1
|
Antoñanzas J, Núñez-Córdoba JM, Salido-Vallejo R, Álvarez-Gigli L, Robledano R, España A. Association between adipophilin expression and risk of dyslipidaemia in patients with granuloma annulare. Med Clin (Barc) 2024; 163:232-237. [PMID: 38853069 DOI: 10.1016/j.medcli.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND An association between granuloma annulare (GA) and dyslipidaemia has been reported. Adipophilin expression may play a plausible role as a cutaneous biomarker for dyslipidaemia in patients with GA; however, this potential link remains to be explored. METHODS Patients with GA were identified at our hospital between January 1, 1990, and December 31, 2021, with a thorough review of their clinical and histological characteristics. Adipophilin staining was assessed in biopsies of GA lesions. RESULTS A total of 107 patients with GA were included. The prevalence of dyslipidaemia in patients with positive adipophilin staining was clearly higher than in those with negative labelling (62.3% vs 13.3%). Relative to the dyslipidaemia risk for patients with negative adipophilin expression, the odds for patients with positive adipophilin expression were increased 10-fold (OR: 10.8; p-value<.01). We identified 23 incident cases of dyslipidaemia over a median follow-up period of 91 months among 54 patients with no history of dyslipidaemia. The patients with positive adipophilin expression showed a higher risk of developing dyslipidaemia (HR: 8.9; p-value<.01). CONCLUSIONS Patients with positive adipophilin staining in their GA biopsies were found to be associated with a higher risk for both baseline and incident dyslipidaemia.
Collapse
Affiliation(s)
- Javier Antoñanzas
- Department of Dermatology, University Clinic of Navarra, Pamplona, Spain
| | - Jorge María Núñez-Córdoba
- Research Support Service, Central Clinical Trials Unit, University Clinic of Navarra, Pamplona, Spain
| | | | | | - Ramón Robledano
- Department of Pathology, University Clinic of Navarra, Pamplona, Spain
| | - Agustín España
- Department of Dermatology, University Clinic of Navarra, Pamplona, Spain.
| |
Collapse
|
2
|
Jiang X, Wang H, Nie K, Gao Y, Chen S, Tang Y, Wang Z, Su H, Dong H. Targeting lipid droplets and lipid droplet-associated proteins: a new perspective on natural compounds against metabolic diseases. Chin Med 2024; 19:120. [PMID: 39232826 PMCID: PMC11373146 DOI: 10.1186/s13020-024-00988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Lipid droplet (LD) is a metabolically active organelle, which changes dynamically with the metabolic state and energy requirements of cells. Proteins that either insert into the LD phospholipid monolayer or are present in the cytoplasm, playing a crucial role in lipid homeostasis and signaling regulation, are known as LD-associated proteins. METHODS The keywords "lipid droplets" and "metabolic diseases" were used to obtain literature on LD metabolism and pathological mechanism. After searching databases including Scopus, OVID, Web of Science, and PubMed from 2013 to 2024 using terms like "lipid droplets", "lipid droplet-associated proteins", "fatty liver disease", "diabetes", "diabetic kidney disease", "obesity", "atherosclerosis", "hyperlipidemia", "natural drug monomers" and "natural compounds", the most common natural compounds were identified in about 954 articles. Eventually, a total of 91 studies of 10 natural compounds reporting in vitro or in vivo studies were refined and summarized. RESULTS The most frequently used natural compounds include Berberine, Mangostin, Capsaicin, Caffeine, Genistein, Epigallocatechin-3-gallate, Chlorogenic acid, Betaine, Ginsenoside, Resveratrol. These natural compounds interact with LD-associated proteins and help ameliorate abnormal LDs in various metabolic diseases. CONCLUSION Natural compounds involved in the regulation of LDs and LD-associated proteins hold promise for treating metabolic diseases. Further research into these interactions may lead to new therapeutic applications.
Collapse
Affiliation(s)
- Xinyue Jiang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Chen
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueheng Tang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Su
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Blot G, Karadayi R, Przegralek L, Sartoris TM, Charles-Messance H, Augustin S, Negrier P, Blond F, Muñiz-Ruvalcaba FP, Rivera-de la Parra D, Vignaud L, Couturier A, Sahel JA, Acar N, Jimenez-Corona A, Delarasse C, Garfias Y, Sennlaub F, Guillonneau X. Perilipin 2-positive mononuclear phagocytes accumulate in the diabetic retina and promote PPARγ-dependent vasodegeneration. J Clin Invest 2023; 133:e161348. [PMID: 37781924 PMCID: PMC10702478 DOI: 10.1172/jci161348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/01/2023] [Indexed: 10/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and dyslipidemia, leads to nonproliferative diabetic retinopathy (NPDR). NPDR is associated with blood-retina barrier disruption, plasma exudates, microvascular degeneration, elevated inflammatory cytokine levels, and monocyte (Mo) infiltration. Whether and how the diabetes-associated changes in plasma lipid and carbohydrate levels modify Mo differentiation remains unknown. Here, we show that mononuclear phagocytes (MPs) in areas of vascular leakage in DR donor retinas expressed perilipin 2 (PLIN2), a marker of intracellular lipid load. Strong upregulation of PLIN2 was also observed when healthy donor Mos were treated with plasma from patients with T2DM or with palmitate concentrations typical of those found in T2DM plasma, but not under high-glucose conditions. PLIN2 expression correlated with the expression of other key genes involved in lipid metabolism (ACADVL, PDK4) and the DR biomarkers ANGPTL4 and CXCL8. Mechanistically, we show that lipid-exposed MPs induced capillary degeneration in ex vivo explants that was inhibited by pharmaceutical inhibition of PPARγ signaling. Our study reveals a mechanism linking dyslipidemia-induced MP polarization to the increased inflammatory cytokine levels and microvascular degeneration that characterize NPDR. This study provides comprehensive insights into the glycemia-independent activation of Mos in T2DM and identifies MP PPARγ as a target for inhibition of lipid-activated MPs in DR.
Collapse
Affiliation(s)
- Guillaume Blot
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
| | - Rémi Karadayi
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | | | | - Hugo Charles-Messance
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
| | | | - Pierre Negrier
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
| | - Frédéric Blond
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | | - David Rivera-de la Parra
- Comprehensive Care Center for Diabetes Patients, Salvador Zubrian National Institute of Health Sciences and Nutrition, Mexico City, Mexico
- Institute of Ophthalmology “Fundación Conde de Valenciana” I.A.P., Mexico City, Mexico
| | - Lucile Vignaud
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | - Aude Couturier
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- ED394 Physiology and Physiopathology Doctoral School, Sorbonne University, Paris, France
- Department of Ophthalmology, Hôpital Lariboisière, AP-HP, University of Paris, Paris, France
| | - José-Alain Sahel
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
- A. de Rothschild Foundation Hospital, Paris, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- CHNO des Quinze-Vingts, Institut Hospitalo-Universitaire FOReSIGHT, INSERM-DGOS CIC 1423, Paris, France
| | - Niyazi Acar
- Eye and Nutrition Research Group, Center for Taste and Food Sciences, CNRS, INRAE, Institut Agro, Bourgogne Franche-Comté University, Dijon, France
| | - Aida Jimenez-Corona
- Department of Epidemiology and Visual Health, Instituto de Oftalmología Fundación Conde de Valenciana, Mexico City, Mexico
- General Directorate of Epidemiology, Secretariat of Health, Mexico City, Mexico
| | - Cécile Delarasse
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | - Yonathan Garfias
- Department of Biochemistry, School of Medicine, National Autonomous University, Mexico City, Mexico
- Cell and Tissue Biology, Research Unit, Instituto de Oftalmología Fundación Conde de Valenciana”, Mexico City, Mexico
| | - Florian Sennlaub
- Institute of Vision, Sorbonne University, INSERM, CNRS, Paris, France
| | | |
Collapse
|
4
|
Liu XY, Li QS, Yang WH, Qiu Y, Zhang FF, Mei XH, Yuan QW, Sui RB. Inhibition of perilipin 2 attenuates cerebral ischemia/reperfusion injury by blocking NLRP3 inflammasome activation both in vivo and in vitro. In Vitro Cell Dev Biol Anim 2023; 59:204-213. [PMID: 37010675 DOI: 10.1007/s11626-023-00759-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/04/2023]
Abstract
Cerebral ischemia/reperfusion (CI/R) usually causes neuroinflammation within the central nervous system, further prompting irreversible cerebral dysfunction. Perilipin 2 (Plin2), a lipid droplet protein, has been reported to exacerbate the pathological process in different diseases, including inflammatory responses. However, the role and mechanism of Plin2 in CI/R injury are unclear. In this study, the rat models of transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R) were established to mimic I/R injury, and we found that Plin2 was highly expressed in the ischemic penumbra of tMCAO/R rats. The siRNA-mediated knockdown of Plin2 significantly decreased neurological deficit scores and reduced infarct areas in rats induced by I/R. Detailed investigation showed that Plin2 deficiency alleviated inflammation of tMCAO/R rats as evidenced by reduced secretion of proinflammatory factors and the blockade of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation. In vitro experiments showed that Plin2 expression was upregulated in mouse microglia subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Plin2 knockdown inhibited OGD/R-induced microglia activation and the accumulation of inflammation-related factors. Taken together, this study demonstrates that lipid droplet protein Plin2 contributes to the pathologic process of CI/R damage by impacting inflammatory response and NLRP3 inflammasome activation. Thus, Plin2 may provide a new therapeutic direction for CI/R injury.
Collapse
Affiliation(s)
- Xu-Ying Liu
- Medical College of Soochow University, Suzhou, Jiangsu, China
- Department of Neurology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qiu-Shi Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, Liaoning, China
| | - Wen-Hai Yang
- Department of Neurology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Yue Qiu
- Department of Neurology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Fei-Fei Zhang
- Department of Neurology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xiu-Hui Mei
- Department of Neurology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Qi-Wen Yuan
- Department of Neurology, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ru-Bo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Jinzhou, Liaoning, China.
| |
Collapse
|
5
|
Loix M, Wouters E, Vanherle S, Dehairs J, McManaman JL, Kemps H, Swinnen JV, Haidar M, Bogie JFJ, Hendriks JJA. Perilipin-2 limits remyelination by preventing lipid droplet degradation. Cell Mol Life Sci 2022; 79:515. [PMID: 36100764 DOI: 10.1007/s00018-022-04547-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 12/09/2022]
Abstract
Foamy macrophages and microglia containing lipid droplets (LDs) are a pathological hallmark of demyelinating disorders affecting the central nervous system (CNS). We and others showed that excessive accumulation of intracellular lipids drives these phagocytes towards a more inflammatory phenotype, thereby limiting CNS repair. To date, however, the mechanisms underlying LD biogenesis and breakdown in lipid-engorged phagocytes in the CNS, as well as their impact on foamy phagocyte biology and lesion progression, remain poorly understood. Here, we provide evidence that LD-associated protein perilipin-2 (PLIN2) controls LD metabolism in myelin-containing phagocytes. We show that PLIN2 protects LDs from lipolysis-mediated degradation, thereby impairing intracellular processing of myelin-derived lipids in phagocytes. Accordingly, loss of Plin2 stimulates LD turnover in foamy phagocytes, driving them towards a less inflammatory phenotype. Importantly, Plin2-deficiency markedly improves remyelination in the ex vivo brain slice model and in the in vivo cuprizone-induced demyelination model. In summary, we identify PLIN2 as a novel therapeutic target to prevent the pathogenic accumulation of LDs in foamy phagocytes and to stimulate remyelination.
Collapse
Affiliation(s)
- Melanie Loix
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Elien Wouters
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Sam Vanherle
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - James L McManaman
- Department of Obstetrics and Gynaecology, School of Medicine, University of Colorado, Denver, USA
| | - Hannelore Kemps
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, LKI-Louvain Cancer Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Mansour Haidar
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jeroen F J Bogie
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
- University MS Center Hasselt, Pelt, Belgium
| | - Jerome J A Hendriks
- Department of Immunology and Infection, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium.
- University MS Center Hasselt, Pelt, Belgium.
| |
Collapse
|
6
|
Shrimp Lipid Droplet Protein Perilipin Involves in the Pathogenesis of AHPND-Causing Vibrio parahaemolyticus. Int J Mol Sci 2022; 23:ijms231810520. [PMID: 36142431 PMCID: PMC9501514 DOI: 10.3390/ijms231810520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND), caused by a unique strain of Vibrio parahaemolyticus (Vp (AHPND)), has become the world’s most severe debilitating disease in cultured shrimp. Thus far, the pathogenesis of AHPND remains largely unknow. Herein, in Litopenaeus vannamei, we found that a Vp (AHPND) infection significantly increased the expression of lipid droplets (LDs) protein LvPerilipin, as well as promoted the formation of LDs. In addition, the knockdown of LvPerilipin increased the shrimp survival rate in response to the Vp (AHPND) infection, and inhibited the proliferation of Vp (AHPND). Furthermore, we demonstrated that LvPerilipin depletion could increase the production of reactive oxygen species (ROS), which may be responsible for the decreased Vp (AHPND) proliferation. Taken together, our current data for the first time reveal that the shrimp lipid droplets protein Perilipin is involved in the pathogenesis of Vp (AHPND) via promoting LDs accumulation and decreasing ROS production.
Collapse
|
7
|
Yin L, Wang L, Shi Z, Ji X, Liu L. The Role of Peroxisome Proliferator-Activated Receptor Gamma and Atherosclerosis: Post-translational Modification and Selective Modulators. Front Physiol 2022; 13:826811. [PMID: 35309069 PMCID: PMC8924581 DOI: 10.3389/fphys.2022.826811] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis is the hallmark of cardiovascular disease (CVD) which is a leading cause of death in type 2 diabetes patients, and glycemic control is not beneficial in reducing the potential risk of CVD. Clinically, it was shown that Thiazolidinediones (TZDs), a class of peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are insulin sensitizers with reducing risk of CVD, while the potential adverse effects, such as weight gain, fluid retention, bone loss, and cardiovascular risk, restricts its use in diabetic treatment. PPARγ, a ligand-activated nuclear receptor, has shown to play a crucial role in anti-atherosclerosis by promoting cholesterol efflux, repressing monocytes infiltrating into the vascular intima under endothelial layer, their transformation into macrophages, and inhibiting vascular smooth muscle cells proliferation as well as migration. The selective activation of subsets of PPARγ targets, such as through PPARγ post-translational modification, is thought to improve the safety profile of PPARγ agonists. Here, this review focuses on the significance of PPARγ activity regulation (selective activation and post-translational modification) in the occurrence, development and treatment of atherosclerosis, and further clarifies the value of PPARγ as a safe therapeutic target for anti-atherosclerosis especially in diabetic treatment.
Collapse
Affiliation(s)
- Liqin Yin
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Lihui Wang
- Department of Medical Imaging, Shanghai East Hospital (East Hospital Affiliated to Tongji University), Tongji University, Shanghai, China
| | - Zunhan Shi
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohui Ji
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Longhua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Longhua Liu,
| |
Collapse
|
8
|
Perilipin 2 Impacts Acute Kidney Injury via Regulation of PPAR α. J Immunol Res 2021; 2021:9972704. [PMID: 34541006 PMCID: PMC8445733 DOI: 10.1155/2021/9972704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
Renal ischemia-reperfusion (I/R) can induce oxidative stress and injury via the generation of reactive oxygen species (ROS). Renal proximal tubular cells are susceptible to oxidative stress, and the dysregulation of renal proximal tubular cellular homeostasis can damage cells via apoptotic pathways. A recent study showed that the generation of ROS can increase perilipin 2 (Plin2) expression in HepG2 cells. Some evidence has also demonstrated the association between Plin2 expression and renal tumors. However, the underlying mechanism of Plin2 in I/R-induced acute kidney injury (AKI) remains elusive. Here, using a mouse model of I/R-induced AKI, we found that ROS generation was increased and the expression of Plin2 was significantly upregulated. An in vitro study further revealed that the expression of Plin2, and the generation of ROS were significantly upregulated in primary tubular cells treated with hydrogen peroxide. Accordingly, Plin2 knockdown decreased apoptosis in renal proximal tubular epithelial cells treated with hydrogen peroxide, which depended on the activation of peroxisome proliferator-activated receptor α (PPARα). Overall, the present study demonstrated that Plin2 is involved in AKI; knockdown of this marker might limit apoptosis via the activation of PPARα. Consequently, the downregulation of Plin2 could be a novel therapeutic strategy for AKI.
Collapse
|
9
|
Russo M, Montone RA, D'Amario D, Camilli M, Canonico F, Santamaria C, Iannaccone G, Pedicino D, Pidone C, Galli M, Trani C, Severino A, Liuzzo G, Niccoli G, Crea F. Role of perilipin 2 in microvascular obstruction in patients with ST-elevation myocardial infarction. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2021; 10:633-642. [PMID: 33620432 DOI: 10.1093/ehjacc/zuaa004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/27/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
AIMS Coronary microvascular obstruction (MVO) occurs frequently in patients with ST-elevation myocardial infarction (STEMI) after percutaneous coronary intervention (PCI). However, mechanisms are multiple and not yet fully understood. Perilipin 2 (PLIN2) is involved in lipid metabolism of macrophages resident in atherosclerotic plaques, along with a role in enhancing plaque inflammation. We studied the association between PLIN2 and MVO in STEMI patients undergoing primary PCI, and we assessed the role of PLIN2 to predict major adverse cardiovascular events (MACEs). METHODS AND RESULTS STEMI patients undergoing primary PCI were enrolled. PLIN2 was evaluated in peripheral blood monocytes; MVO was assessed using coronary angiogram. MACEs, as a composite of cardiac death, non-fatal myocardial infarction, re-admission for heart failure, and target vessel revascularization were investigated at follow-up. Among 100 STEMI patients, 33 (33.0%) had MVO. Patients with MVO had higher levels of PLIN2 (1.03 ± 0.28 vs. 0.90 ± 0.16, P = 0.019). Age [odds ratio (OR) (95% confidence interval, CI), 1.045 (1.005-1.087), P = 0.026] and PLIN2 [OR (95% CI), 16.606 (2.027-136.030), P = 0.009] were associated with MVO at univariate analysis, although only PLIN2 [OR (95% CI), 12.325 (1.446-105.039), P = 0.022] was associated with MVO at multivariate analysis. After a mean follow-up of 182.2 ± 126.6 days, 13 MACEs occurred. MVO [hazard ratio (HR) (95% CI), 6.791 (2.053-22.462), P = 0.002], hypercholesterolaemia [HR (95% CI), 3.563 (1.094-11.599), P = 0.035], and PLIN2 [HR (95% CI), 82.991 (9.857-698.746), P < 0.001] were predictors of MACEs at univariate analysis, although only PLIN2 [HR (95% CI), 26.904 (2.461-294.100), P = 0.007] predicted MACEs at multivariate analysis. CONCLUSIONS In STEMI patients undergoing primary PCI, PLIN2 was independently associated with MVO and was an independent predictor of MACEs at follow-up, suggesting to further explore PLIN2 as a target for future cardioprotection therapies.
Collapse
Affiliation(s)
- Michele Russo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Rocco A Montone
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Domenico D'Amario
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Francesco Canonico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Claudia Santamaria
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Daniela Pedicino
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Chiara Pidone
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Mattia Galli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy
| | - Carlo Trani
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy.,Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Anna Severino
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy.,Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy.,Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Giampaolo Niccoli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy.,Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, L.go F. Vito, 1, 00168, Rome, Italy.,Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, L.go F. Vito, 1, 00168 Rome, Italy
| |
Collapse
|
10
|
Conte M, Medici V, Malagoli D, Chiariello A, Cirrincione A, Davin A, Chikhladze M, Vasuri F, Legname G, Ferrer I, Vanni S, Marcon G, Poloni TE, Guaita A, Franceschi C, Salvioli S. Expression pattern of perilipins in human brain during aging and in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12756. [PMID: 34312912 PMCID: PMC9291275 DOI: 10.1111/nan.12756] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
AIMS Perilipins are conserved proteins that decorate intracellular lipid droplets and are essential for lipid metabolism. To date, there is limited knowledge on their expression in human brain or their involvement in brain aging and neurodegeneration. The aim of this study was to characterise the expression levels of perilipins (Plin1-Plin5) in different cerebral areas from subjects of different age, with or without signs of neurodegeneration. METHODS We performed real-time RT-PCR, western blotting, immunohistochemistry and confocal microscopy analyses in autoptic brain samples of frontal and temporal cortex, cerebellum and hippocampus from subjects ranging from 33 to 104 years of age, with or without histological signs of neurodegeneration. To test the possible relationship between Plins and inflammation, correlation analysis with IL-6 expression was also performed. RESULTS Plin2, Plin3 and Plin5, but not Plin1 and Plin4, are expressed in the considered brain areas with different intensities. Plin2 appears to be expressed more in grey matter, particularly in neurons in all the areas analysed, whereas Plin3 and Plin5 appear to be expressed more in white matter. Plin3 seems to be expressed more in astrocytes. Only Plin2 expression is higher in old subjects and patients with early tauopathy or Alzheimer's disease and is associated with IL-6 expression. CONCLUSIONS Perilipins are expressed in human brain but only Plin2 appears to be modulated with age and neurodegeneration and linked to an inflammatory state. We propose that the accumulation of lipid droplets decorated with Plin2 occurs during brain aging and that this accumulation may be an early marker and initial step of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| | - Valentina Medici
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Davide Malagoli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio Chiariello
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Alice Cirrincione
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Annalisa Davin
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Maia Chikhladze
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesco Vasuri
- Pathology Unit, S. Orsola-Malpighi Bologna Authority Hospital, Bologna, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.,Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Institute Carlos III, Ministry of Health, L'Hospilatet del Llobregat, Barcelona, Spain
| | - Silvia Vanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Gabriella Marcon
- DAME, University of Udine, Udine, Italy.,Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Tino Emanuele Poloni
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Antonio Guaita
- Department of Neurology and Neuropathology, Golgi-Cenci Foundation, Milan, Italy
| | - Claudio Franceschi
- Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky University, Nizhniy Novgorod, Russia
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Konijnenberg LSF, van Royen N. Perilipin 2 - another piece in the big jigsaw puzzle of coronary no reflow. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2021; 10:643-644. [PMID: 34125182 DOI: 10.1093/ehjacc/zuab035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lara S F Konijnenberg
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
| | - Niels van Royen
- Department of Cardiology, Radboud University Medical Center, Postbus 9101, 6500 HB, Nijmegen, The Netherlands
| |
Collapse
|
12
|
Friend or Foe: Lipid Droplets as Organelles for Protein and Lipid Storage in Cellular Stress Response, Aging and Disease. Molecules 2020; 25:molecules25215053. [PMID: 33143278 PMCID: PMC7663626 DOI: 10.3390/molecules25215053] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Lipid droplets (LDs) were considered as a mere lipid storage organelle for a long time. Recent evidence suggests that LDs are in fact distinct and dynamic organelles with a specialized proteome and functions in many cellular roles. As such, LDs contribute to cellular signaling, protein and lipid homeostasis, metabolic diseases and inflammation. In line with the multitude of functions, LDs interact with many cellular organelles including mitochondria, peroxisomes, lysosomes, the endoplasmic reticulum and the nucleus. LDs are highly mobile and dynamic organelles and impaired motility disrupts the interaction with other organelles. The reduction of interorganelle contacts results in a multitude of pathophysiologies and frequently in neurodegenerative diseases. Contacts not only supply lipids for β-oxidation in mitochondria and peroxisomes, but also may include the transfer of toxic lipids as well as misfolded and harmful proteins to LDs. Furthermore, LDs assist in the removal of protein aggregates when severe proteotoxic stress overwhelms the proteasomal system. During imbalance of cellular lipid homeostasis, LDs also support cellular detoxification. Fine-tuning of LD function is of crucial importance and many diseases are associated with dysfunctional LDs. We summarize the current understanding of LDs and their interactions with organelles, providing a storage site for harmful proteins and lipids during cellular stress, aging inflammation and various disease states.
Collapse
|
13
|
Cytosolic phospholipase A 2-α participates in lipid body formation and PGE 2 release in human neutrophils stimulated with an L-amino acid oxidase from Calloselasma rhodostoma venom. Sci Rep 2020; 10:10976. [PMID: 32620771 PMCID: PMC7334223 DOI: 10.1038/s41598-020-67345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/05/2020] [Indexed: 12/02/2022] Open
Abstract
Cr-LAAO, an l-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, has been demonstrated as a potent stimulus for neutrophil activation and inflammatory mediator production. However, the mechanisms involved in Cr-LAAO induced neutrophil activation has not been well characterized. Here we investigated the mechanisms involved in Cr-LAAO-induced lipid body (also known as lipid droplet) biogenesis and eicosanoid formation in human neutrophils. Using microarray analysis, we show for the first time that Cr-LAAO plays a role in the up-regulation of the expression of genes involved in lipid signalling and metabolism. Those include different members of phospholipase A2, mostly cytosolic phospholipase A2-α (cPLA2-α); and enzymes involved in prostaglandin synthesis including cyclooxygenases 2 (COX-2), and prostaglandin E synthase (PTGES). In addition, genes involved in lipid droplet formation, including perilipin 2 and 3 (PLIN 2 and 3) and diacylglycerol acyltransferase 1 (DGAT1), were also upregulated. Furthermore, increased phosphorylation of cPLA2-α, lipid droplet biogenesis and PGE2 synthesis were observed in human neutrophils stimulated with Cr-LAAO. Treatment with cPLA2-α inhibitor (CAY10650) or DGAT-1 inhibitor (A922500) suppressed lipid droplets formation and PGE2 secretion. In conclusion, we demonstrate for the first time the effects of Cr-LAAO to regulate neutrophil lipid metabolism and signalling.
Collapse
|
14
|
Lu YS, Jiang Y, Yuan JP, Jiang SB, Yang Y, Zhu PY, Sun YZ, Qi RQ, Liu T, Wang HX, Wu Y, Gao XH, Chen HD. UVA Induced Oxidative Stress Was Inhibited by Paeoniflorin/Nrf2 Signaling or PLIN2. Front Pharmacol 2020; 11:736. [PMID: 32499710 PMCID: PMC7243259 DOI: 10.3389/fphar.2020.00736] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022] Open
Abstract
Photodamages caused by UVA radiation induced oxidative injuries are closely related to photoaging and skin cancer. Paeoniflorin (PF), extracted from the root of Paeonia lactiflora, has been reported to be an effective antioxidant. PLIN2, known as adipose differentiation-related protein, has been previously involved in the regulation of oxidative stress. In this study, we were sought to investigate the photo-protective property of PF and PLIN2 in UVA-radiated human dermal fibroblasts (HDFs). HDFs were pre-treated with PF (800 μM) followed by UVA radiation (22.5 J/cm2). MTS activity, cell apoptosis, ROS, MDA, and SOD were detected, respectively. The expressions of Nrf2, HO-1, NQ-O1, and PLIN2 were determined using RT-qPCR or western blot. Nrf2 was silenced by siRNA, and PLIN2 was overexpressed via lentiviral transduction. Comparing to the UVA radiation, PF pre-treatment could prominently increase the MTS activity, decrease cell apoptosis, reduce the generations of ROS and MDA, increase the activity of SOD and increase the expression of Nrf2 and its target genes HO-1 and NQ-O1. When Nrf2 was knocked down, PF lost above protective properties. In addition, UVA induced oxidative stress led to upregulation of PLIN2 and the latter could be decreased by PF. Overexpression of PLIN2 improved MTS activity and reduced MDA level in HDFs. The combination of PLIN2 overexpression and PF pre-treatment corporately inhibited UVA-induced injury. Besides, we also found that PF and PLIN2 had a compensatory protection against UVA induced oxidative stress. In conclusion, our study demonstrated that UVA induced photodamages could be inhibited by PF via Nrf2/HO-1/NQ-O1 signaling pathway or by PLIN2, and the combination of PLIN2 overexpression and PF played additive effects against UVA-related oxidative stress.
Collapse
Affiliation(s)
- Yan-Song Lu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Jiang
- Department of Internal Medicine, School of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jin-Ping Yuan
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Shi-Bin Jiang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yang Yang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Pei-Yao Zhu
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, China
| | - Yu-Zhe Sun
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Rui-Qun Qi
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Urinary Surgery, the First Hospital of China Medical University, Shenyang, China
| | - He-Xiao Wang
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Wu
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Xing-Hua Gao
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| | - Hong-Duo Chen
- Key Laboratory of Immunodermatology, Ministry of Education, Department of Dermatology, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Zhang Q, Zhang P, Li B, Dang H, Jiang J, Meng L, Zhang H, Zhang Y, Wang X, Li Q, Wang Y, Liu C, Li F. The Expression of Perilipin Family Proteins can be used as Diagnostic Markers of Liposarcoma and to Differentiate Subtypes. J Cancer 2020; 11:4081-4090. [PMID: 32368290 PMCID: PMC7196260 DOI: 10.7150/jca.41736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 03/27/2020] [Indexed: 12/23/2022] Open
Abstract
Objective: Liposarcoma is a mesenchymal malignant tumor characterized by adipocyte differentiation which is divided into four subtypes with different prognosis. Accurate histopathological diagnosis is essential for precise treatment. Perilipins, including PLIN1, PLIN2, PLIN3, PLIN4, PLIN5, is a family of lipid droplet-associated proteins that participate in lipid metabolism regulation. The role that perilipins play in sarcomas is not clear. This study aims to assess perilipins expression in subtypes of liposarcoma and various non-lipomatous sarcomas. Methods: A large set of 245 soft tissue sarcoma paraffin-embedded samples including 66 liposarcomas and 179 non-lipomatous sarcomas were collected for tissue microarray and immunohistochemistry to assess perilipins expression. Results: PLIN1 expression was shown in most liposarcomas (41/66) and was absent in non-lipomatous sarcomas (0/179). PLIN4 expression was shown in some liposarcomas (21/66) and was almost negative in non-lipomatous sarcomas (2/179). PLIN1 and PLIN4 expressions in liposarcoma were higher (both P<0.001) than those in non-lipomatous sarcoma. Both PLIN1 and PLIN4 also had a significant difference in liposarcoma subtypes (both P<0.001). PLIN2, PLIN3 and PLIN5 were widely expressed in liposarcomas, rhabdomyosarcomas, leiomyosarcomas, dermatofibrosarcoma protuberans, undifferentiated sarcomas, fibrosarcomas, Ewing's sarcomas and epithelioid sarcomas. PLIN2, PLIN3 and PLIN5 expressions were significantly different among non-lipomatous sarcoma (all P<0.01). Except for PLIN3, the expression of the other four perilipin members in liposarcoma was pairwise related. Conclusions: PLIN1 and PLIN4 can be used as diagnostic markers of liposarcoma and to differentiate liposarcoma subtypes. The combined application of whole perilipin family immunohistochemistry may help to distinguish differently differentiated sarcomas.
Collapse
Affiliation(s)
- Qiaochu Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Pengpeng Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China.,Department of Pathology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing, 100032 China
| | - Bingcheng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Hongwei Dang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Jinfang Jiang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Lian Meng
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Haijun Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Yangyang Zhang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Xiaomeng Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Qianru Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Yang Wang
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Chunxia Liu
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China
| | - Feng Li
- Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi 832002, China.,Department of Pathology and Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
16
|
Redwan EM, Alkarim SA, El-Hanafy AA, Saad YM, Almehdar HA, Uversky VN. Disorder in milk proteins: adipophilin and TIP47, important constituents of the milk fat globule membrane. J Biomol Struct Dyn 2019; 38:1214-1229. [PMID: 30896308 DOI: 10.1080/07391102.2019.1592027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Milk fat globules (MFGs), which are secreted by the epithelial cells of the lactating mammary glands, account for the most of the nutritional value of milk. They are enveloped by the milk fat globule membrane (MFGM), a complex structure consisting of three phospholipid membrane monolayers and containing various lipids. Depending on the origin of milk, specific proteins accounts for 5-70% of the MFGM mass. Proteome of MFGMs includes hundreds of proteins, with nine major components being adipophilin, butyrophilin, cluster of differentiation 36, fatty acid binding protein, lactadherin, mucin 1, mucin 15, tail-interacting protein 47 (TIP47), and xanthine oxidoreductase. Two of the MFGM components, adipophilin and TIP47, belong to the five-member perilipin family of lipid droplet proteins. Adipophilin is involved in the formation of cytoplasmic lipid droplets and secretion of MFGs. This protein is also related to the formation of other lipid droplets that exist in most cell types, playing an important role in the transport of lipids from ER to the surface of lipid droplets. TIP47 acts as a cytoplasmic sorting factor for mannose 6-phosphate receptors and is recruited to the MFGM. Therefore, both adipophilin and TIP47 are moonlighting proteins, each possessing several unrelated functions. This review focuses on the main functions and specific structural features of adipophilin and TIP47, analyzes similarities and differences of these proteins among different species, and describes these proteins in the context of other members of the perilipin family.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elrashdy M Redwan
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Protein Research Department, Therapeutic and Protective Proteins Laboratory, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, Alexandria, Egypt
| | - Saleh A Alkarim
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amr A El-Hanafy
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Nucleic Acid Research, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research & Technology Applications, Borg EL-Arab, Alexandria, Egypt
| | - Yasser M Saad
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Genetics Laboratory, National Institute of Oceanography and Fisheries, Cairo, Egypt
| | - Hussein A Almehdar
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Russia Moscow Region.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
17
|
Meng Z, Si CY, Teng S, Yu XH, Li HY. Tanshinone IIA inhibits lipopolysaccharide‑induced inflammatory responses through the TLR4/TAK1/NF‑κB signaling pathway in vascular smooth muscle cells. Int J Mol Med 2019; 43:1847-1858. [PMID: 30816448 DOI: 10.3892/ijmm.2019.4100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
To aim of the present study was to determine whether Tanshinone IIA (Tan IIA) inhibits lipopolysaccharide (LPS)‑induced inflammation in vascular smooth muscle cells (VSMCs) from rats and elucidate the underlying molecular mechanism. VSMCs were primarily cultured and then treated with LPS (1 µg/l) and Tan IIA (25, 50 and 100 µmol/l) for 24 h. Monocyte chemoattractant protein (MCP)‑1, interleukin (IL)‑6 and tumor necrosis factor (TNF)‑α levels were detected by ELISA and reverse transcription‑quantitative polymerase chain reaction. Nitric oxide (NO) production was measured using the Griess reaction. The expression of Toll‑like receptor 4 (TLR4), nuclear factor (NF)‑κB (p65), and inducible NO synthase (iNOS), and the phosphorylation of transforming growth factor‑β‑activated kinase 1 (TAK1) were detected by western blot analysis. Tan IIA inhibited the LPS‑induced expression of MCP‑1, IL‑6, and TNF‑α in a concentration‑dependent manner and inhibited iNOS‑mediated NO production. In addition, Tan IIA suppressed the expression of TLR4, the phosphorylation of TAK1, and the nuclear translocation of NF‑κB (p65). The anti‑TLR4 antibody and TAK1 inhibitor 5Z‑7‑oxozeaenol partially attenuated the LPS‑induced expression of proinflammatory cytokines. In conclusion, Tan IIA inhibits LPS‑induced inflammatory responses in VSMCs in vitro through the partial suppression of the TLR4/TAK1/NF‑κB signaling pathway.
Collapse
Affiliation(s)
- Zhe Meng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chun-Ying Si
- Department of Cardiology, The First Affiliated Hospital of Henan University of TCM, Zhengzhou, Henan 450003, P.R. China
| | - Shuai Teng
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xin-Hui Yu
- Department of Thoracic Surgery, Taicang Affiliated Hospital of Soochow University, Taicang, Jiangsu 210023, P.R. China
| | - Hai-Yu Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
18
|
Norman JE, Aung HH, Wilson DW, Rutledge JC. Inhibition of perilipin 2 expression reduces pro-inflammatory gene expression and increases lipid droplet size. Food Funct 2018; 9:6245-6256. [PMID: 30402637 PMCID: PMC6292725 DOI: 10.1039/c8fo01420e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our lab previously demonstrated that triglyceride-rich lipoprotein (TGRL) lipolysis products induce lipid droplet formation and pro-inflammatory gene expression in monocytes. We hypothesized that the inhibition of perilipin 2 expression in THP-1 monocytes would reduce lipid droplet formation and suppress pro-inflammatory gene expression induced by TGRL lipolysis products. In the current study, we use microarray analysis to identify gene expression altered by TGRL lipolysis products in THP-1 monocytes. We confirmed the expression of selected genes by quantitative reverse transcription PCR and characterized lipid droplet formation in these cells after exposure to TGRL lipolysis products. Using siRNA inhibition of perilipin 2 expression, we examined the role of perilipin 2 in the response of THP-1 monocytes to TGRL lipolysis products. We found that perilipin 2 siRNA increased the intracellular triglyceride content, increased the size of lipid droplets, and reduced pro-atherogenic and pro-inflammatory gene expression. We saw a reduction of serum/glucocorticoid kinase 1, v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian), chemokine (C-C motif) ligand 3, and interleukin 8 gene expression induced by TGRL lipolysis products. This study supports previous findings that reduction of perilipin 2 expression is protective against atherogenesis, while finding an unexpected increase in lipid droplet size with reduced perilipin 2 expression.
Collapse
Affiliation(s)
- Jennifer E Norman
- University of California, Davis, School of Medicine, Department of Internal Medicine, Division of Cardiovascular Medicine, GBSF 5404, 451 Health Sciences Dr. Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
19
|
Jin Y, Tan Y, Chen L, Liu Y, Ren Z. Reactive Oxygen Species Induces Lipid Droplet Accumulation in HepG2 Cells by Increasing Perilipin 2 Expression. Int J Mol Sci 2018; 19:ijms19113445. [PMID: 30400205 PMCID: PMC6274801 DOI: 10.3390/ijms19113445] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/16/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the world's most common liver disease. The disease can develop liver fibrosis or even carcinomas from the initial hepatic steatosis, and this process is influenced by many factors. Reactive oxygen species (ROS), as potent oxidants in cells, have been reported previously to play an important role in the development of NAFLD progression via promoting neutral lipid accumulation. Here, we found that ROS can promote lipid droplet formation in hepatocytes by promoting perilipin2 (PLIN2) expression. First, we used different concentrations of hydrogen peroxide to treat HepG2 cells and found that the number of lipid droplets in the cells increased, however also that this effect was dose-independent. Then, the mRNA level of several lipid droplet-associated genes was detected with hydrogen peroxide treatment and the expression of PLIN2, PLIN5, and FSP27 genes was significantly up-regulated (p < 0.05). We overexpressed PLIN2 in HepG2 cells and found that the lipid droplets in the cells were markedly increased. Interference with PLIN2 inhibits ROS-induced lipid droplet formation, revealing that PLIN2 is a critical factor in this process. We subsequently analyzed the regulatory pathway and protein interaction network that is involved in PLIN2 and found that PLIN2 can regulate intracellular lipid metabolism through the PPARα/RXRA and CREB/CREBBP signaling pathways. The majority of the data indicated the correlation between hydrogen peroxide-induced PLIN2 and lipid droplet upregulation. In conclusion, ROS up-regulates the expression of PLIN2 in hepatocytes, whereas PLIN2 promotes the formation of lipid droplets resulting in lipid accumulation in liver tissues.
Collapse
Affiliation(s)
- Yi Jin
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yanjie Tan
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Lupeng Chen
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yan Liu
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Zhuqing Ren
- Key Laboratory of Agriculture Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
20
|
Yamamoto K, Miyoshi H, Cho KY, Nakamura A, Greenberg AS, Atsumi T. Overexpression of perilipin1 protects against atheroma progression in apolipoprotein E knockout mice. Atherosclerosis 2018; 269:192-196. [PMID: 29407594 DOI: 10.1016/j.atherosclerosis.2018.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/15/2017] [Accepted: 01/12/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND AIMS Perilipin1 (PLIN1), a lipid droplet-associated protein, plays an important role in the regulation of lipolysis and lipid storage in adipocytes. PLIN1 has recently been reported to be expressed in macrophages within atheroma plaques, suggesting PLIN1 may play a role in the accumulation of lipids at the arterial wall and in the development of atherosclerosis. To clarify the role of PLIN1 in the pathophysiology of atherosclerosis, we assessed the progression of atherosclerosis in PLIN1 transgenic mice (Plin1Tg). METHODS Plin1Tg were crossed with apolipoprotein E knockout mice (ApoeKO). C57BL/6J mice, ApoeKO and Plin1Tg/ApoeKO received a normal chow diet for 20 weeks. Body weight, gonadal fat mass and plasma lipid concentrations were measured. Aortas were collected for quantification of atheroma lesions and histological analysis by Oil Red O staining. RESULTS Body weight, gonadal adipose mass and plasma triglyceride concentrations were not significantly different among the three groups. In contrast, the atherosclerotic lesion area was significantly increased in ApoeKO (14.2 ± 3.2%; p < .01) compared with C57BL/6J mice (3.3 ± 1.2%) and Plin1Tg/ApoeKO (5.6 ± 1.9%). CONCLUSIONS Overexpressed PLIN1 in macrophages had a protected role against atheroma progression in ApoeKO in the absence of changes in gonadal fat mass or plasma lipid levels, presumably due to modification of the stability and/or inflammatory profile of macrophages.
Collapse
Affiliation(s)
| | | | - Kyu Yong Cho
- Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| | | | | | | |
Collapse
|
21
|
Tan Y, Zhang H, Guo D, Wang J, Yuan X, Yuan Z. Adipophilin Involved in Lipopolysaccharide-Induced Inflammation in RAW264.7 Cell via Extracellular Signal-Regulated Kinase 1/2-Peroxisome Proliferator-Activated Receptor Gamma Pathway. DNA Cell Biol 2017; 36:1159-1167. [DOI: 10.1089/dna.2017.3706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Yanmei Tan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
- Department of Pathology, Changde Vocational Technical College, Changde, China
| | - Hai Zhang
- Department of Pathology, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Dongming Guo
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Jiangbo Wang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Xu Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| | - Zhonghua Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Medical School, University of South China, Hengyang, China
| |
Collapse
|
22
|
Simino J, Wang Z, Bressler J, Chouraki V, Yang Q, Younkin SG, Seshadri S, Fornage M, Boerwinkle E, Mosley TH. Whole exome sequence-based association analyses of plasma amyloid-β in African and European Americans; the Atherosclerosis Risk in Communities-Neurocognitive Study. PLoS One 2017; 12:e0180046. [PMID: 28704393 PMCID: PMC5509141 DOI: 10.1371/journal.pone.0180046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
Objective We performed single-variant and gene-based association analyses of plasma amyloid-β (aβ) concentrations using whole exome sequence from 1,414 African and European Americans. Our goal was to identify genes that influence plasma aβ42 concentrations and aβ42:aβ40 ratios in late middle age (mean = 59 years), old age (mean = 77 years), or change over time (mean = 18 years). Methods Plasma aβ measures were linearly regressed onto age, gender, APOE ε4 carrier status, and time elapsed between visits (fold-changes only) separately by race. Following inverse normal transformation of the residuals, seqMeta was used to conduct race-specific single-variant and gene-based association tests while adjusting for population structure. Linear regression models were fit on autosomal variants with minor allele frequencies (MAF)≥1%. T5 burden and Sequence Kernel Association (SKAT) gene-based tests assessed functional variants with MAF≤5%. Cross-race fixed effects meta-analyses were Bonferroni-corrected for the number of variants or genes tested. Results Seven genes were associated with aβ in late middle age or change over time; no associations were identified in old age. Single variants in KLKB1 (rs3733402; p = 4.33x10-10) and F12 (rs1801020; p = 3.89x10-8) were significantly associated with midlife aβ42 levels through cross-race meta-analysis; the KLKB1 variant replicated internally using 1,014 additional participants with exome chip. ITPRIP, PLIN2, and TSPAN18 were associated with the midlife aβ42:aβ40 ratio via the T5 test; TSPAN18 was significant via the cross-race meta-analysis, whereas ITPRIP and PLIN2 were European American-specific. NCOA1 and NT5C3B were associated with the midlife aβ42:aβ40 ratio and the fold-change in aβ42, respectively, via SKAT in African Americans. No associations replicated externally (N = 725). Conclusion We discovered age-dependent genetic effects, established associations between vascular-related genes (KLKB1, F12, PLIN2) and midlife plasma aβ levels, and identified a plausible Alzheimer’s Disease candidate gene (ITPRIP) influencing cell death. Plasma aβ concentrations may have dynamic biological determinants across the lifespan; plasma aβ study designs or analyses must consider age.
Collapse
Affiliation(s)
- Jeannette Simino
- Gertrude C. Ford MIND Center, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Data Science, John D. Bower School of Population Health, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- * E-mail:
| | - Zhiying Wang
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Jan Bressler
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
| | - Vincent Chouraki
- Lille University, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk factors and molecular determinants of aging-related diseases; Lille, France
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Steven G. Younkin
- Department of Neuroscience, Mayo Clinic College of Medicine, Mayo Clinic Jacksonville, Jacksonville, Florida, United States of America
| | - Sudha Seshadri
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, United States of America
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Myriam Fornage
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
- The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center, Houston, Texas, United States of America
- The Brown Foundation Institute of Molecular Medicine, Research Center for Human Genetics, The University of Texas Health Science Center, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Thomas H. Mosley
- Gertrude C. Ford MIND Center, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Massachusetts, United States of America
| |
Collapse
|
23
|
Lipid Droplet-Associated Hydrolase Promotes Lipid Droplet Fusion and Enhances ATGL Degradation and Triglyceride Accumulation. Sci Rep 2017; 7:2743. [PMID: 28578400 PMCID: PMC5457427 DOI: 10.1038/s41598-017-02963-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/20/2017] [Indexed: 01/09/2023] Open
Abstract
Lipid droplet (LD)-associated hydrolase (LDAH) is a newly identified LD protein abundantly expressed in tissues that predominantly store triacylglycerol (TAG). However, how LDAH regulates TAG metabolism remains unknown. We found that upon oleic acid loading LDAH translocalizes from the ER to newly formed LDs, and induces LD coalescence in a tubulin-dependent manner. LDAH overexpression and downregulation in HEK293 cells increase and decrease, respectively, TAG levels. Pulse and chase experiments show that LDAH enhances TAG biogenesis, but also decreases TAG turnover and fatty acid release from cells. Mutations in predicted catalytic and acyltransferase motifs do not influence TAG levels, suggesting that the effect is independent of LDAH’s enzymatic activity. However, a LDAH alternative-splicing variant missing 90 amino acids at C-terminus does not promote LD fusion or TAG accumulation, while it still localizes to LDs. Interestingly, LDAH enhances polyubiquitination and proteasomal degradation of adipose triglyceride lipase (ATGL), a rate limiting enzyme of TAG hydrolysis. Co-expression of ATGL reverses the changes in LD phenotype induced by LDAH, and both proteins counterbalance their effects on TAG stores. Together, these studies support that under conditions of TAG storage in LDs LDAH plays a primarily lipogenic role, inducing LD growth and enhancing degradation of ATGL.
Collapse
|
24
|
Najt CP, Senthivinayagam S, Aljazi MB, Fader KA, Olenic SD, Brock JRL, Lydic TA, Jones AD, Atshaves BP. Liver-specific loss of Perilipin 2 alleviates diet-induced hepatic steatosis, inflammation, and fibrosis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G726-38. [PMID: 26968211 PMCID: PMC4867327 DOI: 10.1152/ajpgi.00436.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/08/2016] [Indexed: 01/31/2023]
Abstract
Hepatic inflammation and fibrosis are key elements in the pathogenesis of nonalcoholic steatohepatitis (NASH), a progressive liver disease initiated by excess hepatic lipid accumulation. Lipid droplet protein Perilipin 2 (Plin2) alleviates dietary-induced hepatic steatosis when globally ablated; however, its role in the progression of NASH remains unknown. To investigate this further, we challenged Plin2 liver-specific knockout mice (designated L-KO) and their respective wild-type (WT) controls with a methionine-choline-deficient (MCD) diet for 15 days to induce a NASH phenotype of increased hepatic triglyceride levels through impaired phosphatidylcholine (PC) synthesis and very-low-density lipoprotein (VLDL) secretion. Results on liver weights, body weights, fat tissue mass, and histology in WT and L-KO mice fed the MCD diet revealed signs of hepatic steatosis, fibrosis, and inflammation; however, these effects were blunted in L-KO mice. In addition, levels of PC and VLDL were unchanged, and hepatic steatosis was reduced in L-KO mice fed the MCD diet, due in part to an increase in remodeling of PE to PC via the enzyme phosphatidylethanolamine N-methyltransferase (PEMT). These mice also exhibited decreased hepatic expression of proinflammatory markers cyclooxygenase 2, IL-6, TNF-α, IL-1β, and reduced expression of endoplasmic reticulum (ER) stress proteins C/EBP homologous protein and cleaved caspase-1. Taken together, these results suggest that Plin2 liver-specific ablation alleviates diet-induced hepatic steatosis and inflammation via a PEMT-mediated mechanism that involves compensatory changes in proteins involved in phospholipid remodeling, inflammation, and ER stress that work to alleviate diet-induced NASH. Overall, these findings support a role for Plin2 as a target for NASH therapy.
Collapse
Affiliation(s)
- Charles P. Najt
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | | | - Mohammad B. Aljazi
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Kelly A. Fader
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Sandra D. Olenic
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Julienne R. L. Brock
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| | - Todd A. Lydic
- 2Department of Physiology, Michigan State University, East Lansing, Michigan; and
| | - A. Daniel Jones
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan; ,3Department of Chemistry, Michigan State University, East Lansing, Michigan
| | - Barbara P. Atshaves
- 1Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan;
| |
Collapse
|
25
|
Lipid droplet-associated proteins in atherosclerosis (Review). Mol Med Rep 2016; 13:4527-34. [PMID: 27082419 PMCID: PMC4878557 DOI: 10.3892/mmr.2016.5099] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023] Open
Abstract
Accumulation of atherosclerotic plaques in arterial walls leads to major cardiovascular diseases and stroke. Macrophages/foam cells are central components of atherosclerotic plaques, which populate the arterial wall in order to remove harmful modified low‑density lipoprotein (LDL) particles, resulting in the accumulation of lipids, mostly LDL‑derived cholesterol ester, in cytosolic lipid droplets (LDs). At present, LDs are recognized as dynamic organelles that govern cellular metabolic processes. LDs consist of an inner core of neutral lipids surrounded by a monolayer of phospholipids and free cholesterol, and contain LD‑associated proteins (LDAPs) that regulate LD functions. Foam cells are characterized by an aberrant accumulation of cytosolic LDs, and are considered a hallmark of atherosclerotic lesions through all stages of development. Previous studies have investigated the mechanisms underlying foam cell formation, aiming to discover therapeutic strategies that target foam cells and intervene against atherosclerosis. It is well established that LDAPs have a major role in the pathogenesis of metabolic diseases caused by dysfunction of lipid metabolism, and several studies have linked LDAPs to the development of atherosclerosis. In this review, several foam cell‑targeting pathways have been described, with an emphasis on the role of LDAPs in cholesterol mobilization from macrophages. In addition, the potential of LDAPs as therapeutic targets to prevent the progression and/or facilitate the regression of the disease has been discussed.
Collapse
|
26
|
Pourcet B, Staels B. Perilipin2/adipophilin and ApoA-1 team up to combat atherosclerosis. Cardiovasc Res 2015; 109:193-5. [PMID: 26705365 DOI: 10.1093/cvr/cvv276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Benoit Pourcet
- Univ. Lille, U1011 - EGID, Lille F-59000, France Inserm, U1011, Lille F-59000, France Institut Pasteur de Lille, Lille F-59000, France
| | - Bart Staels
- Univ. Lille, U1011 - EGID, Lille F-59000, France Inserm, U1011, Lille F-59000, France Institut Pasteur de Lille, Lille F-59000, France
| |
Collapse
|
27
|
Nishikawa K, Iwaya K, Kinoshita M, Fujiwara Y, Akao M, Sonoda M, Thiruppathi S, Suzuki T, Hiroi S, Seki S, Sakamoto T. Resveratrol increases CD68⁺ Kupffer cells colocalized with adipose differentiation-related protein and ameliorates high-fat-diet-induced fatty liver in mice. Mol Nutr Food Res 2015; 59:1155-70. [PMID: 25677089 DOI: 10.1002/mnfr.201400564] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/27/2014] [Accepted: 01/20/2015] [Indexed: 12/12/2022]
Abstract
SCOPE Resveratrol reportedly improves fatty liver. This study purposed to elucidate the effect of resveratrol on fatty liver in mice fed a high-fat (HF) diet, and to investigate the role of liver macrophages (Kupffer cells). METHODS AND RESULTS C57BL/6 mice were divided into three groups, receiving either a control diet, HF diet (50% fat), or HF supplemented with 0.2% resveratrol (HF + res) diet, for 8 weeks. Compared with the HF group, the HF + res group exhibited markedly attenuated fatty liver, and reduced lipid droplets (LDs) in hepatocytes. Proteomic analysis demonstrated that the most downregulated protein in the livers of the HF + res group was adipose differentiation-related protein (ADFP), which is a major constituent of LDs and reflects lipid accumulation in cells. The HF + res group exhibited greatly increased numbers of CD68(+) Kupffer cells with phagocytic activity. Immunohistochemistry showed that several CD68(+) Kupffer cells were colocalized with ADFP immunoreaction in the HF + res group. Additionally, the HF + res group demonstrated markedly decreased TNF-alpha production, which confirmed by both liver mononuclear cells stimulated by LPS in vitro and in situ hybridization analysis, compared with the HF group. CONCLUSION Resveratrol ameliorated fatty liver and increased CD68-positive Kupffer cells with downregulating ADFP expression.
Collapse
Affiliation(s)
| | - Keiichi Iwaya
- Department of Basic Pathology, National Defense Medical College, Saitama, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Yoko Fujiwara
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mai Akao
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Mariko Sonoda
- Department of Food and Nutritional Sciences, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Suresh Thiruppathi
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Takayoshi Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Japan
| | - Sadayuki Hiroi
- Department of Laboratory Medicine, National Defense Medical College, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Saitama, Japan
| | - Toshihisa Sakamoto
- Department of Traumatology and Critical Care Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
28
|
Mitrova K, Karpisek M, Durilova M, Dragusin LG, Nevoral J, Bronsky J. Development of high-sensitive ELISA method for detection of adipophilin levels in human colostrum and breast milk. J Clin Lab Anal 2014; 28:255-60. [PMID: 24577896 DOI: 10.1002/jcla.21675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Accepted: 07/31/2013] [Indexed: 11/11/2022] Open
Abstract
AIM To develop and validate high-sensitive (hs) ELISA method for detection of adipophilin (adipose differentiation-related protein, ADRP) in human breast milk (BM) and to analyze adipophilin levels in BM during 12 months of lactation. METHODS ADRP levels were determined using hsELISA method (Biovendor-Laboratory Medicine, Inc.) in colostrum (D0) and BM of 72 mothers was collected 1, 3, 6, and 12 months following delivery (M1, 3, 6, 12). RESULTS ADRP was detectable in BM up to 12 months of lactation. Mean levels at D0 were 1.98 ± 0.12; M1, 2.83 ± 0.21; M3, 2.39 ± 0.17; M6, 2.57 ± 0.16; and at M12 3.25 ± 0.21 μg/ml. Significantly higher levels of ADRP were found in M1 and M12 when compared to D0 and in M12 when compared to M3 (overall P = 0.0001). No significant correlation was seen between ADRP levels in BM and adiponectin, body weight of infants, their birth length, body weight gain during the first year of life, or BMI of mothers before pregnancy. CONCLUSIONS We developed and validated hsELISA for detection of ADRP in human BM. ADRP was detectable in human BM during the whole 12 months of lactation period and its levels were intraindividually well-conserved.
Collapse
Affiliation(s)
- Katarina Mitrova
- Department of Paediatrics, 2nd Faculty of Medicine and University Hospital Motol, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
29
|
Mu B, Zhang H, Cai X, Yang J, Shen Y, Chen B, Liang S. Screening of multiple myeloma by polyclonal rabbit anti-human plasmacytoma cell immunoglobulin. PLoS One 2013; 8:e59117. [PMID: 23560043 PMCID: PMC3613404 DOI: 10.1371/journal.pone.0059117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Antibody-based immunotherapy has been effectively used for tumor treatment. However, to date, only a few tumor-associated antigens (TAAs) or therapeutic targets have been identified. Identification of more immunogenic antigens is essential for improvements in multiple myeloma (MM) diagnosis and therapy. In this study, we synthesized a polyclonal antibody (PAb) by immunizing rabbits with whole human plasmacytoma ARH-77 cells and identified MM-associated antigens, including enlonase, adipophilin, and HSP90s, among others, via proteomic technologies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that 200 µg/mL PAb inhibits the proliferation of ARH-77 cells by over 50% within 48 h. Flow cytometric assay indicated that PAb treatment significantly increases the number of apoptotic cells compared with other treatments (52.1% vs. NS, 7.3% or control rabbit IgG, 9.9%). In vivo, PAb delayed tumor growth and prolonged the lifespan of mice. Terminal deoxynucleotidyl transferase dUTP nick end labeling assay showed that PAb also induces statistically significant changes in apoptosis compared with other treatments (P<0.05). We therefore conclude that PAb could be used for the effective screening and identification of TAA. PAb may have certain anti-tumor functions in vitro and in vivo. As such, its combination with proteomic technologies could be a promising approach for sieving TAA for the diagnosis and therapy of MM.
Collapse
Affiliation(s)
- Bo Mu
- The Medical Biology Staff Room of North Sichuan Medical College, Sichuan Nanchong, PR China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Yoon HS, Ju JH, Lee JE, Park HJ, Lee JM, Shin HK, Holzapfel W, Park KY, Do MS. The probiotic Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 promote cholesterol efflux and suppress inflammation in THP-1 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:781-787. [PMID: 22806829 DOI: 10.1002/jsfa.5797] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/15/2012] [Accepted: 06/06/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND The balance between the rate of cholesterol uptake/accumulation and the rate of cholesterol efflux is reflected in the amount of lipid accumulation in macrophages. Based upon the fact that liver X receptors (LXRs) play a role in cholesterol efflux, we studied the effects of probiotics on cholesterol efflux and anti-inflammatory action in macrophages. We confirmed changes in LXR expression by treatment of LXR-transfected CHO-K1 cells with lactic acid bacteria (LAB), and co-cultured THP-1 cells with LAB to investigate changes in cholesterol efflux and inflammation. RESULTS The experiment with CHO-K1 cells showed upregulation of LXR-β by LAB. Treatment of THP-1 cells with LAB promoted LXR expression in THP-1, which eventually led to significant upregulation of ABCA1 and ABCG1 expression. The treatment with live LAB also significantly promoted cholesterol efflux. LAB suppressed expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α, which resulted from activation of LXR. CONCLUSION Our study shows that Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 activated LXR and induced cholesterol efflux by promoting expression of ABCA1 and ABCG1. Both strains also suppressed proinflammatory cytokines including IL-1β and TNF-α. This study could account for the observation that LAB may block foam cell formation by cholesterol efflux and immune modulation.
Collapse
Affiliation(s)
- Hong-sup Yoon
- School of Life Science, Handong Global University, Pohang, Gyeongbuk 791-708, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kim JY, Kim H, Jung BJ, Kim NR, Park JE, Chung DK. Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol Cells 2013; 35:115-24. [PMID: 23456333 PMCID: PMC3887899 DOI: 10.1007/s10059-013-2190-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 11/21/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022] Open
Abstract
Chronic inflammation plays an important role in atherogenesis. Experimental studies have demonstrated the accumulation of monocytes/macrophages in atherosclerotic plaques caused by inflammation. Here, we report the inhibitory effects of lipoteichoic acid (LTA) from Lactobacillus plantarum (pLTA) on atherosclerotic inflammation. pLTA inhibited the production of proinflammatory cytokines and nitric oxide in lipopolysaccharide (LPS)-stimulated cells and alleviated THP-1 cell adhesion to HUVEC by down-regulation of adhesion molecules such as intracellular adhesion molecule-1 (ICAM-I), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. The inhibitory effect of pLTA was mediated by inhibition of NF-κB and activation of MAP kinases. Inhibition of monocyte/macrophage infiltration to the arterial lumen was shown in pLTA-injected ApoE(-/-) mice, which was concurrent with inhibition of MMP-9 and preservation of CD31 production. The antiinflammatory effect mediated by pLTA decreased expression of atherosclerotic markers such as COX-2, Bax, and HSP27 and also cell surface receptors such as TLR4 and CCR7. Together, these results underscore the role of pLTA in suppressing atherosclerotic plaque inflammation and will help in identifying targets with therapeutic potential against pathogen-mediated atherogenesis.
Collapse
Affiliation(s)
- Joo Yun Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Hangeun Kim
- Department of Internal Medicine, Saint Louis University, St. Louis, MO 63104,
USA
| | - Bong Jun Jung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Na-Ra Kim
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
| | - Jeong Euy Park
- Division of Cardiology, Samsung Medical Center and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul 135-710,
Korea
| | - Dae Kyun Chung
- Graduate School of Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 449-701,
Korea
- Skin Biotechnology Center, Kyung Hee University, Yongin 449-701,
Korea
| |
Collapse
|
32
|
Dushkin MI. Macrophage/foam cell is an attribute of inflammation: Mechanisms of formation and functional role. BIOCHEMISTRY (MOSCOW) 2012; 77:327-38. [DOI: 10.1134/s0006297912040025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Yuan Y, Li P, Ye J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 2012; 3:173-81. [PMID: 22447659 DOI: 10.1007/s13238-012-2025-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 02/04/2012] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | | | | |
Collapse
|
34
|
The Effects of Highexpression and Knockdown Adipophilin in The Activity of ERK1/2 and Expression of PPARγ and Lipid Accumulation in Cells*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2011.00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|