1
|
Sun H, Yin X, Yang C, Kuang H, Luo W. Advances in autogenous dentin matrix graft as a promising biomaterial for guided bone regeneration in maxillofacial region: A review. Medicine (Baltimore) 2024; 103:e39422. [PMID: 39183415 PMCID: PMC11346879 DOI: 10.1097/md.0000000000039422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Autogenous dentin matrix (ADM), derived from a patient's extracted tooth, can be repurposed as an autologous grafting material in reconstructive dentistry. Extracted teeth provide a source for ADM, which distinguishes itself with its low rejection rate, osteoinductive capabilities and ease of preparation. Consequently, it presents a viable alternative to autogenous bone. Animal studies have substantiated its effective osteoinductive properties, while its clinical applications encompass post-extraction site preservation, maxillary sinus floor augmentation, and guided bone tissue regeneration. Nevertheless, the long-term efficacy of ADM applied in bone regeneration remains underexplored and there is a lack of standardization in the preparation processes. This paper comprehensively explores the composition, mechanisms underlying osteoinductivity, preparation methods, and clinical applications of ADM with the aim of establishing a fundamental reference for future studies on this subject.
Collapse
Affiliation(s)
- Honglan Sun
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiaoyunqing Yin
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Chao Yang
- Department of Stomatology, The People’s Hospital of Longhua, Shenzhen, Guangdong Province, China
- Research and Development Department, Shenzhen Uni-medica Technology Co., Ltd, Shenzhen, Guangdong Province, China
| | - Huifang Kuang
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| | - Wen Luo
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Stomatology, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province, China
- School of Stomatology, Hainan Medical University, Haikou, Hainan Province, China
| |
Collapse
|
2
|
Huiwen W, Shuai L, Jia X, Shihao D, Kun W, Runhuai Y, Haisheng Q, Jun L. 3D-printed nanohydroxyapatite/methylacrylylated silk fibroin scaffold for repairing rat skull defects. J Biol Eng 2024; 18:22. [PMID: 38515148 PMCID: PMC10956317 DOI: 10.1186/s13036-024-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/27/2024] [Indexed: 03/23/2024] Open
Abstract
The repair of bone defects remains a major challenge in the clinic, and treatment requires bone grafts or bone replacement materials. Existing biomaterials have many limitations and cannot meet the various needs of clinical applications. To treat bone defects, we constructed a nanohydroxyapatite (nHA)/methylacrylylated silk fibroin (MASF) composite biological scaffold using photocurable 3D printing technology. In this study, scanning electron microscopy (SEM) was used to detect the changes in the morphological structure of the composite scaffold with different contents of nanohydroxyapatite, and FTIR was used to detect the functional groups and chemical bonds in the composite scaffold to determine the specific components of the scaffold. In in vitro experiments, bone marrow mesenchymal stem cells from SD rats were cocultured with scaffolds soaking solution, and the cytotoxicity, cell proliferation, Western blot analysis, Quantitative real-time PCR analysis, bone alkaline phosphatase activity and alizarin red staining of scaffolds were detected to determine the biocompatibility of scaffolds and the effect of promoting proliferation and osteogenesis of bone marrow mesenchymal stem cells in vitro. In the in vivo experiment, the skull defect was constructed by adult SD rats, and the scaffold was implanted into the skull defect site. After 4 weeks and 8 weeks of culture, the specific osteogenic effect of the scaffold in the skull defect site was detected by animal micro-CT, hematoxylin and eosin (HE) staining and Masson's staining. Through the analysis of the morphological structure of the scaffold, we found that the frame supported good retention of the lamellar structure of silk fibroin, when mixed with nHA, the surface of the stent was rougher, the cell contact area increased, and cell adhesion and lamellar microstructure for cell migration and proliferation of the microenvironment provided a better space. FTIR results showed that the scaffold completely retained the β -folded structure of silk fibroin, and the scaffold composite was present without obvious impurities. The staining results of live/dead cells showed that the constructed scaffolds had no significant cytotoxicity, and thw CCK-8 assay also showed that the constructed scaffolds had good biocompatibility. The results of osteogenic induction showed that the scaffold had good osteogenic induction ability. Moreover, the results also showed that the scaffold with a MASF: nHA ratio of 1: 0.5 (SFH) showed better osteogenic ability. The micro-CT and bone histometric results were consistent with the in vitro results after stent implantation, and there was more bone formation at the bone defect site in the SFH group.This research used photocurable 3D printing technology to successfully build an osteogenesis bracket. The results show that the constructed nHA/MASF biological composite material, has good biocompatibility and good osteogenesis function. At the same time, in the microenvironment, the material can also promote bone defect repair and can potentially be used as a bone defect filling material for bone regeneration applications.
Collapse
Affiliation(s)
- Wu Huiwen
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Liang Shuai
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xie Jia
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deng Shihao
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Wei Kun
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China
| | - Yang Runhuai
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Qian Haisheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, People's Republic of China.
| | - Li Jun
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
3
|
Benalaya I, Alves G, Lopes J, Silva LR. A Review of Natural Polysaccharides: Sources, Characteristics, Properties, Food, and Pharmaceutical Applications. Int J Mol Sci 2024; 25:1322. [PMID: 38279323 PMCID: PMC10816883 DOI: 10.3390/ijms25021322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024] Open
Abstract
Natural polysaccharides, which are described in this study, are some of the most extensively used biopolymers in food, pharmaceutical, and medical applications, because they are renewable and have a high level of biocompatibility and biodegradability. The fundamental understanding required to properly exploit polysaccharides potential in the biocomposite, nanoconjugate, and pharmaceutical industries depends on detailed research of these molecules. Polysaccharides are preferred over other polymers because of their biocompatibility, bioactivity, homogeneity, and bioadhesive properties. Natural polysaccharides have also been discovered to have excellent rheological and biomucoadhesive properties, which may be used to design and create a variety of useful and cost-effective drug delivery systems. Polysaccharide-based composites derived from natural sources have been widely exploited due to their multifunctional properties, particularly in drug delivery systems and biomedical applications. These materials have achieved global attention and are in great demand because to their biochemical properties, which mimic both human and animal cells. Although synthetic polymers account for a substantial amount of organic chemistry, natural polymers play a vital role in a range of industries, including biomedical, pharmaceutical, and construction. As a consequence, the current study will provide information on natural polymers, their biological uses, and food and pharmaceutical applications.
Collapse
Affiliation(s)
- Ikbel Benalaya
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - Gilberto Alves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
| | - João Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, University of Lisboa, 1649-003 Lisbon, Portugal
| | - Luís R. Silva
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-001 Covilha, Portugal; (I.B.); (G.A.)
- CPIRN-UDI/IPG, Center of Potential and Innovation of Natural Resources, Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CIEPQPF, Department of Chemical Engineering, Pólo II—Pinhal de Marrocos, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Ul Haq E, Ahmed F, U Rehman F, Channa IA, Makhdoom MA, Shahzad J, Shafiq T, Zain-ul-Abdein M, Shar MA, Alhazaa A. Synthesis and Characterization of a Titanium-Based Functionally Graded Material-Structured Biocomposite using Powder Metallurgy. ACS OMEGA 2023; 8:28976-28983. [PMID: 37599914 PMCID: PMC10433502 DOI: 10.1021/acsomega.3c01471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023]
Abstract
This investigation aims at synthesizing and characterizing a biocomposite of hydroxyapatite (HA) and titanium (Ti) as a functionally graded material (FGM) via an economical powder metallurgy route. Ti particles were produced through drilling and chipping, followed by compaction and sintering. Ti foams, so obtained, were then infused with varying volume fractions of HA. The pure Ti foam control sample and the FGM composite samples were then subjected to various characterizations to validate their biocompatibility, structural strength, and integrity. The interface development between the load-bearing Ti implant and living tissue was resolved through an FGM structure, where the base of the implant consisted of load-bearing Ti and the outer periphery changed to HA gradually. HA/Ti specimens of different volume fractions were tested for density measurements, microstructure, hardness, and bioactivity. The bioactive behavior was investigated using the potentiodynamic polarization technique to measure the corrosion rate of the pure Ti foam (0/100 HA/Ti) and the FGM composite (10/90 HA/Ti) samples in a simulated body fluid (SBF). The results showed that the hardness of FGM composites, despite being less than that of 0/100 HA/Ti, was still within safe limits. The corrosion rate, however, was found to be decreased by a significant value of almost 40% for the 10/90 HA/Ti FGM composite sample compared to the pure Ti foam control sample. It was concluded that the optimum composition 10/90 HA/Ti sample offers improved corrosion resistance while maintaining a sufficient allowable hardness level.
Collapse
Affiliation(s)
- Ehsan Ul Haq
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Furqan Ahmed
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Faseeh U Rehman
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Iftikhar Ahmed Channa
- Department
of Metallurgical Engineering, NED University
of Engineering and Technology, Off University Road, Karachi 75270, Pakistan
| | - Muhammad Atif Makhdoom
- Institute
of Metallurgy and Materials Engineering, University of the Punjab, Lahore 54590, Pakistan
| | - Junaid Shahzad
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Tooba Shafiq
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Muhammad Zain-ul-Abdein
- Department
of Metallurgical and Materials Engineering (MME), Faculty of Chemical,
Metallurgical and Polymer Engineering, University
of Engineering and Technology (UET), Lahore 54890, Pakistan
| | - Muhammad Ali Shar
- Department
of Mechanical & Energy Systems Engineering, Faculty of Engineering
and Informatics, University of Bradford, Bradford BD7 1DP, U.K.
| | - Abdulaziz Alhazaa
- Department
of Physics and Astronomy, College of Science,
King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Alashi S, kouri I, Alghoraibi I, Kochaji N, Houri A. Eggshells derived Nano-hydroxyapatite doped with Si and Zn as novel bone regenerative material in critical-sized bone defects – in vitro and in vivo study.. [DOI: 10.21203/rs.3.rs-3134833/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Abstract
Hydroxyapatite Nano-particles are the most abundant inorganic compound found in bone tissue. Nano-hydroxyapatite (N-HA) was synthesized by different methods to be used as bone substitution material due to its favorable biocompatibility and biological activity. To mimic the natural structure of bone inorganic phase, N-HA has been doped with several ions to enhance its degradation and cell interaction. In this work, using the wet chemical precipitation method, N-HA was synthesized from eggshells as a bio-waste source and doped with silicon (Si+ 4) and zinc (Zn+ 2). Spherical Nano-sized particles of hydroxyapatite (HA) were obtained with a high surface area and an interconnected porous structure. The average particle size was 239 nm, and the average porosity of 20%. The substitution of Si+ 4 and Zn+ 2 into N-HA crystal lattice affected physical features by decreasing the particle size and crystallinity. The crystal size of N-HA decreased from 61 nm to 46 nm after the dual doping. Doping ions also improved the biological behavior of N-HA by increasing the cell viability of N-HA in vitro. Synthesis of N-HA from eggshells seemed to affect the phase purity of the material, a phase of whitlockite (WH) appeared in N-HA powder even after was sintered at a high temperature of 1200○c. The in vivo results demonstrated the ability of Si –Zn doped HA to well integrate into bone tissue and induce bone regeneration in critical-sized bone defects. Histological analysis showed that the mean value of newly-formed bone area (total bone area/total area) measured via histomorphometric reached 69%±0.015% after 12 weeks in grafted defects. Furthermore, significant differences in bone formation were found between grafted and control samples. We present our study to be a starting point for more investigation into the ability to synthesize a biomimicry bone substitution martial that meets the renewable requirements in the bone regeneration field.
Collapse
|
6
|
Chinnasami H, Dey MK, Devireddy R. Three-Dimensional Scaffolds for Bone Tissue Engineering. Bioengineering (Basel) 2023; 10:759. [PMID: 37508786 PMCID: PMC10376773 DOI: 10.3390/bioengineering10070759] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Immobilization using external or internal splints is a standard and effective procedure to treat minor skeletal fractures. In the case of major skeletal defects caused by extreme trauma, infectious diseases or tumors, the surgical implantation of a bone graft from external sources is required for a complete cure. Practical disadvantages, such as the risk of immune rejection and infection at the implant site, are high in xenografts and allografts. Currently, an autograft from the iliac crest of a patient is considered the "gold standard" method for treating large-scale skeletal defects. However, this method is not an ideal solution due to its limited availability and significant reports of morbidity in the harvest site (30%) as well as the implanted site (5-35%). Tissue-engineered bone grafts aim to create a mechanically strong, biologically viable and degradable bone graft by combining a three-dimensional porous scaffold with osteoblast or progenitor cells. The materials used for such tissue-engineered bone grafts can be broadly divided into ceramic materials (calcium phosphates) and biocompatible/bioactive synthetic polymers. This review summarizes the types of materials used to make scaffolds for cryo-preservable tissue-engineered bone grafts as well as the distinct methods adopted to create the scaffolds, including traditional scaffold fabrication methods (solvent-casting, gas-foaming, electrospinning, thermally induced phase separation) and more recent fabrication methods (fused deposition molding, stereolithography, selective laser sintering, Inkjet 3D printing, laser-assisted bioprinting and 3D bioprinting). This is followed by a short summation of the current osteochondrogenic models along with the required scaffold mechanical properties for in vivo applications. We then present a few results of the effects of freezing and thawing on the structural and mechanical integrity of PLLA scaffolds prepared by the thermally induced phase separation method and conclude this review article by summarizing the current regulatory requirements for tissue-engineered products.
Collapse
Affiliation(s)
| | | | - Ram Devireddy
- Department of Mechanical Engineering, Louisiana State University, Baton Rouge, LA 70803, USA; (H.C.)
| |
Collapse
|
7
|
Kumawat VS, Bandyopadhyay-Ghosh S, Ghosh SB. An overview of translational research in bone graft biomaterials. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:497-540. [PMID: 36124544 DOI: 10.1080/09205063.2022.2127143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Natural bone healing is often inadequate to treat fractures with critical size bone defects and massive bone loss. Immediate surgical interventions through bone grafts have been found to be essential on such occasions. Naturally harvested bone grafts, although are the preferred choice of the surgeons; they suffer from serious clinical limitations, including disease transmission, donor site morbidity, limited supply of graft etc. Synthetic bone grafts, on the other hand, offer a more clinically appealing approach to decode the pathways of bone repair through use of tissue engineered biomaterials. This article critically retrospects the translational research on various engineered biomaterials towards bringing transformative changes in orthopaedic healthcare. The first section of the article discusses about composition and ultrastructure of bone along with the global perspectives on statistical escalation of bone fracture surgeries requiring use of bone grafts. The next section reviews the types, benefits and challenges of various natural and synthetic bone grafts. An overview of clinically relevant biomaterials from traditionally used metallic, bioceramic, and biopolymeric biomaterials to new generation composites have been summarised. Finally, this narrative review concludes with the discussion on the emerging trends and future perspectives of the promising bone grafts.
Collapse
Affiliation(s)
- Vijay Shankar Kumawat
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Sanchita Bandyopadhyay-Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subrata Bandhu Ghosh
- Engineered Biomedical Materials Research and Innovation Centre (EnBioMatRIC), Manipal University Jaipur, Jaipur, Rajasthan, India.,Department of Mechanical Engineering, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
8
|
Lacambra-Andreu X, Maazouz A, Lamnawar K, Chenal JM. A Review on Manufacturing Processes of Biocomposites Based on Poly(α-Esters) and Bioactive Glass Fillers for Bone Regeneration. Biomimetics (Basel) 2023; 8:81. [PMID: 36810412 PMCID: PMC9945144 DOI: 10.3390/biomimetics8010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/16/2023] Open
Abstract
The incorporation of bioactive and biocompatible fillers improve the bone cell adhesion, proliferation and differentiation, thus facilitating new bone tissue formation upon implantation. During these last 20 years, those biocomposites have been explored for making complex geometry devices likes screws or 3D porous scaffolds for the repair of bone defects. This review provides an overview of the current development of manufacturing process with synthetic biodegradable poly(α-ester)s reinforced with bioactive fillers for bone tissue engineering applications. Firstly, the properties of poly(α-ester), bioactive fillers, as well as their composites will be defined. Then, the different works based on these biocomposites will be classified according to their manufacturing process. New processing techniques, particularly additive manufacturing processes, open up a new range of possibilities. These techniques have shown the possibility to customize bone implants for each patient and even create scaffolds with a complex structure similar to bone. At the end of this manuscript, a contextualization exercise will be performed to identify the main issues of process/resorbable biocomposites combination identified in the literature and especially for resorbable load-bearing applications.
Collapse
Affiliation(s)
- Xavier Lacambra-Andreu
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Abderrahim Maazouz
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
- Hassan II Academy of Science and Technology, Rabat 10100, Morocco
| | - Khalid Lamnawar
- CNRS, UMR 5223, Ingénierie des Matériaux Polymères, INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Jean-Marc Chenal
- CNRS, UMR 5510, MATEIS, INSA-Lyon, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
9
|
Anzini P, Redoglio D, Rocco M, Masciocchi N, Ferri F. Light Scattering and Turbidimetry Techniques for the Characterization of Nanoparticles and Nanostructured Networks. NANOMATERIALS 2022; 12:nano12132214. [PMID: 35808049 PMCID: PMC9268389 DOI: 10.3390/nano12132214] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/21/2022] [Indexed: 12/10/2022]
Abstract
Light scattering and turbidimetry techniques are classical tools for characterizing the dynamics and structure of single nanoparticles or nanostructured networks. They work by analyzing, as a function of time (Dynamic Light Scattering, DLS) or angles (Static Light Scattering, SLS), the light scattered by a sample, or measuring, as a function of the wavelength, the intensity scattered over the entire solid angle when the sample is illuminated with white light (Multi Wavelength Turbidimetry, MWT). Light scattering methods probe different length scales, in the ranges of ~5−500 nm (DLS), or ~0.1−5 μm (Wide Angle SLS), or ~1−100 μm (Low Angle SLS), and some of them can be operated in a time-resolved mode, with the possibility of characterizing not only stationary, but also aggregating, polymerizing, or self-assembling samples. Thus, the combined use of these techniques represents a powerful approach for studying systems characterized by very different length scales. In this work, we will review some typical applications of these methods, ranging from the field of colloidal fractal aggregation to the polymerization of biologic networks made of randomly entangled nanosized fibers. We will also discuss the opportunity of combining together different scattering techniques, emphasizing the advantages of a global analysis with respect to single-methods data processing.
Collapse
Affiliation(s)
- Pietro Anzini
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (P.A.); (D.R.); (N.M.)
| | - Daniele Redoglio
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (P.A.); (D.R.); (N.M.)
| | - Mattia Rocco
- Proteomica e Spettrometria di Massa, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy;
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (P.A.); (D.R.); (N.M.)
| | - Fabio Ferri
- Dipartimento di Scienza e Alta Tecnologia and To.Sca.Lab, Università degli Studi dell’Insubria, Via Valleggio 11, 22100 Como, Italy; (P.A.); (D.R.); (N.M.)
- Correspondence:
| |
Collapse
|
10
|
Calcined Hydroxyapatite with Collagen I Foam Promotes Human MSC Osteogenic Differentiation. Int J Mol Sci 2022; 23:ijms23084236. [PMID: 35457055 PMCID: PMC9028204 DOI: 10.3390/ijms23084236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
Collagen I-based foams were modified with calcined or noncalcined hydroxyapatite or calcium phosphates with various particle sizes and pores to monitor their effect on cell interactions. The resulting scaffolds thus differed in grain size, changing from nanoscale to microscopic, and possessed diverse morphological characteristics and resorbability. The materials' biological action was shown on human bone marrow MSCs. Scaffold morphology was identified by SEM. Using viability test, qPCR, and immunohistochemical staining, we evaluated the biological activity of all of the materials. This study revealed that the most suitable scaffold composition for osteogenesis induction is collagen I foam with calcined hydroxyapatite with a pore size of 360 ± 130 µm and mean particle size of 0.130 µm. The expression of osteogenic markers RunX2 and ColI mRNA was promoted, and a strong synthesis of extracellular protein osteocalcin was observed. ColI/calcined HAP scaffold showed significant osteogenic potential, and can be easily manipulated and tailored to the defect size, which gives it great potential for bone tissue engineering applications.
Collapse
|
11
|
Truite CVR, Noronha JNG, Prado GC, Santos LN, Palácios RS, do Nascimento A, Volnistem EA, da Silva Crozatti TT, Francisco CP, Sato F, Weinand WR, Hernandes L, Matioli G. Bioperformance Studies of Biphasic Calcium Phosphate Scaffolds Extracted from Fish Bones Impregnated with Free Curcumin and Complexed with β-Cyclodextrin in Bone Regeneration. Biomolecules 2022; 12:biom12030383. [PMID: 35327575 PMCID: PMC8946016 DOI: 10.3390/biom12030383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 01/16/2023] Open
Abstract
Fish bones are a natural calcium phosphate (CaP) sources used in biomaterials production for bone regeneration. CaP scaffolds can be enriched with other substances with biological activity to improve bone repair. This study aimed to evaluate the physicochemical properties and bone regeneration potential of biphasic calcium phosphate (BCP) scaffolds impregnated with free curcumin (BCP-CL) or complexed with β-cyclodextrin (BCP-CD) compared to BCP scaffolds. Rietveld’s refinement showed that BCP is composed of 57.2% of HAp and 42.8% of β-TCP and the molar ratio of Ca/P corresponds to 1.59. The scaffolds presented porosity (macro and microporosity) of 57.21%. Apatite formation occurred on the BCP, BCP-CL, and BCP-CD surface, in vitro, in SBF. Micro-Raman technique showed a reduction in the dissolution rate of β-TCP in the curcumin-impregnated scaffolds over time, and in vivo studies on critical-size defects, in rat calvaria, had no additional regenerative effect of BCP-CL and BCP-CD scaffolds, compared to BCP scaffolds. Despite this, the study showed that curcumin impregnation in BCP scaffolds prolongs the release of the β-TCP phase, the BCP- phase with the higher osteoinductive potential, representing an advantage in tissue engineering.
Collapse
Affiliation(s)
- Cecilia V. R. Truite
- Department of Pharmacy, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil
- Correspondence: (C.V.R.T.); (G.M.); Tel.: +55-44-30113868 (G.M.)
| | - Jessica N. G. Noronha
- Department of Morphological Sciences, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (J.N.G.N.); (G.C.P.); (L.N.S.); (L.H.)
| | - Gabriela C. Prado
- Department of Morphological Sciences, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (J.N.G.N.); (G.C.P.); (L.N.S.); (L.H.)
| | - Leonardo N. Santos
- Department of Morphological Sciences, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (J.N.G.N.); (G.C.P.); (L.N.S.); (L.H.)
| | - Raquel S. Palácios
- Department of Physics, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (R.S.P.); (A.d.N.); (E.A.V.); (F.S.); (W.R.W.)
| | - Adriane do Nascimento
- Department of Physics, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (R.S.P.); (A.d.N.); (E.A.V.); (F.S.); (W.R.W.)
| | - Eduardo A. Volnistem
- Department of Physics, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (R.S.P.); (A.d.N.); (E.A.V.); (F.S.); (W.R.W.)
| | - Thamara T. da Silva Crozatti
- Department of Food Engineering, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil;
| | - Carolina P. Francisco
- Department of Chemical Engineering, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil;
| | - Francielle Sato
- Department of Physics, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (R.S.P.); (A.d.N.); (E.A.V.); (F.S.); (W.R.W.)
| | - Wilson R. Weinand
- Department of Physics, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (R.S.P.); (A.d.N.); (E.A.V.); (F.S.); (W.R.W.)
| | - Luzmarina Hernandes
- Department of Morphological Sciences, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil; (J.N.G.N.); (G.C.P.); (L.N.S.); (L.H.)
| | - Graciette Matioli
- Department of Pharmacy, State University of Maringá (UEM), 5790 Colombo Avenue, Maringá 87020-900, PR, Brazil
- Correspondence: (C.V.R.T.); (G.M.); Tel.: +55-44-30113868 (G.M.)
| |
Collapse
|
12
|
A Collagen(Col)/nano-hydroxyapatite (nHA) biological composite bone scaffold with double multi-level interface reinforcement. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
13
|
Tomazela L, Cruz MAE, Nascimento LA, Fagundes CC, da Veiga MAMS, Zamarioli A, Bottini M, Ciancaglini P, Brassesco MS, Engel EE, Ramos AP. Fabrication and characterization of a bioactive polymethylmethacrylate-based porous cement loaded with strontium/calcium apatite nanoparticles. J Biomed Mater Res A 2021; 110:812-826. [PMID: 34783455 DOI: 10.1002/jbm.a.37330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 10/24/2021] [Accepted: 11/01/2021] [Indexed: 11/06/2022]
Abstract
Polymethylmethacrylate (PMMA)-based cements are used for bone reparation due to their biocompatibility, suitable mechanical properties, and mouldability. However, these materials suffer from high exothermic polymerization and poor bioactivity, which can cause the formation of fibrous tissue around the implant and aseptic loosening. Herein, we tackled these problems by adding Sr2+ -substituted hydroxyapatite nanoparticles (NPs) and a porogenic compound to the formulations, thus creating a microenvironment suitable for the proliferation of osteoblasts. The NPs resembled the structure of the bone's apatite and enabled the controlled release of Sr2+ . Trends in the X-ray patterns and infrared spectra confirmed that Sr2+ replaced Ca2+ in the whole composition range of the NPs. The inclusion of an effervescent additive reduced the polymerization temperature and lead to the formation of highly porous cement exhibiting mechanical properties comparable to the trabecular bone. The formation of an opened and interconnected matrix allowed osteoblasts to penetrate the cement structure. Most importantly, the gas formation confined the NPs at the surface of the pores, guaranteeing the controlled delivery of Sr2+ within a concentration sufficient to maintain osteoblast viability. Additionally, the cement was able to form apatite when immersed into simulated body fluids, further increasing its bioactivity. Therefore, we offer a formulation of PMMA cement with improved in vitro performance supported by enhanced bioactivity, increased osteoblast viability and deposition of mineralized matrix assigned to the loading with Sr2+ -substituted hydroxyapatite NPs and the creation of an interconnected porous structure. Altogether, our results hold promise for enhanced bone reparation guided by PMMA cements.
Collapse
Affiliation(s)
- Larissa Tomazela
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Antônio Eufrásio Cruz
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Larissa Aine Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Cecilia C Fagundes
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ariane Zamarioli
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy.,Sanford Children's Health Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Sol Brassesco
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Edgard E Engel
- Departamento de Ortopedia e Anestesiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Ulian G, Moro D, Valdrè G. Hydroxylapatite and Related Minerals in Bone and Dental Tissues: Structural, Spectroscopic and Mechanical Properties from a Computational Perspective. Biomolecules 2021; 11:728. [PMID: 34068073 PMCID: PMC8152500 DOI: 10.3390/biom11050728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023] Open
Abstract
Hard tissues (e.g., bone, enamel, dentin) in vertebrates perform various and different functions, from sustaining the body to haematopoiesis. Such complex and hierarchal tissue is actually a material composite whose static and dynamic properties are controlled by the subtle physical and chemical interplay between its components, collagen (main organic part) and hydroxylapatite-like mineral. The knowledge needed to fully understand the properties of bony and dental tissues and to develop specific applicative biomaterials (e.g., fillers, prosthetics, scaffolds, implants, etc.) resides mostly at the atomic scale. Among the different methods to obtains such detailed information, atomistic computer simulations (in silico) have proven to be both corroborative and predictive tools in this subject. The authors have intensively worked on quantum mechanical simulations of bioapatite and the present work reports a detailed review addressed to the crystal-chemical, physical, spectroscopic, mechanical, and surface properties of the mineral phase of bone and dental tissues. The reviewed studies were conducted at different length and time scales, trying to understand the features of hydroxylapatite and biological apatite models alone and/or in interaction with simplified collagen-like models. The reported review shows the capability of the computational approach in dealing with complex biological physicochemical systems, providing accurate results that increase the overall knowledge of hard tissue science.
Collapse
Affiliation(s)
- Gianfranco Ulian
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| | | | - Giovanni Valdrè
- Centro di Ricerca Interdisciplinare di Biomineralogia, Cristallografia e Biomateriali, Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna Alma Mater Studiorum, P. Porta San Donato 1, 40126 Bologna, Italy;
| |
Collapse
|
15
|
Bagnol R, Sprecher C, Peroglio M, Chevalier J, Mahou R, Büchler P, Richards G, Eglin D. Coaxial micro-extrusion of a calcium phosphate ink with aqueous solvents improves printing stability, structure fidelity and mechanical properties. Acta Biomater 2021; 125:322-332. [PMID: 33631396 DOI: 10.1016/j.actbio.2021.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 01/11/2023]
Abstract
Micro-extrusion-based 3D printing of complex geometrical and porous calcium phosphate (CaP) can improve treatment of bone defects through the production of personalized bone substitutes. However, achieving printing and post-printing shape stabilities for the efficient fabrication and application of rapid hardening protocol are still challenging. In this work, the coaxial printing of a self-setting CaP cement with water and ethanol mixtures aiming to increase the ink yield stress upon extrusion and the stability of fabricated structures was explored. Printing height of overhang structure was doubled when aqueous solvents were used and a 2 log increase of the stiffness was achieved post-printing. A standard and fast steam sterilization protocol applied as hardening step on the coaxial printed CaP cement (CPC) ink resulted in constructs with 4 to 5 times higher compressive moduli in comparison to extrusion process in the absence of solvent. This improved mechanical performance is likely due to rapid CPC setting, preventing cracks formation during hardening process. Thus, coaxial micro-extrusion-based 3D printing of a CPC ink with aqueous solvent enhances printability and allows the use of the widespread steam sterilization cycle as a standalone post-processing technique for production of 3D printed personalized CaP bone substitutes. STATEMENT OF SIGNIFICANCE: Coaxial micro-extrusion-based 3D printing of a self-setting CaP cement with water:ethanol mixtures increased the ink yield stress upon extrusion and the stability of fabricated structures. Printing height of overhang structure was doubled when aqueous solvents were used, and a 2 orders of magnitude log increase of the stiffness was achieved post-printing. A fast hardening step consisting of a standard steam sterilization was applied. Four to 5 times higher compressive moduli was obtained for hardened coaxially printed constructs. This improved mechanical performance is likely due to rapid CPC setting in the coaxial printing, preventing cracks formation during hardening process.
Collapse
Affiliation(s)
- Romain Bagnol
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands
| | - Christoph Sprecher
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Marianna Peroglio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - Jerome Chevalier
- University of Lyon, INSA-Lyon, CNRS, MATEIS UMR 5510, F-69621, Villeurbanne, France
| | | | - Philippe Büchler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Geoff Richards
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland
| | - David Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos Platz, Switzerland; Department of Biomaterials Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7522 NB Enschede, the Netherlands.
| |
Collapse
|
16
|
Synthesis and characterization of nano-hydroxyapatite from Sardinella longiceps fish bone and its effects on human osteoblast bone cells. J Mech Behav Biomed Mater 2021; 119:104501. [PMID: 33865069 DOI: 10.1016/j.jmbbm.2021.104501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 12/16/2022]
Abstract
Organic debris in the form of fish bone wastes account to several thousand tons annually. In recent years, researchers have turned attention towards the bioconversion of organic debris into materials with biomedical applications. Accordingly, the present study synthesized nano-Hydroxyapatite (n-HAP) from bones of discarded Sardinella longiceps by the alkaline hydrolysis method. The synthesized n-HAP was characterized by using the scanning electron microscope (SEM), X-ray diffraction (XRD), atomic force microscope (AFM), and Fourier transform infrared spectroscopy (FTIR). Crushed fish bone demonstrated an agglomerate of fine and rod-like crystals as observed in SEM, whereas n-HAP exhibited a structure of dense thick particles. FTIR spectral data confirmed the functional groups such as alkanes, esters, saturated aliphatic, and aromatic groups. XRD analysis exhibited strong diffraction peaks of HAP confirming its presence in synthesized n-HAP. AFM analysis affirmed that the synthesized particles had an average size of 19.65 nm. Cell viability was tested at different concentrations (10, 50, 100, 250 μg/mL) against human osteoblast bone cells (MG-63).The maximum cell viability (141.3 ± 3.1%) was observed at 100 μg/mL (24 h). Mineralization was evaluated using Alizarin red staining of osteoblast MG-63 cells treated with n-HAP at the concentration of 50 and 100 μg/mL (0.54 ± 0.03 and 0.99 ± 0.05%) which exhibited red color indicating good results. The size, morphology, functional groups, viability and mineralization of the synthesized n-HAP are favorable for its use in bone tissue engineering and other potential osteo and dental applications.
Collapse
|
17
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
18
|
Alipour M, Firouzi N, Aghazadeh Z, Samiei M, Montazersaheb S, Khoshfetrat AB, Aghazadeh M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol 2021; 21:6. [PMID: 33430842 PMCID: PMC7802203 DOI: 10.1186/s12896-020-00666-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Microcapsule is considered as a promising 3D microenvironment for Bone Tissue Engineering (BTE) applications. Microencapsulation of cells in an appropriate scaffold not only protected the cells against excess stress but also promoted cell proliferation and differentiation. Through the current study, we aimed to microcapsulate the human Dental Pulp Stem Cells (hDPSCs) and evaluated the proliferation and osteogenic differentiation of those cells by using MTT assay, qRT-PCR, Alkaline phosphatase, and Alizarine Red S. Results The SEM results revealed that Alg/Gel microcapsules containing nHA showed a rough and more compact surface morphology in comparison with the Alg/Gel microcapsules. Moreover, the microencapsulation by Alg/Gel/nHA could improve cell proliferation and induce osteogenic differentiation. The cells cultured in the Alg/Gel and Alg/Gel/nHA microcapsules showed 1.4-fold and 1.7-fold activity of BMP-2 gene expression more in comparison with the control group after 21 days. The mentioned amounts for the BMP-2 gene were 2.5-fold and 4-fold more expression for the Alg/Gel and Alg/Gel/nHA microcapsules after 28 days. The nHA, addition to hDPSCs-laden Alg/Gel microcapsule, could up-regulate the bone-related gene expressions of osteocalcin, osteonectin, and RUNX-2 during the 21 and 28 days through the culturing period, too. Calcium deposition and ALP activities of the cells were observed in accordance with the proliferation results as well as the gene expression analysis. Conclusion The present study demonstrated that microencapsulation of the hDPSCs inside the Alg/Gel/nHA hydrogel could be a potential approach for regenerative dentistry in the near future. Graphical abstract ![]()
Collapse
Affiliation(s)
- Mahdieh Alipour
- Dental and Periodontal Research Center, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran
| | - Zahra Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Samiei
- Department of Endodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Baradar Khoshfetrat
- Stem Cell and Tissue Engineering Research Laboratory, Sahand University of Technology, Tabriz, Iran.
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
McNamara SL, McCarthy EM, Schmidt DF, Johnston SP, Kaplan DL. Rheological characterization, compression, and injection molding of hydroxyapatite-silk fibroin composites. Biomaterials 2021; 269:120643. [PMID: 33434713 DOI: 10.1016/j.biomaterials.2020.120643] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 01/28/2023]
Abstract
Traditional bone fixation devices made from inert metal alloys provide structural strength for bone repair but are limited in their ability to actively promote bone healing. Although several naturally derived bioactive materials have been developed to promote ossification in bone defects, it is difficult to translate small-scale benchtop fabrication of these materials to high-output manufacturing. Standard industrial molding processes, such as injection and compression molding, have typically been limited to use with synthetic polymers since most biopolymers cannot withstand the harsh processing conditions involved in these techniques. Here we demonstrate injection and compression molding of a bioceramic composite comprised of hydroxyapatite (HA) and silk fibroin (SF) from Bombyx mori silkworm cocoons. Both the molding behavior of the HA-SF slurry and final scaffold mechanics can be controlled by modulating SF protein molecular weight, SF content, and powder-to-liquid ratio. HA-SF composites with up to 20 weight percent SF were successfully molded into stable three-dimensional structures using high pressure molding techniques. The unique durability of silk fibroin enables application of common molding techniques to fabricate composite silk-ceramic scaffolds. This work demonstrates the potential to move bone tissue engineering one step closer to large-scale manufacturing of natural protein-based resorbable bone grafts and fixation devices.
Collapse
Affiliation(s)
- Stephanie L McNamara
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.
| | - Ethan M McCarthy
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Daniel F Schmidt
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - Stephen P Johnston
- Department of Plastics Engineering, University of Massachusetts Lowell, Lowell, MA, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
| |
Collapse
|
20
|
Schröter L, Kaiser F, Stein S, Gbureck U, Ignatius A. Biological and mechanical performance and degradation characteristics of calcium phosphate cements in large animals and humans. Acta Biomater 2020; 117:1-20. [PMID: 32979583 DOI: 10.1016/j.actbio.2020.09.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/21/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Calcium phosphate cements (CPCs) have been used to treat bone defects and support bone regeneration because of their good biocompatibility and osteointegrative behavior. Since their introduction in the 1980s, remarkable clinical success has been achieved with these biomaterials, because they offer the unique feature of being moldable and even injectable into implant sites, where they harden through a low-temperature setting reaction. However, despite decades of research efforts, two major limitations concerning their biological and mechanical performance hamper a broader clinical use. Firstly, achieving a degradation rate that is well adjusted to the dynamics of bone formation remains a challenging issue. While apatite-forming CPCs frequently remain for years at the implant site without major signs of degradation, brushite-forming CPCs are considered to degrade to a greater extent. However, the latter tend to convert into lower soluble phases under physiological conditions, which makes their degradation behavior rather unpredictable. Secondly, CPCs exhibit insufficient mechanical properties for load bearing applications because of their inherent brittleness. This review places an emphasis on these limitations and provides an overview of studies that have investigated the biological and biomechanical performance as well as the degradation characteristics of different CPCs after implantation into trabecular bone. We reviewed studies performed in large animals, because they mimic human bone physiology more closely in terms of bone metabolism and mechanical loading conditions compared with small laboratory animals. We compared the results of these studies with clinical trials that have dealt with the degradation behavior of CPCs after vertebroplasty and kyphoplasty.
Collapse
Affiliation(s)
- Lena Schröter
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Friederike Kaiser
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany
| | - Svenja Stein
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg, Germany.
| | - Anita Ignatius
- Institute for Orthopedic Research and Biomechanics, Ulm University Medical Center, Helmholtzstrasse 14, D-89081 Ulm, Germany
| |
Collapse
|
21
|
Chesley M, Kennard R, Roozbahani S, Kim SM, Kukk K, Mason M. One-step hydrothermal synthesis with in situ milling of biologically relevant hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110962. [DOI: 10.1016/j.msec.2020.110962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 02/03/2023]
|
22
|
Kiyochi Junior HDJ, Candido AG, Bonadio TGM, da Cruz JA, Baesso ML, Weinand WR, Hernandes L. In vivo evaluation of interactions between biphasic calcium phosphate (BCP)-niobium pentoxide (Nb 2O 5) nanocomposite and tissues using a rat critical-size calvarial defect model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:71. [PMID: 32712717 DOI: 10.1007/s10856-020-06414-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Natural or synthetic biomaterials are increasingly being used to support bone tissue repair or substitution. The combination of natural calcium phosphates with biocompatible alloys is an important route towards the development of new biomaterials with bioperformance and mechanical responses to mimic those of human bones. This article evaluated the structural, physical, mechanical and biological properties of a new mechanical improved nanocomposite elaborated by association of fish biphasic calcium phosphate (BCP) and niobium pentoxide (Nb2O5). The nanocomposite (Nb-BCP) and the pure BCP, used as a positive control, were obtained by powder metallurgy. The density, porosity and microhardness were measured. The structural analysis was determined by X-ray diffraction (XRD) and the biological properties were studied in histological sections of critical size calvaria defects in rats, 7, 15, 30, 45 and 60 days after implantation of disks of both materials. Morphological description was made after scanning electron microscopy (SEM) and optical microscopy analysis. After sintering, the Nb-BCP nanocomposite presented four crystalline phases: 34.36% calcium niobate (CaNb2O6), 21.68% phosphorus niobium oxide (PNb9O25), 42.55% β-tricalcium phosphate (Ca3(PO4)2) and 1.31% of niobium pentoxide (Nb2O5) and exhibited increases of 17% in density, 66% in Vickers microhardness and 180% in compressive strength compared to pure BCP. In vivo study, showed biocompatibility, bioactivity and osteoconductivity similar to pure BCP. SEM showed the formation of globular accretions over the implanted nanocomposites, representing one of the stages of bone mineralization. In conclusion, the BCP and Nb2O5 formed a nanocomposite exhibiting characteristics that are desirable for a biomaterial, such as bioperformance, higher β-TCP percentage and improved physical and mechanical properties compared to pure BCP. These characteristics demonstrate the promise of this material for supporting bone regeneration.
Collapse
Affiliation(s)
| | - Aline Gabriela Candido
- Morphologycal Sciences Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | - José Adauto da Cruz
- Physics Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | | | | | - Luzmarina Hernandes
- Morphologycal Sciences Department, Universidade Estadual de Maringá, Maringá, Paraná, Brazil.
| |
Collapse
|
23
|
Secchi V, Franchi S, Dettin M, Zamuner A, Beranová K, Vladescu A, Battocchio C, Graziani V, Tortora L, Iucci G. Hydroxyapatite Surfaces Functionalized with a Self-Assembling Peptide: XPS, RAIRS and NEXAFS Study. NANOMATERIALS 2020; 10:nano10061151. [PMID: 32545421 PMCID: PMC7353169 DOI: 10.3390/nano10061151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022]
Abstract
Hydroxyapatite (HAP) coatings can improve the biocompatibility and bioactivity of titanium alloys, such as Ti6Al4V, commonly used as material for orthopedic prostheses. In this framework, we have studied the surface of HAP coatings enriched with Mg and either Si or Ti deposited by RF magnetron sputtering on Ti6Al4V. HAP coatings have been furtherly functionalized by adsorption of a self-assembling peptide (SAP) on the HAP surface, with the aim of increasing the material bioactivity. The selected SAP (peptide sequence AbuEAbuEAbuKAbuKAbuEAbuEAbuKAbuK) is a self-complementary oligopeptide able to generate extended ordered structures by self-assembling in watery solutions. Samples were prepared by incubation of the HAP coatings in SAP solutions and subsequently analyzed by X-Ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared (FTIR) and Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopies, in order to determine the amount of adsorbed peptide, the peptide stability and the structure of the peptide overlayer on the HAP coatings as a function of the HAP substrate and of the pH of the mother SAP solution. Experimental data yielded evidence of SAP adsorption on the HAP surface, and peptide overlayers showed ordered structure and molecular orientation. The thickness of the SAP overlayer depends on the composition of the HAP coating.
Collapse
Affiliation(s)
- Valeria Secchi
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Department of Materials Science, University of Milano-Bicocca, Via Cozzi 55, 20125 Milan, Italy
| | - Stefano Franchi
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Institute of Structure of Matter (ISM), National Research Council (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
- Correspondence: (S.F.); (G.I.)
| | - Monica Dettin
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy; (M.D.); (A.Z.)
| | - Annj Zamuner
- Department of Industrial Engineering, University of Padua, Via Marzolo 9, 35131 Padua, Italy; (M.D.); (A.Z.)
| | - Klára Beranová
- Materials Science Beamline, Elettra Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, 34149 Basovizza-Trieste, Italy;
| | - Alina Vladescu
- Department for Advanced Surface Processing and Analysis by Vacuum Technologies, National Institute of Research and Development for Optoelectronics, 409 Atomistilor St., 077125 Magurele, Romania;
- Physical Materials Science and Composite Materials Centre, National Research Tomsk Polytechnic University, Lenin Avenue 43, 634050 Tomsk, Russia
| | - Chiara Battocchio
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
| | - Valerio Graziani
- Surface Analysis Laboratory, INFN University Roma Tre, via della Vasca Navale 84, 00146 Rome, Italy;
| | - Luca Tortora
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Surface Analysis Laboratory, INFN University Roma Tre, via della Vasca Navale 84, 00146 Rome, Italy;
| | - Giovanna Iucci
- Department of Science, Roma Tre University, Via della Vasca Navale 79, 00146 Rome, Italy; (V.S.); (C.B.); (L.T.)
- Correspondence: (S.F.); (G.I.)
| |
Collapse
|
24
|
3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J Mech Behav Biomed Mater 2019; 103:103608. [PMID: 32090935 DOI: 10.1016/j.jmbbm.2019.103608] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 11/22/2022]
Abstract
Additive manufacturing has significant advantages, in the biomedical field, allowing for customized medical products where complex architectures can be achieved directly. While additive manufacturing can be used to fabricate synthetic bone models, this approach is limited by the printing resolution, at the level of the trabecular bone architecture. Therefore, the aim of this study was to evaluate the possibilities of using fused deposition modeling (FDM) to this end. To better mimic real bone, both in terms of mechanical properties and biodegradability, a composite of degradable polymer, poly(lactic acid) (PLA), and hydroxyapatite (HA) was used as the filament. Three PLA/HA composite formulations with 5-10-15 wt% HA were evaluated, and scaled up human trabecular bone models were printed using these materials. Morphometric and mechanical properties of the printed models were evaluated by micro-computed tomography, compression and screw pull out tests. It was shown that the trabecular architecture could be reproduced with FDM and PLA by applying a scaling factor of 2-4. The incorporation of HA particles reduced the printing accuracy, with respect to morphology, but showed potential for enhancement of the mechanical properties. The scaled-up models displayed comparable, or slightly enhanced, strength compared to the commonly used polymeric foam synthetic bone models (i.e. Sawbones). Reproducing the trabecular morphology by 3D printed PLA/HA composites appears to be a promising strategy for synthetic bone models, when high printed resolution can be achieved.
Collapse
|
25
|
Lei X, Gao J, Xing F, Zhang Y, Ma Y, Zhang G. Comparative evaluation of the physicochemical properties of nano-hydroxyapatite/collagen and natural bone ceramic/collagen scaffolds and their osteogenesis-promoting effect on MC3T3-E1 cells. Regen Biomater 2019; 6:361-371. [PMID: 31827888 PMCID: PMC6897342 DOI: 10.1093/rb/rbz026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/11/2023] Open
Abstract
The use of various types of calcium phosphate has been reported in the preparation of repairing materials for bone defects. However, the physicochemical and biological properties among them might be vastly different. In this study, we prepared two types of calcium phosphates, nano-hydroxyapatite (nHA) and natural bone ceramic (NBC), into 3D scaffolds by mixing with type I collagen (CoL), resulting in the nHA/CoL and NBC/CoL scaffolds. We then evaluated and compared the physicochemical and biological properties of these two calcium phosphates and their composite scaffold with CoL. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction spectroscopy (XRD) and compressive tests were used to, respectively, characterize the morphology, composition, distribution and the effect of nHA and NBC to collagen. Next, we examined the biological properties of the scaffolds using cytotoxicity testing, flow cytometry, immunofluorescence staining, biocompatibility testing, CCK-8 assays and RT-PCR. The results reflected that the Ca2+ released from nHA and NBC could bind chemically with collagen and affect its physicochemical properties, including the infrared absorption spectrum and compression modulus, among others. Furthermore, the two kinds of scaffolds could promote the expression of osteo-relative genes, but showed different gene induction properties. In short, NBC/CoL could promote the expression of early osteogenic genes, while nHA/CoL could upregulate late osteogenic genes. Conclusively, these two composite scaffolds could provide MC3T3-E1 cells with a biomimetic surface for adhesion, proliferation and the formation of mineralized extracellular matrices. Moreover, nHA/CoL and NBC/CoL had different effects on the period and extent of MC3T3-E1 cell mineralization.
Collapse
Affiliation(s)
- Xiongxin Lei
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Gao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyu Xing
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Yang Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Henan, 453003, China
| | - Ye Ma
- Department of Pathogen Biology and Immunology, School of Basic Course, Guandong Pharmaceutical University, Guangzhou, 510006, China
| | - Guifeng Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
In Vitro Activity Assays of Sputtered HAp Coatings with SiC Addition in Various Simulated Biological Fluids. COATINGS 2019. [DOI: 10.3390/coatings9060389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Considering the requirements of medical implantable devices, it is pointed out that biomaterials should play a more sophisticated, longer-term role in the customization and optimization of the material–tissue interface in order to ensure the best long-term clinical outcomes. The aim of this contribution was to assess the performance of silicon carbide–hydroxyapatite in various simulated biological fluids (Dulbecco’s modified Eagle’s medium (DMEM), simulated body fluid (SBF), and phosphate buffer solution (PBS)) through immersion assays for 21 days at 37 ± 0.5 °C and to evaluate the electrochemical behavior. The coatings were prepared on Ti6Al4V alloy substrates by magnetron sputtering method using two cathodes made of hydroxyapatite and silicon carbide (SiC). After immersion assays the coating’s surface was analyzed in terms of morphology, chemical and phase composition, and chemical bonds. According to the electrochemical behavior in the media investigated at 37 ± 0.5 °C, SiC addition inhibits the dissolution of the hydroxyapatite in DMEM acellular media. Furthermore, after adding SiC, the slow degradation of hydroxyapatite in PBS and SBF media as well as biomineralization in DMEM were observed.
Collapse
|
27
|
Cardoso GBC, Tondon A, Maia LRB, Cunha MR, Zavaglia CAC, Kaunas RR. In vivo approach of calcium deficient hydroxyapatite filler as bone induction factor. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:999-1006. [PMID: 30889775 DOI: 10.1016/j.msec.2019.02.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/21/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
Tissue engineering combine biomaterials, cells and biologically active molecules having as a goal create functional tissues; many of the compositions are blends of a polymeric matrix with ceramic fillers, however, reduction of mechanical resistance can be a drawback on ceramic-polymer systems. In this manuscript, we investigate the potential of calcium-deficient hydroxyapatite (CDHA) whiskers, a needle shape bioceramic, to enhance mechanical and osteoconduction properties on the polymeric matrix. For this purpose, PCL scaffolds incorporating CDHA whiskers were produced by combining solvent casting and particulate leaching techniques to develop a composite scaffold that possess mechanical and biological properties which is useful for bone tissue engineering regeneration. We produced CDHA whiskers using alkaline hydrolysis of α-tricalcium phosphate and characterized by XRD, XRF and SEM. PCL/CDHA scaffolds were fabricated with a final porosity of ~70%, quantified by SEM images. Mechanical properties were evaluated by compression test. As an initial test, PCL/CDHA scaffolds were immersed in simulated body fluid to quantify apatite deposition. In vitro and in vivo studies were performed to assess cytotoxicity and bioactivity. CDHA whiskers exhibited a needle-like morphology and a Ca/P ratio equal to calcium deficient hydroxyapatite. The composite scaffolds contained interconnected pores 177 to 350 μm in size and homogeneous ceramic distribution. The addition of CDHA whiskers influences the mechanical results: higher elastic modulus and compressive strength was observed on PCL/CDHA samples. In vitro results demonstrated biocompatibility on PCL and PCL/CDHA films. In vivo data demonstrated cellular infiltration from the surrounding tissue with new bone formation that suggests bioactive potential of CDHA whiskers. Our goal was to produce a scaffold with a potential induction factor and a favorable morphology, which was proved according to this study's findings.
Collapse
Affiliation(s)
- G B C Cardoso
- State University of Campinas, Materials Engineering Department, Faculty of Mechanical Engineering, Campinas, Brazil; INCT Biofabris, Brazil.
| | - A Tondon
- Texas A&M University, College Station, United States of America
| | - L R B Maia
- School of Medicine of Jundiai, Department of Morphology and Pathology, Jundiai, Brazil
| | - M R Cunha
- School of Medicine of Jundiai, Department of Morphology and Pathology, Jundiai, Brazil
| | - C A C Zavaglia
- State University of Campinas, Materials Engineering Department, Faculty of Mechanical Engineering, Campinas, Brazil; INCT Biofabris, Brazil
| | - R R Kaunas
- Texas A&M University, College Station, United States of America
| |
Collapse
|
28
|
Ignjatović NL, Janković R, Uskoković V, Uskoković DP. Effects of hydroxyapatite@poly-lactide- co-glycolide nanoparticles combined with Pb and Cd on liver and kidney parenchyma after the reconstruction of mandibular bone defects. Toxicol Res (Camb) 2019; 8:287-296. [PMID: 30997028 DOI: 10.1039/c9tx00007k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/04/2019] [Indexed: 12/28/2022] Open
Abstract
Reconstruction of bone defects with the use of biomaterials based on hydroxyapatite (HAp) has been a popular approach in medicine and dentistry. Most often the process of new bone formation is analyzed with the focus only on the region of the reconstructed defect. The effects of the therapy on distant organs have been rarely reported in the literature, especially not in synergy with the exposure to other bioactive chemicals. In this study, reconstruction of the mandibular bone in vivo using poly-lactide-co-glycolide-coated HAp (HAp/PLGA) nanoparticles was monitored with a simultaneous histopathological analysis of distant organs, specifically kidney and liver parenchyma. Heavy metals are among the most prominent environmental pollutants and have a high affinity for the crystal lattice of HAp, where they get incorporated by replacing calcium ions. Lead (Pb) and cadmium (Cd) are two such metals that can be found in food, water and air, but are most commonly present in cigarette smoke, the frequent contaminant of hospital settings in the developing world. The influence of their presence in the repaired bone on the content of calcium (Ca) in the reconstructed bone defect was analyzed, along with the histopathological changes in liver and kidneys. A study performed on 24 female Wistar rats demonstrated that the reconstruction of mandibular bone defects using HAp/PLGA particles induced an increase in the content of Ca in the newly created bone without causing any pathological changes to the liver and the kidneys. The presence of Pb and Cd in the defects reconstructed with HAp/PLGA nanoparticles impeded the regenerative process and led to a severe and irreversible damage to the liver and kidney parenchyma.
Collapse
Affiliation(s)
- Nenad L Ignjatović
- Institute of Technical Sciences , Serbian Academy of Science and Arts , Knez Mihailova 35/IV , P.O. Box 377 , 11000 Belgrade , Serbia . ;
| | - Radmila Janković
- University of Belgrade , School of Medicine , Institute of Pathology , Belgrade , Serbia
| | - Vuk Uskoković
- University of Illinois , Department of Bioengineering , Chicago , IL , USA
| | - Dragan P Uskoković
- Institute of Technical Sciences , Serbian Academy of Science and Arts , Knez Mihailova 35/IV , P.O. Box 377 , 11000 Belgrade , Serbia . ;
| |
Collapse
|
29
|
Bolbasov EN, Popkov DA, Kononovich NA, Gorbach EN, Khlusov IA, Golovkin AS, Stankevich KS, Ignatov VP, Bouznik VM, Anissimov YG, Tverdokhlebov SI, Popkov AV. Flexible intramedullary nails for limb lengthening: a comprehensive comparative study of three nails types. Biomed Mater 2019; 14:025005. [DOI: 10.1088/1748-605x/aaf60c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Gawlik MM, Wiese B, Desharnais V, Ebel T, Willumeit-Römer R. The Effect of Surface Treatments on the Degradation of Biomedical Mg Alloys-A Review Paper. MATERIALS 2018; 11:ma11122561. [PMID: 30558383 PMCID: PMC6315799 DOI: 10.3390/ma11122561] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/12/2018] [Accepted: 12/14/2018] [Indexed: 01/30/2023]
Abstract
This report reviews the effects of chemical, physical, and mechanical surface treatments on the degradation behavior of Mg alloys via their influence on the roughness and surface morphology. Many studies have been focused on technically-used AZ alloys and a few investigations regarding the surface treatment of biodegradable and Al-free Mg alloys, especially under physiological conditions. These treatments tailor the surface roughness, homogenize the morphology, and decrease the degradation rate of the alloys. Conversely, there have also been reports which showed that rough surfaces lead to less pitting and good cell adherence. Besides roughness, there are many other parameters which are much more important than roughness when regarding the degradation behavior of an alloy. These studies, which indicate the relationship between surface treatments, roughness and degradation, require further elaboration, particularly for biomedical Mg alloy applications.
Collapse
Affiliation(s)
| | - Björn Wiese
- Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | - Valérie Desharnais
- Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
- School of Computer Science, McGill University, 845 Sherbrooke Street West, Montréal, QC H3A 2T5, Canada.
| | - Thomas Ebel
- Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| | | |
Collapse
|
31
|
Nga NK, Thuy Chau NT, Viet PH. Facile synthesis of hydroxyapatite nanoparticles mimicking biological apatite from eggshells for bone-tissue engineering. Colloids Surf B Biointerfaces 2018; 172:769-778. [DOI: 10.1016/j.colsurfb.2018.09.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/25/2018] [Accepted: 09/16/2018] [Indexed: 11/28/2022]
|
32
|
Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 2018; 4:22-36. [PMID: 30533554 PMCID: PMC6258879 DOI: 10.1016/j.bioactmat.2018.11.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
The application of various materials in biomedical procedures has recently experienced rapid growth. One area that is currently receiving significant attention from the scientific community is the treatment of a number of different types of bone-related diseases and disorders by using biodegradable polymer-ceramic composites. Biomaterials, the most common materials used to repair or replace damaged parts of the human body, can be categorized into three major groups: metals, ceramics, and polymers. Composites can be manufactured by combining two or more materials to achieve enhanced biocompatibility and biomechanical properties for specific applications. Biomaterials must display suitable properties for their applications, about strength, durability, and biological influence. Metals and their alloys such as titanium, stainless steel, and cobalt-based alloys have been widely investigated for implant-device applications because of their excellent mechanical properties. However, these materials may also manifest biological issues such as toxicity, poor tissue adhesion and stress shielding effect due to their high elastic modulus. To mitigate these issues, hydroxyapatite (HA) coatings have been used on metals because their chemical composition is similar to that of bone and teeth. Recently, a wide range of synthetic polymers such as poly (l-lactic acid) and poly (l-lactide-co-glycolide) have been studied for different biomedical applications, owing to their promising biocompatibility and biodegradability. This article gives an overview of synthetic polymer-ceramic composites with a particular emphasis on calcium phosphate group and their potential applications in tissue engineering. It is hoped that synthetic polymer-ceramic composites such as PLLA/HA and PCL/HA will provide advantages such as eliminating the stress shielding effect and the consequent need for revision surgery.
Collapse
Affiliation(s)
| | - Yuncang Li
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Cuie Wen
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| |
Collapse
|
33
|
Ananth KP, Sun J, Bai J. An Innovative Approach to Manganese-Substituted Hydroxyapatite Coating on Zinc Oxide⁻Coated 316L SS for Implant Application. Int J Mol Sci 2018; 19:E2340. [PMID: 30096888 PMCID: PMC6122083 DOI: 10.3390/ijms19082340] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/22/2018] [Accepted: 07/23/2018] [Indexed: 01/06/2023] Open
Abstract
In this paper, the synthesis of porous manganese substituted hydroxyapatite (Mn-HAp) coating on zinc oxide (ZnO) coated stainless steel (316L SS) using the electrodeposition technique is reported. The structural, functional, morphological, and elemental analyses are characterized by various analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Results of electrochemical techniques such as cyclic polarization and impedance show that the Mn-HAp coating on ZnO coated 316L SS has the highest corrosion resistance in simulated body fluid (SBF) solution. Moreover, dissolution of metal ions was extremely reduced, as evaluated by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The adhesion and hardness of Mn-HAp/ZnO bilayer coatings have superior mechanical properties over individual coatings. Further, the biocompatibility of in vitro osteoblast attachment, cell viability, and live/dead assessment also confirmed the suitability of Mn-HAp/ZnO bilayer coating on 316L SS for orthopedic applications.
Collapse
Affiliation(s)
- Karuppasamy Prem Ananth
- Shenzhen Key Laboratory for Additive Manufacturing of High-Performance Materials, Shenzhen 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jinxing Sun
- Shenzhen Key Laboratory for Additive Manufacturing of High-Performance Materials, Shenzhen 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiaming Bai
- Shenzhen Key Laboratory for Additive Manufacturing of High-Performance Materials, Shenzhen 518055, China.
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
34
|
Wickramasinghe S, Navarreto-Lugo M, Ju M, Samia ACS. Applications and challenges of using 3D printed implants for the treatment of birth defects. Birth Defects Res 2018; 110:1065-1081. [PMID: 29851302 DOI: 10.1002/bdr2.1352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 04/25/2018] [Indexed: 11/06/2022]
Abstract
Pediatric implants are a special subclass of a vast number of clinically used medical implants, uniquely designed to address the needs of young patients who are at the onset of their developmental growth stage. Given the vulnerability of the implant receiver, it is crucial that the implants manufactured for small children with birth-associated defects be given careful considerations and great attention to design detail to avoid postoperative complications. In this review, we focus on the most common types of medical implants manufactured for the treatment of birth defects originating from both genetic and environmental causes. Particular emphasis is devoted toward identifying the implant material of choice and manufacturing approaches for the fabrication of pediatric prostheses. Along this line, the emerging role of 3D printing to enable customized implants for infants with congenital disorders is presented, as well as the possible complications associated with prosthetic-related infections that is prevalent in using artificial implants for the treatment of birth malformations.
Collapse
Affiliation(s)
| | | | - Minseon Ju
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | | |
Collapse
|
35
|
IO O, OG A, OG O, AO B, MO P. Non-synthetic sources for the development of hydroxyapatite. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/jabb.2018.05.00122] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
36
|
Gu Y, Bai Y, Zhang D. Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. J Biomed Mater Res A 2018. [PMID: 29520937 DOI: 10.1002/jbm.a.36388] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The aim of the present study was to construct and compare gelatin-HA-TCP scaffolds with a gelatin-only scaffold and to investigate the effect of the scaffold on osteogenic differentiation of human dental pulp stem cells. We developed a novel scaffold for bone tissue engineering via a solution casting/particle washing method, and the physical and mechanical properties of the scaffolds were examined using scanning electron microscopy and a universal testing machine, respectively. Scaffold cytotoxicity toward human dental pulp stem cells (hDPSCs) was evaluated with the CCK8 method, and hDPSC differentiation was evaluated with an alkaline phosphatase activity assay, alizarin red S staining, and reverse transcription-polymerase chain reaction (RT-PCR). Our results indicate that the gelatin-HA-TCP scaffolds exhibited good homogeneity, interconnected pores, and relatively high mechanical strength and water absorption rates. A significant increase in hDPSC proliferation and ALP activity that stimulated mineralization of the hDPSC-generated matrix was also seen on gelatin-HA-TCP scaffolds compared with the gelatin-only scaffolds. In addition, RT-PCR revealed that the gelatin-HA-TCP scaffold upregulated gene expression of the osteogenic markers Runx2, bone sialoprotein, and OSX. In conclusion, gelatin-HA-TCP scaffolds presented better mechanical properties, cytocompatibility and differentiation-inducing characteristics than gelatin scaffolds. These results indicate that the novel hydrogel gelatin-HA-TCP scaffolds may be a promising biomaterial for bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1851-1861, 2018.
Collapse
Affiliation(s)
- Yingzhi Gu
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuxing Bai
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Dongliang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
37
|
Vladescu A, Mihai Cotrut C, Ak Azem F, Bramowicz M, Pana I, Braic V, Birlik I, Kiss A, Braic M, Abdulgader R, Booysen R, Kulesza S, Monsees TK. Sputtered Si and Mg doped hydroxyapatite for biomedical applications. Biomed Mater 2018; 13:025011. [DOI: 10.1088/1748-605x/aa9718] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Harding JL, Osmond MJ, Krebs MD. Engineering Osteoinductive Biomaterials by Bioinspired Synthesis of Apatite Coatings on Collagen Hydrogels with Varied Pore Microarchitectures. Tissue Eng Part A 2017. [DOI: 10.1089/ten.tea.2017.0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Jacqueline L. Harding
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Matthew J. Osmond
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| | - Melissa D. Krebs
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado
| |
Collapse
|
39
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
40
|
Calcium phosphate/polyvinyl alcohol composite hydrogels: A review on the freeze-thawing synthesis approach and applications in regenerative medicine. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.08.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
41
|
Mitić Ž, Stolić A, Stojanović S, Najman S, Ignjatović N, Nikolić G, Trajanović M. Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017. [DOI: 10.1016/j.msec.2017.05.127] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Addition of Wollastonite Fibers to Calcium Phosphate Cement Increases Cell Viability and Stimulates Differentiation of Osteoblast-Like Cells. ScientificWorldJournal 2017; 2017:5260106. [PMID: 28913412 PMCID: PMC5585630 DOI: 10.1155/2017/5260106] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 11/18/2022] Open
Abstract
Calcium phosphate cement (CPC) that is based on α-tricalcium phosphate (α-TCP) is considered desirable for bone tissue engineering because of its relatively rapid degradation properties. However, such cement is relatively weak, restricting its use to areas of low mechanical stress. Wollastonite fibers (WF) have been used to improve the mechanical strength of biomaterials. However, the biological properties of WF remain poorly understood. Here, we tested the response of osteoblast-like cells to being cultured on CPC reinforced with 5% of WF (CPC-WF). We found that both types of cement studied achieved an ion balance for calcium and phosphate after 3 days of immersion in culture medium and this allowed subsequent long-term cell culture. CPC-WF increased cell viability and stimulated cell differentiation, compared to nonreinforced CPC. We hypothesize that late silicon release by CPC-WF induces increased cell proliferation and differentiation. Based on our findings, we propose that CPC-WF is a promising material for bone tissue engineering applications.
Collapse
|
43
|
Reline-assisted green and facile synthesis of fluorapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 77:121-128. [DOI: 10.1016/j.msec.2017.03.217] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/04/2017] [Accepted: 03/23/2017] [Indexed: 11/19/2022]
|
44
|
Monmaturapoj N, Srion A, Chalermkarnon P, Buchatip S, Petchsuk A, Noppakunmongkolchai W, Mai-Ngam K. Properties of poly(lactic acid)/hydroxyapatite composite through the use of epoxy functional compatibilizers for biomedical application. J Biomater Appl 2017; 32:175-190. [DOI: 10.1177/0885328217715783] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Autcharaporn Srion
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | | | - Suthawan Buchatip
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | - Atitsa Petchsuk
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| | | | - Katanchalee Mai-Ngam
- National Metal and Materials Technology Center, Klong Luang, Pathumtani, Thailand
| |
Collapse
|
45
|
Zobkov YV, Mironov AV, Fedotov AY, Popov VK, Smirnov IV, Barinov SM, Komlev VS. In situ formation of porous mineral–polymer scaffold for tissue engineering. DOKLADY CHEMISTRY 2017. [DOI: 10.1134/s001250081705007x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Bienek DR, Tutak W, Skrtic D. Bioactive Polymeric Materials for Tissue Repair. J Funct Biomater 2017; 8:E4. [PMID: 28134776 PMCID: PMC5371877 DOI: 10.3390/jfb8010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/10/2017] [Accepted: 01/18/2017] [Indexed: 12/24/2022] Open
Abstract
Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP)-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP's dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material's critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.
Collapse
Affiliation(s)
- Diane R Bienek
- Volpe Research Center, ADA Foundation, Gaithersburg, MD 20899, USA.
| | - Wojtek Tutak
- Volpe Research Center, ADA Foundation, Gaithersburg, MD 20899, USA.
- Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Drago Skrtic
- Volpe Research Center, ADA Foundation, Gaithersburg, MD 20899, USA.
| |
Collapse
|
47
|
Sroka-Bartnicka A, Borkowski L, Ginalska G, Ślósarczyk A, Kazarian SG. Structural transformation of synthetic hydroxyapatite under simulated in vivo conditions studied with ATR-FTIR spectroscopic imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 171:155-161. [PMID: 27513683 DOI: 10.1016/j.saa.2016.07.051] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/13/2016] [Accepted: 07/31/2016] [Indexed: 05/23/2023]
Abstract
Hydroxyapatite and carbonate-substituted hydroxyapatite are widely used in bone tissue engineering and regenerative medicine. Both apatite materials were embedded into recently developed ceramic/polymer composites, subjected to Simulated Body Fluid (SBF) for 30days and characterized using ATR-FTIR spectroscopic imaging to assess their behaviour and structures. The specific aim was to detect the transition phases between both types of hydroxyapatite during the test and to analyze the surface modification caused by SBF. ATR-FTIR spectroscopic imaging was successfully applied to characterise changes in the hydroxyapatite lattice due to the elastic properties of the scaffolds. It was observed that SBF treatment caused a replacement of phosphates in the lattice of non-substituted hydroxyapatite by carbonate ions. A detailed study excluded the formation of pure A type carbonate apatite. In turn, CO32- content in synthetic carbonate-substituted hydroxyapatite decreased. The usefulness of ATR-FTIR spectroscopic imaging studies in the evaluation of elastic and porous β-glucan hydroxyapatite composites has been demonstrated.
Collapse
Affiliation(s)
- Anna Sroka-Bartnicka
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom.
| | - Leszek Borkowski
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland
| | - Anna Ślósarczyk
- Faculty of Materials Science and Ceramics, AGH-University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Sergei G Kazarian
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom.
| |
Collapse
|
48
|
Tajbakhsh S, Hajiali F. A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:897-912. [DOI: 10.1016/j.msec.2016.09.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 08/27/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022]
|
49
|
Biphasic calcium phosphates bioceramics (HA/TCP): Concept, physicochemical properties and the impact of standardization of study protocols in biomaterials research. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:1293-1312. [PMID: 27987685 DOI: 10.1016/j.msec.2016.11.039] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/06/2016] [Accepted: 11/10/2016] [Indexed: 01/14/2023]
Abstract
Biphasic calcium phosphates (BCP) bioceramics have become the materials of choice in various orthopedic and maxillofacial bone repair procedures. One of their main advantages is their biodegradation rate that can be modified by changing the proportional ratio of the composition phases. For enhanced bone tissue regeneration, the bioactivity of BCP should be increased by optimizing their physicochemical properties. To date, the ideal physicochemical properties of BCP for bone applications have not been defined. This is mostly related to lack of standard study protocols in biomaterial science especially with regards to their characterizations and clinical applications. In this paper we provided a review on BCP and their physicochemical properties relevant to clinical applications. In addition, we summarized the available literature on their use in animal models and evaluated the influences of different composition ratios on bone healing. Controversies in literature with regards to ideal composition ratio of BCP have also been discussed in detail. We illustrated the discrepancies in study protocols among researchers in animal studies and emphasized the need to develop and follow a set of generally accepted standardized guidelines. Finally; we provided general recommendations for future pre-clinical studies that allow better standardization of study protocols. This will allow better comparison and contrast of newly developed bone substitute biomaterials that help further progress in the field of biomaterial science.
Collapse
|
50
|
Fernández-Montes Moraleda B, San Román J, Rodríguez-Lorenzo LM. Adsorption and conformational modification of fibronectin and fibrinogen adsorbed on hydroxyapatite. A QCM-D study. J Biomed Mater Res A 2016; 104:2585-94. [PMID: 27254464 DOI: 10.1002/jbm.a.35802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 03/11/2016] [Accepted: 03/16/2016] [Indexed: 01/06/2023]
Abstract
Hydroxyapatite is a bioactive ceramic frequently used for bone engineering/replacement. One of the parameters that influence the biological response to implanted materials is the conformation of the first adsorbed protein layer. In this work, the adsorption and conformational changes of two fibroid serum proteins; fibronectin and fibrinogen adsorbed onto four different hydroxyapatite powders are studied with a Quartz Crystal Microbalance with Dissipation (QCM-D). Each of the calcined apatites adsorbs less protein than their corresponding synthesized samples. Adsorption on synthesized samples yields always an extended conformation whereas a reorganization of the layer is observed for the calcined samples. Fg acquires a "Side on" conformation in all the samples at the beginning of the experiment except for one of the synthesized samples where an "End-on" conformation is obtained during the whole experiment. The Extended conformation is the active conformation for Fn. This conformation is favored by apatites with large specific surface area (SSA) and on highly concentrated media. Apatite surface features should be considered in the selection or design of materials for bone regeneration, since it is possible to control the conformation mode of attachment of Fn and Fg by an appropriate selection of them. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2585-2594, 2016.
Collapse
Affiliation(s)
- Belén Fernández-Montes Moraleda
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Julio San Román
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| | - Luís M Rodríguez-Lorenzo
- Biomaterials Group, ICTP-CSIC, Juan De La Cierva, 3, Madrid, 28006, Spain.,Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Zaragoza, Spain
| |
Collapse
|