic targets for this disease.
Collapse
Affiliation(s)
- Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Haruhi Fukuhisa
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Masataka Shimonosono
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsushi Okato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takayuki Arai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
24
|
Stalman SE, Solanky N, Ishida M, Alemán-Charlet C, Abu-Amero S, Alders M, Alvizi L, Baird W, Demetriou C, Henneman P, James C, Knegt LC, Leon LJ, Mannens MMAM, Mul AN, Nibbering NA, Peskett E, Rezwan FI, Ris-Stalpers C, van der Post JAM, Kamp GA, Plötz FB, Wit JM, Stanier P, Moore GE, Hennekam RC. Genetic Analyses in Small-for-Gestational-Age Newborns. J Clin Endocrinol Metab 2018; 103:917-925. [PMID: 29342293 DOI: 10.1210/jc.2017-01843] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
CONTEXT Small for gestational age (SGA) can be the result of fetal growth restriction, which is associated with perinatal morbidity and mortality. Mechanisms that control prenatal growth are poorly understood. OBJECTIVE The aim of the current study was to gain more insight into prenatal growth failure and determine an effective diagnostic approach in SGA newborns. We hypothesized that one or more copy number variations (CNVs) and disturbed methylation and sequence variants may be present in genes associated with fetal growth. DESIGN A prospective cohort study of subjects with a low birth weight for gestational age. SETTING The study was conducted at an academic pediatric research institute. PATIENTS A total of 21 SGA newborns with a mean birth weight below the first centile and a control cohort of 24 appropriate-for-gestational-age newborns were studied. INTERVENTIONS Array comparative genomic hybridization, genome-wide methylation studies, and exome sequencing were performed. MAIN OUTCOME MEASURES The numbers of CNVs, methylation disturbances, and sequence variants. RESULTS The genetic analyses demonstrated three CNVs, one systematically disturbed methylation pattern, and one sequence variant explaining SGA. Additional methylation disturbances and sequence variants were present in 20 patients. In 19 patients, multiple abnormalities were found. CONCLUSION Our results confirm the influence of a large number of mechanisms explaining dysregulation of fetal growth. We concluded that CNVs, methylation disturbances, and sequence variants all contribute to prenatal growth failure. These genetic workups can be an effective diagnostic approach in SGA newborns.
Collapse
Affiliation(s)
- Susanne E Stalman
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Nita Solanky
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Miho Ishida
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Cristina Alemán-Charlet
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Sayeda Abu-Amero
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Marielle Alders
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lucas Alvizi
- Centro de Pesquisas Sobre o Genoma Humano e Células-Tronco, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - William Baird
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Charalambos Demetriou
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Peter Henneman
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Chela James
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Lia C Knegt
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Lydia J Leon
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Marcel M A M Mannens
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Adi N Mul
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole A Nibbering
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Emma Peskett
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Faisal I Rezwan
- Department of Human Development and Health, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Carrie Ris-Stalpers
- Department of Gynecology and Obstetrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Joris A M van der Post
- Department of Gynecology and Obstetrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerdine A Kamp
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
| | - Frans B Plötz
- Department of Pediatrics, Tergooi Hospitals, Blaricum, The Netherlands
| | - Jan M Wit
- Department of Pediatrics, Leiden University Medical Centre, Leiden, The Netherlands
| | - Philip Stanier
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Gudrun E Moore
- Department of Genetics and Genomic Medicine, Institute of Child Health, University College London, London, United Kingdom
| | - Raoul C Hennekam
- Department of Pediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Kingsley SL, Deyssenroth MA, Kelsey KT, Awad YA, Kloog I, Schwartz JD, Lambertini L, Chen J, Marsit CJ, Wellenius GA. Maternal residential air pollution and placental imprinted gene expression. ENVIRONMENT INTERNATIONAL 2017; 108:204-211. [PMID: 28886413 PMCID: PMC5623128 DOI: 10.1016/j.envint.2017.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 05/23/2023]
Abstract
BACKGROUND Maternal exposure to air pollution is associated with reduced fetal growth, but its relationship with expression of placental imprinted genes (important regulators of fetal growth) has not yet been studied. OBJECTIVES To examine relationships between maternal residential air pollution and expression of placental imprinted genes in the Rhode Island Child Health Study (RICHS). METHODS Women-infant pairs were enrolled following delivery between 2009 and 2013. We geocoded maternal residential addresses at delivery, estimated daily levels of fine particulate matter (PM2.5; n=355) and black carbon (BC; n=336) using spatial-temporal models, and estimated residential distance to nearest major roadway (n=355). Using linear regression models we investigated the associations between each exposure metric and expression of nine candidate genes previously associated with infant birthweight in RICHS, with secondary analyses of a panel of 108 imprinted genes expressed in the placenta. We also explored effect measure modification by infant sex. RESULTS PM2.5 and BC were associated with altered expression for seven and one candidate genes, respectively, previously linked with birthweight in this cohort. Adjusting for multiple comparisons, we found that PM2.5 and BC were associated with changes in expression of 41 and 12 of 108 placental imprinted genes, respectively. Infant sex modified the association between PM2.5 and expression of CHD7 and between proximity to major roadways and expression of ZDBF2. CONCLUSIONS We found that maternal exposure to residential PM2.5 and BC was associated with changes in placental imprinted gene expression, which suggests a plausible line of investigation of how air pollution affects fetal growth and development.
Collapse
Affiliation(s)
- Samantha L Kingsley
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| | - Maya A Deyssenroth
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karl T Kelsey
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Yara Abu Awad
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Itai Kloog
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Luca Lambertini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Obstetrics, Gynecology and Reproductive Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gregory A Wellenius
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
26
|
Xu P, Wu Z, Yang W, Wang L. Dysregulation of DNA methylation and expression of imprinted genes in mouse placentas of fetal growth restriction induced by maternal cadmium exposure. Toxicology 2017; 390:109-116. [DOI: 10.1016/j.tox.2017.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/08/2017] [Accepted: 08/09/2017] [Indexed: 12/30/2022]
|
27
|
Yu S, Chen Y, Lai K, Dewan RK, He Y. A Novel Variant with Positive Natural Selection Influenced Hb A 2 Levels in Chinese Individuals with β-Thalassemia. Hemoglobin 2017; 41:193-197. [PMID: 28747083 DOI: 10.1080/03630269.2017.1358177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
β-Thalassemia (β-thal) is the most common inherited hemolytic anemia worldwide. Elevated Hb A2 is a mark of β-thal carriers. The aim of this study was to identify the pathogenic variants associated with the Hb A2 levels. One thousand and thirty β-thal carriers were recruited for this study. Using positive natural expression quantitative trait loci (eQTL) analysis, a significant variant was selected. Genotyping for the rs231841 polymorphism was performed by the Sequenom MassARRAY IPLEX platform. All genetic association analyses were performed with the PLINK program. The linear regression analysis showed that rs231841 in the intron region of the potassium voltage-gated channel subfamily Q member 1 (KCNQ1) gene on chromosome 11p15 was significantly associated with Hb A2 levels. The presence of the C allele was associated with elevated Hb A2 levels. Our results suggest that rs231841 on the KCNQ1 gene with positive natural selection is related to Hb A2 levels in Chinese β-thal carriers, and KCNQ1 is probably associated with the expression of the β-like globin gene cluster.
Collapse
Affiliation(s)
- Shanjuan Yu
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Province , People's Republic of China
| | - Yang Chen
- b School of Public Health, Guangxi Medical University , Nanning , Guangxi Province , People's Republic of China
| | - Ketong Lai
- c Guangxi Key Laboratory of Thalassemia Research , The First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Province , People's Republic of China
| | - Roma Kajal Dewan
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Province , People's Republic of China
| | - Yunyan He
- a Department of Pediatrics , The First Affiliated Hospital of Guangxi Medical University , Nanning , Guangxi Province , People's Republic of China
| |
Collapse
|
28
|
Fetal programming as a predictor of adult health or disease: the need to reevaluate fetal heart function. Heart Fail Rev 2017; 22:861-877. [DOI: 10.1007/s10741-017-9638-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Guelfi G, Stefanetti V, De Luca S, Giontella A, Barile VL, Barbato O. Serum microRNAs in buffalo cows: Potential biomarkers of pregnancy. Res Vet Sci 2017. [PMID: 28628844 DOI: 10.1016/j.rvsc.2017.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MiRNAs (microRNA) constitute a large family of single-stranded, non-coding small RNAs. Although the functions and target genes of most miRNAs are still unknown, it has been well established that they are involved in embryogenesis, organogenesis and neonatal birth. In recent decades, interest in buffalo breeding has largely increased worldwide thus focusing the attention on this species as a dairy purpose animal. Problems related to long calving interval, late puberty and seasonal anestrus hamper reproductive efficiency in this species. Early pregnancy diagnosis is important to shorten the calving interval and increase lifetime production on dairy animals. MicroRNAs have recently emerged as key molecules in fertilization of several species even though in buffalo, few previous studies have investigated miRNAs. The aim of this research was to identify the best miRNA reference in serum among miR-191, miR-25-3p, SNORD44, and SNORD48. Consequently, assess the expression levels of miR-103, miR-200b, miR-301a, miR-423-5p, miR-375, miR-451 and miR-452 involved in buffalo progesterone-maturation oocyte and pregnancy. Interestingly, we found that all the miRNAs analyzed at 40days after artificial insemination were differentially expressed among pregnant and non-pregnant buffalo. Our research may be a first step for gain further insight in the biological function of circulating miRNAs in this species.
Collapse
Affiliation(s)
- Gabriella Guelfi
- Department of Veterinary Medicine, via San Costanzo 4, 06126 Perugia, Italy.
| | | | - Silvio De Luca
- Department of Veterinary Medicine, via San Costanzo 4, 06126 Perugia, Italy
| | - Andrea Giontella
- Department of Veterinary Medicine, via San Costanzo 4, 06126 Perugia, Italy
| | - Vittoria Lucia Barile
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Animal Production Research Centre, Monterotondo, 00015, Rome, Italy
| | - Olimpia Barbato
- Department of Veterinary Medicine, via San Costanzo 4, 06126 Perugia, Italy
| |
Collapse
|
30
|
López-Abad M, Iglesias-Platas I, Monk D. Epigenetic Characterization of CDKN1C in Placenta Samples from Non-syndromic Intrauterine Growth Restriction. Front Genet 2016; 7:62. [PMID: 27200075 PMCID: PMC4844605 DOI: 10.3389/fgene.2016.00062] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/04/2016] [Indexed: 01/05/2023] Open
Abstract
The cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) gene is expressed from the maternal allele and is located within the centromeric imprinted domain at chromosome 11p15. It is a negative regulator of proliferation, with loss-of-function mutations associated with the overgrowth disorder Beckwith–Wiedemann syndrome. Recently, gain-of-function mutations within the PCNA domain have been described in two disorders characterized by growth failure, namely IMAGe (intra-uterine growth restriction, metaphyseal dysplasia, adrenal hypoplasia congenita and genital abnormalities) syndrome and Silver–Russell syndrome (SRS). Over-expression of CDKN1C by maternally inherited microduplications also results in SRS, suggesting that in addition to activating mutations this gene may regulate growth by changes in dosage. To determine if CDKN1C is involved in non-syndromic IUGR we compared the expression and DNA methylation levels in a large cohort of placental biopsies from IUGR and uneventful pregnancies. We observe higher levels of expression of CDKN1C in IUGR placentas compared to those of controls. All placenta biopsies heterozygous for the PAPA repeat sequence in exon 2 showed appropriate monoallelic expression and no mutations in the PCNA domain were observed. The expression profile was independent of both genetic or methylation variation in the minimal CDKN1C promoter interval and of methylation of the cis-acting maternally methylated region associated with the neighboring KCNQ1OT1 non-coding RNA. Chromatin immunoprecipitation revealed binding sites for CTCF within the unmethylated CDKN1C gene body CpG island and putative enhancer regions, associated with the canonical enhancer histone signature, H3K4me1 and H3K27ac, located ∼58 and 360 kb away. Using 3C-PCR we identify constitutive higher-order chromatin loops that occur between one of these putative enhancer regions and CDKN1C in human placenta tissues, which we propose facilitates expression.
Collapse
Affiliation(s)
- Miriam López-Abad
- Servicio de Neonatología, Sant Joan de Déu, Centro de Medicina Maternofetal y Neonatal Barcelona, Hospital Sant Joan de Déu y Hospital Clínic, Universitat de Barcelona Barcelona, Spain
| | - Isabel Iglesias-Platas
- Servicio de Neonatología, Sant Joan de Déu, Centro de Medicina Maternofetal y Neonatal Barcelona, Hospital Sant Joan de Déu y Hospital Clínic, Universitat de Barcelona Barcelona, Spain
| | - David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge Barcelona, Spain
| |
Collapse
|
31
|
Mussa A, Russo S, de Crescenzo A, Freschi A, Calzari L, Maitz S, Macchiaiolo M, Molinatto C, Baldassarre G, Mariani M, Tarani L, Bedeschi MF, Milani D, Melis D, Bartuli A, Cubellis MV, Selicorni A, Silengo MC, Larizza L, Riccio A, Ferrero GB. Fetal growth patterns in Beckwith-Wiedemann syndrome. Clin Genet 2016; 90:21-7. [PMID: 26857110 DOI: 10.1111/cge.12759] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 01/04/2023]
Abstract
We provide data on fetal growth pattern on the molecular subtypes of Beckwith-Wiedemann syndrome (BWS): IC1 gain of methylation (IC1-GoM), IC2 loss of methylation (IC2-LoM), 11p15.5 paternal uniparental disomy (UPD), and CDKN1C mutation. In this observational study, gestational ages and neonatal growth parameters of 247 BWS patients were compared by calculating gestational age-corrected standard deviation scores (SDS) and proportionality indexes to search for differences among IC1-GoM (n = 21), UPD (n = 87), IC2-LoM (n = 147), and CDKN1C mutation (n = 11) patients. In IC1-GoM subgroup, weight and length are higher than in other subgroups. Body proportionality indexes display the following pattern: highest in IC1-GoM patients, lowest in IC2-LoM/CDKN1C patients, intermediate in UPD ones. Prematurity was significantly more prevalent in the CDKN1C (64%) and IC2-LoM subgroups (37%). Fetal growth patterns are different in the four molecular subtypes of BWS and remarkably consistent with altered gene expression primed by the respective molecular mechanisms. IC1-GoM cases show extreme macrosomia and severe disproportion between weight and length excess. In IC2-LoM/CDKN1C patients, macrosomia is less common and associated with more proportionate weight/length ratios with excess of preterm birth. UPD patients show growth patterns closer to those of IC2-LoM, but manifest a body mass disproportion rather similar to that seen in IC1-GoM cases.
Collapse
Affiliation(s)
- A Mussa
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - S Russo
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | | | - A Freschi
- DiSTABiF, Second University of Naples, Naples, Italy
| | - L Calzari
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - S Maitz
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - M Macchiaiolo
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - C Molinatto
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - G Baldassarre
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - M Mariani
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - L Tarani
- Department of Pediatric and Pediatric Neuropsychiatry, Sapienza University, Rome, Italy
| | - M F Bedeschi
- Medical Genetics Unit, IRCCS Ca' Granda Foundation, Ospedale Maggiore Policlinico, Milan, Italy
| | - D Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - D Melis
- Clinical Pediatric Genetics, Department of Pediatrics, University "Federico II", Naples, Italy
| | - A Bartuli
- Rare Disease and Medical Genetics Unit, Bambino Gesù Children Hospital, Rome, Italy
| | - M V Cubellis
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A Selicorni
- Clinical Pediatric Genetics Unit, Pediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italia
| | - M C Silengo
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| | - L Larizza
- Laboratory of Cytogenetics and Molecular Genetics, Istituto Auxologico Italiano, Milan, Italy
| | - A Riccio
- DiSTABiF, Second University of Naples, Naples, Italy.,Institute of Genetics and Biophysics "A. Buzzati-Traverso" - CNR, Naples, Italy
| | - G B Ferrero
- Department of Pediatric and Public Health Sciences, University of Turin, Turin, Italy
| |
Collapse
|
32
|
Janssen AB, Tunster SJ, Heazell AEP, John RM. Placental PHLDA2 expression is increased in cases of fetal growth restriction following reduced fetal movements. BMC MEDICAL GENETICS 2016; 17:17. [PMID: 26944942 PMCID: PMC4779203 DOI: 10.1186/s12881-016-0279-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/26/2016] [Indexed: 01/17/2023]
Abstract
Background Maternal perception of reduced fetal movements (RFM) is associated with increased risk of fetal growth restriction (FGR) and stillbirth, mediated by placental insufficiency. The maternally expressed imprinted gene PHLDA2 controls fetal growth, placental development and placental lactogen production in a mouse model. A number of studies have also demonstrated abnormally elevated placental PHLDA2 expression in human growth restricted pregnancies. This study examined whether PHLDA2 was aberrantly expressed in placentas of RFM pregnancies resulting in delivery of an FGR infant and explored a possible relationship between PHLDA2 expression and placental lactogen release from the human placenta. Methods Villous trophoblast samples were obtained from a cohort of women reporting RFM (N = 109) and PHLDA2 gene expression analysed. hPL levels were assayed in the maternal serum (N = 74). Results Placental PHLDA2 expression was significantly 2.3 fold higher in RFM pregnancies resulting in delivery of an infant with FGR (p < 0.01), with highest levels of PHLDA2 expression in the most severe cases. Placental PHLDA2 expression was associated with maternal serum hPL levels (r = −0.30, p = 0.008, n = 74) although this failed to reach statistical significance in multiple linear regression analysis controlling for birth weight (p = 0.07). Conclusions These results further highlight a role for placental PHLDA2 in poor perinatal outcomes, specifically FGR associated with RFM. Furthermore, this study suggests a potential relationship between placental PHLDA2 expression and hPL production by the placenta, an association that requires further investigation in a larger cohort. Electronic supplementary material The online version of this article (doi:10.1186/s12881-016-0279-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Bugge Janssen
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Simon J Tunster
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| | - Alexander E P Heazell
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester, UK.
| | - Rosalind M John
- Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, CF10 3AX, UK.
| |
Collapse
|
33
|
He Z, Lu H, Luo H, Gao F, Wang T, Gao Y, Fang Q, Wang J. The promoter methylomes of monochorionic twin placentas reveal intrauterine growth restriction-specific variations in the methylation patterns. Sci Rep 2016; 6:20181. [PMID: 26830322 PMCID: PMC4735741 DOI: 10.1038/srep20181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/23/2015] [Indexed: 12/11/2022] Open
Abstract
Intrauterine growth restriction (IUGR) affects the foetus and has a number of pathological consequences throughout life. Recent work has indicated that variations in DNA methylation might cause placental dysfunction, which may be associated with adverse pregnancy complications. Here, we investigated the promoter methylomes of placental shares from seven monochorionic (MC) twins with selective intrauterine growth restriction (sIUGR) using the healthy twin as an ideal control. Our work demonstrated that the IUGR placental shares harboured a distinct DNA hypomethylation pattern and that the methylation variations preferentially occurred in CpG island shores or non-CpG island promoters. The differentially methylated promoters could significantly separate the IUGR placental shares from the healthy ones. Ultra‐performance liquid chromatography/tandem mass spectrometry (UPLC‐MS/MS) further confirmed the genome‐wide DNA hypomethylation and the lower level of hydroxymethylation statuses in the IUGR placental shares. The methylation variations of the LRAT and SLC19A1 promoters, which are involved in vitamin A metabolism and folate transportation, respectively, and the EFS promoter were further validated in an additional 12 pairs of MC twins with sIUGR. Although the expressions of LRAT, SLC19A1 and EFS were not affected, we still speculated that DNA methylation and hydroxymethylation might serve a functional role during in utero foetal development.
Collapse
Affiliation(s)
- Zhiming He
- Foetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Hanlin Lu
- Science &Technology Department, BGI-Shenzhen, No.11, Bei Shan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Huijuan Luo
- Science &Technology Department, BGI-Shenzhen, No.11, Bei Shan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Fei Gao
- Science &Technology Department, BGI-Shenzhen, No.11, Bei Shan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Tong Wang
- Science &Technology Department, BGI-Shenzhen, No.11, Bei Shan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yu Gao
- Department of Obstetrics and Gynaecology, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510655, China
| | - Qun Fang
- Foetal Medicine Centre, Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Junwen Wang
- Science &Technology Department, BGI-Shenzhen, No.11, Bei Shan Industrial Zone, Yantian District, Shenzhen 518083, China
| |
Collapse
|
34
|
Leeuwerke M, Eilander MS, Pruis MGM, Lendvai Á, Erwich JJHM, Scherjon SA, Plösch T, Eijsink JJH. DNA Methylation and Expression Patterns of Selected Genes in First-Trimester Placental Tissue from Pregnancies with Small-for-Gestational-Age Infants at Birth. Biol Reprod 2016; 94:37. [PMID: 26740591 DOI: 10.1095/biolreprod.115.131698] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/28/2015] [Indexed: 12/27/2022] Open
Abstract
Variations in DNA methylation levels in the placenta are thought to influence gene expression and are associated with complications of pregnancy, like fetal growth restriction (FGR). The most important cause for FGR is placental dysfunction. Here, we examined whether changes in DNA methylation, followed by gene expression changes, are mechanistically involved in the etiology of FGR. In this retrospective case-control study, we examined the association between small-for-gestational-age (SGA) children and both DNA methylation and gene expression levels of the genes WNT2, IGF2/H19, SERPINA3, HERVWE1, and PPARG in first-trimester placental tissue. We also examined the repetitive element LINE-1. These candidate genes have been reported in the literature to be associated with SGA. We used first-trimester placental tissue from chorionic villus biopsies. A total of 35 SGA children (with a birth weight below the 10th percentile) were matched to 70 controls based on their gestational age. DNA methylation levels were analyzed by pyrosequencing and mRNA levels were analyzed by real-time PCR. None of the average DNA methylation levels, measured for each gene, showed a significant difference between SGA placental tissue compared to control tissue. However, hypermethylation of WNT2 was detected on two CpG positions in SGA. This was not associated with changes in gene expression. Apart from two CpG positions of the WNT2 gene, in early placenta samples, no evident changes in DNA methylation or expression were found. This indicates that the already reported changes in term placenta are not present in the early placenta, and therefore must arise after the first trimester.
Collapse
Affiliation(s)
- Mariëtte Leeuwerke
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michelle S Eilander
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maurien G M Pruis
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ágnes Lendvai
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan Jaap H M Erwich
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Sicco A Scherjon
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jasper J H Eijsink
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Xiao X, Zhao Y, Jin R, Chen J, Wang X, Baccarelli A, Zhang Y. Fetal growth restriction and methylation of growth-related genes in the placenta. Epigenomics 2015; 8:33-42. [PMID: 26678531 DOI: 10.2217/epi.15.101] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
AIM To examine the associations between fetal growth restriction (FGR) and DNA methylation of six growth-related genes in human placenta. MATERIALS & METHODS A total of 181 mother-newborn pairs (80 FGR cases and 101 controls) were enrolled in this case-control study. Placental DNA methylation was measured by bisulfite pyrosequencing. RESULTS DNA methylation levels of IGF2 and AHRR were positively associated with newborn birth weight and Quetelet's index, while DNA methylation levels of HSD11B2 and WNT2 were negatively associated with those fetal growth indicators. In addition, significantly elevated odds of FGR birth were associated with increasing DNA methylation of HSD11B2 and WNT2, and decreasing DNA methylation of IGF2. CONCLUSION Our findings demonstrated that placental DNA methylation levels of IGF2, AHRR, HSD11B2 and WNT2 were associated with measures of fetal growth.
Collapse
Affiliation(s)
- Xirong Xiao
- Obstetrics & Gynecology Hospital, Fudan University, Shanghai 200032, China
| | - Yan Zhao
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Rong Jin
- The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai 200032, China
| | - Jiao Chen
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiu Wang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Andrea Baccarelli
- Departments of Environmental Health, Harvard School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yunhui Zhang
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
36
|
Jin F, Qiao C, Luan N, Shang T. The expression of the imprinted gene pleckstrin homology-like domain family A member 2 in placental tissues of preeclampsia and its effects on the proliferation, migration and invasion of trophoblast cells JEG-3. Clin Exp Pharmacol Physiol 2015. [PMID: 26218012 DOI: 10.1111/1440-1681.12468] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Jin
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| | - Chong Qiao
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| | - Nannan Luan
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| | - Tao Shang
- Department of Obstetrics and Gynaecology; Shengjing Hospital of China Medical University; Shenyang China
| |
Collapse
|
37
|
Abstract
This review provides an overview of the unique features of DNA methylation in the human placenta. We discuss the importance of understanding placental development, structure, and function in the interpretation of DNA methylation data. Examples are given of how DNA methylation is important in regulating placental-specific gene expression, including monoallelic expression and X-chromosome inactivation in the placenta. We also discuss studies of global DNA methylation changes in the context of placental pathology and environmental exposures.
Collapse
Affiliation(s)
- Wendy P Robinson
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| | - E Magda Price
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada
| |
Collapse
|
38
|
Zhang X, Wang D, Han Y, Duan F, Lv Q, Li Z. Altered imprinted gene expression and methylation patterns in mid-gestation aborted cloned porcine fetuses and placentas. J Assist Reprod Genet 2014; 31:1511-7. [PMID: 25172095 DOI: 10.1007/s10815-014-0320-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/19/2014] [Indexed: 12/12/2022] Open
Abstract
PURPOSE To determine the expression patterns of imprinted genes and their methylation status in aborted cloned porcine fetuses and placentas. METHODS RNA and DNA were prepared from fetuses and placentas that were produced by SCNT and controls from artificial insemination. The expression of 18 imprinted genes was determined by quantitative real-time PCR (q-PCR). Bisulfite sequencing PCR (BSP) was conducted to determine the methylation status of PRE-1 short interspersed repetitive element (SINE), satellite DNA and H19 differentially methylated region 3 (DMR3). RESULTS The weight, imprinted gene expression and genome-wide DNA methylation patterns were compared between the mid-gestation aborted and normal control samples. The results showed hypermethylation of PRE-1 and satellite sequences, the aberrant expression of imprinted genes, and the hypomethylation of H19 DMR3 occurred in mid-gestation aborted fetuses and placentas. CONCLUSIONS Cloned pigs generated by somatic cell nuclear transfer (SCNT) showed a greater ratio of early abortion during mid-gestation than did normal controls because of the incomplete epigenetic reprogramming of the donor cells. Altered expression of imprinted genes and the hypermethylation profile of the repetitive regions (PRE-1 and satellite DNA) may be associated with defective development and early abortion of cloned pigs, emphasizing the importance of epigenetics during pregnancy and implications thereof for patient-specific embryonic stem cells for human therapeutic cloning and improvement of human assisted reproduction.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, Changchun, 130062, China,
| | | | | | | | | | | |
Collapse
|