1
|
Dewal RS, Yang FT, Baer LA, Vidal P, Hernandez-Saavedra D, Seculov NP, Ghosh A, Noé F, Togliatti O, Hughes L, DeBari MK, West MD, Soroko R, Sternberg H, Malik NN, Puchulu-Campanella E, Wang H, Yan P, Wolfrum C, Abbott RD, Stanford KI. Transplantation of committed pre-adipocytes from brown adipose tissue improves whole-body glucose homeostasis. iScience 2024; 27:108927. [PMID: 38327776 PMCID: PMC10847743 DOI: 10.1016/j.isci.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Obesity and its co-morbidities including type 2 diabetes are increasing at epidemic rates in the U.S. and worldwide. Brown adipose tissue (BAT) is a potential therapeutic to combat obesity and type 2 diabetes. Increasing BAT mass by transplantation improves metabolic health in rodents, but its clinical translation remains a challenge. Here, we investigated if transplantation of 2-4 million differentiated brown pre-adipocytes from mouse BAT stromal fraction (SVF) or human pluripotent stem cells (hPSCs) could improve metabolic health. Transplantation of differentiated brown pre-adipocytes, termed "committed pre-adipocytes" from BAT SVF from mice or derived from hPSCs improves glucose homeostasis and insulin sensitivity in recipient mice under conditions of diet-induced obesity, and this improvement is mediated through the collaborative actions of the liver transcriptome, tissue AKT signaling, and FGF21. These data demonstrate that transplantation of a small number of brown adipocytes has significant long-term translational and therapeutic potential to improve glucose metabolism.
Collapse
Affiliation(s)
- Revati S. Dewal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Felix T. Yang
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lisa A. Baer
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Diego Hernandez-Saavedra
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Nickolai P. Seculov
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Adhideb Ghosh
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Falko Noé
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Olivia Togliatti
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Lexis Hughes
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan K. DeBari
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael D. West
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Richard Soroko
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Hal Sternberg
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Nafees N. Malik
- AgeX Therapeutics, Inc., 1101 Marina Village Parkway, Suite 201, Alameda, CA 94501, USA
| | - Estella Puchulu-Campanella
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Huabao Wang
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Pearlly Yan
- Genomics Shared Resource, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Christian Wolfrum
- Laboratory of Translational Nutritional Biology, Institute of Food, Nutrition and Health, ETH Zurich, 8603 Schwerzenbach, Switzerland
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kristin I. Stanford
- Department of Physiology and Cell Biology, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Surgery, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Zangerolamo L, Carvalho M, Velloso LA, Barbosa HCL. Endocrine FGFs and their signaling in the brain: Relevance for energy homeostasis. Eur J Pharmacol 2024; 963:176248. [PMID: 38056616 DOI: 10.1016/j.ejphar.2023.176248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/10/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Since their discovery in 2000, there has been a continuous expansion of studies investigating the physiology, biochemistry, and pharmacology of endocrine fibroblast growth factors (FGFs). FGF19, FGF21, and FGF23 comprise a subfamily with attributes that distinguish them from typical FGFs, as they can act as hormones and are, therefore, referred to as endocrine FGFs. As they participate in a broad cross-organ endocrine signaling axis, endocrine FGFs are crucial lipidic, glycemic, and energetic metabolism regulators during energy availability fluctuations. They function as powerful metabolic signals in physiological responses induced by metabolic diseases, like type 2 diabetes and obesity. Pharmacologically, FGF19 and FGF21 cause body weight loss and ameliorate glucose homeostasis and energy expenditure in rodents and humans. In contrast, FGF23 expression in mice and humans has been linked with insulin resistance and obesity. Here, we discuss emerging concepts in endocrine FGF signaling in the brain and critically assess their putative role as therapeutic targets for treating metabolic disorders.
Collapse
Affiliation(s)
- Lucas Zangerolamo
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Marina Carvalho
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil
| | - Helena C L Barbosa
- Obesity and Comorbidities Research Center, University of Campinas, UNICAMP, Campinas, Sao Paulo, Brazil.
| |
Collapse
|
3
|
Rosenstock M, Tseng L, Pierce A, Offman E, Chen CY, Charlton RW, Margalit M, Mansbach H. The Novel GlycoPEGylated FGF21 Analog Pegozafermin Activates Human FGF Receptors and Improves Metabolic and Liver Outcomes in Diabetic Monkeys and Healthy Human Volunteers. J Pharmacol Exp Ther 2023; 387:204-213. [PMID: 37562970 DOI: 10.1124/jpet.123.001618] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Pegozafermin (also known as BIO89-100) is a glycoPEGylated analog of fibroblast growth factor 21 (FGF21) under development to treat nonalcoholic steatohepatitis (NASH) and severe hypertriglyceridemia (SHTG). In cell-based assays, pegozafermin had a similar receptor engagement profile as recombinant FGF21, with approximately eightfold higher potency at fibroblast growth factor receptor 1c (FGFR1c). In diabetic monkeys, once-weekly and once-every-2-weeks regimens of subcutaneous pegozafermin provided rapid and robust benefits for an array of metabolic biomarkers, including triglycerides, cholesterol, fasting glucose, glycated hemoglobin, adiponectin, alanine aminotransferase, food intake, and body weight. In a single ascending dose study in healthy volunteers, subcutaneously administered pegozafermin was associated with statistically significant improvements in triglycerides, low- and high-density lipoprotein-cholesterol, and adiponectin, an insulin-sensitizing and anti-inflammatory adipokine. Pharmacokinetic half-lives ranged from 55 to 100 hours over the clinically relevant dose range, consistent with the expected half-life extension by glycoPEGylation. These findings provide evidence that pegozafermin is a promising candidate molecule for the treatment of patients with NASH or SHTG. SIGNIFICANCE STATEMENT: Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that has important roles in regulating energy balance and glucose and lipid homeostasis. Studies presented here demonstrate that a novel long-acting FGF21 analog, pegozafermin, has similar pharmacologic properties as FGF21 and that repeated, subcutaneous dosing of pegozafermin in diabetic monkeys and healthy humans improves lipid metabolism, glucose metabolism, weight, and liver transaminases. These results support future development of pegozafermin for the treatment of metabolic diseases, including nonalcoholic steatohepatitis and severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Moti Rosenstock
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Leo Tseng
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Andrew Pierce
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Elliot Offman
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Chao-Yin Chen
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - R Will Charlton
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Maya Margalit
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| | - Hank Mansbach
- Preclinical and Clinical Development, 89bio, Inc., Herzliya, Israel (M.R.); Preclinical and Clinical Development, 89bio, Inc., San Francisco, California (L.T., A.P., C.-Y.C., R.W.C., M.M., H.M.); and Certara Strategic Consulting, Princeton, New Jersey (E.O.)
| |
Collapse
|
4
|
Lim JY, Kim E. The Role of Organokines in Obesity and Type 2 Diabetes and Their Functions as Molecular Transducers of Nutrition and Exercise. Metabolites 2023; 13:979. [PMID: 37755259 PMCID: PMC10537761 DOI: 10.3390/metabo13090979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/28/2023] Open
Abstract
Maintaining systemic homeostasis requires the coordination of different organs and tissues in the body. Our bodies rely on complex inter-organ communications to adapt to perturbations or changes in metabolic homeostasis. Consequently, the liver, muscle, and adipose tissues produce and secrete specific organokines such as hepatokines, myokines, and adipokines in response to nutritional and environmental stimuli. Emerging evidence suggests that dysregulation of the interplay of organokines between organs is associated with the pathophysiology of obesity and type 2 diabetes (T2D). Strategies aimed at remodeling organokines may be effective therapeutic interventions. Diet modification and exercise have been established as the first-line therapeutic intervention to prevent or treat metabolic diseases. This review summarizes the current knowledge on organokines secreted by the liver, muscle, and adipose tissues in obesity and T2D. Additionally, we highlighted the effects of diet/nutrition and exercise on the remodeling of organokines in obesity and T2D. Specifically, we investigated the ameliorative effects of caloric restriction, selective nutrients including ω3 PUFAs, selenium, vitamins, and metabolites of vitamins, and acute/chronic exercise on the dysregulation of organokines in obesity and T2D. Finally, this study dissected the underlying molecular mechanisms by which nutrition and exercise regulate the expression and secretion of organokines in specific tissues.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), 6431 Fannin St., Houston, TX 77030, USA
| |
Collapse
|
5
|
Zheng S, Polidori D, Wang Y, Geist B, Lin‐Schmidt X, Furman JL, Nelson S, Nawrocki AR, Hinke SA. A long-acting GDF15 analog causes robust, sustained weight loss and reduction of food intake in an obese nonhuman primate model. Clin Transl Sci 2023; 16:1431-1444. [PMID: 37154518 PMCID: PMC10432867 DOI: 10.1111/cts.13543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/28/2023] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
Growth Differentiation Factor-15 (GDF15) is a circulating polypeptide linked to cellular stress and metabolic adaptation. GDF15's half-life is ~3 h and activates the glial cell line-derived neurotrophic factor family receptor alpha-like (GFRAL) receptor expressed in the area postrema. To characterize sustained GFRAL agonism on food intake (FI) and body weight (BW), we tested a half-life extended analog of GDF15 (Compound H [CpdH]) suitable for reduced dosing frequency in obese cynomolgus monkeys. Animals were chronically treated once weekly (q.w.) with CpdH or long-acting GLP-1 analog dulaglutide. Mechanism-based longitudinal exposure-response modeling characterized effects of CpdH and dulaglutide on FI and BW. The novel model accounts for both acute, exposure-dependent effects reducing FI and compensatory changes in energy expenditure (EE) and FI occurring over time with weight loss. CpdH had linear, dose-proportional pharmacokinetics (terminal half-life ~8 days) and treatment caused exposure-dependent reductions in FI and BW. The 1.6 mg/kg CpdH reduced mean FI by 57.5% at 1 week and sustained FI reductions of 31.5% from weeks 9-12, resulting in peak reduction in BW of 16 ± 5%. Dulaglutide had more modest effects on FI and peak BW loss was 3.8 ± 4.0%. Longitudinal modeling of both the FI and BW profiles suggested reductions in BW observed with both CpdH and dulaglutide were fully explained by exposure-dependent reductions in FI without increase in EE. Upon verification of the pharmacokinetic/pharmacodynamic relationship established in monkeys and humans for dulaglutide, we predicted that CpdH could reach double digit BW loss in humans. In summary, a long-acting GDF15 analog led to sustained reductions in FI in overweight monkeys and holds potential for effective clinical obesity pharmacotherapy.
Collapse
Affiliation(s)
- Songmao Zheng
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
- Present address:
AdageneSan DiegoCaliforniaUSA
| | | | - Yuanping Wang
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | - Brian Geist
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| | | | | | | | | | - Simon A. Hinke
- Janssen Research & DevelopmentSpring HousePennsylvaniaUSA
| |
Collapse
|
6
|
Brinker EJ, Towns TJ, Watanabe R, Ma X, Bashir A, Cole RC, Wang X, Graff EC. Direct activation of the fibroblast growth factor-21 pathway in overweight and obese cats. Front Vet Sci 2023; 10:1072680. [PMID: 36756310 PMCID: PMC9900002 DOI: 10.3389/fvets.2023.1072680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Feline obesity is common, afflicting ~25-40% of domestic cats. Obese cats are predisposed to many metabolic dyscrasias, such as insulin resistance, altered blood lipids, and feline hepatic lipidosis. Fibroblast Growth Factor-21 (FGF21) is an endocrine hormone that mediates the fat-liver axis, and in humans and animals, FGF21 can ameliorate insulin resistance, non-alcoholic fatty liver disease, and obesity. Activation of the FGF21 pathway may have therapeutic benefits for obese cats. Methods In this preliminary cross-sectional study, ad libitum fed, purpose-bred, male-neutered, 6-year-old, obese and overweight cats were administered either 10 mg/kg/day of an FGF21 mimetic (FGF21; n = 4) or saline (control; n = 3) for 14 days. Body weight, food, and water intake were quantified daily during and 2 weeks following treatment. Changes in metabolic and liver parameters, intrahepatic triglyceride content, liver elasticity, and gut microbiota were evaluated. Results Treatment with FGF21 resulted in significant weight loss (~5.93%) compared to control and a trend toward decreased intrahepatic triglyceride content. Cats treated with FGF21 had decreased serum alkaline phosphatase. No significant changes were noted in liver elasticity, serum, liver, or metabolic parameters, or gut microbiome composition. Discussion In obese and overweight cats, activation of the FGF21 pathway can safely induce weight loss with trends to improve liver lipid content. This exploratory study is the first to evaluate the FGF21 pathway in cats. Manipulation of the FGF21 pathway has promising potential as a therapeutic for feline obesity. Further studies are needed to see if FGF21-pathway manipulation can be therapeutic for feline hepatic lipidosis.
Collapse
Affiliation(s)
- Emily J. Brinker
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - T. Jordan Towns
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rie Watanabe
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xiaolei Ma
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, United States
| | - Robert C. Cole
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Center for Advanced Science, Innovation and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,*Correspondence: Emily C. Graff ✉
| |
Collapse
|
7
|
Jin L, Yang R, Geng L, Xu A. Fibroblast Growth Factor-Based Pharmacotherapies for the Treatment of Obesity-Related Metabolic Complications. Annu Rev Pharmacol Toxicol 2023; 63:359-382. [PMID: 36100222 DOI: 10.1146/annurev-pharmtox-032322-093904] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fibroblast growth factor (FGF) family, which comprises 22 structurally related proteins, plays diverse roles in cell proliferation, differentiation, development, and metabolism. Among them, two classical members (FGF1 and FGF4) and two endocrine members (FGF19 and FGF21) are important regulators of whole-body energy homeostasis, glucose/lipid metabolism, and insulin sensitivity. Preclinical studies have consistently demonstrated the therapeutic benefits of these FGFs for the treatment of obesity, diabetes, dyslipidemia, and nonalcoholic steatohepatitis (NASH). Several genetically engineered FGF19 and FGF21 analogs with improved pharmacodynamic and pharmacokinetic properties have been developed and progressed into various stages of clinical trials. These FGF analogs are effective in alleviating hepatic steatosis, steatohepatitis, and liver fibrosis in biopsy-confirmed NASH patients, whereas their antidiabetic and antiobesity effects are mildand vary greatly in different clinical trials. This review summarizes recent advances in biopharmaceutical development of FGF-based therapies against obesity-related metabolic complications, highlights major challenges in clinical implementation, and discusses possible strategies to overcome these hurdles.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ranyao Yang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.,Department of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
8
|
Corbee RJ, van Everdingen DL, Kooistra HS, Penning LC. Fibroblast growth factor-21 (FGF21) analogs as possible treatment options for diabetes mellitus in veterinary patients. Front Vet Sci 2023; 9:1086987. [PMID: 36699319 PMCID: PMC9868460 DOI: 10.3389/fvets.2022.1086987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/13/2022] [Indexed: 01/10/2023] Open
Abstract
Fibroblast growth factors (FGFs) are involved in numerous metabolic processes. The endocrine subfamily of FGFs, consisting of FGF19, FGF21, and FGF23, might have beneficial effects in the treatment of diabetes mellitus (DM) and/or obesity. The analog with the greatest potential, FGF21, lowers blood glucose levels, improves insulin sensitivity, and induces weight loss in several animal models. In this review we summarize recent (pre)clinical findings with FGF21 analogs in animal models and men. Furthermore, possible applications of FGF21 analogs for pets with DM will be discussed. As currently, information about the use of FGF21 analogs in pet animals is scarce.
Collapse
|
9
|
Chen Z, Yang L, Liu Y, Huang P, Song H, Zheng P. The potential function and clinical application of FGF21 in metabolic diseases. Front Pharmacol 2022; 13:1089214. [PMID: 36618930 PMCID: PMC9810635 DOI: 10.3389/fphar.2022.1089214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
As an endocrine hormone, fibroblast growth factor 21 (FGF21) plays a crucial role in regulating lipid, glucose, and energy metabolism. Endogenous FGF21 is generated by multiple cell types but acts on restricted effector tissues, including the brain, adipose tissue, liver, heart, and skeletal muscle. Intervention with FGF21 in rodents or non-human primates has shown significant pharmacological effects on a range of metabolic dysfunctions, including weight loss and improvement of hyperglycemia, hyperlipidemia, insulin resistance, cardiovascular disease, and non-alcoholic fatty liver disease (NAFLD). Due to the poor pharmacokinetic and biophysical characteristics of native FGF21, long-acting FGF21 analogs and FGF21 receptor agonists have been developed for the treatment of metabolic dysfunction. Clinical trials of several FGF21-based drugs have been performed and shown good safety, tolerance, and efficacy. Here we review the actions of FGF21 and summarize the associated clinical trials in obesity, type 2 diabetes mellitus (T2DM), and NAFLD, to help understand and promote the development of efficient treatment for metabolic diseases via targeting FGF21.
Collapse
Affiliation(s)
- Zhiwei Chen
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Yang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yang Liu
- Teaching Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Huang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Haiyan Song
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| | - Peiyong Zheng
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Peiyong Zheng, ; Haiyan Song,
| |
Collapse
|
10
|
Iizuka K. Is the Use of Artificial Sweeteners Beneficial for Patients with Diabetes Mellitus? The Advantages and Disadvantages of Artificial Sweeteners. Nutrients 2022; 14:4446. [PMID: 36364710 PMCID: PMC9655943 DOI: 10.3390/nu14214446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/05/2022] Open
Abstract
Artificial sweeteners have been developed as substitutes for sugar. Sucralose, acesulfame K (ACE K), aspartame, and saccharin are artificial sweeteners. Previously, artificial sweeteners were thought to be effective in treating obesity and diabetes. Human meta-analyses have reported that artificial sweeteners have no effect on body weight or glycemic control. However, recent studies have shown that artificial sweeteners affect glucose absorption in the intestinal tract as well as insulin and incretin secretion in humans and animals. Moreover, artificial sweeteners alter the composition of the microbiota and worsen the glycemic control owing to changes in the gut microbiota. The early intake of ACE K was also shown to suppress the taste response to sugar. Furthermore, a large cohort study showed that high artificial sweetener intake was associated with all-cause mortality, cardiovascular risk, coronary artery disease risk, cerebrovascular risk, and cancer risk. The role of artificial sweeteners in the treatment of diabetes and obesity should be reconsidered, and the replacement of sugar with artificial sweeteners in patients will require the long-term tracking of not only intake but also changes in blood glucose and weight as well as future guidance based on gut bacteria data. To utilize the beneficial properties of artificial sweeteners in treatment, further studies are needed.
Collapse
Affiliation(s)
- Katsumi Iizuka
- Department of Clinical Nutrition, Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
11
|
Claflin KE, Sullivan AI, Naber MC, Flippo KH, Morgan DA, Neff TJ, Jensen-Cody SO, Zhu Z, Zingman LV, Rahmouni K, Potthoff MJ. Pharmacological FGF21 signals to glutamatergic neurons to enhance leptin action and lower body weight during obesity. Mol Metab 2022; 64:101564. [PMID: 35944896 PMCID: PMC9403559 DOI: 10.1016/j.molmet.2022.101564] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVE Fibroblast growth factor 21 (FGF21) is a peripherally-derived endocrine hormone that acts on the central nervous system (CNS) to regulate whole body energy homeostasis. Pharmacological administration of FGF21 promotes weight loss in obese animal models and human subjects with obesity. However, the central targets mediating these effects are incompletely defined. METHODS To explore the mechanism for FGF21's effects to lower body weight, we pharmacologically administer FGF21 to genetic animal models lacking the obligate FGF21 co-receptor, β-klotho (KLB), in either glutamatergic (Vglut2-Cre) or GABAergic (Vgat-Cre) neurons. In addition, we abolish FGF21 signaling to leptin receptor (LepR-Cre) positive cells. Finally, we examine the synergistic effects of FGF21 and leptin to lower body weight and explore the importance of physiological leptin levels in FGF21-mediated regulation of body weight. RESULTS Here we show that FGF21 signaling to glutamatergic neurons is required for FGF21 to modulate energy expenditure and promote weight loss. In addition, we demonstrate that FGF21 signals to leptin receptor-expressing cells to regulate body weight, and that central leptin signaling is required for FGF21 to fully stimulate body weight loss during obesity. Interestingly, co-administration of FGF21 and leptin synergistically leads to robust weight loss. CONCLUSIONS These data reveal an important endocrine crosstalk between liver- and adipose-derived signals which integrate in the CNS to modulate energy homeostasis and body weight regulation.
Collapse
Affiliation(s)
- Kristin E Claflin
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Andrew I Sullivan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Meghan C Naber
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Kyle H Flippo
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Donald A Morgan
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Tate J Neff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Sharon O Jensen-Cody
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Zhiyong Zhu
- Department of Internal Medicine, Iowa City, IA 52242, USA
| | | | - Kamal Rahmouni
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA; Department of Internal Medicine, Iowa City, IA 52242, USA
| | - Matthew J Potthoff
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA; Veterans Affairs Health Care System, Iowa City, IA 52242, USA.
| |
Collapse
|
12
|
She QY, Li LJ, Liu MH, Tan RY, Zhong YW, Bao JF, Xie JD. Bibliometric analysis of fibroblast growth factor 21 research over the period 2000 to 2021. Front Pharmacol 2022; 13:1011008. [PMID: 36238554 PMCID: PMC9551462 DOI: 10.3389/fphar.2022.1011008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/06/2022] [Indexed: 01/10/2023] Open
Abstract
Background: Fibroblast growth factor 21 (FGF-21) is an evolutionarily conserved protein that plays multiple roles in metabolic regulation. Over the past two decades, numerous studies have deepened our understanding of its various functions and its pharmacological value. Nevertheless, most clinical trials have not achieved the desired results, which raises issues regarding its clinical value. In this bibliometric analysis, we evaluated the state of FGF-21 research over the last 20 years and identified important topics, achievements, and potential future directions. Methods: Publications related to FGF-21 were collected from the Web of Science Core Collection-Science Citation Index Expanded. HistCite, VOSviewer, and CiteSpace were used for bibliometric analysis and visualization, including the analysis of annual publications, leading countries, active institutions and authors, core journals, co-cited references, and keywords. Results: Altogether, 2,490 publications related to FGF-21 were obtained. A total of 12,872 authors from 2,628 institutions in 77 countries or regions reported studies on FGF-21. The United States of America was the most influential country in FGF-21 research. Alexei Kharitonenkov, Steven A. Kliewer, and David J. Mangelsdorf were the most influential scholars, and endocrinology journals had a core status in the field. The physiological roles, clinical translation, and FGF-21-based drug development were the main topics of research, and future studies may concentrate on the central effects of FGF-21, FGF-21-based drug development, and the effects of FGF-21 on non-metabolic diseases. Conclusion: The peripheral metabolic effects of FGF-21, FGF-21-based drug development, and translational research on metabolic diseases are the three major topics in FGF-21 research, whereas the central metabolic effects of FGF-21 and the effects of FGF-21 on metabolic diseases are the emerging trends and may become the following hot topics in FGF-21 research.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Li-Juan Li
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ming-Hong Liu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Ru-Yu Tan
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Wen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Jie-Dong Xie
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Jie-Dong Xie,
| |
Collapse
|
13
|
She QY, Bao JF, Wang HZ, Liang H, Huang W, Wu J, Zhong Y, Ling H, Li A, Qin SL. Fibroblast growth factor 21: A "rheostat" for metabolic regulation? Metabolism 2022; 130:155166. [PMID: 35183545 DOI: 10.1016/j.metabol.2022.155166] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 is an evolutionarily conserved factor that plays multiple important roles in metabolic homeostasis. During the past two decades, extensive investigations have improved our understanding of its delicate metabolic roles and identified its pharmacological potential to mitigate metabolic disorders. However, most clinical trials have failed to obtain the desired results, which raises issues regarding its clinical value. Fibroblast growth factor 21 is dynamically regulated by nutrients derived from food intake and hepatic/adipose release, which in turn act on the central nervous system, liver, and adipose tissues to influence food preference, hepatic glucose, and adipose fatty acid output. Based on this information, we propose that fibroblast growth factor 21 should not be considered merely an anti-hyperglycemia or anti-obesity factor, but rather a means of balancing of nutrient fluctuations to maintain an appropriate energy supply. Hence, the specific functions of fibroblast growth factor 21 in glycometabolism and lipometabolism depend on specific metabolic states, indicating that its pharmacological effects require further consideration.
Collapse
Affiliation(s)
- Qin-Ying She
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China; Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Hui-Zhen Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China
| | - Huixin Liang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Wentao Huang
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Jing Wu
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Yiwen Zhong
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Hanxin Ling
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510515, China.
| | - Shu-Lan Qin
- Department of Endocrinology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510999, China.
| |
Collapse
|
14
|
Zhou X, Zhang Y, Wang N. Regulation and Potential Biological Role of Fibroblast Growth Factor 21 in Chronic Kidney Disease. Front Physiol 2021; 12:764503. [PMID: 34675822 PMCID: PMC8525706 DOI: 10.3389/fphys.2021.764503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Chronic kidney disease (CKD) is an incurable progressive disease with the progressive impairment of kidney function, which can accelerate the progression of cardiovascular disease, increase the risk of infection, and lead to related complications such as anemia and bone disease. CKD is to a great extent preventable and treatable, and it is particularly important to improve the early diagnosis, strengthen the research underlying the mechanism of disease occurrence and development, and innovate new intervention measures. Fibroblast growth factor 21 (FGF21) belongs to one of members of endocrine FGF subfamily with evolutionarily conserved functions and performs a vital role in the regulation of energy balance and adipose metabolism. FGF21 needs to rely on β-Klotho protein to specifically bind to FGF receptor (FGFR), which activates the FGF21 signaling exerting the biological function. FGF21 is deemed as an important regulatory factor extensively modulating many cellular functions under physiologic and pathologic conditions. Although the metabolic effect of FGF21 has been extensively studied, its potential biological role in the kidney has not been generally investigated. In this review, we summarize the biological characteristics, regulation and biological function of FGF21 based on the current studies, and briefly discuss the potential relationship with chronic kidney disease.
Collapse
Affiliation(s)
- Xue Zhou
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
| | - Yuefeng Zhang
- Department of Nephrology, Tianjin Haihe Hospital, Tianjin, China
| | - Ning Wang
- Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
15
|
Shao W, Jin T. Hepatic hormone FGF21 and its analogues in clinical trials. Chronic Dis Transl Med 2021; 8:19-25. [PMID: 35620160 PMCID: PMC9126297 DOI: 10.1016/j.cdtm.2021.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 12/30/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is a fasting or stress inducible metabolic hormone produced mainly in the liver. It plays important roles in regulating both glucose and lipid homeostasis via interacting with a heterodimeric receptor complex comprising FGF receptor 1 (FGFR1) and β‐klotho (KLB). For the past decade, great effort has been made on developing FGF21 derivatives or specific FGF21 receptor agonists into therapeutic agents for various metabolic disorders including type 2 diabetes (T2D), obesity, and more importantly, nonalcoholic fatty liver disease (NAFLD). Here we have reviewed FGF21 gene and protein structures, its expression pattern, cellular signaling cascades that mediate FGF21 production and function. We have then summarized the six clinical trials utilizing four FGF21 analogues. Finally, two recent literatures on the development of GLP‐1 and FGF21 dual agonists were presented briefly.
Collapse
|
16
|
Liu D, Pang J, Shao W, Gu J, Zeng Y, He HH, Ling W, Qian X, Jin T. Hepatic Fibroblast Growth Factor 21 Is Involved in Mediating Functions of Liraglutide in Mice With Dietary Challenge. Hepatology 2021; 74:2154-2169. [PMID: 33851458 DOI: 10.1002/hep.31856] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS Several studies have shown that expression of hepatic fibroblast growth factor 21 (FGF21) can be stimulated by glucagon-like peptide 1 (GLP-1)-based diabetes drugs. As GLP-1 receptor (GLP-1R) is unlikely to be expressed in hepatocytes, we aimed to compare such stimulation in mice and in mouse hepatocytes, determine the involvement of GLP-1R, and clarify whether FGF21 mediates certain functions of the GLP-1R agonist liraglutide. APPROACH AND RESULTS Liver FGF21 expression was assessed in mice receiving a daily liraglutide injection for 3 days or in mouse primary hepatocytes (MPHs) undergoing direct liraglutide treatment. The effects of liraglutide on metabolic improvement and FGF21 expression were then assessed in high-fat diet (HFD)-fed mice and compared with the effects of the dipeptidyl-peptidase 4 inhibitor sitagliptin. Animal studies were also performed in Glp1r-/- mice and liver-specific FGF21-knockout (lFgf21-KO) mice. In wild-type mouse liver that underwent RNA sequencing and quantitative reverse-transcription PCR, we observed liraglutide-stimulated hepatic Fgf21 expression and a lack of Glp1r expression. In MPHs, liraglutide did not stimulate Fgf21. In mice with HFD-induced obesity, liraglutide or sitagliptin treatment reduced plasma triglyceride levels, whereas their effect on reducing body-weight gain was different. Importantly, increased hepatic FGF21 expression was observed in liraglutide-treated mice but was not observed in sitagliptin-treated mice. In HFD-fed Glp1r-/- mice, liraglutide showed no beneficial effects and could not stimulate Fgf21 expression. In lFgf21-KO mice undergoing dietary challenge, the body-weight-gain attenuation and lipid homeostatic effects of liraglutide were lost or significantly reduced. CONCLUSIONS We suggest that liraglutide-stimulated hepatic Fgf21 expression may require GLP-1R to be expressed in extrahepatic organs. Importantly, we revealed that hepatic FGF21 is required for liraglutide to lower body weight and improve hepatic lipid homeostasis. These observations advanced our mechanistic understanding of the function of GLP-1-based drugs in NAFLD.
Collapse
Affiliation(s)
- Dinghui Liu
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China.,Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Juan Pang
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Weijuan Shao
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jianqiu Gu
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Endocrinology and Metabolism, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China.,Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Yong Zeng
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Wenhua Ling
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoxian Qian
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Badakhshi Y, Shao W, Liu D, Tian L, Pang J, Gu J, Hu J, Jin T. Estrogen-Wnt signaling cascade regulates expression of hepatic fibroblast growth factor 21. Am J Physiol Endocrinol Metab 2021; 321:E292-E304. [PMID: 34229476 DOI: 10.1152/ajpendo.00638.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have generated the transgenic mouse line LTCFDN in which dominant negative TCF7L2 (TCF7L2DN) is specifically expressed in the liver during adulthood. Male but not female LTCFDN mice showed elevated hepatic and plasma triglyceride (TG) levels, indicating the existence of estrogen-β-cat/TCF signaling cascade that regulates hepatic lipid homeostasis. We show here that hepatic fibroblast growth factor 21 (FGF21) expression was reduced in male but not in female LTCFDN mice. The reduction was not associated with altered hepatic expression of peroxisome proliferator-activated receptor α (PPARα). In mouse primary hepatocytes (MPH), Wnt-3a treatment increased FGF21 expression in the presence of PPARα inhibitor. Results from our luciferase-reporter assay and chromatin immunoprecipitation suggest that evolutionarily conserved TCF binding motifs (TCFBs) on Fgf21 promoter mediate Wnt-3a-induced Fgf21 transactivation. Female mice showed reduced hepatic FGF21 production and circulating FGF21 level following ovariectomy (OVX), associated with reduced hepatic TCF expression and β-catenin S675 phosphorylation. Finally, in MPH, estradiol (E2) treatment enhanced FGF21 expression, as well as binding of TCF7L2 and ribonucleic acid (RNA) polymerase II to the Fgf21 promoter; and the enhancement can be attenuated by the G-protein-coupled estrogen receptor 1 (GPER) antagonist G15. Our observations hence indicate that hepatic FGF21 is among the effectors of the newly recognized E2-β-cat/TCF signaling cascade.NEW & NOTEWORTHY FGF21 is mainly produced in the liver. Therapeutic effect of FGF21 analogues has been demonstrated in clinical trials on reducing hyperlipidemia. We show here that Fgf21 transcription is positively regulated by Wnt pathway effector β-cat/TCF. Importantly, hepatic β-cat/TCF activity can be regulated by the female hormone estradiol, involving GPER. The investigation enriched our understanding on hepatic FGF21 hormone production, and expanded our view on metabolic functions of the Wnt pathway in the liver.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Weijuan Shao
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Dinghui Liu
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Cardiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Lili Tian
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Juan Pang
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Jianqiu Gu
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Departmemt of Endocrinology and Metabolism and the Institute of Endocrinology, The First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jim Hu
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tianru Jin
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada
- Divison of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
- Banting and Best Diabetes Centre, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Agrawal S, Maity S, AlRaawi Z, Al-Ameer M, Kumar TKS. Targeting Drugs Against Fibroblast Growth Factor(s)-Induced Cell Signaling. Curr Drug Targets 2021; 22:214-240. [PMID: 33045958 DOI: 10.2174/1389450121999201012201926] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The fibroblast growth factor (FGF) family is comprised of 23 highly regulated monomeric proteins that regulate a plethora of developmental and pathophysiological processes, including tissue repair, wound healing, angiogenesis, and embryonic development. Binding of FGF to fibroblast growth factor receptor (FGFR), a tyrosine kinase receptor, is facilitated by a glycosaminoglycan, heparin. Activated FGFRs phosphorylate the tyrosine kinase residues that mediate induction of downstream signaling pathways, such as RAS-MAPK, PI3K-AKT, PLCγ, and STAT. Dysregulation of the FGF/FGFR signaling occurs frequently in cancer due to gene amplification, FGF activating mutations, chromosomal rearrangements, integration, and oncogenic fusions. Aberrant FGFR signaling also affects organogenesis, embryonic development, tissue homeostasis, and has been associated with cell proliferation, angiogenesis, cancer, and other pathophysiological changes. OBJECTIVE This comprehensive review will discuss the biology, chemistry, and functions of FGFs, and its current applications toward wound healing, diabetes, repair and regeneration of tissues, and fatty liver diseases. In addition, specific aberrations in FGFR signaling and drugs that target FGFR and aid in mitigating various disorders, such as cancer, are also discussed in detail. CONCLUSION Inhibitors of FGFR signaling are promising drugs in the treatment of several types of cancers. The clinical benefits of FGF/FGFR targeting therapies are impeded due to the activation of other RTK signaling mechanisms or due to the mutations that abolish the drug inhibitory activity on FGFR. Thus, the development of drugs with a different mechanism of action for FGF/FGFR targeting therapies is the recent focus of several preclinical and clinical studies.
Collapse
Affiliation(s)
- Shilpi Agrawal
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Sanhita Maity
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Zeina AlRaawi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | - Musaab Al-Ameer
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States
| | | |
Collapse
|
19
|
Badakhshi Y, Jin T. Current understanding and controversies on the clinical implications of fibroblast growth factor 21. Crit Rev Clin Lab Sci 2020; 58:311-328. [PMID: 33382006 DOI: 10.1080/10408363.2020.1864278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Metabolic functions of the hepatic hormone fibroblast growth factor 21 (FGF21) have been recognized for more than a decade in studying the responses of human subjects and rodent models to nutritional stresses such as fasting, high-fat diet or ketogenic diet consumption, and ethanol intake. Our interest in the beneficial metabolic effects of FGF21 has risen due to its potential ability to serve as a therapeutic agent for various metabolic disorders, including type 2 diabetes, obesity, and fatty liver diseases, as well as its potential to act as a diagnostic or prognostic biomarker for metabolic and other disorders. Here, we briefly review the FGF21 gene and protein structures, its expression pattern, and cellular signaling cascades that mediate FGF21 production and function. We mainly focus on discussing experimental and clinical literature pertaining to FGF21 as a therapeutic agent. Furthermore, we present several lines of investigation, including a few studies conducted by our team, suggesting that FGF21 expression and function can be regulated by dietary polyphenol interventions. Finally, we discuss the literature debating FGF21 as a potential biomarker in various disorders.
Collapse
Affiliation(s)
- Yasaman Badakhshi
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Tianru Jin
- Division of Advanced Diagnostics, Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Canada.,Banting and Best Diabetes Center, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
20
|
Talukdar S, Kharitonenkov A. FGF19 and FGF21: In NASH we trust. Mol Metab 2020; 46:101152. [PMID: 33383173 PMCID: PMC8085573 DOI: 10.1016/j.molmet.2020.101152] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/04/2020] [Accepted: 12/18/2020] [Indexed: 02/08/2023] Open
Abstract
Objective FGF19 and FGF21 have shown therapeutic promise since their discovery, attested by the fact there are at least 5 assets that activate the FGFR/KLB pathway and one FGF19 analog in clinical development. Methods We performed a detailed analyses of published preclinical and clinical data to offer insights into the mechanism of action, as well as PK/PD and efficacy data of the clinical assets. Results Scouring the literature, we offer mechanistic insights from preclinical data using rodents and non-human primates and pharmacodynamic data from clinical studies. Conclusion The basic and applied science around endocrine FGFs has evolved exponentially over the years with FGF19 and FGF21 analogs are now entering Phase 3 clinical research. Fibroblast Growth Factors 19 and 21 (FGF19 and FGF21) are novel endocrine messengers that regulate multiple aspects of energy homeostasis. The magnitude and pleiotropic character of their beneficial pharmacology led to coordinated efforts to design novel FGF19/21-based therapeutics. The robust effects of FGF19 and FGF21 on lipid metabolism transformed clinical emphasis for these factors toward their use for NASH. In this review, we communicate an overview of FGF19 and FGF21 biology and the recent clinical developments with FGF21/19-based analogs.
Collapse
Affiliation(s)
- Saswata Talukdar
- Merck & Co., Inc., 213 East Grand Avenue, South San Francisco, CA, 94080, United States.
| | - Alexei Kharitonenkov
- AK Biotechnologies, LLC 3812 Verdure Lane, Zionsville, IN, 46077, United States.
| |
Collapse
|
21
|
Antibody-mediated activation of the FGFR1/Klothoβ complex corrects metabolic dysfunction and alters food preference in obese humans. Proc Natl Acad Sci U S A 2020; 117:28992-29000. [PMID: 33139537 PMCID: PMC7682391 DOI: 10.1073/pnas.2012073117] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) controls metabolic organ homeostasis and eating behavior via FGF receptor 1/Klothoβ (FGFR1/KLB) complexes. Here we show that a bispecific anti-FGFR1/KLB agonist antibody, BFKB8488A, mimics the actions of FGF21 in monkeys and humans. BFKB8488A induced marked weight loss in obese monkeys while elevating expression of FGFR1 target genes in adipose tissue. A clinical study in overweight human participants demonstrated that a single dose of BFKB8488A caused transient body weight reduction, sustained improvement in cardiometabolic parameters, and a trend toward reduction in preference for sweet taste and carbohydrate intake. These data suggest that antibody-mediated activation of the FGFR1/KLB complex in humans recapitulates the effects of FGF21 and can be used as therapy for obesity-related metabolic defects. Fibroblast growth factor 21 (FGF21) controls metabolic organ homeostasis and eating/drinking behavior via FGF receptor 1/Klothoβ (FGFR1/KLB) complexes expressed in adipocytes, pancreatic acinar cells, and the nervous system in mice. Chronic administration of recombinant FGF21 or engineered variants improves metabolic health in rodents, nonhuman primates, and humans; however, the rapid turnover of these molecules limits therapeutic utility. Here we show that the bispecific anti-FGFR1/KLB agonist antibody BFKB8488A induced marked weight loss in obese cynomolgus monkeys while elevating serum adiponectin and the adipose expression of FGFR1 target genes, demonstrating its action as an FGF21 mimetic. In a randomized, placebo-controlled, single ascending-dose study in overweight/obese human participants, subcutaneous BFKB8488A injection caused transient body weight reduction, sustained improvement in cardiometabolic parameters, and a trend toward reduction in preference for sweet taste and carbohydrate intake. These data suggest that specific activation of the FGFR1/KLB complex in humans can be used as therapy for obesity-related metabolic defects.
Collapse
|
22
|
Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16:654-667. [PMID: 32764725 DOI: 10.1038/s41574-020-0386-0] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that has important roles in regulating energy balance and glucose and lipid homeostasis through a heterodimeric receptor complex comprising FGF receptor 1 (FGFR1) and β-klotho. Administration of FGF21 to rodents or non-human primates causes considerable pharmacological benefits on a cluster of obesity-related metabolic complications, including a reduction in fat mass and alleviation of hyperglycaemia, insulin resistance, dyslipidaemia, cardiovascular disorders and non-alcoholic steatohepatitis (NASH). However, native FGF21 is unsuitable for clinical use owing to poor pharmacokinetic and biophysical properties. A large number of long-acting FGF21 analogues and agonistic monoclonal antibodies for the FGFR1-β-klotho receptor complexes have been developed. Several FGF21 analogues and mimetics have progressed to early phases of clinical trials in patients with obesity, type 2 diabetes mellitus and NASH. In these trials, the primary end points of glycaemic control have not been met, whereas substantial improvements were observed in dyslipidaemia, hepatic fat fractions and serum markers of liver fibrosis in patients with NASH. The complexity and divergence in pharmacology and pathophysiology of FGF21, interspecies variations in FGF21 biology, the possible existence of obesity-related FGF21 resistance and endogenous FGF21 inactivation enzymes represent major obstacles to clinical implementation of FGF21-based pharmacotherapies for metabolic diseases.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
23
|
Whole transcriptome analysis and validation of metabolic pathways in subcutaneous adipose tissues during FGF21-induced weight loss in non-human primates. Sci Rep 2020; 10:7287. [PMID: 32350364 PMCID: PMC7190698 DOI: 10.1038/s41598-020-64170-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 04/09/2020] [Indexed: 01/01/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) induces weight loss in mouse, monkey, and human studies. In mice, FGF21 is thought to cause weight loss by stimulating thermogenesis, but whether FGF21 increases energy expenditure (EE) in primates is unclear. Here, we explore the transcriptional response and gene networks active in adipose tissue of rhesus macaques following FGF21-induced weight loss. Genes related to thermogenesis responded inconsistently to FGF21 treatment and weight loss. However, expression of gene modules involved in triglyceride (TG) synthesis and adipogenesis decreased, and this was associated with greater weight loss. Conversely, expression of innate immune cell markers was increased post-treatment and was associated with greater weight loss. A lipogenesis gene module associated with weight loss was evaluated by testing the function of member genes in mice. Overexpression of NRG4 reduced weight gain in diet-induced obese mice, while overexpression of ANGPTL8 resulted in elevated TG levels in lean mice. These observations provide evidence for a shifting balance of lipid storage and metabolism due to FGF21-induced weight loss in the non-human primate model, and do not fully recapitulate increased EE seen in rodent and in vitro studies. These discrepancies may reflect inter-species differences or complex interplay of FGF21 activity and counter-regulatory mechanisms.
Collapse
|
24
|
Henriksson E, Andersen B. FGF19 and FGF21 for the Treatment of NASH-Two Sides of the Same Coin? Differential and Overlapping Effects of FGF19 and FGF21 From Mice to Human. Front Endocrinol (Lausanne) 2020; 11:601349. [PMID: 33414764 PMCID: PMC7783467 DOI: 10.3389/fendo.2020.601349] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/10/2020] [Indexed: 12/17/2022] Open
Abstract
FGF19 and FGF21 analogues are currently in clinical development for the potential treatment of NASH. In Phase 2 clinical trials analogues of FGF19 and FGF21 decrease hepatic steatosis with up to 70% (MRI-PDFF) after 12 weeks and as early as 12-16 weeks of treatment an improvement in NASH resolution and fibrosis has been observed. Therefore, this class of compounds is currently of great interest in the field of NASH. FGF19 and FGF21 belong to the endocrine FGF19 subfamily and both require the co-receptor beta-klotho for binding and signalling through the FGF receptors. FGF19 is expressed in the ileal enterocytes and is released into the enterohepatic circulation in response to bile acids stimuli and in the liver FGF19 inhibits hepatic bile acids synthesis by transcriptional regulation of Cyp7A1, which is the rate limiting enzyme. FGF21 is, on the other hand, highly expressed in the liver and is released in response to high glucose, high free-fatty acids and low amino-acid supply and regulates energy, glucose and lipid homeostasis by actions in the CNS and in the adipose tissue. FGF19 and FGF21 are differentially expressed, have distinct target tissues and separate physiological functions. It is therefore of peculiar interest to understand why treatment with both FGF19 and FGF21 analogues have strong beneficial effects on NASH parameters in mice and human and whether the mode of action is overlapping This review will highlight the physiological and pharmacological effects of FGF19 and FGF21. The potential mode of action behind the anti-steatotic, anti-inflammatory and anti-fibrotic effects of FGF19 and FGF21 will be discussed. Finally, development of drugs is always a risk benefit analysis and the human relevance of adverse effects observed in pre-clinical species as well as findings in humans will be discussed. The aim is to provide a comprehensive overview of the current understanding of this drug class for the potential treatment of NASH.
Collapse
|
25
|
Christoffersen B, Straarup EM, Lykkegaard K, Fels JJ, Sass-Ørum K, Zhang X, Raun K, Andersen B. FGF21 decreases food intake and body weight in obese Göttingen minipigs. Diabetes Obes Metab 2019; 21:592-600. [PMID: 30328263 DOI: 10.1111/dom.13560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 11/30/2022]
Abstract
AIMS The aim of this study was to assess the effect of FGF21 on food intake, body weight, body composition, glucose homeostasis, bone mineral density (BMD), cortisol and growth hormone (GH) in obese minipigs. The pig is a unique model for studying FGF21 pharmacology as it does not express UCP1, unlike mice and humans. METHODS Twelve obese Göttingen minipigs with a mean body weight of 91.6 ± 6.7 kg (mean ± SD) received subcutaneously either vehicle (n = 6) or recombinant human FGF21 (n = 6) once daily for 14 weeks (0.1 mg/kg for 9.5 weeks and 0.3 mg/kg for 4.5 weeks). RESULTS Treatment of obese minipigs with FGF21 led to a 50% reduction in food intake and a body weight loss of, on average, 18 kg compared to the vehicle group after 14 weeks of dosing. Glucose tolerance and insulin sensitivity, evaluated by intravenous glucose tolerance test, were significantly improved in the FGF21 group compared to the vehicle group at the end of the study. The plasma cortisol profile was unaffected by FGF21, whereas a small decrease in peak GH values was observed in the FGF21-treated animals after 7 to 9.5 weeks of treatment compared to the vehicle group. Whole-body BMD was not affected by 13 weeks of FGF21 dosing. CONCLUSION Despite a lack of UCP-1 in obese minipigs, FGF21 treatment induced a significant weight loss, primarily a result of reduction in food intake, with no adverse effect on BMD or plasma cortisol.
Collapse
|
26
|
Pilitsi E, Farr OM, Polyzos SA, Perakakis N, Nolen-Doerr E, Papathanasiou AE, Mantzoros CS. Pharmacotherapy of obesity: Available medications and drugs under investigation. Metabolism 2019; 92:170-192. [PMID: 30391259 DOI: 10.1016/j.metabol.2018.10.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Obesity is a chronic disease with a continuously rising prevalence that currently affects more than half a billion people worldwide. Energy balance and appetite are highly regulated via central and peripheral mechanisms, and weight loss triggers a homeostatic response leading to weight regain. Lifestyle and behavioral modifications are the cornerstones of obesity management; however, they often fail to achieve or sustain long-term weight loss. Pharmacotherapy added onto lifestyle modifications results in an additional, albeit limited, weight reduction. Regardless, this weight reduction of 5-10% conveys multiple cardiovascular and metabolic benefits. In this review, evidence on the food and drug administration (FDA)-approved medications, i.e., orlistat, lorcaserin, phentermine/topiramate, liraglutide and naltrexone/bupropion, is summarized. Furthermore, anti-obesity agents in the pipeline for potential future therapeutic use are presented.
Collapse
Affiliation(s)
- Eleni Pilitsi
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Olivia M Farr
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215.
| | - Stergios A Polyzos
- First Department of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Perakakis
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215
| | - Eric Nolen-Doerr
- Department of Medicine, Boston Medical Center, Boston, MA, 02118, United States of America
| | - Aimilia-Eirini Papathanasiou
- Division of Pediatric Newborn Medicine, Brigham and Women's Hospital/Harvard Medical School, Boston, MA 02215, United States of America
| | - Christos S Mantzoros
- Division of Endocrinology, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA 02215; Section of Endocrinology, VA Boston Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Abstract
It has been more than a dozen years since FGF21 burst on the metabolism field in a paper showing that its pharmacologic administration caused weight loss and improved insulin sensitivity and lipoprotein profiles in obese rodents. Since then, FGF21 analogs have advanced all the way to clinical trials, and much progress has been made in understanding FGF21's pharmacology and physiology. In this Perspective, we highlight some of the interesting themes that have emerged from this first dozen years of FGF21 research, including its roles in autocrine/paracrine and endocrine responses to metabolic stress.
Collapse
Affiliation(s)
- Steven A Kliewer
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - David J Mangelsdorf
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
Gabrielsson J, Andersson R, Jirstrand M, Hjorth S. Dose-Response-Time Data Analysis: An Underexploited Trinity. Pharmacol Rev 2018; 71:89-122. [DOI: 10.1124/pr.118.015750] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Andersen B, Straarup EM, Heppner KM, Takahashi DL, Raffaele V, Dissen GA, Lewandowski K, Bödvarsdottir TB, Raun K, Grove KL, Kievit P. FGF21 decreases body weight without reducing food intake or bone mineral density in high-fat fed obese rhesus macaque monkeys. Int J Obes (Lond) 2018; 42:1151-1160. [PMID: 29892039 DOI: 10.1038/s41366-018-0080-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 02/15/2018] [Accepted: 02/24/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Administration of FGF21 and FGF21 analogues reduce body weight; improve insulin sensitivity and dyslipidemia in animal models of obesity and in short term clinical trials. However potential adverse effects identified in mice have raised concerns for the development of FGF21 therapeutics. Therefore, this study was designed to address the actions of FGF21 on body weight, glucose and lipid metabolism and importantly its effects on bone mineral density (BMD), bone markers, and plasma cortisol in high-fat fed obese rhesus macaque monkeys. METHODS Obese non-diabetic rhesus macaque monkeys (five males and five ovariectomized (OVX) females) were maintained on a high-fat diet and treated for 12 weeks with escalating doses of FGF21. Food intake was assessed daily and body weight weekly. Bone mineral content (BMC) and BMD were measured by DEXA scanning prior to the study and on several occasions throughout the treatment period as well as during washout. Plasma glucose, glucose tolerance, insulin, lipids, cortisol, and bone markers were likewise measured throughout the study. RESULTS On average, FGF21 decreased body weight by 17.6 ± 1.6% after 12 weeks of treatment. No significant effect on food intake was observed. No change in BMC or BMD was observed, while a 2-fold increase in CTX-1, a marker of bone resorption, was seen. Overall glucose tolerance was improved with a small but significant decrease in HbA1C. Furthermore, FGF21 reduced concentrations of plasma triglycerides and very low density lipoprotein cholesterol. No adverse changes in clinical chemistry markers were demonstrated, and no alterations in plasma cortisol were observed during the study. CONCLUSION In conclusion, FGF21 reduced body weight in obese rhesus macaque monkeys without reducing food intake. Furthermore, FGF21 had beneficial effects on body composition, insulin sensitivity, and plasma triglycerides. No adverse effects on bone density or plasma cortisol were observed after 12 weeks of treatment.
Collapse
Affiliation(s)
| | | | | | - Diana L Takahashi
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Virginia Raffaele
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Gregory A Dissen
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Katherine Lewandowski
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | | | - Kirsten Raun
- Diabetes Research, Novo Nordisk A/S, DK-2760, Måløv, Denmark
| | - Kevin L Grove
- Obesity Research, Novo Nordisk A/S, Seattle, WA, 98109, USA
| | - Paul Kievit
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| |
Collapse
|
30
|
Nicholson T, Church C, Baker DJ, Jones SW. The role of adipokines in skeletal muscle inflammation and insulin sensitivity. JOURNAL OF INFLAMMATION-LONDON 2018; 15:9. [PMID: 29760587 PMCID: PMC5944154 DOI: 10.1186/s12950-018-0185-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/02/2018] [Indexed: 12/13/2022]
Abstract
Background There is currently an unmet clinical need to develop better pharmacological treatments to improve glucose handling in Type II Diabetes patients with obesity. To this end, determining the effect of obesity-associated adipokines on skeletal muscle insulin sensitivity has emerged as an important area of drug discovery research. This review draws together the data on the functional role of adipokines on skeletal muscle insulin signalling, highlights several understudied novel adipokines and provides a perspective on the direction of future research. Main body The adipokines leptin, resistin, visfatin and adiponectin have all been shown to affect skeletal muscle insulin sensitivity by impacting on the activity of components within insulin signalling pathways, affecting GLUT4 translocation and modulating insulin-mediated skeletal muscle glucose uptake. Furthermore, proteomic analysis of the adipose tissue secretome has recently identified several novel adipokines including vaspin, chemerin and pref-1 that are associated with obesity and insulin resistance in humans and functionally impact on insulin signalling pathways. However, predominantly, these functional findings are the result of studies in rodents, with in vitro studies utilising either rat L6 or murine C2C12 myoblasts and/or myotubes. Despite the methodology to isolate and culture human myoblasts and to differentiate them into myotubes being established, the use of human muscle in vitro models for the functional validation of adipokines on skeletal muscle insulin sensitivity is limited. Conclusion Understanding the mechanism of action and function of adipokines in mediating insulin sensitivity in skeletal muscle may lead to the development of novel therapeutics for patients with type 2 diabetes. However, to date, studies conducted in human skeletal muscle cells and tissues are limited. Such human in vitro studies should be prioritised in order to reduce the risk of candidate drugs failing in the clinic due to the assumption that rodent skeletal muscle target validation studies will to translate to human.
Collapse
Affiliation(s)
- Thomas Nicholson
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK
| | - Chris Church
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - David J Baker
- 2MedImmune, Cardiovascular and Metabolic Disease (CVMD), Milstein Building, Granta Park, Cambridge, CB21 6GH UK
| | - Simon W Jones
- 1MRC-ARUK Centre for Musculoskeletal Ageing Research, Medical School, Queen Elizabeth Hospital, University of Birmingham, Birmingham, B15 2WB UK.,3Institute of Inflammation and Ageing, MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Queen Elizabeth Hospital, Mindelsohn Way, Edgbaston, Birmingham, B15 2TT UK
| |
Collapse
|
31
|
Gillum MP. Parsing the Potential Neuroendocrine Actions of FGF21 in Primates. Endocrinology 2018; 159:1966-1970. [PMID: 29608670 DOI: 10.1210/en.2018-00208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/22/2018] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor (FGF) 21, a unique, largely liver-derived endocrine member of the FGF superfamily, is often thought of as a fasting factor owing to its induction in rodents during starvation. However, FGF21 is not increased by fasting for periods of <7 days in humans; instead, it rises sharply after acute alcohol and sugar intake and also after several days of overfeeding, suggesting another role in states of positive energy balance. Recent studies suggest that in the postingestive state, FGF21 may regulate energy intake and discourage consumption of alcohol and sugars, most likely through effector circuits in the central nervous system. FGF21 also increases fat oxidation in the liver, improves markers of insulin sensitivity, and stimulates adiponectin production. Thus, in primates, FGF21 may defend against hepatic nutrient overload by promoting adaptations that reduce ectopic lipid storage, including inhibiting sugar and alcohol appetite and promoting lipid sequestration in adipose tissue.
Collapse
Affiliation(s)
- Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
32
|
Hill CM, Laeger T, Albarado DC, McDougal DH, Berthoud HR, Münzberg H, Morrison CD. Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints. Sci Rep 2017; 7:8209. [PMID: 28811495 PMCID: PMC5557875 DOI: 10.1038/s41598-017-07498-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dietary protein restriction increases adipose tissue uncoupling protein 1 (UCP1), energy expenditure and food intake, and these effects require the metabolic hormone fibroblast growth factor 21 (FGF21). Here we test whether the induction of energy expenditure during protein restriction requires UCP1, promotes a resistance to cold stress, and is dependent on the concomitant hyperphagia. Wildtype, Ucp1-KO and Fgf21-KO mice were placed on control and low protein (LP) diets to assess changes in energy expenditure, food intake and other metabolic endpoints. Deletion of Ucp1 blocked LP-induced increases in energy expenditure and food intake, and exacerbated LP-induced weight loss. While LP diet increased energy expenditure and Ucp1 expression in an FGF21-dependent manner, neither LP diet nor the deletion of Fgf21 influenced sensitivity to acute cold stress. Finally, LP-induced energy expenditure occurred even in the absence of hyperphagia. Increased energy expenditure is a primary metabolic effect of dietary protein restriction, and requires both UCP1 and FGF21 but is independent of changes in food intake. However, the FGF21-dependent increase in UCP1 and energy expenditure by LP has no effect on the ability to acutely respond to cold stress, suggesting that LP-induced increases in FGF21 impact metabolic but not thermogenic endpoints.
Collapse
Affiliation(s)
- Cristal M Hill
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Thomas Laeger
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
- Department of Experimental Diabetology (DIAB), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Diana C Albarado
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - David H McDougal
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | |
Collapse
|
33
|
Gennemark P, Trägårdh M, Lindén D, Ploj K, Johansson A, Turnbull A, Carlsson B, Antonsson M. Translational Modeling to Guide Study Design and Dose Choice in Obesity Exemplified by AZD1979, a Melanin-concentrating Hormone Receptor 1 Antagonist. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2017; 6:458-468. [PMID: 28556607 PMCID: PMC5529746 DOI: 10.1002/psp4.12199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
In this study, we present the translational modeling used in the discovery of AZD1979, a melanin‐concentrating hormone receptor 1 (MCHr1) antagonist aimed for treatment of obesity. The model quantitatively connects the relevant biomarkers and thereby closes the scaling path from rodent to man, as well as from dose to effect level. The complexity of individual modeling steps depends on the quality and quantity of data as well as the prior information; from semimechanistic body‐composition models to standard linear regression. Key predictions are obtained by standard forward simulation (e.g., predicting effect from exposure), as well as non‐parametric input estimation (e.g., predicting energy intake from longitudinal body‐weight data), across species. The work illustrates how modeling integrates data from several species, fills critical gaps between biomarkers, and supports experimental design and human dose‐prediction. We believe this approach can be of general interest for translation in the obesity field, and might inspire translational reasoning more broadly.
Collapse
Affiliation(s)
- P Gennemark
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Trägårdh
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden.,University of Warwick, School of Engineering, Coventry, UK
| | - D Lindén
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - K Ploj
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Johansson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - A Turnbull
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - B Carlsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| | - M Antonsson
- Cardiovascular and Metabolic Diseases, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
34
|
Sonoda J, Chen MZ, Baruch A. FGF21-receptor agonists: an emerging therapeutic class for obesity-related diseases. Horm Mol Biol Clin Investig 2017; 30:/j/hmbci.ahead-of-print/hmbci-2017-0002/hmbci-2017-0002.xml. [PMID: 28525362 DOI: 10.1515/hmbci-2017-0002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 02/13/2017] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) analogs and FGF21 receptor agonists (FGF21RAs) that mimic FGF21 ligand activity constitute the new "FGF21-class" of anti-obesity and anti-diabetic molecules that improve insulin sensitivity, ameliorate hepatosteatosis and promote weight loss. The metabolic actions of FGF21-class proteins in obese mice are attributed to stimulation of brown fat thermogenesis and increased secretion of adiponectin. The therapeutic utility of this class of molecules is being actively investigated in clinical trials for the treatment of type 2 diabetes and non-alcoholic steatohepatitis (NASH). This review is focused on various FGF21-class molecules, their molecular designs and the preclinical and clinical activities. These molecules include modified FGF21 as well as agonistic antibodies against the receptor for FGF21, namely the complex of FGF receptor 1 (FGFR1) and the obligatory coreceptor βKlotho (KLB). In addition, a novel approach to increase endogenous FGF21 activity by inhibiting the FGF21-degrading protease fibroblast activation protein (FAP) is discussed.
Collapse
|
35
|
Santoso P, Nakata M, Shiizaki K, Boyang Z, Parmila K, Otgon-Uul Z, Hashimoto K, Satoh T, Mori M, Kuro-O M, Yada T. Fibroblast growth factor 21, assisted by elevated glucose, activates paraventricular nucleus NUCB2/Nesfatin-1 neurons to produce satiety under fed states. Sci Rep 2017; 7:45819. [PMID: 28374855 PMCID: PMC5379189 DOI: 10.1038/srep45819] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 03/08/2017] [Indexed: 01/23/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), liver-derived hormone, exerts diverse metabolic effects, being considered for clinical application to treat obesity and diabetes. However, its anorexigenic effect is debatable and whether it involves the central mechanism remains unclarified. Moreover, the neuron mediating FGF21’s anorexigenic effect and the systemic energy state supporting it are unclear. We explored the target neuron and fed/fasted state dependence of FGF21’s anorexigenic action. Intracerebroventricular (ICV) injection of FGF21 markedly suppressed food intake in fed mice with elevated blood glucose. FGF21 induced c-Fos expression preferentially in hypothalamic paraventricular nucleus (PVN), and increased mRNA expression selectively for nucleobindin 2/nesfatin-1 (NUCB2/Nesf-1). FGF21 at elevated glucose increased [Ca2+]i in PVN NUCB2/Nesf-1 neurons. FGF21 failed to suppress food intake in PVN-preferential Sim1-Nucb2-KO mice. These findings reveal that FGF21, assisted by elevated glucose, activates PVN NUCB2/Nesf-1 neurons to suppress feeding under fed states, serving as the glycemia-monitoring messenger of liver-hypothalamic network for integrative regulation of energy and glucose metabolism.
Collapse
Affiliation(s)
- Putra Santoso
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Masanori Nakata
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kazuhiro Shiizaki
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zhang Boyang
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Kumari Parmila
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Zesemdorj Otgon-Uul
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Koshi Hashimoto
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan.,Department of Preemptive Medicine and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tetsurou Satoh
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Masatomo Mori
- Department of Medicine and Molecular Science, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan.,Metabolic and Obese Research Institute, Maebashi, Gunma 371-0037, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| | - Toshihiko Yada
- Department of Physiology, Division of Integrative Physiology, Jichi Medical University School of Medicine, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
36
|
Kharitonenkov A, DiMarchi R. Fibroblast growth factor 21 night watch: advances and uncertainties in the field. J Intern Med 2017; 281:233-246. [PMID: 27878865 DOI: 10.1111/joim.12580] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fibroblast growth factor (FGF) 21 belongs to a hormone-like subgroup within the FGF superfamily. The members of this subfamily, FGF19, FGF21 and FGF23, are characterized by their reduced binding affinity for heparin that enables them to be transported in the circulation and function in an endocrine manner. It is likely that FGF21 also acts in an autocrine and paracrine fashion, as multiple organs can produce this protein and its plasma concentration seems to be below the level necessary to induce a pharmacological effect. FGF21 signals via FGF receptors, but for efficient receptor engagement it requires a cofactor, membrane-spanning βKlotho (KLB). The regulation of glucose uptake in adipocytes was the initial biological activity ascribed to FGF21, but this hormone is now recognized to stimulate many other pathways in vitro and display multiple pharmacological effects in metabolically compromised animals and humans. Understanding of the precise physiology of FGF21 and its potential medicinal role has evolved exponentially over the last decade, yet numerous aspects remain to be defined and others are a source of debate. Here we provide a historical overview of the advances in FGF21 biology focusing on the uncertainties in the mechanism of action as well as the differing viewpoints relating to this intriguing protein.
Collapse
Affiliation(s)
- A Kharitonenkov
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| | - R DiMarchi
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
37
|
Selimkhanov J, Thompson WC, Patterson TA, Hadcock JR, Scott DO, Maurer TS, Musante CJ. Evaluation of a Mathematical Model of Rat Body Weight Regulation in Application to Caloric Restriction and Drug Treatment Studies. PLoS One 2016; 11:e0155674. [PMID: 27227543 PMCID: PMC4882007 DOI: 10.1371/journal.pone.0155674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/03/2016] [Indexed: 12/28/2022] Open
Abstract
The purpose of this work is to develop a mathematical model of energy balance and body weight regulation that can predict species-specific response to common pre-clinical interventions. To this end, we evaluate the ability of a previously published mathematical model of mouse metabolism to describe changes in body weight and body composition in rats in response to two short-term interventions. First, we adapt the model to describe body weight and composition changes in Sprague-Dawley rats by fitting to data previously collected from a 26-day caloric restriction study. The calibrated model is subsequently used to describe changes in rat body weight and composition in a 23-day cannabinoid receptor 1 antagonist (CB1Ra) study. While the model describes body weight data well, it fails to replicate body composition changes with CB1Ra treatment. Evaluation of a key model assumption about deposition of fat and fat-free masses shows a limitation of the model in short-term studies due to the constraint placed on the relative change in body composition components. We demonstrate that the model can be modified to overcome this limitation, and propose additional measurements to further test the proposed model predictions. These findings illustrate how mathematical models can be used to support drug discovery and development by identifying key knowledge gaps and aiding in the design of additional experiments to further our understanding of disease-relevant and species-specific physiology.
Collapse
Affiliation(s)
- Jangir Selimkhanov
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - W. Clayton Thompson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Terrell A. Patterson
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - John R. Hadcock
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Dennis O. Scott
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Tristan S. Maurer
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| | - Cynthia J. Musante
- Cardiovascular and Metabolic Diseases Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts, United States of America
| |
Collapse
|