1
|
Slanina P, Stichova J, Bosakova V, Zambo IS, Kohoutkova MH, Laznickova P, Chovancova Z, Litzman J, Plucarova T, Fric J, Vlkova M. Phenotype and oxidative burst of low-density neutrophil subpopulations are altered in common variable immunodeficiency patients. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2024; 106:99-112. [PMID: 37997558 DOI: 10.1002/cyto.b.22150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023]
Abstract
Common variable immunodeficiency disorder (CVID) is the most common form of primary antibody immunodeficiency. Due to low antibody levels, CVID patients receive intravenous or subcutaneous immunoglobulin replacement therapy as treatment. CVID is associated with the chronic activation of granulocytes, including an increased percentage of low-density neutrophils (LDNs). In this study, we examined changes in the percentage of LDNs and the expression of their surface markers in 25 patients with CVID and 27 healthy donors (HD) after in vitro stimulation of whole blood using IVIg. An oxidative burst assay was used to assess the functionality of LDNs. CVID patients had increased both relative and absolute LDN counts with a higher proportion of mLDNs compared to iLDNs, distinguished based on the expression of CD10 and CD16. Immature LDNs in the CVID and HD groups had significantly reduced oxidative burst capacity compared to mature LDNs. Interestingly we observed reduced oxidative burst capacity, reduced expression of CD10 after stimulation of WB, and higher expression of PD-L1 in mature LDNs in CVID patients compared to HD cells. Our data indicate that that the functional characteristics of LDNs are closely linked to their developmental stage. The observed reduction in oxidative burst capacity in mLDNs in CVID patients could contribute to an increased susceptibility to recurrent bacterial infections among CVID patients.
Collapse
Affiliation(s)
- Peter Slanina
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Julie Stichova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Veronika Bosakova
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Staniczkova Zambo
- 1st Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marcela Hortova Kohoutkova
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Petra Laznickova
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Zita Chovancova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| | - Terezie Plucarova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jan Fric
- Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Marcela Vlkova
- Department of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
2
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
3
|
Danieli MG, Piga MA, Paladini A, Longhi E, Mezzanotte C, Moroncini G, Shoenfeld Y. Intravenous immunoglobulin as an important adjunct in the prevention and therapy of coronavirus 2019 disease. Scand J Immunol 2021; 94:e13101. [PMID: 34940980 PMCID: PMC8646640 DOI: 10.1111/sji.13101] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
The coronavirus disease-19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) challenged globally with its morbidity and mortality. A small percentage of affected patients (20%) progress into the second stage of the disease clinically presenting with severe or fatal involvement of lung, heart and vascular system, all contributing to multiple-organ failure. The so-called 'cytokines storm' is considered the pathogenic basis of severe disease and it is a target for treatment with corticosteroids, immunotherapies and intravenous immunoglobulin (IVIg). We provide an overview of the role of IVIg in the therapy of adult patients with COVID-19 disease. After discussing the possible underlying mechanisms of IVIg immunomodulation in COVID-19 disease, we review the studies in which IVIg was employed. Considering the latest evidence that show a link between new coronavirus and autoimmunity, we also discuss the use of IVIg in COVID-19 and anti-SARS-CoV-2 vaccination related autoimmune diseases and the post-COVID-19 syndrome. The benefit of high-dose IVIg is evident in almost all studies with a rapid response, a reduction in mortality and improved pulmonary function in critically ill COVID-19 patients. It seems that an early administration of IVIg is crucial for a successful outcome. Studies' limitations are represented by the small number of patients, the lack of control groups in some and the heterogeneity of included patients. IVIg treatment can reduce the stay in ICU and the demand for mechanical ventilation, thus contributing to attenuate the burden of the disease.
Collapse
Affiliation(s)
- Maria Giovanna Danieli
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Mario Andrea Piga
- School of Specialisation in Allergology and Clinical Immunology, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Alberto Paladini
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Eleonora Longhi
- Scuola di Medicina e ChirurgiaAlma Mater StudiorumUniversità degli Studi di BolognaBolognaItaly
| | - Cristina Mezzanotte
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Gianluca Moroncini
- Clinica Medica, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di Ancona and DISCLIMOUniversità Politecnica delle Marche, Clinica MedicaAnconaItaly
- School of Specialisation in Internal Medicine, Dipartimento di Medicina Interna, AOU Ospedali Riuniti di AnconaUniversità Politecnica delle MarcheAnconaItaly
| | - Yehuda Shoenfeld
- Ariel UniversityArielIsrael
- The Zabludowicz Center for Autoimmune DiseasesSheba Medical CenterRamat GanIsrael
- Saint Petersburg State UniversitySt. PetersburgRussia
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)MoscowRussia
| |
Collapse
|
4
|
Baksmeier C, Blundell P, Steckel J, Schultz V, Gu Q, Da Silva Filipe A, Kohl A, Linnington C, Lu D, Dell A, Haslam S, Wang J, Czajkowsky D, Goebels N, Pleass RJ. Modified recombinant human IgG1-Fc is superior to natural intravenous immunoglobulin at inhibiting immune-mediated demyelination. Immunology 2021; 164:90-105. [PMID: 33880776 PMCID: PMC8358725 DOI: 10.1111/imm.13341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/23/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Although Fc fragments derived from IVIG have shown efficacy in controlling immune thrombocytopenia in children, the mechanisms of action are unclear and controversial. The aim of this study was to dissect IVIG effector mechanisms using further adapted Fc fragments on demyelination in an ex vivo model of the central nervous system-immune interface. Using organotypic cerebellar slice cultures (OSCs) from transgenic mice, we induced extensive immune-mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective effects of adapted Fc fragments were assessed by live imaging of green fluorescent protein expression, immunohistochemistry and confocal microscopy. Cysteine- and glycan-adapted Fc fragments protected OSC from demyelination in a dose-dependent manner where equimolar concentrations of either IVIG or control Fc were ineffective. The protective effects of the adapted Fc fragments are partly attributed to interference with complement-mediated oligodendroglia damage. Transcriptome analysis ruled out signatures associated with inflammatory or innate immune responses. Taken together, our findings show that recombinant biomimetics can be made that are at least two hundred-fold more effective than IVIG in controlling demyelination by anti-MOG antibodies.
Collapse
Affiliation(s)
- Christine Baksmeier
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Pat Blundell
- Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Julia Steckel
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Verena Schultz
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Quan Gu
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Ana Da Silva Filipe
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Alain Kohl
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Chris Linnington
- Institute of Infection, Immunity and InflammationCollege of Medical Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Dongli Lu
- Department of Life SciencesImperial College LondonLondonUK
| | - Anne Dell
- Department of Life SciencesImperial College LondonLondonUK
| | - Stuart Haslam
- Department of Life SciencesImperial College LondonLondonUK
| | - Jiabin Wang
- Shanghai Center for Systems BiomedicineKey Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Jiao Tong UniversityShanghaiChina
| | - Dan Czajkowsky
- State Key Laboratory for Oncogenes and Related Genes and Bio‐ID CenterSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
| | - Norbert Goebels
- Department of NeurologyMedical FacultyHeinrich‐Heine‐University DuesseldorfDuesseldorfGermany
| | - Richard J. Pleass
- Department of Tropical Disease BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
5
|
Kumar D, Gauthami S, Bayry J, Kaveri SV, Hegde NR. Antibody Therapy: From Diphtheria to Cancer, COVID-19, and Beyond. Monoclon Antib Immunodiagn Immunother 2021; 40:36-49. [PMID: 33900819 DOI: 10.1089/mab.2021.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The dawn of the 20th century saw the formative years of developments in immunology. In particular, immunochemistry, specifically pertaining to antibodies, was extensively studied. These studies laid the foundations for employing antibodies in a variety of ways. Not surprisingly, antibodies have been used for applications ranging from biomedical research to disease diagnostics and therapeutics to evaluation of immune responses during natural infection and those elicited by vaccines. Despite recent advancements in cellular immunology and the excitement of T cell therapy, use of antibodies represents a large proportion of immunotherapeutic approaches as well as clinical interventions. Polyclonal antibodies in the form of plasma or sera continue to be used to treat a number of diseases, including autoimmune disorders, cancers, and infectious diseases. Historically, antisera to toxins have been the longest serving biotherapeutics. In addition, intravenous immunoglobulins (IVIg) have been extensively used to treat not only immunodeficiency conditions but also autoimmune disorders. Beyond the simplistic suppositions of their action, the IVIg have also unraveled the immune regulatory and homeostatic ramifications of their use. The advent of monoclonal antibodies (MAbs), on the other hand, has provided a clear pathway for their development as drug molecules. MAbs have found a clear place in the treatment of cancers and extending lives and have been used in a variety of other conditions. In this review, we capture the important developments in the therapeutic applications of antibodies to alleviate disease, with a focus on some of the recent developments.
Collapse
Affiliation(s)
| | - Sulgey Gauthami
- National Institute of Animal Biotechnology, Hyderabad, India
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Srinivas V Kaveri
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France.,Centre National de la Recherche Scientifique (CNRS) Bureau India, IFI, New Delhi, India
| | | |
Collapse
|
6
|
B Cells and Antibodies as Targets of Therapeutic Intervention in Neuromyelitis Optica Spectrum Disorders. Pharmaceuticals (Basel) 2021; 14:ph14010037. [PMID: 33419217 PMCID: PMC7825598 DOI: 10.3390/ph14010037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
The first description of neuromyelitis optica by Eugène Devic and Fernand Gault dates back to the 19th century, but only the discovery of aquaporin-4 autoantibodies in a major subset of affected patients in 2004 led to a fundamentally revised disease concept: Neuromyelits optica spectrum disorders (NMOSD) are now considered autoantibody-mediated autoimmune diseases, bringing the pivotal pathogenetic role of B cells and plasma cells into focus. Not long ago, there was no approved medication for this deleterious disease and off-label therapies were the only treatment options for affected patients. Within the last years, there has been a tremendous development of novel therapies with diverse treatment strategies: immunosuppression, B cell depletion, complement factor antagonism and interleukin-6 receptor blockage were shown to be effective and promising therapeutic interventions. This has led to the long-expected official approval of eculizumab in 2019 and inebilizumab in 2020. In this article, we review current pathogenetic concepts in NMOSD with a focus on the role of B cells and autoantibodies as major contributors to the propagation of these diseases. Lastly, by highlighting promising experimental and future treatment options, we aim to round up the current state of knowledge on the therapeutic arsenal in NMOSD.
Collapse
|
7
|
Jones RJ, Singh RK, Shirazi F, Wan J, Wang H, Wang X, Ha MJ, Baljevic M, Kuiatse I, Davis RE, Orlowski RZ. Intravenous Immunoglobulin G Suppresses Heat Shock Protein (HSP)-70 Expression and Enhances the Activity of HSP90 and Proteasome Inhibitors. Front Immunol 2020; 11:1816. [PMID: 32903557 PMCID: PMC7438474 DOI: 10.3389/fimmu.2020.01816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Intravenous immunoglobulin G (IVIgG) is approved for primary immunodeficiency syndromes but may induce anti-cancer effects, and while this has been attributed to its anti-inflammatory properties, IgG against specific tumor targets may play a role. We evaluated IVIgG alone, and with a Heat shock protein (HSP)-90 or proteasome inhibitor, using multiple myeloma and mantle cell lymphoma (MCL) cells in vitro, and with the proteasome inhibitor bortezomib in vivo. IVIgG inhibited the growth of all cell lines tested, induced G1 cell cycle arrest, and suppressed pro-tumor cytokines including Interleukin (IL)-6, IL-8, and IL-10. Genomic and proteomic studies showed that IVIgG reduced tumor cell HSP70-1 levels by suppressing the ability of extracellular HSP70-1 to stimulate endogenous HSP70-1 promoter activity, and reduced extracellular vesicle uptake. Preparations of IVIgG were found to contain high titers of anti-HSP70-1 IgG, and recombinant HSP70-1 reduced the efficacy of IVIgG to suppress HSP70-1 levels. Combining IVIgG with the HSP90 inhibitor AUY922 produced superior cell growth inhibition and correlated with HSP70-1 suppression. Also, IVIgG with bortezomib or carfilzomib was superior to each single agent, and enhanced bortezomib's activity in bortezomib-resistant myeloma cells. Moreover, IVIgG reduced transfer of extracellular vesicles (EVs) to cells, and blocked transfer of bortezomib resistance through EVs. Finally, IVIgG with bortezomib were superior to the single agents in an in vivo myeloma model. These studies support the possibility that anti-HSP70-1 IgG contained in IVIgG can inhibit myeloma and MCL growth by interfering with a novel mechanism involving uptake of exogenous HSP70-1 which then induces its own promoter.
Collapse
Affiliation(s)
- Richard J Jones
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ram K Singh
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Fazal Shirazi
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jie Wan
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hua Wang
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Xiaobin Wang
- The Urology Department, ShengJing Hospital, China Medical University, ShenYang, China
| | - Min Jin Ha
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Muhamed Baljevic
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Isere Kuiatse
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Richard E Davis
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Liu X, Cao W, Li T. High-Dose Intravenous Immunoglobulins in the Treatment of Severe Acute Viral Pneumonia: The Known Mechanisms and Clinical Effects. Front Immunol 2020; 11:1660. [PMID: 32760407 PMCID: PMC7372093 DOI: 10.3389/fimmu.2020.01660] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
The current outbreak of viral pneumonia, caused by novel coronavirus SARS-CoV-2, is the focus of worldwide attention. The WHO declared the COVID-19 outbreak a pandemic event on Mar 12, 2020, and the number of confirmed cases is still on the rise worldwide. While most infected individuals only experience mild symptoms or may even be asymptomatic, some patients rapidly progress to severe acute respiratory failure with substantial mortality, making it imperative to develop an efficient treatment for severe SARS-CoV-2 pneumonia alongside supportive care. So far, the optimal treatment strategy for severe COVID-19 remains unknown. Intravenous immunoglobulin (IVIg) is a blood product pooled from healthy donors with high concentrations of immunoglobulin G (IgG) and has been used in patients with autoimmune and inflammatory diseases for more than 30 years. In this review, we aim to highlight the known mechanisms of immunomodulatory effects of high-dose IVIg therapy, the immunopathological hypothesis of viral pneumonia, and the clinical evidence of IVIg therapy in viral pneumonia. We then make cautious therapeutic inferences about high-dose IVIg therapy in treating severe COVID-19. These inferences may provide relevant and useful insights in order to aid treatment for COVID-19.
Collapse
Affiliation(s)
- Xiaosheng Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Taisheng Li
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
9
|
Hori A, Fujimura T, Murakami M, Park J, Kawamoto S. Intravenous immunoglobulin (IVIg) acts directly on conventional T cells to suppress T cell receptor signaling. Biochem Biophys Res Commun 2019; 522:792-798. [PMID: 31787231 DOI: 10.1016/j.bbrc.2019.11.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Intravenous immunoglobulin (IVIg) therapy is widely used to treat autoimmune and infectious disorders. Despite the clinical efficacy of IVIg therapy, its precise immunosuppressive mechanisms remain unclear. Here, we provide evidence that IVIg acts directly on T cells to suppress their activation upon T cell receptor (TCR) ligation. IVIg suppressed the proliferation of murine splenocytes upon stimulation with anti-CD3 antibody and T cell-tropic mitogens. These immunosuppressive effects of IVIg were still intact against purified T cells, and the depletion of naturally-occurring regulatory T cells (nTreg) had no effect on T cell regulatory activity. Instead, we found that IVIg negatively regulated TCR signaling; IVIg co-stimulation impaired IκB degradation, nuclear translocation of the nuclear factor of activated T cells (NFAT), and the activation of mitogen-activated protein kinase (MAPK, Erk1/2). These results suggest an additional new immunosuppressive role of IVIg, which acts directly on conventional T cells to suppress the TCR signaling pathway.
Collapse
Affiliation(s)
- Ayane Hori
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan; Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takashi Fujimura
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Mai Murakami
- Faculty of Engineering, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jungyeon Park
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Seiji Kawamoto
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Japan; Unit of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| |
Collapse
|
10
|
Toll-Like Receptors-2 and -4 in Graves' Disease-Key Players or Bystanders? Int J Mol Sci 2019; 20:ijms20194732. [PMID: 31554206 PMCID: PMC6801632 DOI: 10.3390/ijms20194732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022] Open
Abstract
Graves’ disease (GD) is an autoimmune disease that affects the thyroid. The development of autoimmunity is associated with innate immune responses where the prominent role plays Toll-like receptors (TLRs). The aim of our study was to assess the relationship between the expression levels of TLR-2 and TLR-4 on CD4+ and CD8+ T as well as CD19+ B lymphocytes in patients with GD and selected clinical parameters. The study group consisted of 32 women with GD, the control group consisted of 20 healthy women. Immunophenotyping was performed using the flow cytometry and cytokines concentrations were assessed using ELISA assay. The mean percentage of CD4+/TLR-2+ and CD8+/TLR-2+ T cells in patients with GD was higher than in the control group (p < 0.0001). After obtaining euthyroidism, the mean percentage of CD4+/TLR-2+ T cells in patients with GD decreased (p < 0.0001). The expression level of TLR-2 on CD4+ T lymphocytes correlated with serum FT3 concentration in patients with GD (r = 0.47, p = 0.007). The mean percentage of CD8+/TLR-2+ T cells in patients with GD before treatment compared to patients with GD after obtaining euthyroidism was higher (p = 0.0163). Similar findings were found for TLR-4. Thus the TLR-2 and TLR-4 can be a prognostic marker for Graves’ disease.
Collapse
|
11
|
Liu LN, Wang P, Zou YF, Xu Z, Cheng J, Zhang Y, Hu W, Pan HF. Semaphorin-3A, semaphorin-7A gene single nucleotide polymorphisms, and systemic lupus erythematosus susceptibility. Autoimmunity 2019; 52:161-167. [DOI: 10.1080/08916934.2019.1642333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
| | - Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, PR China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Yuzhou Zhang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
12
|
Galeotti C, Kaveri SV, Bayry J. IVIG-mediated effector functions in autoimmune and inflammatory diseases. Int Immunol 2019; 29:491-498. [PMID: 28666326 DOI: 10.1093/intimm/dxx039] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is a pooled preparation of normal IgG obtained from several thousand healthy donors. It is widely used in the immunotherapy of a large number of autoimmune and inflammatory diseases. The mechanisms of action of IVIG are complex and, as discussed in this review, experimental and clinical data provide an indicator that the therapeutic benefit of IVIG therapy is due to several mutually non-exclusive mechanisms affecting soluble mediators as well as cellular components of the immune system. These mechanisms depend on Fc and/or F(ab')2 fragments. A better understanding of the effector functions of IVIG should help in identification of biomarkers of responses to IVIG in autoimmune patients.
Collapse
Affiliation(s)
- Caroline Galeotti
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Department of Pediatric Rheumatology, National Referral Centre of Auto-inflammatory Diseases, CHU de Bicêtre, France
| | - Srini V Kaveri
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale Unité, France.,Sorbonne Universités, UPMC Univ Paris 06, Paris, France.,Centre de Recherche des Cordeliers, Equipe -Immunopathologie et Immunointervention Thérapeutique, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, France
| |
Collapse
|
13
|
Xiang R, Xu Y, Zhang W, Kong Y, Tan L, Chen S, Deng Y, Tao Z. Semaphorin 3A inhibits allergic inflammation by regulating immune responses in a mouse model of allergic rhinitis. Int Forum Allergy Rhinol 2018; 9:528-537. [PMID: 30597767 DOI: 10.1002/alr.22274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Xiang
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yu Xu
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Wei Zhang
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yong‐Gang Kong
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Lu Tan
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Shi‐Ming Chen
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yu‐Qin Deng
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Ze‐Zhang Tao
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
14
|
Polumuri SK, Haile LA, Ireland DDC, Verthelyi D. Aggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impurities. Sci Rep 2018; 8:11477. [PMID: 30065306 PMCID: PMC6068171 DOI: 10.1038/s41598-018-29850-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/06/2018] [Indexed: 12/11/2022] Open
Abstract
Therapeutic proteins can induce immune responses that affect their safety and efficacy. Product aggregates and innate immune response modulating impurities (IIRMI) are risk factors of product immunogenicity. In this study, we use Intravenous Immunoglobulin (IVIG), Avastin, and Human Serum Albumin (HSA) to explore whether increased aggregates activate innate immune cells or modify the response to IIRMI. We show that increased aggregates (shaken or stirred) in IVIG and Avastin, but not HSA, induced activation of MAPKs (pp38, pERK and pJNK) and transcription of immune-related genes including IL8, IL6, IL1β, CSF1, CCL2, CCL7, CCL3, CCL24, CXCL2, IRAK1, EGR2, CEBPβ, PPARg and TNFSF15 in human PBMC. The immunomodulatory effect was primarily mediated by FcγR, but not by TLR. Interestingly, increased aggregates in IVIG or Avastin magnified innate immune responses to TLR2/4 agonists, but diminished responses to TLR3/9 agonists. This study shows that IIRMI and aggregates can modify the activity of immune cells potentially modifying the milieu where the products are delivered highlighting the complex interplay of different impurities on product immunogenicity risk. Further, we show that aggregates could modify the sensitivity of PBMC-based assays designed to detect IIRMI. Understanding and managing immunogenicity risk is a critical component of product development and regulation.
Collapse
Affiliation(s)
- Swamy Kumar Polumuri
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Lydia A Haile
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Derek D C Ireland
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Daniela Verthelyi
- Division of Biotechnology Review and Research-III, Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
15
|
Immune complex negatively regulates toll-like receptor 3-triggered tumour necrosis factor α production in B cells. Cent Eur J Immunol 2017; 42:223-230. [PMID: 29204085 PMCID: PMC5708202 DOI: 10.5114/ceji.2017.70962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/12/2016] [Indexed: 12/17/2022] Open
Abstract
Inappropriate activation of toll-like receptor 3 (TLR3) has been implicated in the pathogenesis of autoimmune diseases, so the negative regulation of TLR3-triggered immune response has received increasing attention. Nonpathogenic immune complex (IC) has been used as treatment for many inflammatory and autoimmune diseases. However, the role of IC in the regulation of TLR3-triggered immune responses and the underlying mechanisms need to be investigated. In this study we demonstrate that IC or intravenous immunoglobulin (Ig) stimulation of B cells attenuates polyinosinic:polycytidylic acid (poly I:C)-induced CD40 expression; IC, but not Ig, can significantly inhibit poly I:C-induced pro-inflammatory tumour necrosis factor α (TNF-α) production by B cells. Moreover, IC/Ig stimulation does not alter the expression of TLR3 in B cells. Further experiments suggest that receptor for the Fc portion of IgGIIb (FcγRIIb) is involved in the suppressive effect of IC on TLR3-mediated TNF-α production, but not CD40 expression. Thus, we provide a new means of negative regulation of TLR3-triggered immune responses in B cells via FcγRIIb, and we provide a new mechanistic explanation of the therapeutic effect of nonpathogenic IC on inflammatory or autoimmune diseases.
Collapse
|
16
|
Association between TLR-9 gene rs187084 polymorphism and knee osteoarthritis in a Chinese population. Biosci Rep 2017; 37:BSR20170844. [PMID: 28916728 PMCID: PMC5643737 DOI: 10.1042/bsr20170844] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/02/2017] [Accepted: 09/13/2017] [Indexed: 12/02/2022] Open
Abstract
Osteoarthritis (OA) is a complex disease that is induced by many genetic risk variants and other factors. To examine the role of toll-like receptor 9 (TLR-9) in OA patients, we conducted a case–control study involving 215 knee OA (KOA) patients and 215 controls in a Chinese population. Genotyping with a custom-by-design 48-Plex single nucleotide polymorphism Scan™ Kit showed the TLR-9 gene rs187084 polymorphism was associated with an increased risk of KOA. Stratification analyses further validated this finding among old people (age ≥ 55 years). In conclusion, TLR-9 gene rs187084 polymorphism is positively correlated with susceptibility to KOA, especially among old people. Nevertheless, this finding should be confirmed by larger size studies with more ethnic populations.
Collapse
|
17
|
Watad A, Amital H, Shoenfeld Y. Intravenous immunoglobulin: a biological corticosteroid-sparing agent in some autoimmune conditions. Lupus 2017; 26:1015-1022. [DOI: 10.1177/0961203317696589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Intravenous immunoglobulin (IVIg) is increasingly used for the treatment of autoimmune and systemic inflammatory diseases. This compound is effective in a wide range of clinical conditions other than primary immunodeficiency, including autoimmune diseases, inflammatory disorders, infections, organ transplantation, and possibly supportive therapy for cancer. Systemic corticosteroids remain the gold standard treatment for many autoimmune diseases, but their long-term use is associated with complications in diverse organs and systems. Osteoporosis, osteonecrosis, cardiovascular disease, infections, and cancer have been associated with this treatment. Therefore, physicians are occasionally forced to withdraw the treatment with steroids. Biological agents may represent a good alternative, but in addition to being very expensive, these agents may have serious side effects. This review aimed to cover the major advances in the use of IVIg as a steroid-sparing agent in some relevant autoimmune diseases.
Collapse
Affiliation(s)
- A Watad
- Department of Medicine ‘B’, Sheba Medical Center, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - H Amital
- Department of Medicine ‘B’, Sheba Medical Center, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Y Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
18
|
Winter M, Baksmeier C, Steckel J, Barman S, Malviya M, Harrer-Kuster M, Hartung HP, Goebels N. Dose-dependent inhibition of demyelination and microglia activation by IVIG. Ann Clin Transl Neurol 2016; 3:828-843. [PMID: 27844029 PMCID: PMC5099529 DOI: 10.1002/acn3.326] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 04/25/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
Objective Intravenous immunoglobulin (IVIG) is an established treatment for numerous autoimmune conditions. Clinical trials of IVIG for multiple sclerosis, using diverse dose regimens, yielded controversial results. The aim of this study is to dissect IVIG effector mechanisms on demyelination in an ex vivo model of the central nervous system (CNS)‐immune interface. Methods Using organotypic cerebellar slice cultures (OSC) from transgenic mice expressing green fluorescent protein (GFP) in oligodendrocytes/myelin, we induced extensive immune‐mediated demyelination and oligodendrocyte loss with an antibody specific for myelin oligodendrocyte glycoprotein (MOG) and complement. Protective IVIG effects were assessed by live imaging of GFP expression, confocal microscopy, immunohistochemistry, gene expression analysis and flow cytometry. Results IVIG protected OSC from demyelination in a dose‐dependent manner, which was at least partly attributed to interference with complement‐mediated oligodendroglia damage, while binding of the anti‐MOG antibody was not prevented. Staining with anti‐CD68 antibodies and flow cytometry confirmed that IVIG prevented microglia activation and oligodendrocyte death, respectively. Equimolar IVIG‐derived Fab fragments or monoclonal IgG did not protect OSC, while Fc fragments derived from a polyclonal mixture of human IgG were at least as potent as intact IVIG. Interpretation Both intact IVIG and Fc fragments exert a dose‐dependent protective effect on antibody‐mediated CNS demyelination and microglia activation by interfering with the complement cascade and, presumably, interacting with local immune cells. Although this experimental model lacks blood–brain barrier and peripheral immune components, our findings warrant further studies on optimal dose finding and alternative modes of application to enhance local IVIG concentrations at the site of tissue damage.
Collapse
Affiliation(s)
- Meike Winter
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Christine Baksmeier
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Julia Steckel
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Manish Malviya
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5D-40225 Duesseldorf Germany; Present address: CPTP, Centre Physiopathologie de Toulouse-Purpan INSERM U1043 - CNRS UMR 5282-Université Toulouse III Toulouse France
| | - Melanie Harrer-Kuster
- University of Zuerich, Clinical Neuroimmunology Zuerich Switzerland; Present address: Abb Vie AG Baar Switzerland
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty Heinrich-Heine-University Duesseldorf Moorenstr. 5 D-40225 Duesseldorf Germany
| |
Collapse
|
19
|
Qian L, Chen W, Qin H, Rui C, Jia X, Fu Y, Gong W, Tian F, Ji M. Immune complex negatively regulates Toll-like receptor 9-mediated immune responses in B cells through the inhibitory Fc-gamma receptor IIb. Microbiol Immunol 2016; 59:142-51. [PMID: 25557539 DOI: 10.1111/1348-0421.12224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/10/2014] [Accepted: 12/25/2014] [Indexed: 01/30/2023]
Abstract
Because inappropriate activation of Toll-like receptor 9 (TLR9) may induce pathological damage, negative regulation of the TLR9-triggered immune response has attracted considerable attention. Nonpathogenic immune complex (IC) has been demonstrated to have beneficial therapeutic effects in some kinds of autoimmune diseases. However, the role of IC in the regulation of TLR9-triggered immune responses and the underlying mechanisms remain unclear. In this study, it was demonstrated that IC stimulation of B cells not only suppresses CpG-oligodeoxynucleotide (CpG-ODN)-induced pro-inflammatory IL-6 and IgM κ production, but also attenuates CD40 and CD80 expression. Furthermore, our results suggest that the receptor for the Fc portion of IgG (FcγR) IIb is involved in the suppressive effect of IC on TLR9-mediated CD40, CD80 and IL-6 expression. Finally, it was found that IC down-regulates TLR9 expression in CpG-ODN activated B cells. Our results provide an outline of a new pathway for the negative regulation of TLR9-triggered immune responses in B cells via FcγRIIb. A new mechanistic explanation of the therapeutic effect of nonpathogenic IC on inflammatory and autoimmune diseases is also provided.
Collapse
Affiliation(s)
- Li Qian
- Laboratory of Immunology, Yangzhou University School of Medicine, Yangzhou 225001; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sánchez B, Hevia A, González S, Margolles A. Interaction of Intestinal Microorganisms with the Human Host in the Framework of Autoimmune Diseases. Front Immunol 2015; 6:594. [PMID: 26635808 PMCID: PMC4653298 DOI: 10.3389/fimmu.2015.00594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/05/2015] [Indexed: 01/03/2023] Open
Abstract
Autoimmune diseases, such as systemic lupus erythematosus (SLE), are caused by a complex interaction of environmental-, genetic-, and sex-related factors. Although SLE has traditionally been considered independent from the microbiota, recent work published during the last 5 years suggests a strong connection between SLE and the composition of our gut commensals as one of the main environmental factors linked to this disease. Preliminary data have evidenced that (i) interaction of certain microbial-derived molecules with specific cell receptors and (ii) the influence of certain commensal microorganisms over specific immune cell subsets plays an important role in the pathogenesis of SLE and SLE-like diseases. In addition, epigenetic changes driven by certain microbial groups have been recently proposed as an additional link between gut microbiota and SLE. As immune responses elicited against commensal bacteria are deeply dependent on the composition of the latter, and as microbial populations can be modified by dietary interventions, identifying the precise gut microorganisms responsible for worsening the SLE symptoms is of crucial importance for this and other SLE-related diseases, including antiphospholipid syndrome or lupus nephritis. In this minireview, the current knowledge on the relationships between microbes and SLE and SLE-related diseases is compiled and discussed.
Collapse
Affiliation(s)
- Borja Sánchez
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain
| | - Arancha Hevia
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain
| | - Sonia González
- Department of Functional Biology, University of Oviedo, Oviedo, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, Villaviciosa, Spain
| |
Collapse
|
21
|
Séïté JF, Hillion S, Harbonnier T, Pers JO. Review: intravenous immunoglobulin and B cells: when the product regulates the producer. Arthritis Rheumatol 2015; 67:595-603. [PMID: 25303681 DOI: 10.1002/art.38910] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/07/2014] [Indexed: 01/08/2023]
|
22
|
Intravenous immunoglobulin (IVIg) dampens neuronal toll-like receptor-mediated responses in ischemia. J Neuroinflammation 2015; 12:73. [PMID: 25886362 PMCID: PMC4409750 DOI: 10.1186/s12974-015-0294-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 04/02/2015] [Indexed: 11/14/2022] Open
Abstract
Background Ischemic stroke causes a high rate of deaths and permanent neurological damage in survivors. Ischemic stroke triggers the release of damage-associated molecular patterns (DAMPs) such as high-mobility group box 1 (HMGB1), which activate toll-like receptors (TLRs) and receptor for advanced glycation endproducts (RAGE) in the affected area, leading to an exaggerated inflammatory response and cell death. Both TLRs and RAGE are transmembrane pattern recognition receptors (PRRs) that have been shown to contribute to ischemic stroke-induced brain injury. Intravenous immunoglobulin (IVIg) preparations obtained by fractionating human blood plasma are increasingly being used as an effective therapeutic agent in the treatment of several inflammatory diseases. Its use as a potential therapeutic agent for treatment of stroke has been proposed, but little is known about the direct neuroprotective mechanisms of IVIg. We therefore investigate whether IVIg exerts its beneficial effects on the outcome of neuronal injury by modulating HMGB1-induced TLR and RAGE expressions and activations. Methods Primary cortical neurons were subjected to glucose deprivation or oxygen and glucose deprivation conditions and treated with IVIg and recombinant HMGB1. C57/BL6J mice were subjected to middle cerebral artery occlusion, followed by reperfusion, and IVIg was administered intravenously 3 h after the start of reperfusion. Expression of TLRs, RAGE and downstream signalling proteins in neurons and brain tissues were evaluated by immunoblot. Results Treatment of cultured neurons with IVIg reduced simulated ischemia-induced TLR2, TLR4, TLR8 and RAGE expressions, pro-apoptotic caspase-3 cleavage and phosphorylation of the cell death-associated kinases such as c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) as well as the p65 subunit of nuclear factor kappa B (NF-κB). These results were recapitulated in an in vivo model of stroke. IVIg treatment also upregulated the anti-apoptotic protein B-cell lymphoma 2 (Bcl-2) in cortical neurons under ischemic conditions. Finally, IVIg protected neurons against HMGB1-induced neuronal cell death by modulating TLR and RAGE expressions and signalling pathways. Conclusions Taken together, these results provide a rationale for the potential use of IVIg to target inappropriately activated components of the innate immune system following ischemic stroke.
Collapse
|
23
|
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that is characterized by the development of autoantibodies and immunologic attack of different organ systems, including the skin. This review aims to provide an overview of some of the pathogenic processes that may be important in the development of SLE, specifically cutaneous lupus erythematosus, and then illustrates how therapies might be tailored to modify these processes and treat disease.
Collapse
Affiliation(s)
- Mark G Kirchhof
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada
| | - Jan P Dutz
- Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8, Canada; Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia V5Z 4H4, Canada.
| |
Collapse
|
24
|
Mitrevski M, Marrapodi R, Camponeschi A, Cavaliere FM, Lazzeri C, Todi L, Visentini M. Intravenous Immunoglobulin and Immunomodulation of B-Cell - in vitro and in vivo Effects. Front Immunol 2015; 6:4. [PMID: 25657650 PMCID: PMC4302981 DOI: 10.3389/fimmu.2015.00004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 01/06/2015] [Indexed: 12/30/2022] Open
Abstract
Intravenous immunoglobulin (IVIG) is used as replacement therapy in patients with antibody deficiencies and at higher dosages in immune-mediated disorders. Although different mechanisms have been described in vitro, the in vivo immunomodulatory effects of IVIG are poorly understood. Different studies have suggested that IVIG modulates B-cell functions as activation, proliferation, and apoptosis. Recently, it was shown that IVIG induces in vitro B-cell unresponsiveness similar to anergy. In accord with this, we recently reported that IVIG therapy in patients affected by common variable immunodeficiency (CVID) interferes in vivo with the B-cell receptor (BCR) signaling by increasing constitutive ERK activation and by reducing the phosphorylated ERK increment induced by BCR cross-linking. Moreover, we observed that IVIG induces in CVID patients an increase of circulating CD21(low) B-cells, an unusual population of anergic-like B-cells prone to apoptosis. Therefore, IVIG at replacement dose in vivo could prime B-cells to an anergic, apoptotic program. Here, we discuss these recent findings, which may improve our understanding of the immunomodulatory effects of IVIG, individualizing single involved molecules for more specific treatments.
Collapse
Affiliation(s)
- Milica Mitrevski
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | - Ramona Marrapodi
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | | | | | - Cristina Lazzeri
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | - Laura Todi
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| | - Marcella Visentini
- Department of Clinical Medicine, Sapienza University of Rome , Rome , Italy
| |
Collapse
|
25
|
Tanaka J. Intravenous immunoglobulin suppresses B cell activities via antigen recognition region. Inflamm Regen 2014. [DOI: 10.2492/inflammregen.34.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
26
|
Séïté JF, Goutsmedt C, Youinou P, Pers JO, Hillion S. Intravenous immunoglobulin induces a functional silencing program similar to anergy in human B cells. J Allergy Clin Immunol 2014; 133:181-8.e1-9. [DOI: 10.1016/j.jaci.2013.08.042] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 08/26/2013] [Accepted: 08/28/2013] [Indexed: 12/29/2022]
|
27
|
Crow AR, Yu H, Han D, Lazarus AH. Amelioration of murine passive immune thrombocytopenia by IVIg and a therapeutic monoclonal CD44 antibody does not require the Myd88 signaling pathway. PLoS One 2013; 8:e71882. [PMID: 23940791 PMCID: PMC3733967 DOI: 10.1371/journal.pone.0071882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/10/2013] [Indexed: 01/06/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by a low platelet count and the production of anti-platelet antibodies. The majority of ITP patients have antibodies to platelet integrin αIIbβ3 (GPIIbIIIa) which can direct platelet phagocytosis by macrophages. One effective treatment for patients with ITP is intravenous immunoglobulin (IVIg) which rapidly reverses thrombocytopenia. The exact mechanism of IVIg action in human patients is unclear, although in mouse models of passive ITP, IVIg can rapidly increase platelet counts in the absence of adaptive immunity. Another antibody therapeutic that can similarly increase platelet counts independent of adaptive immunity are CD44 antibodies. Toll-like receptors (TLRs) are pattern recognition receptors which play a central role in helping direct the innate immune system. Dendritic cells, which are notable for their expression of TLRs, have been directly implicated in IVIg function as an initiator cell, while CD44 can associate with TLR2 and TLR4. We therefore questioned whether IVIg, or the therapeutic CD44 antibody KM114, mediate their ameliorative effects in a manner dependent upon normal TLR function. Here, we demonstrate that the TLR4 agonist LPS does not inhibit IVIg or KM114 amelioration of antibody-induced thrombocytopenia, and that these therapeutics do not ameliorate LPS-induced thrombocytopenia. IVIg was able to significantly ameliorate murine ITP in C3H/HeJ mice which have defective TLR4. All known murine TLRs except TLR3 utilize the Myd88 adapter protein to drive TLR signaling. Employing Myd88 deficient mice, we found that both IVIg and KM114 ameliorate murine ITP in Myd88 deficient mice to the same extent as normal mice. Thus both IVIg and anti-CD44 antibody can mediate their ameliorative effects in murine passive ITP independent of the Myd88 signaling pathway. These data help shed light on the mechanism of action of IVIg and KM114 in the amelioration of murine ITP.
Collapse
Affiliation(s)
- Andrew R. Crow
- The Canadian Blood Services, Toronto, Canada
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
| | - Honghui Yu
- The Canadian Blood Services, Toronto, Canada
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dongji Han
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
- Department of Anesthesiology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Alan H. Lazarus
- The Canadian Blood Services, Toronto, Canada
- Department of Laboratory Medicine and the Keenan Research Centre in the Li Ka Shing Knowledge Institute of St. Michael’s Hospital, Toronto, Canada
- Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
28
|
Buttmann M, Kaveri S, Hartung HP. Polyclonal immunoglobulin G for autoimmune demyelinating nervous system disorders. Trends Pharmacol Sci 2013; 34:445-57. [PMID: 23791035 DOI: 10.1016/j.tips.2013.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 12/13/2022]
Abstract
Demyelinating diseases with presumed autoimmune pathogenesis are characterised by direct or indirect immune-mediated damage to myelin sheaths, which normally surround nerve fibres to ensure proper electrical nerve conduction. Parenteral administration of polyclonal IgG purified from multi-donor human plasma pools may beneficially modulate these misguided immune reactions via several mechanisms that are outlined in this review. Convincing therapeutic evidence from controlled trials now exists for certain disorders of the peripheral nervous system, including Guillain-Barré syndrome, chronic inflammatory demyelinating polyradiculoneuropathy, and multifocal motor neuropathy. In addition, there is evidence for potential therapeutic benefits of IgG in patients with chronic inflammatory demyelinating diseases of the central nervous system, including multiple sclerosis and neuromyelitis optica. This review introduces these disorders, briefly summarises the established treatment options, and discusses therapeutic evidence for the use of polyclonal immunoglobulins with a particular emphasis on recent clinical trials and meta-analyses.
Collapse
Affiliation(s)
- Mathias Buttmann
- Department of Neurology, University of Würzburg, Josef-Schneider-Str. 11, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
29
|
|
30
|
Autoimmune diseases in the intensive care unit. An update. Autoimmun Rev 2013; 12:380-95. [DOI: 10.1016/j.autrev.2012.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 06/12/2012] [Indexed: 12/18/2022]
|
31
|
Yehudai D, Snir A, Peri R, Halasz K, Haj T, Odeh M, Kessel A. B cell-activating factor enhances interleukin-6 and interleukin-10 production by ODN-activated human B cells. Scand J Immunol 2012; 76:371-7. [PMID: 22725135 DOI: 10.1111/j.1365-3083.2012.02752.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We aim to investigate the additive value of B cell-activating factor (BAFF) when added to oligodeoxynucleotides (ODN)-activated B cells with respect to TLR-9, CD69, MHC-II expression, IL-6 and IL-10 secretion and B cell cycling. Therefore, B cells from healthy individuals were incubated under the following conditions: (1) B cells with medium, (2) B cells with ODN 0.5 μm, (3) B cells with BAFF 20 μm and (4) B cells with both ODN 0.5 μm and BAFF 20 μm. We found that addition of BAFF did not enhance the expression of TLR-9, CD69 and MHC-II in ODN-activated B cells. Incubation of B cells with BAFF and ODN together leads to a marked elevation of IL-6 and IL-10 levels compared to ODN alone. Synthesis and mitosis were higher in B cells stimulated by BAFF than in B cells stimulated by ODN. These findings suggest that both BAFF and TLR-9 contribute independently to B cell function.
Collapse
Affiliation(s)
- D Yehudai
- Department of Internal Medicine A, Bnai Zion Medical Center, Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang YZ, Yan M, Tian FF, Zhang JM, Liu Q, Yang H, Zhou WB, Li J. Possible Involvement of Toll-Like Receptors in the Pathogenesis of Myasthenia Gravis. Inflammation 2012; 36:121-30. [DOI: 10.1007/s10753-012-9526-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Vadasz Z, Toubi E. Semaphorin 3A - a marker for disease activity and a potential putative disease-modifying treatment in systemic lupus erythematosus. Lupus 2012; 21:1266-70. [PMID: 22875653 DOI: 10.1177/0961203312456753] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Semaphorin 3A (sema3A) and neuropilin-1 (NP-1) play a regulatory role in immune responses and have a demonstrated effect on the course of collagen-induced arthritis. Sema3A was also found to be involved in other immune-mediated diseases, e.g. psoriasis and allergic rhinitis. In this review we concentrated on the involvement of sema3A and NP-1 in the pathogenesis of systemic lupus erythematosus (SLE) and on the specific effect of sema3A on the auto-reactive properties of B cells in SLE patients. We demonstrated the expression of sema3A in renal biopsies from lupus glomerulonephritis patients. This expression was found to be inversely correlated with proteinuria and kidney function tests. Sema3A serum levels in SLE patients were found to be significantly lower than in RA patients (disease control) and lower yet than in normal individuals. Altered serum sema3A levels were found to be in inverse correlation with SLE disease activity, mainly with renal damage and the presence of anti-cardiolipin antibodies. The expression of both sema3A and NP-1 on B cells from SLE patients was significantly different in comparison with normal healthy individuals. Finally, we demonstrated that when sema3A was co-cultured with CpG-ODN-stimulated memory B cells of SLE patients, their TLR-9 expression was significantly reduced by almost 50% (p = 0.001). These findings, along with the observation of sema3A being reduced in SLE patients in correlation with disease severity and autoimmunity, and memory B cells being beneficially responsive to sema3A, suggest this regulatory molecule may be considered as a potential therapy for SLE. Such focused therapies will help in achieving the maintenance of self-tolerance and alter pro-inflammatory status in lupus.
Collapse
Affiliation(s)
- Z Vadasz
- Division of Allergy and Clinical Immunology, Bnai-Zion Medical Center, The Rappaport Faculty of Medicine, Technion - Haifa, Israel
| | | |
Collapse
|
34
|
Abstract
There have been enormous strides in our understanding of autoimmunity. These strides have come under the umbrellas of epidemiology, immunological phenotype and function, disease definitions and classification and especially new therapeutic reagents. However, while these advances have been herculean, there remains enormous voids. Some of these voids include genetic susceptibility and the interaction of genes and environment. The voids include induction of tolerance in preclinical disease and definitions of host susceptibility and responses to the expensive biologic agents. The voids include the so-called clustering of human autoimmune diseases and the issues of whether the incidence is rising in our western society. Other voids include the relationships between microbiology, vaccination, gut flora, overzealous use of antibiotics, and the role of nanoparticles and environmental pollution in either the induction or the natural history of disease. One cannot even begin to address even a fraction of these issues. However, in this special issue, we are attempting to discuss clinical issues in autoimmunity that are not usually found in generic reviews. The goal is to bring to the readership provocative articles that ultimately will lead to improvement in patient care.
Collapse
|
35
|
The Emerging Role of TLR and Innate Immunity in Cardiovascular Disease. Cardiol Res Pract 2012; 2012:181394. [PMID: 22577589 PMCID: PMC3346970 DOI: 10.1155/2012/181394] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 11/29/2011] [Indexed: 01/22/2023] Open
Abstract
Cardiovascular disease is a complex disorder involving multiple pathophysiological processes, several of which involve activation of toll-like receptors (TLRs) of the innate immune system. As sentinels of innate immunity TLRs are nonclonally germline-encoded molecular pattern recognition receptors that recognize exogenous as well as tissue-derived molecular dangers signals promoting inflammation. In addition to their expression in immune cells, TLRs are found in other tissues and cell types including cardiomyocytes, endothelial and vascular smooth muscle cells. TLRs are differentially regulated in various cell types by several cardiovascular risk factors such as hypercholesterolemia, hyperlipidemia, and hyperglycemia and may represent a key mechanism linking chronic inflammation, cardiovascular disease progression, and activation of the immune system. Modulation of TLR signaling by specific TLR agonists or antagonists, alone or in combination, may be a useful therapeutic approach to treat various cardiovascular inflammatory conditions such as atherosclerosis, peripheral arterial disease, secondary microvascular complications of diabetes, autoimmune disease, and ischemia reperfusion injury. In this paper we discuss recent developments and current evidence for the role of TLR in cardiovascular disease as well as the therapeutic potential of various compounds on inhibition of TLR-mediated inflammatory responses.
Collapse
|
36
|
Tanaka J, Hirano K, Sakamoto Y, Sugahara-Tobinai A, Endo S, Ito-Matsuoka Y, Nakano A, Inui M, Nitschke L, Takai T. Intravenous immunoglobulin suppresses IL-10 production by activated B cells in vitro. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/oji.2012.24019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Maddur MS, Hegde P, Sharma M, Kaveri SV, Bayry J. B cells are resistant to immunomodulation by 'IVIg-educated' dendritic cells. Autoimmun Rev 2011; 11:154-6. [PMID: 21864723 DOI: 10.1016/j.autrev.2011.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intravenous immunoglobulin (IVIg) can exert beneficial effects in autoimmune and inflammatory diseases via several mutually non-exclusive mechanisms. While, IVIg can directly modulate the functions of both innate and adaptive immune cells such as dendritic cells (DC), macrophages, B and T cells, several reports have also highlighted that the regulation of immune responses by IVIg can be indirect. In view of these results, we aimed at exploring whether indirect regulation of immune cells by 'IVIg-educated' innate cells is a universal phenomenon. We addressed this question by deciphering the modulation of B cell functions by 'IVIg-educated' DC. Our results indicate that human B cells are resistant to immunomodulation by 'IVIg-educated' DC. However, IVIg at therapeutic concentrations can directly inhibit B cell activation and proliferation. These results thus suggest that, indirect modulation of immune cells by IVIg is not a universal phenomenon.
Collapse
Affiliation(s)
- Mohan S Maddur
- Institut National de la Santé et de la Recherche Médicale, Unité 872, 15 rue de l'Ecole de Médicine, Paris, France
| | | | | | | | | |
Collapse
|