1
|
Fumimoto C, Yamauchi N, Minagawa E, Umeda M. MiR-146a Is Mutually Regulated by High Glucose-Induced Oxidative Stress in Human Periodontal Ligament Cells. Int J Mol Sci 2024; 25:10702. [PMID: 39409031 PMCID: PMC11476635 DOI: 10.3390/ijms251910702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The high-glucose conditions caused by diabetes mellitus (DM) exert several effects on cells, including inflammation. miR-146a, a kind of miRNA, is involved in inflammation and may be regulated mutually with reactive oxygen species (ROS), which are produced under high-glucose conditions. In the present study, we used human periodontal ligament cells (hPDLCs) to determine the effects of the high-glucose conditions of miR-146a and their involvement in the regulation of oxidative stress and inflammatory cytokines using Western blotting, PCR, ELISA and other methods. When hPDLCs were subjected to high glucose (24 mM), cell proliferation was not affected; inflammatory cytokine expression, ROS induction, interleukin-1 receptor-associated kinase 1 (IRAK1) and TNF receptor-associated factor 6 (TRAF6) expression increased, but miR-146a expression decreased. Inhibition of ROS induction with the antioxidant N-acetyl-L-cysteine restored miR-146a expression and decreased inflammatory cytokine expression compared to those under high-glucose conditions. In addition, overexpression of miR-146a significantly suppressed the expression of the inflammatory cytokines IRAK1 and TRAF6, regardless of the glucose condition. Our findings suggest that oxidative stress and miR-146a expression are mutually regulated in hPDLCs under high-glucose conditions.
Collapse
Affiliation(s)
| | - Nobuhiro Yamauchi
- Department of Periodontology, Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata 573-1121, Osaka, Japan; (C.F.); (E.M.); (M.U.)
| | | | | |
Collapse
|
2
|
Ji H, Lu Y, Liu G, Zhao X, Xu M, Chen M. Role of Decreased Expression of miR-155 and miR-146a in Peripheral Blood of Type 2 Diabetes Mellitus Patients with Diabetic Peripheral Neuropathy. Diabetes Metab Syndr Obes 2024; 17:2747-2760. [PMID: 39072343 PMCID: PMC11283243 DOI: 10.2147/dmso.s467409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
Objective To Study the Correlations of microRNA-155 (miR-155) and microRNA-146a (miR-146a) Expression in Peripheral Blood of Type 2 Diabetes Mellitus (T2DM) Patients with Diabetic Peripheral Neuropathy (DPN), and Explore the Clinical Value of miR-155 and miR-146a in the Diagnosis and Treatment Outcomes of DPN. Methods The study included 51 T2DM patients without DPN (T2DM group), 49 T2DM patients with DPN (DPN group), and 50 normal controls (NC group). Quantitative real-time PCR was utilized to determine the expression levels of miR-155 and miR-146a. Clinical features and risk factors for DPN were assessed. Multivariate stepwise logistic regression analysis was conducted to confirm whether the expressions of miR-155 and miR-146a could independently predict the risk of DPN. ROC curve analysis evaluated their diagnostic value. Results The T2DM group exhibited significantly lower expression levels of miR-155 and miR-146a compared to the NC group (P < 0.05). Moreover, the DPN group exhibited a significantly decreased expression level of miR-155 and miR-146a compared to the T2DM group (P < 0.01). Multivariate logistic regression analysis indicated that higher levels of miR-155 and miR-146a might serve as protective factors against DPN development. ROC curve analysis revealed that miR-155 (sensitivity 91.8%, specificity 37.3%, AUC 0.641,) and miR-146a (sensitivity 57.1%, specificity 84.3%, AUC 0.722) possess a strong ability to discriminate between T2DM and DPN. Their combined use further enhanced the diagnostic potential of DPN (sensitivity 83.7%, specificity 60.8%, AUC 0.775). A multi-index combination can improve DPN diagnostic efficiency. Conclusion The decreased expression of miR-155 and miR-146a in the peripheral blood of T2DM patients is closely related to the occurrence of DPN, highlighting their potential as valuable biomarkers for diagnosing and prognosticating DPN.
Collapse
Affiliation(s)
- Hua Ji
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - YaTing Lu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Gui Liu
- Department of Endocrinology, The Second People’s Hospital of Lu’an City, Lu’an City, Anhui Province, People’s Republic of China
| | - Xiaotong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Murong Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, People’s Republic of China
| |
Collapse
|
3
|
Nasser JS, Altahoo N, Almosawi S, Alhermi A, Butler AE. The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review. Int J Mol Sci 2024; 25:903. [PMID: 38255975 PMCID: PMC10815174 DOI: 10.3390/ijms25020903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4-20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several diseases and could possibly explain their underlying pathophysiology. MiRNAs have been extensively studied for their potential diagnostic, prognostic, and therapeutic uses in many diseases, such as type 2 diabetes, obesity, cardiovascular disease, PCOS, and endometriosis. In women with PCOS, miRNAs were found to be abnormally expressed in theca cells, follicular fluid, granulosa cells, peripheral blood leukocytes, serum, and adipose tissue when compared to those without PCOS, making miRNAs a useful potential biomarker for the disease. Key pathways involved in PCOS, such as folliculogenesis, steroidogenesis, and cellular adhesion, are regulated by miRNA. This also highlights their importance as potential prognostic markers. In addition, recent evidence suggests a role for miRNAs in regulating the circadian rhythm (CR). CR is crucial for regulating reproduction through the various functions of the hypothalamic-pituitary-gonadal (HPG) axis and the ovaries. A disordered CR affects reproductive outcomes by inducing insulin resistance, oxidative stress, and systemic inflammation. Moreover, miRNAs were demonstrated to interact with lncRNA and circRNAs, which are thought to play a role in the pathogenesis of PCOS. This review discusses what is currently understood about miRNAs in PCOS, the cellular pathways involved, and their potential role as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Jenan Sh. Nasser
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Noor Altahoo
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Sayed Almosawi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Abrar Alhermi
- School of Medicine, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain; (J.S.N.); (N.A.); (S.A.); (A.A.)
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons of Ireland, Busaiteen, Adliya 15503, Bahrain
| |
Collapse
|
4
|
Li S, Li H, Kong H, Wu SY, Cheng CK, Xu J. Endogenous and microbial biomarkers for periodontitis and type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1292596. [PMID: 38149100 PMCID: PMC10750125 DOI: 10.3389/fendo.2023.1292596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023] Open
Abstract
It has been well documented that there is a two-way relationship between diabetes mellitus and periodontitis. Diabetes mellitus represents an established risk factor for chronic periodontitis. Conversely, chronic periodontitis adversely modulates serum glucose levels in diabetic patients. Activated immune and inflammatory responses are noted during diabetes and periodontitis, under the modulation of similar biological mediators. These activated responses result in increased activity of certain immune-inflammatory mediators including adipokines and microRNAs in diabetic patients with periodontal disease. Notably, certain microbes in the oral cavity were identified to be involved in the occurrence of diabetes and periodontitis. In other words, these immune-inflammatory mediators and microbes may potentially serve as biomarkers for risk assessment and therapy selection in diabetes and periodontitis. In this review, we briefly provide an updated overview on different potential biomarkers, providing novel diagnostic and therapeutic insights on periodontal complications and diabetes mellitus.
Collapse
Affiliation(s)
- Songjun Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Hongwen Li
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| | - Haiying Kong
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
| | - Shang Ying Wu
- Department of Laboratory Medicine, Shenzhen Hospital, Peking University, Shenzhen, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Jian Xu
- Longgang Ear-Nose-Throat (ENT) Hospital, Institute of Ear-Nose-Throat (ENT) and Shenzhen Key Laboratory of Ear-Nose-Throat (ENT), Shenzhen, China
- Shenzhen Longgang Institute of Stomatology, Longgang Ear-Nose-Throat (ENT) Hospital, Shenzhen, China
| |
Collapse
|
5
|
Zhang Z, Shi C, Wang Z. The physiological functions and therapeutic potential of exosomes during the development and treatment of polycystic ovary syndrome. Front Physiol 2023; 14:1279469. [PMID: 38028777 PMCID: PMC10657906 DOI: 10.3389/fphys.2023.1279469] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Polycystic ovary syndrome is a very common disease of gynecological endocrine, accompanied by irregular menstruation, hyperandrogenism, metabolic abnormalities, reproductive disorders and other clinical symptoms, which seriously endangers women's physical and mental health, but its etiology and pathogenesis are not completely clear. Recently, the contribution of exosomes to the diagnosis and treatment of various diseases in the biomedical field has attracted much attention, including PCOS. Exosomes are extracellular vesicles secreted by cells, containing various biologically active molecules such as cell-specific proteins, lipids, and nucleic acids. They are important signaling regulators in vivo and widely participate in various physiopathological processes. They are new targets for disease diagnosis and treatment. Considering the important role of non-coding RNAs during the development and treatment of PCOS, this article takes exosomal miRNAs as the breakthrough point for elucidating the physiological functions and therapeutic potential of exosomes during the development and treatment of PCOS through analyzing the effects of exosomal miRNAs on ovarian follicle development, hormone secretion, oxidative stress, inflammatory response and insulin resistance, thus providing new research directions and theoretical basis for PCOS pathogenesis, clinical diagnosis and prognosis improvement.
Collapse
Affiliation(s)
| | | | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
6
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
7
|
Wiecek M, Kusmierczyk J, Szymura J, Kreiner G, Szygula Z. Whole-Body Cryotherapy Alters Circulating MicroRNA Profile in Postmenopausal Women. J Clin Med 2023; 12:5265. [PMID: 37629307 PMCID: PMC10455963 DOI: 10.3390/jcm12165265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
The incidence of metabolic syndrome (MetS) increases with age, especially in women. The role of microRNAs (miRs) in the regulation of metabolism is postulated. The aim of the study is to identify miRs that may be markers of MetS and to assess changes in miRs expression as a result of 10 and 20 whole-body cryotherapy treatments (WBC; 3 min, -120 °C) in postmenopausal women with MetS (M-60, BMI 30.56 ± 5.38 kg/m2), compared to healthy postmenopausal (H-60, BMI 25.57 ± 2.46 kg/m2) and healthy young women (H-20, BMI 22.90 ± 3.19 kg/m2). In a fasting state, before 1 WBC and after 10 WBCs, as well as 20 WBCs, the expression of miR-15a-5p, miR-21-5p, miR-23a-3p, miR-146a-5p, miR-197-3p, miR-223-3p, fasting blood glucose (FBG) and blood lipid profile were determined. miR-15a-5p and miR-21-5p were down-regulated in M-60, while miR-23a-3p and miR-197-3p were up-regulated, and miR-223-3p down-regulated in M-60 and H-60, compared to H-20. Significant positive correlations between up-regulated (mostly for miR-23-3p and miR-197-3p) and significant negative correlations between down-regulated (mostly for miR-15a-5p) miRs and markers of body composition as well as metabolic disorders were observed. After 20 WBCs, miR-15a-5p expression was up-regulated in all groups. In H-60, down-regulation of miR-197-3p expression occurred after 10 WBCs and 20 WBCs. Following 10 WBCs, FBG decreased in all groups, which intensified in M-60 post-20 WBCs. In our research, it has been shown that miR-23a-3p and miR-197-3p are accurate markers of MetS and MetS risk factors, while miR-15a-5p and miR-23a-3p are precise markers of body composition disorders. WBC is an effective treatment for up-regulating miR-15a-5p and lowering glucose levels in young and postmenopausal women and down-regulating miR-197-3p expression in postmenopausal women. It may be an adjunctive effective treatment method in MetS and hyperglycemia.
Collapse
Affiliation(s)
- Magdalena Wiecek
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Justyna Kusmierczyk
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Jadwiga Szymura
- Department of Clinical Rehabilitation, Faculty of Motor Rehabilitation, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| | - Grzegorz Kreiner
- Department Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland;
| | - Zbigniew Szygula
- Department of Sports Medicine and Human Nutrition, Institute of Biomedical Sciences, Faculty of Physical Education and Sport, University of Physical Education in Kraków, 31-571 Kraków, Poland;
| |
Collapse
|
8
|
Burada E, Roșu MM, Sandu RE, Burada F, Cucu MG, Streață I, Petre-Mandache B, Popescu-Hobeanu G, Cara ML, Țucă AM, Pinoșanu E, Albu CV. miR-499a rs3746444 A>G Polymorphism Is Correlated with Type 2 Diabetes Mellitus and Diabetic Polyneuropathy in a Romanian Cohort: A Preliminary Study. Genes (Basel) 2023; 14:1543. [PMID: 37628595 PMCID: PMC10454730 DOI: 10.3390/genes14081543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common metabolic disorder that results from complex interactions of both environmental and genetic factors. Many single nucleotide polymorphisms (SNPs), including noncoding RNA genes, have been investigated for their association with susceptibility to T2DM and its complications, with little evidence available regarding Caucasians. The aim of the present study was to establish whether four miRNA SNPs (miR-27a rs895819 T>C, miR-146a rs2910164 G>C, miR-196a2 rs11614913 C>T, and miR-499a rs3746444 A>G) are correlated with susceptibility to T2DM and/or diabetic polyneuropathy (DPN) in a Romanian population. A total of 167 adult T2DM patients and 324 age- and sex-matched healthy controls were included in our study. miRNA SNPs were detected by real-time PCR using a TaqMan genotyping assay. A significant association with T2DM was observed only for the miR-499a rs3746444 A>G SNP in all the tested models, and the frequencies of both the miR-499a rs3746444 AG and the GG genotypes were higher in the T2DM patients compared to the controls. No correlation was observed for the miR-27a rs895819 T>C, miR-146a rs2910164 G>C, or miR-196a2 rs11614913 C>T SNPs in any genetic model. When we assessed the association of these SNPs with DPN separately, we found a positive association for the miR-499a rs3746444 SNP in both codominant and dominant models (OR 6.47, 95% CI: 1.71-24.47; OR 2.30, 95% CI: 1.23-4.29, respectively). In conclusion, this study shows that miR-499a rs3746444 A>G may influence both T2DM and DPN susceptibility, with carriers of the GG genotype and the G allele being at an increased risk in the Romanian population.
Collapse
Affiliation(s)
- Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (E.B.); (A.-M.Ț.)
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
| | - Maria-Magdalena Roșu
- Department of Diabetes, Nutrition and Metabolic Diseases, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania;
| | - Raluca Elena Sandu
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Florin Burada
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Mihai Gabriel Cucu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Ioana Streață
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Regional Centre of Medical Genetics Dolj, Emergency Clinical County Hospital Craiova, 200642 Craiova, Romania
| | - Bianca Petre-Mandache
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Gabriela Popescu-Hobeanu
- Laboratory of Human Genomics, University of Medicine and Pharmacy of Craiova, 200638 Craiova, Romania; (M.G.C.); (I.S.); (B.P.-M.); (G.P.-H.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Monica-Laura Cara
- Department of Public Health, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Anca-Maria Țucă
- Department of Physiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (E.B.); (A.-M.Ț.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Elena Pinoșanu
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Carmen Valeria Albu
- Department of Neurology, Clinical Hospital of Neuropsychiatry Craiova, 200473 Craiova, Romania; (R.E.S.); (E.P.); (C.V.A.)
- Department of Neurology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| |
Collapse
|
9
|
Li X, Dai A, Tran R, Wang J. Text mining-based identification of promising miRNA biomarkers for diabetes mellitus. Front Endocrinol (Lausanne) 2023; 14:1195145. [PMID: 37560309 PMCID: PMC10407569 DOI: 10.3389/fendo.2023.1195145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/05/2023] [Indexed: 08/11/2023] Open
Abstract
Introduction MicroRNAs (miRNAs) are small, non-coding RNAs that play a critical role in diabetes development. While individual studies investigating the mechanisms of miRNA in diabetes provide valuable insights, their narrow focus limits their ability to provide a comprehensive understanding of miRNAs' role in diabetes pathogenesis and complications. Methods To reduce potential bias from individual studies, we employed a text mining-based approach to identify the role of miRNAs in diabetes and their potential as biomarker candidates. Abstracts of publications were tokenized, and biomedical terms were extracted for topic modeling. Four machine learning algorithms, including Naïve Bayes, Decision Tree, Random Forest, and Support Vector Machines (SVM), were employed for diabetes classification. Feature importance was assessed to construct miRNA-diabetes networks. Results Our analysis identified 13 distinct topics of miRNA studies in the context of diabetes, and miRNAs exhibited a topic-specific pattern. SVM achieved a promising prediction for diabetes with an accuracy score greater than 60%. Notably, miR-146 emerged as one of the critical biomarkers for diabetes prediction, targeting multiple genes and signal pathways implicated in diabetic inflammation and neuropathy. Conclusion This comprehensive approach yields generalizable insights into the network miRNAs-diabetes network and supports miRNAs' potential as a biomarker for diabetes.
Collapse
Affiliation(s)
- Xin Li
- Central Hospital Affiliated to Shandong First Medical University, Ophthalmology Department, Jinan, Shandong, China
| | - Andrea Dai
- Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Richard Tran
- University of Chicago, Master’s Program in Computer Science, Chicago, IL, United States
| | - Jie Wang
- Syracuse University, Applied Data Science Program, Syracuse, NY, United States
- MDSight, LLC, Brookeville, MD, United States
| |
Collapse
|
10
|
Goyal S, Rani J, Bhat MA, Vanita V. Genetics of diabetes. World J Diabetes 2023; 14:656-679. [PMID: 37383588 PMCID: PMC10294065 DOI: 10.4239/wjd.v14.i6.656] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/13/2023] [Accepted: 04/17/2023] [Indexed: 06/14/2023] Open
Abstract
Diabetes mellitus is a complicated disease characterized by a complex interplay of genetic, epigenetic, and environmental variables. It is one of the world's fastest-growing diseases, with 783 million adults expected to be affected by 2045. Devastating macrovascular consequences (cerebrovascular disease, cardiovascular disease, and peripheral vascular disease) and microvascular complications (like retinopathy, nephropathy, and neuropathy) increase mortality, blindness, kidney failure, and overall quality of life in individuals with diabetes. Clinical risk factors and glycemic management alone cannot predict the development of vascular problems; multiple genetic investigations have revealed a clear hereditary component to both diabetes and its related complications. In the twenty-first century, technological advancements (genome-wide association studies, next-generation sequencing, and exome-sequencing) have led to the identification of genetic variants associated with diabetes, however, these variants can only explain a small proportion of the total heritability of the condition. In this review, we address some of the likely explanations for this "missing heritability", for diabetes such as the significance of uncommon variants, gene-environment interactions, and epigenetics. Current discoveries clinical value, management of diabetes, and future research directions are also discussed.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Rockville, MD 20852, United States
| | - Jyoti Rani
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Mohd Akbar Bhat
- Department of Ophthalmology, Georgetown University Medical Center, Washington DC, DC 20057, United States
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| |
Collapse
|
11
|
Chen C, Liu T, Tang Y, Luo G, Liang G, He W. Epigenetic regulation of macrophage polarization in wound healing. BURNS & TRAUMA 2023; 11:tkac057. [PMID: 36687556 PMCID: PMC9844119 DOI: 10.1093/burnst/tkac057] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/16/2022] [Indexed: 06/01/2023]
Abstract
The immune microenvironment plays a critical role in regulating skin wound healing. Macrophages, the main component of infiltrating inflammatory cells, play a pivotal role in shaping the immune microenvironment in the process of skin wound healing. Macrophages comprise the classic proinflammatory M1 subtype and anti-inflammatory M2 population. In the early inflammatory phase of skin wound closure, M1-like macrophages initiate and amplify the local inflammatory response to disinfect the injured tissue. In the late tissue-repairing phase, M2 macrophages are predominant in wound tissue and limit local inflammation to promote tissue repair. The biological function of macrophages is tightly linked with epigenomic organization. Transcription factors are essential for macrophage polarization. Epigenetic modification of transcription factors determines the heterogeneity of macrophages. In contrast, transcription factors also regulate the expression of epigenetic enzymes. Both transcription factors and epigenetic enzymes form a complex network that regulates the plasticity of macrophages. Here, we describe the latest knowledge concerning the potential epigenetic mechanisms that precisely regulate the biological function of macrophages and their effects on skin wound healing.
Collapse
Affiliation(s)
| | | | - Yuanyang Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Burn Research, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Gaoxing Luo
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| | - Guangping Liang
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| | - Weifeng He
- Correspondence. Gaoxing Luo, ; Guangping Liang, ; Weifeng He,
| |
Collapse
|
12
|
Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res 2023; 2023:2587104. [PMID: 36911496 PMCID: PMC10005876 DOI: 10.1155/2023/2587104] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Collapse
Affiliation(s)
- Mahyar Ghaffari
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehram, Iran
| |
Collapse
|
13
|
Gaytán-Pacheco N, Ibáñez-Salazar A, Herrera-Van Oostdam AS, Oropeza-Valdez JJ, Magaña-Aquino M, Adrián López J, Monárrez-Espino J, López-Hernández Y. miR-146a, miR-221, and miR-155 are Involved in Inflammatory Immune Response in Severe COVID-19 Patients. Diagnostics (Basel) 2022; 13:133. [PMID: 36611425 PMCID: PMC9818442 DOI: 10.3390/diagnostics13010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/03/2023] Open
Abstract
COVID-19 infection triggered a global public health crisis during the 2020-2022 period, and it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying immunological mechanisms, and their possible use as biomarkers to discriminate against patients with severe COVID-19. Functional analysis showed that most enriched pathways were significantly associated with processes related to cell proliferation and immune responses (innate and adaptive). Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential use as predictive prognosis biomarkers.
Collapse
Affiliation(s)
- Noemí Gaytán-Pacheco
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Alejandro Ibáñez-Salazar
- Clinical Analysis Laboratory UAZ-Siglo-XXI, Academic Unit of Chemical Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | | | - Juan José Oropeza-Valdez
- Metabolomics and Proteomics Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98600, Mexico
| | | | - Jesús Adrián López
- MicroRNAs and Cancer Laboratory, Academic Unit of Biological Sciences, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| | - Joel Monárrez-Espino
- Department of Health Research, Christus Muguerza del Parque Hospital Chihuahua, University of Monterrey, San Pedro Garza García 66238, Mexico
| | - Yamilé López-Hernández
- CONACyT-Metabolomics and Proteomics Laboratory, Autonomous University of Zacatecas, Zacatecas 98000, Mexico
| |
Collapse
|
14
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
15
|
Effect of glycemic control and duration of type 2 diabetes on circulatory miR-146a in middle-aged Indians. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
16
|
Identification of perturbed pathways rendering susceptibility to tuberculosis in type 2 diabetes mellitus patients using BioNSi simulation of integrated networks of implicated human genes. J Biosci 2022. [DOI: 10.1007/s12038-022-00309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Benbaibeche H, Hichami A, Oudjit B, Haffaf EM, Kacimi G, Koceïr EA, Khan NA. Circulating mir-21 and mir-146a are associated with increased cytokines and CD36 in Algerian obese male participants. Arch Physiol Biochem 2022; 128:1461-1466. [PMID: 32536220 DOI: 10.1080/13813455.2020.1775655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The microRNAs have come up as crucial mediators of energy balance and metabolic control. CD36 is potential biomarker of obesity and metabolic syndrome. This study investigates the concentration of miR-146a and miR-21 and CD 36 in blood samples of obese and healthy young participants. We assessed the association of mir-146a and mir-21 with inflammatory states in Algerian young participants. METHODS Our study included male obese, without co-morbidities (n = 29), and healthy participants (n = 13). miRNA and CD36 expression was measured by real-time RT-PCR, respectively, in serum and blood. RESULTS miR-146a and miR-21 concentrations were significantly decreased; however, CD36 expression was increased in obese subjects. Interestingly, miR-146a and miR-21 concentrations were negatively correlated to IL-6, TNF-α, and CD36 in obese participants. CONCLUSION We demonstrate that the downregulation of miR-146a and miR-21 was associated with upregulation of inflammatory state and increased CD36 expression in obese participants.
Collapse
Affiliation(s)
- Hassiba Benbaibeche
- Département des Sciences de la Nature Et de la Vie, Faculté des Sciences, Université d'Alger, Algérie
- Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, Faculty of Biologic Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Aziz Hichami
- Physiologie de la Nutrition & Toxicologie, UMR 1231 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| | | | | | | | - Elhadj Ahmed Koceïr
- Bioenergetics and Intermediary Metabolism Laboratory, Department of Biological Sciences and Physiology, Faculty of Biologic Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria
| | - Naim Akhtar Khan
- Physiologie de la Nutrition & Toxicologie, UMR 1231 INSERM/Université de Bourgogne/Agro-Sup, Dijon, France
| |
Collapse
|
18
|
Brandão-Lima PN, de Carvalho GB, Payolla TB, Sarti FM, Rogero MM. Circulating microRNA Related to Cardiometabolic Risk Factors for Metabolic Syndrome: A Systematic Review. Metabolites 2022; 12:1044. [PMID: 36355127 PMCID: PMC9692352 DOI: 10.3390/metabo12111044] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 01/04/2024] Open
Abstract
MicroRNA regulates multiple pathways in inflammatory response, adipogenesis, and glucose and lipid metabolism, which are involved in metabolic syndrome (MetS). Thus, this systematic review aimed at synthesizing the evidence on the relationships between circulating microRNA and risk factors for MetS. The systematic review was registered in the PROSPERO database (CRD42020168100) and included 24 case-control studies evaluating microRNA expression in serum/plasma of individuals ≥5 years old. Most of the studies focused on 13 microRNAs with higher frequency and there were robust connections between miR-146a and miR-122 with risk factors for MetS, based on average weighted degree. In addition, there was an association of miR-222 with adiposity, lipid metabolism, glycemic metabolism, and chronic inflammation and an association of miR-126, miR-221, and miR-423 with adiposity, lipid, and glycemic metabolism. A major part of circulating microRNA was upregulated in individuals with risk factors for MetS, showing correlations with glycemic and lipid markers and body adiposity. Circulating microRNA showed distinct expression profiles according to the clinical condition of individuals, being particularly linked with increased body fat. However, the exploration of factors associated with variations in microRNA expression was limited by the variety of microRNAs investigated by risk factor in diverse studies identified in this systematic review.
Collapse
Affiliation(s)
- Paula N. Brandão-Lima
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Gabrielli B. de Carvalho
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Tanyara B. Payolla
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| | - Flavia M. Sarti
- School of Arts, Sciences and Humanities, University of Sao Paulo, 1000 Arlindo Bettio Avenue, Sao Paulo 03828-000, SP, Brazil
| | - Marcelo M. Rogero
- Department of Nutrition, School of Public Health, University of Sao Paulo, 715 Dr Arnaldo Avenue, Pacaembu, Sao Paulo 01246-904, SP, Brazil
| |
Collapse
|
19
|
Chen MY, Meng XF, Han YP, Yan JL, Xiao C, Qian LB. Profile of crosstalk between glucose and lipid metabolic disturbance and diabetic cardiomyopathy: Inflammation and oxidative stress. Front Endocrinol (Lausanne) 2022; 13:983713. [PMID: 36187088 PMCID: PMC9521548 DOI: 10.3389/fendo.2022.983713] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, the risk, such as hypertension, obesity and diabetes mellitus, of cardiovascular diseases has been increasing explosively with the development of living conditions and the expansion of social psychological pressure. The disturbance of glucose and lipid metabolism contributes to both collapse of myocardial structure and cardiac dysfunction, which ultimately leads to diabetic cardiomyopathy. The pathogenesis of diabetic cardiomyopathy is multifactorial, including inflammatory cascade activation, oxidative/nitrative stress, and the following impaired Ca2+ handling induced by insulin resistance/hyperinsulinemia, hyperglycemia, hyperlipidemia in diabetes. Some key alterations of cellular signaling network, such as translocation of CD36 to sarcolemma, activation of NLRP3 inflammasome, up-regulation of AGE/RAGE system, and disequilibrium of micro-RNA, mediate diabetic oxidative stress/inflammation related myocardial remodeling and ventricular dysfunction in the context of glucose and lipid metabolic disturbance. Here, we summarized the detailed oxidative stress/inflammation network by which the abnormality of glucose and lipid metabolism facilitates diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Chi Xiao
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
20
|
Grieco GE, Besharat ZM, Licata G, Fignani D, Brusco N, Nigi L, Formichi C, Po A, Sabato C, Dardano A, Natali A, Dotta F, Sebastiani G, Ferretti E. Circulating microRNAs as clinically useful biomarkers for Type 2 Diabetes Mellitus: miRNomics from bench to bedside. Transl Res 2022; 247:137-157. [PMID: 35351622 DOI: 10.1016/j.trsl.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/21/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Type 2 diabetes (T2D), a chronic metabolic disease, has attained the status of a global epidemic with steadily increasing incidence worldwide. Improved diagnosis, stratification and prognosis of T2D patients and the development of more effective treatments are needed. In this era of personalized medicine, the discovery and evaluation of innovative circulating biomarkers can be an effective tool for better stratification, prognosis and therapeutic selection/management of T2D patients. MicroRNAs (miRNAs), a class of small non-coding RNAs that modulate gene expression, have been investigated as potential circulating biomarkers in T2D. Several studies have investigated the expression of circulating miRNAs in T2D patients from various biological fluids, including plasma and serum, and have demonstrated their potential as diagnostic and prognostic biomarkers, as well as biomarkers of response to therapy. In this review, we provide an overview of the current state of knowledge, focusing on circulating miRNAs that have been consistently expressed in at least two independent studies, in order to identify a set of consistent biomarker candidates in T2D. The expression levels of miRNAs, correlation with clinical parameters, functional roles of miRNAs and their potential as biomarkers are reported. A systematic literature search and assessment of studies led to the selection and review of 10 miRNAs (miR-126-3p, miR-223-3p, miR-21-5p, miR-15a-5p, miR-24-3p, miR-34a-5p, miR-146a-5p, miR-148a-3p, miR-30d-5p and miR-30c-5p). We also present technical challenges and our thoughts on the potential validation of circulating miRNAs and their application as biomarkers in the context of T2D.
Collapse
Affiliation(s)
- Giuseppina Emanuela Grieco
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | | | - Giada Licata
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Daniela Fignani
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Noemi Brusco
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Laura Nigi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Caterina Formichi
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Angela Dardano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Natali
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Francesco Dotta
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy; Tuscany Centre for Precision Medicine (CReMeP), Siena, Italy
| | - Guido Sebastiani
- Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, 53100 Siena, Italy.
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
21
|
Zatterale F, Raciti GA, Prevenzano I, Leone A, Campitelli M, De Rosa V, Beguinot F, Parrillo L. Epigenetic Reprogramming of the Inflammatory Response in Obesity and Type 2 Diabetes. Biomolecules 2022; 12:biom12070982. [PMID: 35883538 PMCID: PMC9313117 DOI: 10.3390/biom12070982] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
For the past several decades, the prevalence of obesity and type 2 diabetes (T2D) has continued to rise on a global level. The risk contributing to this pandemic implicates both genetic and environmental factors, which are functionally integrated by epigenetic mechanisms. While these conditions are accompanied by major abnormalities in fuel metabolism, evidence indicates that altered immune cell functions also play an important role in shaping of obesity and T2D phenotypes. Interestingly, these events have been shown to be determined by epigenetic mechanisms. Consistently, recent epigenome-wide association studies have demonstrated that immune cells from obese and T2D individuals feature specific epigenetic profiles when compared to those from healthy subjects. In this work, we have reviewed recent literature reporting epigenetic changes affecting the immune cell phenotype and function in obesity and T2D. We will further discuss therapeutic strategies targeting epigenetic marks for treating obesity and T2D-associated inflammation.
Collapse
Affiliation(s)
- Federica Zatterale
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Gregory Alexander Raciti
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Immacolata Prevenzano
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Alessia Leone
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Michele Campitelli
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Veronica De Rosa
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
| | - Francesco Beguinot
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| | - Luca Parrillo
- Department of Translational Medical Science, Federico II University of Naples, 80131 Naples, Italy; (F.Z.); (G.A.R.); (I.P.); (A.L.); (M.C.)
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131 Naples, Italy;
- Correspondence: (F.B.); (L.P.); Tel.: +39-081-746-3248 (F.B.); +39-081-746-3045 (L.P.)
| |
Collapse
|
22
|
Ghodrat L, Razeghian Jahromi I, Koushkie Jahromi M, Nemati J. Effect of performing high-intensity interval training and resistance training on the same day vs. different days in women with type 2 diabetes. Eur J Appl Physiol 2022; 122:2037-2047. [PMID: 35761105 DOI: 10.1007/s00421-022-04980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 03/22/2022] [Indexed: 11/27/2022]
Abstract
Type 2 diabetes (T2D) is associated with chronic inflammation as a critical factor for muscle atrophy and disease progression. Although the combination of aerobic and resistance training leads to more significant improvements in health-related indices for T2D patients, the interference effect in concurrent training can decrease positive adaptations. The purpose of this study was to investigate the physiological adaptations in performing high-intensity interval training (HIIT) and resistance training on the same day vs. different days in T2D patients. Twenty-four non-athletic 45-65-year-old women with T2D participated in an 8-week intervention. They were randomly divided into three groups: same days (SD), different days (DD), and treatment as usual (control). SD group had resistance training followed by HIIT on Saturday, Monday, and Wednesday. In contrast, the DD group had the same volume of resistance training on Saturday, Monday, and Wednesday and HIIT on Sunday, Tuesday, and Thursday, with Friday as a resting day. Blood samples were collected 24 h before the first and 48 h after the last session in each group to measure glucose, insulin, glycosylated hemoglobin, IGF1, IL1β, CRP, lipid profile, miR-146a, and miR-29b. Three subjects dropped out during the study, and 21 participants (SD = 7, DD = 6, Control = 8) completed the 8-week intervention. MiR-146a changed significantly (P = 0.006) in both SD and DD groups compared to the control group. IGF1 (P = 0.001) and fat-free mass (P = 0.001) changed significantly in SD and DD groups compared to the control group, and also DD led to more significant increases in IGF1 and fat-free mass in comparison with SD. MiR-29 (P = 0.001) changed significantly in the DD group compared to the control group. The reduction of IL-1β, fat mass and insulin resistance was significant in SD and DD compared to the control group; DD showed more potent effects than the SD group on the fat mass (P = 0.001) and insulin resistance (P = 0.001). This study demonstrated that a combination of HIIT and resistance training could be practical for improving health-related outcomes in T2D. Our study indicated for the first time that training strength and HIIT on separate days appeared to be more effective to combat muscle atrophy and insulin resistance.
Collapse
Affiliation(s)
- Leila Ghodrat
- Department of Sports Science, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - Maryam Koushkie Jahromi
- Department of Sports Science, School of Education and Psychology, Shiraz University, Shiraz, Iran
| | - Javad Nemati
- Department of Sports Science, School of Education and Psychology, Shiraz University, Shiraz, Iran.
| |
Collapse
|
23
|
Mahjoob G, Ahmadi Y, Fatima rajani H, khanbabaei N, Abolhasani S. Circulating microRNAs as predictive biomarkers of coronary artery diseases in type 2 diabetes patients. J Clin Lab Anal 2022; 36:e24380. [PMID: 35349731 PMCID: PMC9102494 DOI: 10.1002/jcla.24380] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is an increasing metabolic disorder mostly resulting from unhealthy lifestyles. T2DM patients are prone to develop heart conditions such as coronary artery disease (CAD) which is a major cause of death in the world. Most clinical symptoms emerge at the advanced stages of CAD; therefore, establishing new biomarkers detectable in the early stages of the disease is crucial to enhance the efficiency of treatment. Recently, a significant body of evidence has shown alteration in miRNA levels associate with dysregulated gene expression occurring in T2DM and CAD, highlighting significance of circulating miRNAs in early detection of CAD arising from T2DM. Therefore, it seems crucial to establish a link between the miRNAs prognosing value and development of CAD in T2DM. AIM This study provides an overview on the alterations of the circulatory miRNAs in T2DM and various CADs and consider the potentials of miRNAs as biomarkers prognosing CADs in T2DM patients. MATERIALS AND METHODS Literature search was conducted for miRNAs involved in development of T2DM and CAD using the following key words: "miRNAs", "Biomarker", "Diabetes Mellitus Type 2 (T2DM)", "coronary artery diseases (CAD)". Articles written in the English language. RESULT There has been shown a rise in miR-375, miR-9, miR-30a-5p, miR-150, miR-9, miR-29a, miR-30d, miR-34a, miR-124a, miR-146a, miR-27a, and miR-320a in T2DM; whereas, miR-126, miR-21, miR-103, miR-28-3p, miR-15a, miR-145, miR-375, miR-223 have been shown to decrease. In addition to T2DM, some miRNAs such as mirR-1, miR-122, miR-132, and miR-133 play a part in development of subclinical aortic atherosclerosis associated with metabolic syndrome. Some miRNAs increase in both T2DM and CAD such as miR-1, miR-132, miR-133, and miR-373-3-p. More interestingly, some of these miRNAs such as miR-92a elevate years before emerging CAD in T2DM. CONCLUSION dysregulation of miRNAs plays outstanding roles in development of T2DM and CAD. Also, elevation of some miRNAs such as miR-92a in T2DM patients can efficiently prognose development of CAD in these patients, so these miRNAs can be used as biomarkers in this regard.
Collapse
Affiliation(s)
- Golnoosh Mahjoob
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Yasin Ahmadi
- Department of Medical Laboratory SciencesCollege of ScienceKomar University of Science and TechnologySulaimaniIraq
| | - Huda Fatima rajani
- Department of medical biotechnologySchool of advanced sciences in medicineTehran University of medical sciencesTehranIran
| | - Nafiseh khanbabaei
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| | - Sakhavat Abolhasani
- Department of Clinical BiochemistrySarab Faculty of Medical Sciences.SarabIran
- Department of Clinical BiochemistryTarbiat Modares UniversityTehranIran
| |
Collapse
|
24
|
De Sousa RAL, Improta-Caria AC. Regulation of microRNAs in Alzheimer´s disease, type 2 diabetes, and aerobic exercise training. Metab Brain Dis 2022; 37:559-580. [PMID: 35075500 DOI: 10.1007/s11011-022-00903-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. The evolution and aggregation of amyloid beta (β) oligomers is linked to insulin resistance in AD, which is also the major characteristic of type 2 diabetes (T2D). Being physically inactive can contribute to the development of AD and/or T2D. Aerobic exercise training (AET), a type of physical exercise, can be useful in preventing or treating the negative outcomes of AD and T2D. AD, T2D and AET can regulate the expression of microRNAs (miRNAs). Here, we review some of the changes in miRNAs expression regulated by AET, AD and T2D. MiRNAs play an important role in the gene regulation of key signaling pathways in both pathologies, AD and T2D. MiRNA dysregulation is evident in AD and has been associated with several neuropathological alterations, such as the development of a reactive gliosis. Expression of miRNAs are associated with many pathophysiological mechanisms involved in T2D like insulin synthesis, insulin resistance, glucose intolerance, hyperglycemia, intracellular signaling, and lipid profile. AET regulates miRNAs levels. We identified 5 miRNAs (miR-21, miR-29a/b, miR-103, miR-107, and miR-195) that regulate gene expression and are modulated by AET on AD and T2D. The identified miRNAs are potential targets to treat the symptoms of AD and T2D. Thus, AET is a non-pharmacological tool that can be used to prevent and fight the negative outcomes in AD and T2D.
Collapse
Affiliation(s)
- Ricardo Augusto Leoni De Sousa
- Programa Multicêntrico de Pós-Graduação Em Ciências Fisiológicas- Sociedade Brasileira de Fisiologia (SBFis), Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), Campus JK, Rodovia MGT 367, Km 583, Alto da Jacuba, nº 5000, Diamantina, Minas Gerais, CEP 39100-000, Brazil.
| | - Alex Cleber Improta-Caria
- Post-Graduate Program in Medicine and Health, Faculty of Medicine, Federal University of Bahia, Bahia, Brazil
| |
Collapse
|
25
|
Blood-derived miRNA levels are not correlated with metabolic or anthropometric parameters in obese pre-diabetic subjects but with systemic inflammation. PLoS One 2022; 17:e0263479. [PMID: 35120179 PMCID: PMC8815902 DOI: 10.1371/journal.pone.0263479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/29/2022] Open
Abstract
As blood-derived miRNAs (c-miRNAs) are modulated by exercise and nutrition, we postulated that they might be used to monitor the effects of a lifestyle intervention (LI) to prevent diabetes development. To challenge this hypothesis, obese Asian Indian pre-diabetic patients were submitted to diet modifications and physical activity for 4 months (LI group) and compared to a control group which was given recommendations only. We have considered 2 periods of time to analyze the data, i.e.; a first one to study the response to the intervention (4 months), and a second one post-intervention (8 months). At basal, 4 months and 8 months post-intervention the levels of 17 c-miRNAs were quantified, selected either for their relevance to the pathology or because they are known to be modulated by physical activity or diet. Their variations were correlated with variations of 25 metabolic and anthropometric parameters and cytokines. As expected, fasting-glycaemia, insulin-sensitivity, levels of exercise- and obesity-induced cytokines were ameliorated after 4 months. In addition, the levels of 4 miRNAs (i.e.; miR-128-3p, miR-374a-5p, miR-221-3p, and miR-133a-3p) were changed only in the LI group and were correlated with metabolic improvement (insulin sensitivity, cytokine levels, waist circumference and systolic blood pressure). However, 8 months post-intervention almost all ameliorated metabolic parameters declined indicating that the volunteers did not continue the protocol on their own. Surprisingly, the LI positive effects on c-miRNA levels were still detected, and were even more pronounced 8 months post-intervention. In parallel, MCP-1, involved in tissue infiltration by immune cells, and Il-6, adiponectin and irisin, which have anti-inflammatory effects, continued to be significantly and positively modified, 8 months post-intervention. These data demonstrated for the first time, that c-miRNA correlations with metabolic parameters and insulin sensitivity are in fact only indirect and likely associated with the level systemic inflammation. More generally speaking, this important result explains the high variability between the previous studies designed to identify specific c-miRNAs associated with the severity of insulin-resistance. The results of all these studies should take into account the level of inflammation of the patients. In addition, this finding could also explain why, whatever the pathology considered (i.e.; cancers, diabetes, neurodegenerative disorders, inflammatory diseases) the same subset of miRNAs is always found altered in the blood of patients vs healthy subjects, as these pathologies are all associated with the development of inflammation.
Collapse
|
26
|
Metformin and Insulin Resistance: A Review of the Underlying Mechanisms behind Changes in GLUT4-Mediated Glucose Transport. Int J Mol Sci 2022; 23:ijms23031264. [PMID: 35163187 PMCID: PMC8836112 DOI: 10.3390/ijms23031264] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Metformin is the most commonly used treatment to increase insulin sensitivity in insulin-resistant (IR) conditions such as diabetes, prediabetes, polycystic ovary syndrome, and obesity. There is a well-documented correlation between glucose transporter 4 (GLUT4) expression and the level of IR. Therefore, the observed increase in peripheral glucose utilization after metformin treatment most likely comes from the induction of GLUT4 expression and its increased translocation to the plasma membrane. However, the mechanisms behind this effect and the critical metformin targets are still largely undefined. The present review explores the evidence for the crucial role of changes in the expression and activation of insulin signaling pathway mediators, AMPK, several GLUT4 translocation mediators, and the effect of posttranscriptional modifications based on previously published preclinical and clinical models of metformin’s mode of action in animal and human studies. Our aim is to provide a comprehensive review of the studies in this field in order to shed some light on the complex interactions between metformin action, GLUT4 expression, GLUT4 translocation, and the observed increase in peripheral insulin sensitivity.
Collapse
|
27
|
Chen WH, Huang QY, Wang ZY, Zhuang XX, Lin S, Shi QY. Therapeutic potential of exosomes/miRNAs in polycystic ovary syndrome induced by the alteration of circadian rhythms. Front Endocrinol (Lausanne) 2022; 13:918805. [PMID: 36465652 PMCID: PMC9709483 DOI: 10.3389/fendo.2022.918805] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a reproductive dysfunction associated with endocrine disorders and is most common in women of reproductive age. Clinical and/or biochemical manifestations include hyperandrogenism, persistent anovulation, polycystic ovary, insulin resistance, and obesity. Presently, the aetiology and pathogenesis of PCOS remain unclear. In recent years, the role of circadian rhythm changes in PCOS has garnered considerable attention. Changes in circadian rhythm can trigger PCOS through mechanisms such as oxidative stress and inflammation; however, the specific mechanisms are unclear. Exosomes are vesicles with sizes ranging from 30-120nm that mediate intercellular communication by transporting microRNAs (miRNAs), proteins, mRNAs, DNA, or lipids to target cells and are widely involved in the regulation of various physiological and pathological processes. Circadian rhythm can alter circulating exosomes, leading to a series of related changes and physiological dysfunctions. Therefore, we speculate that circadian rhythm-induced changes in circulating exosomes may be involved in PCOS pathogenesis. In this review, we summarize the possible roles of exosomes and their derived microRNAs in the occurrence and development of PCOS and discuss their possible mechanisms, providing insights into the potential role of exosomes for PCOS treatment.
Collapse
Affiliation(s)
- Wei-hong Chen
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Qiao-yi Huang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Zhi-yi Wang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xuan-xuan Zhuang
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| | - Qi-yang Shi
- Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Qi-yang Shi, ; Shu Lin,
| |
Collapse
|
28
|
Padilla-Martinez F, Wojciechowska G, Szczerbinski L, Kretowski A. Circulating Nucleic Acid-Based Biomarkers of Type 2 Diabetes. Int J Mol Sci 2021; 23:ijms23010295. [PMID: 35008723 PMCID: PMC8745431 DOI: 10.3390/ijms23010295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/25/2021] [Accepted: 12/26/2021] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes (T2D) is a deficiency in how the body regulates glucose. Uncontrolled T2D will result in chronic high blood sugar levels, eventually resulting in T2D complications. These complications, such as kidney, eye, and nerve damage, are even harder to treat. Identifying individuals at high risk of developing T2D and its complications is essential for early prevention and treatment. Numerous studies have been done to identify biomarkers for T2D diagnosis and prognosis. This review focuses on recent T2D biomarker studies based on circulating nucleic acids using different omics technologies: genomics, transcriptomics, and epigenomics. Omics studies have profiled biomarker candidates from blood, urine, and other non-invasive samples. Despite methodological differences, several candidate biomarkers were reported for the risk and diagnosis of T2D, the prognosis of T2D complications, and pharmacodynamics of T2D treatments. Future studies should be done to validate the findings in larger samples and blood-based biomarkers in non-invasive samples to support the realization of precision medicine for T2D.
Collapse
Affiliation(s)
- Felipe Padilla-Martinez
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
| | - Gladys Wojciechowska
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Correspondence:
| | - Lukasz Szczerbinski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, 15276 Białystok, Poland; (F.P.-M.); (L.S.); (A.K.)
- Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15276 Białystok, Poland
| |
Collapse
|
29
|
Barutta F, Corbetta B, Bellini S, Guarrera S, Matullo G, Scandella M, Schalkwijk C, Stehouwer CD, Chaturvedi N, Soedamah-Muthu SS, Durazzo M, Gruden G. MicroRNA 146a is associated with diabetic complications in type 1 diabetic patients from the EURODIAB PCS. J Transl Med 2021; 19:475. [PMID: 34823560 PMCID: PMC8614036 DOI: 10.1186/s12967-021-03142-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
Background MicroRNA-146a-5p (miR-146a-5p) is a key regulator of inflammatory processes. Expression of miR-146a-5p is altered in target organs of diabetic complications and deficiency of miR-146a-5p has been implicated in their pathogenesis. We investigated if serum miR-146a-5p levels were independently associated with micro/macrovascular complications of type 1 diabetes (DM1). Methods A nested case–control study from the EURODIAB PCS of 447 DM1 patients was performed. Cases (n = 294) had one or more complications of diabetes, whereas controls (n = 153) did not have any complication. Total RNA was isolated from all subjects and miR-146a-5p levels measured by qPCR. Both the endogenous controls U6 snRNA and the spike (Cel-miR-39) were used to normalize the results. Logistic regression analysis was carried out to investigate the association of miR-146a-5p with diabetes complications. Results MiR-146a-5p levels were significantly lower in cases [1.15 (0.32–3.34)] compared to controls [1.74 (0.44–6.74) P = 0.039]. Logistic regression analysis showed that levels of miR-146a-5p in the upper quartile were inversely associated with reduced odds ratio (OR) of all complications (OR 0.34 [95% CI 0.14–0.76]) and particularly with cardiovascular diseases (CVD) (OR 0.31 [95% CI 0.11–0.84]) and diabetic retinopathy (OR 0.40 [95% CI 0.16–0.99]), independently of age, sex, diabetes duration, A1c, hypertension, AER, eGFR, NT-proBNP, and TNF-α. Conclusions In this large cohort of DM1 patients, we reported an inverse and independent association of miR-146a-5p with diabetes chronic complications and in particular with CVD and retinopathy, suggesting that miR-146a-5p may be a novel candidate biomarker of DM1 complications. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03142-4.
Collapse
Affiliation(s)
- Federica Barutta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.
| | - Beatrice Corbetta
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Stefania Bellini
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Simonetta Guarrera
- Italian Institute for Genomic Medicine, IIGM, Candiolo, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Matullo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy.,Medical Genetics Unit, AOU Città Della Salute E Della Scienza, Turin, Italy
| | - Michela Scandella
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Casper Schalkwijk
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Coen D Stehouwer
- Department of Internal Medicine and Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Nish Chaturvedi
- Institute of Cardiovascular Science, University College London, London, UK
| | - Sabita S Soedamah-Muthu
- Center of Research On Psychology in Somatic Diseases (CORPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.,Institute for Food, Nutrition and Health, University of Reading, Reading, UK
| | - Marilena Durazzo
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| | - Gabriella Gruden
- Diabetic Nephropathy Laboratory, Department of Medical Sciences, University of Turin, C/so Dogliotti 14, 10126, Turin, Italy
| |
Collapse
|
30
|
Sałówka A, Martinez-Sanchez A. Molecular Mechanisms of Nutrient-Mediated Regulation of MicroRNAs in Pancreatic β-cells. Front Endocrinol (Lausanne) 2021; 12:704824. [PMID: 34803905 PMCID: PMC8600252 DOI: 10.3389/fendo.2021.704824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β-cells within the islets of Langerhans respond to rising blood glucose levels by secreting insulin that stimulates glucose uptake by peripheral tissues to maintain whole body energy homeostasis. To different extents, failure of β-cell function and/or β-cell loss contribute to the development of Type 1 and Type 2 diabetes. Chronically elevated glycaemia and high circulating free fatty acids, as often seen in obese diabetics, accelerate β-cell failure and the development of the disease. MiRNAs are essential for endocrine development and for mature pancreatic β-cell function and are dysregulated in diabetes. In this review, we summarize the different molecular mechanisms that control miRNA expression and function, including transcription, stability, posttranscriptional modifications, and interaction with RNA binding proteins and other non-coding RNAs. We also discuss which of these mechanisms are responsible for the nutrient-mediated regulation of the activity of β-cell miRNAs and identify some of the more important knowledge gaps in the field.
Collapse
Affiliation(s)
| | - Aida Martinez-Sanchez
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
31
|
Flowers E, Ramírez-Mares JD, Velazquez-Villafaña M, Rangel-Salazar R, Sucher A, Kanaya AM, Aouizerat BE, Lazo de la Vega Monroy ML. Circulating microRNAs associated with prediabetes and geographic location in Latinos. Int J Diabetes Dev Ctries 2021; 41:570-578. [PMID: 35169383 PMCID: PMC8842833 DOI: 10.1007/s13410-020-00917-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Globally, type 2 diabetes is highly prevalent in individuals of Latino ancestry. The reasons underlying this high prevalence are not well understood, but both genetic and lifestyle factors are contributors. Circulating microRNAs are readily detectable in blood and are promising biomarkers to characterize biological responses (i.e., changes in gene expression) to lifestyle factors. Prior studies identified relationships between circulating microRNAs and risk for type 2 diabetes, but Latinos have largely been under-represented in these study samples. AIMS/HYPOTHESIS The aim of this study was to assess for differences in expression levels of three candidate microRNAs (miR-126, miR-146, miR-15) between individuals who had prediabetes compared to normal glycemic status and between individuals who self-identified with Latino ancestry in the United States (US) and native Mexicans living in or near Leon, Mexico. METHODS This was a cross-sectional study that included 45 Mexicans and 21 Latino participants from the US. Prediabetes was defined as fasting glucose 100-125 mg/dL or 2-h post-glucose challenge between 140 and 199 mg/dL. Expression levels of microRNAs from plasma were measured by qPCR. Linear and logistic regression models were used to assess relationships between individual microRNAs and glycemic status or geographic site. RESULTS None of the three microRNAs was associated with risk for type 2 diabetes. MiR-146a and miR-15 were significantly lower in the study sample from Mexico compared to the US. There was a significant interaction between miR-146a and BMI associated with fasting blood glucose. CONCLUSIONS/INTERPRETATION This study did not replicate in Latinos prior observations from other racial groups of associations between miR-126, miR-146a, and miR-15 and risk for type 2 diabetes. Future studies should consider other microRNAs related to different biological pathways as possible biomarkers for type 2 diabetes in Latinos.
Collapse
Affiliation(s)
- Elena Flowers
- Department of Physiological Nursing, University of California, San Francisco, 2 Koret Way, #605L, San Francisco, CA 94143-0610, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, USA
| | | | | | - Ruben Rangel-Salazar
- Medical Sciences Department, Health Sciences Division, University of Guanajuato, Guanajuato, Mexico
| | - Anatol Sucher
- University of California, San Francisco, San Francisco, USA
| | - Alka M. Kanaya
- Department of Medicine, University of California, San Francisco, San Francisco, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, USA
| | - Bradley E. Aouizerat
- College of Dentistry, Bluestone Center for Clinical Research, New York University, New York, USA
| | | |
Collapse
|
32
|
Gaytán-Pacheco N, Lima-Rogel V, Méndez-Mancilla A, Escalante-Padrón F, Toro-Ortíz JC, Jiménez-Capdeville ME, Zaga-Clavellina V, Portales-Pérez DP, Noyola DE, Salgado-Bustamante M. Changes in PPAR-γ Expression Are Associated with microRNA Profiles during Fetal Programming due to Maternal Overweight and Obesity. Gynecol Obstet Invest 2021; 86:415-426. [PMID: 34547756 DOI: 10.1159/000517116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/10/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND There has been a global increase in the prevalence of obesity in pregnant women in recent years. Animal studies have shown that intrauterine environment associated with maternal obesity leads to epigenetic changes. However, the effects of epigenetic changes occurring before birth in response to maternal conditions have not been clearly characterized in humans. OBJECTIVE The aim of the study was to analyze peroxisome proliferator-activated receptor (PPAR)-γ expression in cell cultures from newborns from mothers with overweight and obesity, in response to in vitro metabolic challenges and their relationship with microRNA profile and cytokine expression. Methods/Study design: The profile of circulating microRNAs from 72 mother-child pairs (including healthy infants born to normal weight [n = 35], overweight [n = 25], and obese [n = 12] mothers) was determined through real-time PCR, and the PPAR-γ expression in peripheral blood mononuclear cell cultures from offspring was analyzed after in vitro challenges. RESULTS miR-146a, miR-155, and miR-378a were upregulated in overweight mothers, while miR-378a was upregulated in obese mothers compared to normal weight mothers. In children from overweight mothers, miR-155 and miR-221 were downregulated and miR-146a was upregulated, while offspring of mothers with obesity showed downregulation of miR-155, miR-221, and miR-1301. These microRNAs have direct or indirect relation with PPAR-γ expression. In vitro exposure to high triglyceride and exposure to miR-378a induced a higher expression of PPAR-γ in cells from offspring of mothers with overweight and obesity. In contrast, cells from offspring of mothers with obesity cultured with high glucose concentrations showed PPAR-γ downregulation. IL-1ß, IL-6, and TNF-α expression in cells of offspring of overweight and obese mothers differed from that of offspring of normal weight mothers. Limitation of our study is the small sample size. CONCLUSION The blood microRNA profile, and in vitro PPAR-γ and inflammatory cytokine expression in cells of newborn infants are associated with maternal obesity indicating that epigenetic marks may be established during intrauterine development. Key Message: Neonatal microRNA profile is associated with maternal weight. Neonatal microRNA profile is independent of maternal microRNA profile. PPAR-γ expression in newborn cell cultures is affected by maternal weight.
Collapse
Affiliation(s)
- Noemí Gaytán-Pacheco
- Biochemistry Department, University Autonomous of San Luis Potosí, San Luis Potosi, Mexico
| | - Victoria Lima-Rogel
- Pediatrics Division, Hospital Central "Dr. Ignacio Morones Prieto,", San Luis Potosi, Mexico
| | - Alejandro Méndez-Mancilla
- Cellular and Molecular Immunology Laboratory, Chemistry Faculty, University Autonomous of San Luis Potosí, San Luis Potosi, Mexico
| | | | - Juan Carlos Toro-Ortíz
- Ginecology and Obstetrics Division, Hospital Central "Dr. Ignacio Morones Prieto,", San Luis Potosi, Mexico
| | | | | | - Diana P Portales-Pérez
- Cellular and Molecular Immunology Laboratory, Chemistry Faculty, University Autonomous of San Luis Potosí, San Luis Potosi, Mexico
| | - Daniel E Noyola
- Microbiology Department, Faculty of Medicine, University Autonomous of San Luis Potosí, San Luis Potosi, Mexico
| | | |
Collapse
|
33
|
Iacomino G, Lauria F, Russo P, Venezia A, Iannaccone N, Marena P, Ahrens W, De Henauw S, Molnár D, Eiben G, Foraita R, Hebestreit A, Kourides G, Moreno LA, Veidebaum T, Siani A. The association of circulating miR-191 and miR-375 expression levels with markers of insulin resistance in overweight children: an exploratory analysis of the I.Family Study. GENES AND NUTRITION 2021; 16:10. [PMID: 34243726 PMCID: PMC8272322 DOI: 10.1186/s12263-021-00689-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/18/2021] [Indexed: 02/08/2023]
Abstract
Background In recent years, the exciting emergence of circulating miRNAs as stable, reproducible, and consistent among individuals has opened a promising research opportunity for the detection of non-invasive biomarkers. A firm connection has been established between circulating miRNAs and glycaemic as well as metabolic homeostasis, showing that levels of specific miRNAs vary under different physio-pathological conditions. Objective In this pilot study, we investigated the expression of candidate miRNAs, hsa-miR-191-3p and hsa-miR-375, in relation to biomarkers associated with insulin sensitivity in a subgroup (n=58) of subjects participating to the European I.Family Study, a project aimed to assess the determinants of eating behaviour in children and adolescents and related health outcomes. The sample included overweight/obese children/adolescents since overweight/obesity is a known risk factor for impaired glucose homeostasis and metabolic disorders. Biological targets of candidate miRNAs were also explored in silico. Results We observed a significant association of the two miRNAs and early changes in glycaemic homeostasis, independent of covariates including country of origin, age, BMI z-score, puberty status, highest educational level of parents, total energy intake, energy from fats, energy from carbohydrates, and energy from proteins. Conclusion Identification of circulating miRNAs associated with insulin impairment may offer novel approaches of assessing early variations in insulin sensitivity and provide evidence about the molecular mechanisms connected to early changes in glycaemic homeostasis. Trial registration ISRCTN, ISRCTN62310987. Retrospectively registered, http://isrctn.com/ISRCTN62310987 Supplementary Information The online version contains supplementary material available at 10.1186/s12263-021-00689-1.
Collapse
Affiliation(s)
- Giuseppe Iacomino
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy.
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Paola Russo
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Antonella Venezia
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Nunzia Iannaccone
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Pasquale Marena
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | | | - Dénes Molnár
- Department of Pediatrics, Medical School, University of Pécs, Pécs, Hungary
| | - Gabriele Eiben
- Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 3, 413 90, Göteborg, Sweden
| | - Ronja Foraita
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology, BIPS, Achterstraße 30, 28359, Bremen, Germany
| | - Giannis Kourides
- Research and Education Institute of Child Health, ave, #205 2015, Strovolos, 138, Limassol, Cyprus
| | - Luis A Moreno
- University of Zaragoza, Domingo Miral, s/n, 50009, Zaragoza, Spain
| | - Toomas Veidebaum
- National Institute for Health Development, Hiiu 42, 11619, Tallinn, Estonia
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, ISA-CNR, via Roma 64, 83100, Avellino, Italy
| | | |
Collapse
|
34
|
Tonyan ZN, Nasykhova YA, Mikhailova AA, Glotov AS. MicroRNAs as Potential Biomarkers of Type 2 Diabetes Mellitus. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421060107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
35
|
Zeinali F, Aghaei Zarch SM, Jahan-Mihan A, Kalantar SM, Vahidi Mehrjardi MY, Fallahzadeh H, Hosseinzadeh M, Rahmanian M, Mozaffari-Khosravi H. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS One 2021; 16:e0251697. [PMID: 34077450 PMCID: PMC8171947 DOI: 10.1371/journal.pone.0251697] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/30/2021] [Indexed: 01/21/2023] Open
Abstract
The prevalence of type 2 diabetes mellitus (T2DM) is increasing dramatically worldwide. Dysregulation of microRNA (miRNA) as key regulators of gene expression, has been reported in numerous diseases including diabetes. The aim of this study was to investigate the expression levels of miRNA-122, miRNA-126-3p and miRNA-146a in diabetic and pre-diabetic patients and in healthy individuals, and to determine whether the changes in the level of these miRNAs are reliable biomarkers in diagnosis, prognosis, and pathogenesis of T2DM. Additionally, we examined the relationship between miRNA levels and plasma concentrations of inflammatory factors including tumor necrosis factor alpha (TNF-α) and interleukin 6 (Il-6) as well as insulin resistance. In this case-control study, participants (n = 90) were allocated to three groups (n = 30/group): T2DM, pre-diabetes and healthy individuals as control (males and females, age: 25–65, body mass index: 25–35). Expression of miRNA was determined by real-time polymerase chain reaction (RT-PCR). Furthermore, plasma concentrations of TNF-α, IL-6 and fasting insulin were measured by enzyme-linked immunosorbent assay. Homeostatic model assessment for insulin resistance (HOMA-IR) was calculated as an indicator of insulin resistance. MiRNA-122 levels were higher while miRNA-126-3p and miRNA-146a levels were lower in T2DM and pre-diabetic patients compared to control (p<0.05). Furthermore, a positive correlation was found between miRNA-122 expression and TNF-α (r = 0.82), IL-6 (r = 0.83) and insulin resistance (r = 0.8). Conversely, negative correlations were observed between miRNA-126-3p and miRNA-146a levels and TNF-α (r = -0.7 and r = -0.82 respectively), IL-6 (r = -0.65 and r = -0.78 respectively) as well as insulin resistance (r = -0.67 and r = -0.78 respectively) (all p<0.05). Findings of this study suggest the miRNAs can potentially contribute to the pathogenesis of T2DM. Further studies are required to examine the reproducibility of these findings.
Collapse
Affiliation(s)
- Fahime Zeinali
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mohsen Aghaei Zarch
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Jahan-Mihan
- Department of Nutrition and Dietetics, University of North Florida, Jacksonville, FL, United States of America
| | - Seyed Mehdi Kalantar
- Department of Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Clinical and Research Center of Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Hossein Fallahzadeh
- Department of Biostatistics and Epidemiology, Research Center of Prevention and Epidemiology of Non-Communicable Disease, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Hosseinzadeh
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Rahmanian
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hassan Mozaffari-Khosravi
- Department of Nutrition, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Nutrition and Food Security Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Yazd Diabetic Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- * E-mail:
| |
Collapse
|
36
|
Zubáňová V, Červinková Z, Kučera O, Palička V. The Connection between MicroRNAs from Visceral Adipose Tissue and Non-Alcoholic Fatty Liver Disease. ACTA MEDICA (HRADEC KRÁLOVÉ) 2021; 64:1-7. [PMID: 33855952 DOI: 10.14712/18059694.2021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide leading the foreground cause of liver transplantation. Recently miRNAs, small non-coding molecules were identified as an important player in the negative translational regulation of many protein-coding genes involved in hepatic metabolism. Visceral adipose tissue was found to take part in lipid and glucose metabolism and to release many inflammatory mediators that may contribute to progression of NAFLD from simple steatosis to Non-Alcoholic SteatoHepatitis. Since visceral adipose tissue enlargement and dysregulated levels of miRNAs were observed in patients with NAFLD, the aim of this paper is to reflect the current knowledge of the role of miRNAs released from visceral adipose tissue and NAFLD.
Collapse
Affiliation(s)
- Veronika Zubáňová
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic.
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Králové, Czech Republic
| | - Vladimír Palička
- Department of Clinical Biochemistry and Diagnostics, Charles University, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic
| |
Collapse
|
37
|
Amin AM. The metabolic signatures of cardiometabolic diseases: Does the shared metabotype offer new therapeutic targets? LIFESTYLE MEDICINE 2021. [DOI: 10.1002/lim2.25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Arwa M. Amin
- Department of Clinical and Hospital Pharmacy College of Pharmacy Taibah University Medina Saudi Arabia
| |
Collapse
|
38
|
Jakubik D, Fitas A, Eyileten C, Jarosz-Popek J, Nowak A, Czajka P, Wicik Z, Sourij H, Siller-Matula JM, De Rosa S, Postula M. MicroRNAs and long non-coding RNAs in the pathophysiological processes of diabetic cardiomyopathy: emerging biomarkers and potential therapeutics. Cardiovasc Diabetol 2021; 20:55. [PMID: 33639953 PMCID: PMC7916283 DOI: 10.1186/s12933-021-01245-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
The epidemic of diabetes mellitus (DM) necessitates the development of novel therapeutic and preventative strategies to attenuate complications of this debilitating disease. Diabetic cardiomyopathy (DCM) is a frequent disorder affecting individuals diagnosed with DM characterized by left ventricular hypertrophy, diastolic and systolic dysfunction and myocardial fibrosis in the absence of other heart diseases. Progression of DCM is associated with impaired cardiac insulin metabolic signaling, increased oxidative stress, impaired mitochondrial and cardiomyocyte calcium metabolism, and inflammation. Various non-coding RNAs, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), as well as their target genes are implicated in the complex pathophysiology of DCM. It has been demonstrated that miRNAs and lncRNAs play an important role in maintaining homeostasis through regulation of multiple genes, thus they attract substantial scientific interest as biomarkers for diagnosis, prognosis and as a potential therapeutic strategy in DM complications. This article will review the different miRNAs and lncRNA studied in the context of DM, including type 1 and type 2 diabetes and the contribution of pathophysiological mechanisms including inflammatory response, oxidative stress, apoptosis, hypertrophy and fibrosis to the development of DCM .
Collapse
Affiliation(s)
- Daniel Jakubik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Alex Fitas
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Joanna Jarosz-Popek
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Doctoral School, Medical University of Warsaw, 02-091, Warsaw, Poland
| | - Anna Nowak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Pamela Czajka
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland
| | - Zofia Wicik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Centro de Matemática, Computação e Cognição, Universidade Federal Do ABC, São Paulo, Brazil
| | - Harald Sourij
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Jolanta M Siller-Matula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.,Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Salvatore De Rosa
- Division of Cardiology, Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy.,Cardiovascular Research Center, "Magna Graecia" University, Catanzaro, Italy
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CEPT, Medical University of Warsaw, Banacha 1B Str., 02-097, Warsaw, Poland.
| |
Collapse
|
39
|
Luo Y, Cui C, Han X, Wang Q, Zhang C. The role of miRNAs in polycystic ovary syndrome with insulin resistance. J Assist Reprod Genet 2021; 38:289-304. [PMID: 33405004 PMCID: PMC7884539 DOI: 10.1007/s10815-020-02019-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This review aims to summarize the key findings of several miRNAs and their roles in polycystic ovary syndrome with insulin resistance, characterize the disease pathogenesis, and establish a new theoretical basis for diagnosing, treating, and preventing polycystic ovary syndrome. METHODS Relevant scientific literature was covered from 1992 to 2020 by searching the PubMed database with search terms: insulin/insulin resistance, polycystic ovary syndrome, microRNAs, and metabolic diseases. References of relevant studies were cross-checked. RESULTS The related miRNAs (including differentially expressed miRNAs) and their roles in pathogenesis, and possible therapeutic targets and pathways, are discussed, highlighting controversies and offering thoughts for future directions. CONCLUSION We found abundant evidence on the role of differentially expressed miRNAs with its related phenotypes in PCOS. Considering the essential role of insulin resistance in the pathogenesis of PCOS, the alterations of associated miRNAs need more research attention. We speculate that race/ethnicity or PCOS phenotype and differences in methodological differences might lead to inconsistencies in research findings; thus, several miRNA profiles need to be investigated further to qualify for the potential therapeutic targets for PCOS-IR.
Collapse
Affiliation(s)
- Yingliu Luo
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Chenchen Cui
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Xiao Han
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Qian Wang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China
- Henan Joint International Research Laboratory of Reproductive Bioengineering, Zhengzhou, 450003, Henan Province, People's Republic of China
| | - Cuilian Zhang
- Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan Province, People's Republic of China.
| |
Collapse
|
40
|
Chen J, Chen T, Zhou J, Zhao X, Sheng Q, Lv Z. MiR-146a-5p Mimic Inhibits NLRP3 Inflammasome Downstream Inflammatory Factors and CLIC4 in Neonatal Necrotizing Enterocolitis. Front Cell Dev Biol 2021; 8:594143. [PMID: 33585442 PMCID: PMC7876392 DOI: 10.3389/fcell.2020.594143] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/31/2020] [Indexed: 12/02/2022] Open
Abstract
Objective: Necrotizing enterocolitis (NEC) is a gastrointestinal emergency with a severe inflammation storm, intestinal necrosis, and perforation. MicroRNA-146a-5p (miR-146a-5p) has been reported to be a valuable anti-inflammatory factor in various intestinal inflammatory disorders. However, the role of miR-146a-5p in NEC, its effects on nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome, and its downstream inflammatory factors remain unknown. This study aimed to investigate the role of miR-146a-5p and NLRP3 inflammasome and its downstream inflammatory factors in NEC development. Methods: The expression levels of miR-146a and NLRP3 inflammasome were investigated in intestinal tissues. Next, the mechanism by which miR-146a-5p regulates NLRP3 inflammasome activation was explored in vitro in THP-1 cells. Finally, to identify the effects of miR-146a-5p on NEC in vivo, NEC mice were transinfected with miR-146a-5p overexpression adenovirus before the occurrence of NEC. Results: NLRP3 inflammasome enzymatic protein caspase-1 and its downstream inflammatory factors increased in NEC intestinal samples in both humans and mice, and miR-146a-5p expression level was increased and mainly expressed in the macrophages of the affected intestine. In vitro, only miR-146a-5p mimic inhibited NLRP3 inflammasome downstream inflammatory factors and its upstream protein chloride intracellular channel protein 4 (CLIC4) expression in cellular membrane in the THP-1 cell line, and this only occurred under mild/moderate LPS concentration. MiR-146a-5p overexpression adenovirus transfection reduced CLIC4 cellular membrane expression and inhibited NLRP3 downstream factors increasing in vivo. After the transfection of miR-146a-5p adenovirus, the survival rate of NEC mice was increased, and intestinal injury was ameliorated. Conclusion: MiR-146a-5p inhibited NLRP3 inflammasome downstream inflammatory factors and CLIC4 membrane expression in NEC. Additionally, miR-146a-5p could attenuate inflammation and intestinal injury in the NEC-affected intestine.
Collapse
Affiliation(s)
- Jianglong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Tong Chen
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jin Zhou
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuhao Zhao
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Sheng
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhibao Lv
- Department of General Surgery, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
41
|
Patrick MT, Stuart PE, Zhang H, Zhao Q, Yin X, He K, Zhou XJ, Mehta NN, Voorhees JJ, Boehnke M, Gudjonsson JE, Nair RP, Handelman SK, Elder JT, Liu DJ, Tsoi LC. Causal Relationship and Shared Genetic Loci between Psoriasis and Type 2 Diabetes through Trans-Disease Meta-Analysis. J Invest Dermatol 2020; 141:1493-1502. [PMID: 33385400 DOI: 10.1016/j.jid.2020.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/09/2020] [Accepted: 11/23/2020] [Indexed: 01/04/2023]
Abstract
Psoriasis and type 2 diabetes (T2D) are complex conditions with significant impacts on health. Patients with psoriasis have a higher risk of T2D (∼1.5 OR) and vice versa, controlling for body mass index; yet, there has been a limited study comparing their genetic architecture. We hypothesized that there are shared genetic components between psoriasis and T2D. Trans-disease meta-analysis was applied to 8,016,731 well-imputed genetic markers from large-scale meta-analyses of psoriasis (11,024 cases and 16,336 controls) and T2D (74,124 cases and 824,006 controls), adjusted for body mass index. We confirmed our findings in a hospital-based study (42,112 patients) and tested for causal relationships with multivariable Mendelian randomization. Mendelian randomization identified a causal relationship between psoriasis and T2D (P = 1.6 × 10‒4, OR = 1.01) and highlighted the impact of body mass index. Trans-disease meta-analysis further revealed four genome-wide significant loci (P < 5 × 10‒8) with evidence of colocalization and shared directions of effect between psoriasis and T2D not present in body mass index. The proteins coded by genes in these loci (ACTR2, ERLIN1, TRMT112, and BECN1) are connected through NF-κB signaling. Our results provide insight into the immunological components that connect immune-mediated skin conditions and metabolic diseases, independent of confounding factors.
Collapse
Affiliation(s)
- Matthew T Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip E Stuart
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Haihan Zhang
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Qingyuan Zhao
- Statistical Laboratory, Centre for Mathematical Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Xianyong Yin
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Kevin He
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital, Beijing, China
| | - Nehal N Mehta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John J Voorhees
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rajan P Nair
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Samuel K Handelman
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Pennsylvania, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA; Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor Michigan, USA.
| |
Collapse
|
42
|
Zhou Y, Wu R, Su H, Li K, Chen C, Xie R. miR-18a increases insulin sensitivity by inhibiting PTEN. Aging (Albany NY) 2020; 13:1357-1368. [PMID: 33293478 PMCID: PMC7835052 DOI: 10.18632/aging.202319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/03/2020] [Indexed: 01/03/2023]
Abstract
The miR-17-92 cluster (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a) contributes to the occurrence and development of various diseases by inhibiting multiple target genes. Here, we explored the effects of miR-18a on insulin sensitivity. Quantitative real-time PCR indicated that serum miR-18a levels were lower in type 2 diabetes mellitus patients than in healthy controls, suggesting that miR-18a may influence blood glucose levels. Global overexpression of miR-18a in transgenic mice increased their glucose tolerance and insulin sensitivity, while it reduced expression of the phosphatase and tensin homolog deleted on chromosome ten (PTEN) in their skeletal muscle and adipose tissue. Western blotting indicated that overexpressing miR-18a in 3T3-L1 and C2C12 cells enhanced insulin-stimulated AKT phosphorylation and suppressed PTEN expression, while inhibiting miR-18a had the opposite effects. These results suggest that miR-18a improves insulin sensitivity by downregulating PTEN. This makes miR-18a a potentially useful target for the treatment of diabetes mellitus in the future.
Collapse
Affiliation(s)
- Yongqiang Zhou
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Ruoqi Wu
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Huafang Su
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Kejie Li
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Chun Chen
- Department of Orthopedics, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Raoying Xie
- Department of Radiation and Medical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| |
Collapse
|
43
|
S.V. A, Pratibha M, Kapil B, M.K. S. Identification of circulatory miRNAs as candidate biomarkers in prediabetes - A systematic review and bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
44
|
Guo W, Li XN, Li J, Lu J, Wu J, Zhu WF, Qin P, Xu NZ, Zhang Q. Increased plasma miR-146a levels are associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. J Diabetes Complications 2020; 34:107725. [PMID: 32981813 DOI: 10.1016/j.jdiacomp.2020.107725] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022]
Abstract
AIMS The association between circulating miR-146a and subclinical atherosclerosis in type 2 diabetes mellitus (T2DM) remains poorly understood. This study aimed to investigate the correlation between plasma miR-146a levels and subclinical atherosclerosis as measured by the carotid intima-media thickness (CIMT) and brachial-ankle pulse wave velocity (baPWV) in patients with newly diagnosed T2DM. METHODS We studied 100 patients with newly diagnosed T2DM. Subclinical atherosclerosis was defined as a thickened CIMT (≥1.0 mm) and high baPWV defined as a value greater than the 75th percentile. Plasma miR-146a levels and metabolic parameters were measured. RESULTS Patients with thickened CIMT had higher plasma miR-146a levels than those without thickened CIMT (3.36 ± 1.32 vs 1.38 ± 1.11, P < 0.001). Patients in the high baPWV group had higher plasma miR-146a levels than those in the normal baPWV group (3.43 ± 1.32 vs 1.98 ± 1.48, P < 0.001). Both CIMT (β = 0.569, P < 0.001) and baPWV (β = 0.274, P = 0.001) positively correlated with plasma miR-146a levels after adjustment for confounding factors by multiple stepwise regression. On binary logistic regression, plasma miR-146a level was an independent risk factor for thickened CIMT (OR = 3.890, 95% CI 1.415-7.698, P = 0.008) and high baPWV (OR = 1.954, 95% CI 1.256-3.040, P = 0.002) after adjustment for established cardiovascular risk factors. The area under the receiver operating characteristics curve (AUROC) of plasma miR-146a level for predicting thickened CIMT was 0.795 (95%CI 0.708-0.883, P < 0.001) and for predicting high baPWV was 0.773 (95%CI 0.679-0.867, P < 0.001). CONCLUSION Plasma miR-146a levels correlate with CIMT and baPWV and could act as a biomarker for early diagnosis and as a therapeutic target for atherosclerosis in T2DM.
Collapse
Affiliation(s)
- Wen Guo
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Xiao-Na Li
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Jie Li
- Department of Endocrinology, Nanjing Central Hospital, Nanjing 210018, China
| | - Jing Lu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Juan Wu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wen-Fang Zhu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Pei Qin
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| | - Nian-Zhen Xu
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Qun Zhang
- Department of Health Promotion Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
45
|
Buckley H, Dumville J, Hodgkinson M, Wearmouth D, Barlow G, van der Woude M, Cullum N, Chetter I, Lagos D. Characterisation of baseline microbiological and host factors in an inception cohort of people with surgical wounds healing by secondary intention reveals circulating IL-6 levels as a potential predictive biomarker of healing. Wellcome Open Res 2020; 5:80. [PMID: 34104801 PMCID: PMC8160585 DOI: 10.12688/wellcomeopenres.15688.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 11/20/2022] Open
Abstract
Background: More than 2 million people per year are treated for surgical wounds in the UK. Over a quarter of these wounds are estimated to heal by secondary intention (from the "bottom up") resulting in further complications and requiring increased healthcare resources. Identification of microbiological or host biomarkers that can predict healing outcomes may help to optimize the management of surgical wounds healing by secondary intention. However, the microbial and host factor heterogeneity amongst this diverse population is completely unexplored. Methods: We demonstrate feasibility of determining presence and levels of wound microbes and systemic host factors in an inception cohort of 54 people presenting with surgical wounds healing by secondary intention, who were subsequently followed-up for a period of 12-21 months. We present descriptive statistics for plasma levels of inflammatory, angiogenic cytokines and microRNAs, and we identify a range of wound colonizing microbes. We tentatively explore association with healing aiming to generate hypotheses for future research. Results: We report a potential correlation between poor healing outcomes and elevated interleukin (IL)-6 plasma levels at presentation (ρ=0.13) which requires confirmation. Conclusions: This study demonstrates the degree of biological heterogeneity amongst people with surgical wounds healing by secondary intention and proves the feasibility of embedding a biomarker discovery study in a cohort study in surgical wounds. Our results are essential for designing large biomarker discovery studies to further investigate the potential validity of circulating IL-6 or other factors as novel predictive biomarkers of healing for surgical wounds healing by secondary intention.
Collapse
Affiliation(s)
- Hannah Buckley
- York Trials Unit, Department of Health Sciences, University of York, York, YO10 5DD, UK
| | - Jo Dumville
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Michael Hodgkinson
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Debbie Wearmouth
- Department of Infection, Hull and East Yorkshire Hospitals NHS Trust, Hull, HU3 2JZ, UK
| | - Gavin Barlow
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Marjan van der Woude
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| | - Nicky Cullum
- Division of Nursing, Midwifery and Social Work, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK.,Research and Innovation Division, Central Manchester University Hospitals NHS Foundation Trust, Manchester, M13 9PL, UK
| | - Ian Chetter
- Academic Vascular Surgical Unit, Hull York Medical School / Hull University Teaching Hospital NHS Trust, Hull, HU3 2JZ, UK
| | - Dimitris Lagos
- York Biomedical Research Institute, Hull York Medical School, University of York, York, YO10 5DD, UK
| |
Collapse
|
46
|
miR-146a regulates insulin sensitivity via NPR3. Cell Mol Life Sci 2020; 78:2987-3003. [PMID: 33206203 PMCID: PMC8004521 DOI: 10.1007/s00018-020-03699-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/01/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
The pathogenesis of obesity-related metabolic diseases has been linked to the inflammation of white adipose tissue (WAT), but the molecular interconnections are still not fully understood. MiR-146a controls inflammatory processes by suppressing pro-inflammatory signaling pathways. The aim of this study was to characterize the role of miR-146a in obesity and insulin resistance. MiR-146a-/- mice were subjected to a high-fat diet followed by metabolic tests and WAT transcriptomics. Gain- and loss-of-function studies were performed using human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Compared to controls, miR-146a-/- mice gained significantly more body weight on a high-fat diet with increased fat mass and adipocyte hypertrophy. This was accompanied by exacerbated liver steatosis, insulin resistance, and glucose intolerance. Likewise, adipocytes transfected with an inhibitor of miR-146a displayed a decrease in insulin-stimulated glucose uptake, while transfecting miR-146a mimics caused the opposite effect. Natriuretic peptide receptor 3 (NPR3) was identified as a direct target gene of miR-146a in adipocytes and CRISPR/Cas9-mediated knockout of NPR3 increased insulin-stimulated glucose uptake and enhanced de novo lipogenesis. In summary, miR-146a regulates systemic and adipocyte insulin sensitivity via downregulation of NPR3.
Collapse
|
47
|
Shi R, Chen Y, Liao Y, Li R, Lin C, Xiu L, Yu H, Ding Y. Research Status of Differentially Expressed Noncoding RNAs in Type 2 Diabetes Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3816056. [PMID: 33274206 PMCID: PMC7683115 DOI: 10.1155/2020/3816056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/26/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022]
Abstract
AIMS Noncoding RNAs (ncRNAs) play an important role in the occurrence and development of type 2 diabetes mellitus (T2DM). This paper summarized the current evidences of the involvement microRNAs, long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) in the differential expressions and their interaction with each other in T2DM. METHODS The differentially expressed miRNAs, lncRNAs, and circRNAs in the blood circulation (plasma, serum, whole blood, and peripheral blood mononuclear cells) of patients with T2DM were found in PubMed, GCBI, and other databases. The interactions between ncRNAs were predicted based on the MiRWalk and the DIANA Tools databases. The indirect and direct target genes of lncRNAs and circRNAs were predicted based on the starBase V2.0, DIANA Tools, and LncRNA-Target databases. Then, GO and KEGG analysis on all miRNA, lncRNA, and circRNA target genes was performed using the mirPath and Cluster Profile software package in R language. The lncRNA-miRNA and circRNA-miRNA interaction diagram was constructed with Cytoscape. The aim of this investigation was to construct a mechanism diagram of lncRNA involved in the regulation of target genes on insulin signaling pathways and AGE-RAGE signaling pathways of diabetic complications. RESULTS A total of 317 RNAs, 283 miRNAs, and 20 lncRNAs and circRNAs were found in the circulation of T2DM. Dysregulated microRNAs and lncRNAs were found to be involved in signals related to metabolic disturbances, insulin signaling, and AGE-RAGE signaling in T2DM. In addition, lncRNAs participate in the regulation of key genes in the insulin signaling and AGE-RAGE signaling pathways through microRNAs, which leads to insulin resistance and diabetic vascular complications. CONCLUSION Noncoding RNAs participate in the occurrence and development of type 2 diabetes and lead to its vascular complications by regulating different signaling pathways.
Collapse
Affiliation(s)
- Rou Shi
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
- Huizhou Central People's Hospital, Department of Endocrinology, Huizhou, Guangdong 516008, China
| | - Yingjian Chen
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yuanjun Liao
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Rang Li
- Institute of Medical Systems Biology, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Chunwen Lin
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Liangchang Xiu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Haibing Yu
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Yuanlin Ding
- Department of Epidemiology and Medical Statistics, Guangdong Medical University, Dongguan, Guangdong 523808, China
| |
Collapse
|
48
|
Fan B, Chopp M, Zhang ZG, Liu XS. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy. Front Neurol 2020; 11:558758. [PMID: 33192992 PMCID: PMC7642849 DOI: 10.3389/fneur.2020.558758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic neuropathy (DN) is the most prevalent chronic complication of diabetes mellitus. The exact pathophysiological mechanisms of DN are unclear; however, communication network dysfunction among axons, Schwann cells, and the microvascular endothelium likely play an important role in the development of DN. Mounting evidence suggests that microRNAs (miRNAs) act as messengers that facilitate intercellular communication and may contribute to the pathogenesis of DN. Deregulation of miRNAs is among the initial molecular alterations observed in diabetics. As such, miRNAs hold promise as biomarkers and therapeutic targets. In preclinical studies, miRNA-based treatment of DN has shown evidence of therapeutic potential. But this therapy has been hampered by miRNA instability, targeting specificity, and potential toxicities. Recent findings reveal that when packaged within extracellular vesicles, miRNAs are resistant to degradation, and their delivery efficiency and therapeutic potential is markedly enhanced. Here, we review the latest research progress on the roles of miRNAs as biomarkers and as potential clinical therapeutic targets in DN. We also discuss the promise of exosomal miRNAs as therapeutics and provide recommendations for future research on miRNA-based medicine.
Collapse
Affiliation(s)
- Baoyan Fan
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States.,Department of Physics, Oakland University, Rochester, MI, United States
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Xian Shuang Liu
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| |
Collapse
|
49
|
Jiang X, Li J, Zhang B, Hu J, Ma J, Cui L, Chen ZJ. Differential expression profile of plasma exosomal microRNAs in women with polycystic ovary syndrome. Fertil Steril 2020; 115:782-792. [PMID: 33041053 DOI: 10.1016/j.fertnstert.2020.08.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVE To examine different expression profiles of plasma exosomal microRNA (miRNA) in polycystic ovary syndrome (PCOS) patients and controls, and their potential roles in PCOS pathogenesis. DESIGN Experimental study. SETTING Center for reproductive medicine. PATIENT(S) Seventy-five PCOS patients and 75 age-matched controls. INTERVENTION(S) Plasma exosomes miRNAs sequenced from 15 PCOS patients and 15 controls. MAIN OUTCOME MEASURE(S) Plasma exosomal miRNA expression and the correlation between PCOS phenotypes and miRNA expression. RESULT(S) The sequenced plasma exosomes miRNAs were further determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) in a larger cohort, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Correlation analysis and receiver operating characteristic (ROC) curve analysis were used to determine the association between PCOS phenotypes and miRNA expression. The miRNA sequencing revealed 34 exosomal miRNAs were differentially expressed between PCOS patients and controls. Via qRT-PCR, five differentially expressed miRNAs (miR-126-3p, miR-146a-5p, miR-20b-5p, miR-106a-5p, and miR-18a-3p) were identified. The GO and KEGG analyses predicted their target functions included axon guidance, mitogen-activated protein kinase (MAPK) signaling, endocytosis, circadian rhythms, and cancer pathways. The expression of these miRNAs correlated with menstrual cycle, antral follicle count, hormone level, and combined yielded a ROC curve area of 0.781 in discriminating PCOS patients from the controls. CONCLUSION(S) Differential expression of plasma exosomal miRNAs may confer a risk of PCOS and may be helpful in distinguishing PCOS patients from controls. Certain miRNA expression may associated to the disease progression, which could help in an epigenetic understanding of the pathophysiology of PCOS.
Collapse
Affiliation(s)
- Xiao Jiang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China
| | - Jingyu Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China
| | - Bingqian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China
| | - Jingmei Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, People's Republic of China; Shandong Key Laboratory of Reproductive Medicine, Jinan, People's Republic of China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, People's Republic of China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, People's Republic of China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, People's Republic of China; Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
50
|
Raghavan S, Malayaperumal S, Mohan V, Balasubramanyam M. A comparative study on the cellular stressors in mesenchymal stem cells (MSCs) and pancreatic β-cells under hyperglycemic milieu. Mol Cell Biochem 2020; 476:457-469. [PMID: 32997307 DOI: 10.1007/s11010-020-03922-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/19/2020] [Indexed: 12/30/2022]
Abstract
β-cell dysfunction is a critical determinant for both type 1 diabetes and type 2 diabetes and β-cells are shown to be highly susceptible to cellular stressors. Mesenchymal stem cells (MSCs) on the other hand are known to have immunomodulatory potential and preferred in clinical applications. However, there is paucity of a comparative study on these cells in relation to several cellular stressors in response to hyperglycemia and this forms the rationale for the present study. INS1 β-cells and MSCs were subjected to high-glucose treatment without and with Metformin, Lactoferrin, or TUDCA and assessed for stress signaling alterations using gene expression, protein expression, as well as functional read-outs. Compared to the untreated control cells, INS1 β-cells or MSCs treated with high glucose showed significant increase in mRNA expressions of ER stress, senescence, and proinflammation. This was accompanied by increased miR146a target genes and decreased levels of SIRT1, NRF2, and miR146a in both the cell types. Consistent with the mRNA results, protein expression levels do reflect the same alterations. Notably, the alterations are relatively less extent in MSCs compared to INS1 β-cells. Interestingly, three different agents, viz., Metformin, Lactoferrin, or TUDCA, were found to overcome the high glucose-induced cellular stresses in a concerted and inter-linked way and restored the proliferation and migration capacity in MSCs as well as normalized the glucose-stimulated insulin secretion in INS1 β-cells. While our study gives a directionality for potential supplementation of metformin/lactoferrin/TUDCA in optimization protocols of MSCs, we suggest that in vitro preconditioning of MSCs with such factors should be further explored with in-depth investigations to harness and enhance the therapeutic capacity/potential of MSCs.
Collapse
Affiliation(s)
- Srividhya Raghavan
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Sarubala Malayaperumal
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Dr. Mohan's Diabetes Specialties Centre, ICMR- Centre for Advanced Research On Diabetes, Madras Diabetes Research Foundation, Gopalapuram, Chennai, 600 086, India. .,Medical and Health Sciences (MHS), SRM Institute of Science and Technology (SRMIST), SRM Nagar, Kattankulathur, Kanchipuram, Chennai, 603 203, India.
| |
Collapse
|