1
|
Šikić K, Peters TMA, Engelke U, Petković Ramadža D, Žigman T, Fumić K, Davidović M, Huljev Frković S, Körmendy T, Martinelli D, Novelli A, Lepri FR, Wevers RA, Barić I. Huppke-Brendel syndrome: Novel cases and a therapeutic trial with ketogenic diet and N-acetylcysteine. JIMD Rep 2024; 65:361-370. [PMID: 39512429 PMCID: PMC11540564 DOI: 10.1002/jmd2.12439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 05/26/2024] [Accepted: 07/01/2024] [Indexed: 11/15/2024] Open
Abstract
Huppke-Brendel syndrome (HBS) is an autosomal recessive disorder caused by SLC33A1 mutations, a gene coding for the acetyl-CoA transporter-1 (AT-1). So far it has been described in nine pediatric and one adult patient. Therapeutic trials with copper histidinate failed to achieve any clinical improvement. Here, we describe the clinical characteristics of two novel patients, one of them diagnosed by gene analysis and his sib postmortally based on clinical characteristics. We demonstrate a therapeutic trial with acetylation therapy, consisting of N-acetylcysteine and ketogenic diet, in one of them. We provide biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma before and after starting this treatment regimen. Our results indicate that ketogenic diet and N-acetylcysteine do not seem to normalize the concentrations of N-acetylated amino acids in CSF or plasma. The overall metabolic pattern shows a trend toward lowered levels of N-acetylated amino acids in CSF and to a lesser extent in plasma. Although there are some assumptions, the function of AT-1 is still not clear and further studies are needed to better understand mechanisms underlying this complex disorder.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Tessa M. A. Peters
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Udo Engelke
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Danijela Petković Ramadža
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tamara Žigman
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Ksenija Fumić
- Department of Laboratory DiagnosticsUniversity Hospital Centre ZagrebZagrebCroatia
| | - Maša Davidović
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
| | - Sanda Huljev Frković
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| | - Tibor Körmendy
- Department of Diagnostic NeuroradiologyUniversity Hospital Centre ZagrebZagrebCroatia
| | - Diego Martinelli
- Division of Metabolic Diseases, Department of Paediatric Subspecialties and Liver‐Kidney TransplantationBambino Gesù Children's HospitalRomeItaly
| | - Antonio Novelli
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Francesca Romana Lepri
- Translational Cytogenomics Research UnitBambino Gesù Children's Hospital, IRCCSRomeItaly
| | - Ron A. Wevers
- Donders Institute for Brain, Cognition and BehaviorRadboud University Medical CenterNijmegenThe Netherlands
- Department Human Genetics, Translational Metabolic LaboratoryRadboud University Medical CenterNijmegenThe Netherlands
| | - Ivo Barić
- Department of PediatricsUniversity Hospital Center ZagrebZagrebCroatia
- University of Zagreb, School of MedicineZagrebCroatia
| |
Collapse
|
2
|
Hao D, Luo W, Yan Y, Zhou J. Focus on cuproptosis: Exploring new mechanisms and therapeutic application prospects of cuproptosis regulation. Biomed Pharmacother 2024; 178:117182. [PMID: 39053428 DOI: 10.1016/j.biopha.2024.117182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cuproptosis is a novel form of regulated cell death, which plays an important role in the physiological and pathological processes of the human body. Despite the increasing research on cuproptosis-related genes (CRGs) and their correlation with diseases, the pathogenesis of cuproptosis-related diseases remains unclear. Furthermore, there is a lack of reviews on the emerging technologies for regulating cuproptosis in disease treatment. This study delves into the copper-induced cell death mechanism, distinguishing cuproptosis from mechanisms like oxidative stress, glutathione synthesis inhibition, and ubiquitin-proteasome system inhibition. Several long-standing mysteries of diseases such as Wilson's disease and Menkes disease may be attributed to the occurrence of cuproptosis. In addition, we also review the detection indicators related to cuproptosis, providing targets for the diagnosis of cuproptosis-related diseases, and summarize the application value of cuproptosis in tumor therapy to better elucidate the impact of copper in cell death and diseases, and thus to promote the application prospects and possible strategies of cuproptosis-related substances, such as copper ion chelators, copper ion carriers, and copper nanomaterials, in disease therapy.
Collapse
Affiliation(s)
- Donglin Hao
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Changzhou Medical Center, Nanjing Medical University, Changzhou, China
| | - Wei Luo
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China
| | - Yongmin Yan
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| | - Jing Zhou
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China; Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou, China.
| |
Collapse
|
3
|
Matsumoto A, Kano S, Kobayashi N, Matsuki M, Furukawa R, Yamagishi H, Yoshinari H, Nakata W, Wakabayashi H, Tsuda H, Watanabe K, Takahashi H, Yamagata T, Matsumura T, Osaka H, Mori H, Iwamoto S. Unfavorable switching of skewed X chromosome inactivation leads to Menkes disease in a female infant. Sci Rep 2024; 14:440. [PMID: 38172222 PMCID: PMC10764769 DOI: 10.1038/s41598-023-50668-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Menkes disease is an X-linked disorder of copper metabolism caused by mutations in the ATP7A gene, and female carriers are usually asymptomatic. We describe a 7-month-old female patient with severe intellectual disability, epilepsy, and low levels of serum copper and ceruloplasmin. While heterozygous deletion of exons 16 and 17 of the ATP7A gene was detected in the proband, her mother, and her grandmother, only the proband suffered from Menkes disease clinically. Intriguingly, X chromosome inactivation (XCI) analysis demonstrated that the grandmother and the mother showed skewing of XCI toward the allele with the ATP7A deletion and that the proband had extremely skewed XCI toward the normal allele, resulting in exclusive expression of the pathogenic ATP7A mRNA transcripts. Expression bias analysis and recombination mapping of the X chromosome by the combination of whole genome and RNA sequencing demonstrated that meiotic recombination occurred at Xp21-p22 and Xq26-q28. Assuming that a genetic factor on the X chromosome enhanced or suppressed XCI of its allele, the factor must be on either of the two distal regions derived from her grandfather. Although we were unable to fully uncover the molecular mechanism, we concluded that unfavorable switching of skewed XCI caused Menkes disease in the proband.
Collapse
Affiliation(s)
- Ayumi Matsumoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Shintaro Kano
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Natsumi Kobayashi
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Mitsuru Matsuki
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Rieko Furukawa
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hirokazu Yamagishi
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroki Yoshinari
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Waka Nakata
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroko Wakabayashi
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hidetoshi Tsuda
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Kazuhisa Watanabe
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hironori Takahashi
- Department of Obstetrics and Gynecology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takanori Yamagata
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takayoshi Matsumura
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hitoshi Osaka
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Harushi Mori
- Department of Radiology, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Sadahiko Iwamoto
- Division of Human Genetics, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.
| |
Collapse
|
4
|
Mura E, Parazzini C, Tonduti D. Rare forms of hypomyelination and delayed myelination. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:225-252. [PMID: 39322381 DOI: 10.1016/b978-0-323-99209-1.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
Collapse
Affiliation(s)
- Eleonora Mura
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy
| | - Cecilia Parazzini
- C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; Pediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan, Italy
| | - Davide Tonduti
- Unit of Pediatric Neurology, Department of Biomedical and Clinical Sciences, V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy; C.O.A.L.A (Center for Diagnosis and Treatment of Leukodystrophies), V. Buzzi Children's Hospital, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
Garza NM, Swaminathan AB, Maremanda KP, Zulkifli M, Gohil VM. Mitochondrial copper in human genetic disorders. Trends Endocrinol Metab 2023; 34:21-33. [PMID: 36435678 PMCID: PMC9780195 DOI: 10.1016/j.tem.2022.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/28/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022]
Abstract
Copper is an essential micronutrient that serves as a cofactor for enzymes involved in diverse physiological processes, including mitochondrial energy generation. Copper enters cells through a dedicated copper transporter and is distributed to intracellular cuproenzymes by copper chaperones. Mitochondria are critical copper-utilizing organelles that harbor an essential cuproenzyme cytochrome c oxidase, which powers energy production. Mutations in copper transporters and chaperones that perturb mitochondrial copper homeostasis result in fatal genetic disorders. Recent studies have uncovered the therapeutic potential of elesclomol, a copper ionophore, for the treatment of copper deficiency disorders such as Menkes disease. Here we review the role of copper in mitochondrial energy metabolism in the context of human diseases and highlight the recent developments in copper therapeutics.
Collapse
Affiliation(s)
- Natalie M Garza
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Abhinav B Swaminathan
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Krishna P Maremanda
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Mohammad Zulkifli
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA
| | - Vishal M Gohil
- Department of Biochemistry and Biophysics, MS 3474, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Šikić K, Peters TMA, Marušić E, Čagalj IČ, Ramadža DP, Žigman T, Fumić K, Fernandez E, Gevaert K, Debeljak Ž, Wevers RA, Barić I. Abnormal concentrations of acetylated amino acids in cerebrospinal fluid in acetyl-CoA transporter deficiency. J Inherit Metab Dis 2022; 45:1048-1058. [PMID: 35999711 DOI: 10.1002/jimd.12549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/30/2022] [Accepted: 08/20/2022] [Indexed: 11/11/2022]
Abstract
Acetyl-CoA transporter 1 (AT-1) is a transmembrane protein which regulates influx of acetyl-CoA from the cytosol to the lumen of the endoplasmic reticulum and is therefore important for the posttranslational modification of numerous proteins. Pathological variants in the SLC33A1 gene coding for AT-1 have been linked to a disorder called Huppke-Brendel syndrome, which is characterized by congenital cataracts, hearing loss, severe developmental delay and early death. It has been described in eight patients so far, who all had the abovementioned symptoms together with low serum copper and ceruloplasmin concentrations. The link between AT-1 and low ceruloplasmin concentrations is not clear, nor is the complex pathogenesis of the disease. Here we describe a further case of Huppke-Brendel syndrome with a novel and truncating homozygous gene variant and provide novel biochemical data on N-acetylated amino acids in cerebrospinal fluid (CSF) and plasma. Our results indicate that decreased levels of many N-acetylated amino acids in CSF are a typical metabolic fingerprint for AT-1 deficiency and are potential biomarkers for the defect. As acetyl-CoA is an important substrate for protein acetylation, we performed N-terminal proteomics, but found only minor effects on this particular protein modification. The acetyl-CoA content in patient's fibroblasts was insignificantly decreased. Our data may help to better understand the mechanisms underlying the metabolic disturbances, the pathophysiology and the clinical phenotype of the disease.
Collapse
Affiliation(s)
- Katarina Šikić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
| | - Tessa M A Peters
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Eugenija Marušić
- Department of Pediatrics, University Hospital Center Split, Split, Croatia
- University of Split, School of Medicine, Split, Croatia
| | - Ivana Čulo Čagalj
- Department of Pediatrics, University Hospital Center Split, Split, Croatia
- University of Split, School of Medicine, Split, Croatia
| | - Danijela Petković Ramadža
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Tamara Žigman
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ksenija Fumić
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Esperanza Fernandez
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Željko Debeljak
- Clinical Institute of Laboratory Diagnostics, University Hospital Osijek, Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Ron A Wevers
- Department of Laboratory Medicine, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, Netherlands
| | - Ivo Barić
- Department of Pediatrics, University Hospital Center Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
Kirk FT, Munk DE, Ek J, Birk Møller L, Bendixen Thorup M, Hvid Danielsen E, Vilstrup H, Ott P, Damgaard Sandahl T. Case report: Huppke–Brendel syndrome in an adult, mistaken for and treated as Wilson disease for 25 years. Front Neurol 2022; 13:957794. [PMID: 36119696 PMCID: PMC9475109 DOI: 10.3389/fneur.2022.957794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background Huppke–Brendel (HB) syndrome is an autosomal recessive disease caused by variants in the SLC33A1 gene. Since 2012, less than ten patients have been reported, none survived year six. With neurologic involvement and ceruloplasmin deficiency, it may mimic Wilson disease (WD). Objectives and methods We report the first adult patient with HB. Results The patient suffered from moderate intellectual disability, partial hearing loss, spastic ataxia, hypotonia, and unilateral tremor of parkinsonian type. At age 29, she was diagnosed with WD based on neurology, elevated 24H urinary copper, low ceruloplasmin, and pathological 65Cu test. Approximately 25 years later, genetic testing did not support WD or aceruloplasminemia. Full genome sequencing revealed two likely pathogenic variants in SLC33A1 which combined with re-evaluation of neurologic symptoms and MRI suggested the diagnosis of HB. Conclusion Adult patients with HB exist and may be confused with WD. Low ceruloplasmin and the absence of ATP7B variants should raise suspicion.
Collapse
Affiliation(s)
- Frederik Teicher Kirk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, ERN Rare Liver, Aarhus, Denmark
- *Correspondence: Frederik Teicher Kirk
| | - Ditte Emilie Munk
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, ERN Rare Liver, Aarhus, Denmark
| | - Jakob Ek
- Department of Genetics, Copenhagen University, Rigshospitalet, København, Denmark
| | - Lisbeth Birk Møller
- Department of Genetics, Copenhagen University, Rigshospitalet, København, Denmark
| | | | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, ERN Rare Liver, Aarhus, Denmark
| | - Peter Ott
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, ERN Rare Liver, Aarhus, Denmark
| | - Thomas Damgaard Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, ERN Rare Liver, Aarhus, Denmark
| |
Collapse
|
8
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - SJ Patil
- Division of Genetics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Narayanaswami Suresh
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shivanand Pai
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakshith KC
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Bajaj
- Jaslok Hospital and Research Centre, Mumbai, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | | | - Rathika Shenoy
- Department of Paediatrics, K.S. Hegde Medical Academy, NITTE University, Mangalore, India
| | - Mahesh Kamate
- Department of Paediatrics, Jawaharlal Nehru Medical College, Belgaum, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta N Muranjan
- Department of Pediatrics, Genetics Division, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Yatheesha BL
- Dheemahi Child Neurology and Development Center, Shimoga, India
| | | | | | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
9
|
Trinh TT, Blasco H, Maillot F, Bakhos D. Hearing loss in inherited metabolic disorders: A systematic review. Metabolism 2021; 122:154841. [PMID: 34333001 DOI: 10.1016/j.metabol.2021.154841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Inherited metabolic disorders (IMDs) have been observed in individuals with hearing loss (HL), but IMDs are rarely the cause of syndromic HL. With early diagnosis, management of HL is more effective and cortical reorganization is possible with hearing aids or cochlear implants. This review describes relationships between IMDs and HL in terms of incidence, etiology of HL, pathophysiology, and treatment. Forty types of IMDs are described in the literature, mainly in case reports. Management and prognosis are noted where existing. We also describe IMDs with HL given age of occurrence of HL. Reviewing the main IMDs that are associated with HL may provide an additional clinical tool with which to better diagnose syndromic HL.
Collapse
Affiliation(s)
- T-T Trinh
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France.
| | - H Blasco
- Laboratoire de Biochimie et Biologie Moléculaire, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| | - F Maillot
- Université François Rabelais, Tours, France; INSERM U1253, Tours, France; CHU de Tours, service de Médecine Interne, Tours, France
| | - D Bakhos
- CHRU de Tours, service ORL et Chirurgie Cervico-Faciale, Tours, France; Université François Rabelais, Tours, France; INSERM U1253, Tours, France
| |
Collapse
|
10
|
Squitti R, Faller P, Hureau C, Granzotto A, White AR, Kepp KP. Copper Imbalance in Alzheimer's Disease and Its Link with the Amyloid Hypothesis: Towards a Combined Clinical, Chemical, and Genetic Etiology. J Alzheimers Dis 2021; 83:23-41. [PMID: 34219710 DOI: 10.3233/jad-201556] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The cause of Alzheimer's disease (AD) is incompletely defined. To date, no mono-causal treatment has so far reached its primary clinical endpoints, probably due to the complexity and diverse neuropathology contributing to the neurodegenerative process. In the present paper, we describe the plausible etiological role of copper (Cu) imbalance in the disease. Cu imbalance is strongly associated with neurodegeneration in dementia, but a complete biochemical etiology consistent with the clinical, chemical, and genetic data is required to support a causative association, rather than just correlation with disease. We hypothesize that a Cu imbalance in the aging human brain evolves as a gradual shift from bound metal ion pools, associated with both loss of energy production and antioxidant function, to pools of loosely bound metal ions, involved in gain-of-function oxidative stress, a shift that may be aggravated by chemical aging. We explain how this may cause mitochondrial deficits, energy depletion of high-energy demanding neurons, and aggravated protein misfolding/oligomerization to produce different clinical consequences shaped by the severity of risk factors, additional comorbidities, and combinations with other types of pathology. Cu imbalance should be viewed and integrated with concomitant genetic risk factors, aging, metabolic abnormalities, energetic deficits, neuroinflammation, and the relation to tau, prion proteins, α-synuclein, TAR DNA binding protein-43 (TDP-43) as well as systemic comorbidity. Specifically, the Amyloid Hypothesis is strongly intertwined with Cu imbalance because amyloid-β protein precursor (AβPP)/Aβ are probable Cu/Zn binding proteins with a potential role as natural Cu/Zn buffering proteins (loss of function), and via the plausible pathogenic role of Cu-Aβ.
Collapse
Affiliation(s)
- Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, Strasbourg, France
| | | | - Alberto Granzotto
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA, USA.,Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.,Department of Neuroscience, Imaging, and Clinical Sciences (DNISC), Laboratory of Molecular Neurology, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Anthony R White
- Mental Health Program, QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. FASEB J 2021; 35:e21810. [PMID: 34390520 DOI: 10.1096/fj.202100273rr] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022]
Abstract
Copper (Cu) is an essential micronutrient required for the activity of redox-active enzymes involved in critical metabolic reactions, signaling pathways, and biological functions. Transporters and chaperones control Cu ion levels and bioavailability to ensure proper subcellular and systemic Cu distribution. Intensive research has focused on understanding how mammalian cells maintain Cu homeostasis, and how molecular signals coordinate Cu acquisition and storage within organs. In humans, mutations of genes that regulate Cu homeostasis or facilitate interactions with Cu ions lead to numerous pathologic conditions. Malfunctions of the Cu+ -transporting ATPases ATP7A and ATP7B cause Menkes disease and Wilson disease, respectively. Additionally, defects in the mitochondrial and cellular distributions and homeostasis of Cu lead to severe neurodegenerative conditions, mitochondrial myopathies, and metabolic diseases. Cu has a dual nature in carcinogenesis as a promotor of tumor growth and an inducer of redox stress in cancer cells. Cu also plays role in cancer treatment as a component of drugs and a regulator of drug sensitivity and uptake. In this review, we provide an overview of the current knowledge of Cu metabolism and transport and its relation to various human pathologies.
Collapse
Affiliation(s)
- May T Maung
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Alyssa Carlson
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT, USA
| | - Monserrat Olea-Flores
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | - Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA.,Department of Biochemistry & Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Napoleon Navarro-Tito
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Guerrero, Mexico
| | | |
Collapse
|
12
|
Coenzyme a Biochemistry: From Neurodevelopment to Neurodegeneration. Brain Sci 2021; 11:brainsci11081031. [PMID: 34439650 PMCID: PMC8392065 DOI: 10.3390/brainsci11081031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/21/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor in all living organisms. It is involved in a large number of biochemical processes functioning either as an activator of molecules with carbonyl groups or as a carrier of acyl moieties. Together with its thioester derivatives, it plays a central role in cell metabolism, post-translational modification, and gene expression. Furthermore, recent studies revealed a role for CoA in the redox regulation by the S-thiolation of cysteine residues in cellular proteins. The intracellular concentration and distribution in different cellular compartments of CoA and its derivatives are controlled by several extracellular stimuli such as nutrients, hormones, metabolites, and cellular stresses. Perturbations of the biosynthesis and homeostasis of CoA and/or acyl-CoA are connected with several pathological conditions, including cancer, myopathies, and cardiomyopathies. In the most recent years, defects in genes involved in CoA production and distribution have been found in patients affected by rare forms of neurodegenerative and neurodevelopmental disorders. In this review, we will summarize the most relevant aspects of CoA cellular metabolism, their role in the pathogenesis of selected neurodevelopmental and neurodegenerative disorders, and recent advancements in the search for therapeutic approaches for such diseases.
Collapse
|
13
|
Sheehan BK, Orefice NS, Peng Y, Shapiro SL, Puglielli L. ATG9A regulates proteostasis through reticulophagy receptors FAM134B and SEC62 and folding chaperones CALR and HSPB1. iScience 2021; 24:102315. [PMID: 33870132 PMCID: PMC8042170 DOI: 10.1016/j.isci.2021.102315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 03/12/2021] [Indexed: 12/01/2022] Open
Abstract
The acetylation of ATG9A within the endoplasmic reticulum (ER) lumen regulates the induction of reticulophagy. ER acetylation is ensured by AT-1/SLC33A1, a membrane transporter that maintains the cytosol-to-ER flux of acetyl-CoA. Defective AT-1 activity, as caused by heterozygous/homozygous mutations and gene duplication events, results in severe disease phenotypes. Here, we show that although the acetylation of ATG9A occurs in the ER lumen, the induction of reticulophagy requires ATG9A to engage FAM134B and SEC62 on the cytosolic side of the ER. To address this conundrum, we resolved the ATG9A interactome in two mouse models of AT-1 dysregulation: AT-1 sTg, a model of systemic AT-1 overexpression with hyperacetylation of ATG9A, and AT-1S113R/+, a model of AT-1 haploinsufficiency with hypoacetylation of ATG9A. We identified CALR and HSPB1 as two ATG9A partners that regulate the induction of reticulophagy as a function of ATG9A acetylation and discovered that ATG9A associates with several proteins that maintain ER proteostasis. The ATG9A-FAM134B and ATG9A-SEC62 interaction requires specific structural features Opposite Ca++-binding EF hands regulate ATG9A-FAM134B interaction HSBP1 and CALR regulate ATG9A-mediated induction of reticulophagy Many of the proteins that ensure ER proteostasis display spatial vicinity/cross talk
Collapse
Affiliation(s)
- Brendan K Sheehan
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nicola S Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samantha L Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
14
|
Dieterich IA, Cui Y, Braun MM, Lawton AJ, Robinson NH, Peotter JL, Yu Q, Casler JC, Glick BS, Audhya A, Denu JM, Li L, Puglielli L. Acetyl-CoA flux from the cytosol to the ER regulates engagement and quality of the secretory pathway. Sci Rep 2021; 11:2013. [PMID: 33479349 PMCID: PMC7820588 DOI: 10.1038/s41598-021-81447-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nε-lysine acetylation in the ER is an essential component of the quality control machinery. ER acetylation is ensured by a membrane transporter, AT-1/SLC33A1, which translocates cytosolic acetyl-CoA into the ER lumen, and two acetyltransferases, ATase1 and ATase2, which acetylate nascent polypeptides within the ER lumen. Dysfunctional AT-1, as caused by gene mutation or duplication events, results in severe disease phenotypes. Here, we used two models of AT-1 dysregulation to investigate dynamics of the secretory pathway: AT-1 sTg, a model of systemic AT-1 overexpression, and AT-1S113R/+, a model of AT-1 haploinsufficiency. The animals displayed reorganization of the ER, ERGIC, and Golgi apparatus. In particular, AT-1 sTg animals displayed a marked delay in Golgi-to-plasma membrane protein trafficking, significant alterations in Golgi-based N-glycan modification, and a marked expansion of the lysosomal network. Collectively our results indicate that AT-1 is essential to maintain proper organization and engagement of the secretory pathway.
Collapse
Affiliation(s)
- Inca A Dieterich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Yusi Cui
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Megan M Braun
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexis J Lawton
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Nicklaus H Robinson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer L Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Qing Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Harvard Medical School, Boston, MA, USA
| | - Jason C Casler
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, USA
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Denu
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA. .,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA. .,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI, USA. .,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
15
|
Li W, Bicak M, Sjoberg DD, Vertosick E, Dahlin A, Melander O, Ulmert D, Lilja H, Klein RJ. Genome-wide association study identifies novel single nucleotide polymorphisms having age-specific effect on prostate-specific antigen levels. Prostate 2020; 80:1405-1412. [PMID: 32914890 PMCID: PMC7606728 DOI: 10.1002/pros.24070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 08/24/2020] [Indexed: 01/17/2023]
Abstract
BACKGROUND Testing for prostate-specific antigen (PSA) levels in blood are widely used and associated with prostate cancer risk and outcome. After puberty, PSA levels increase by age and multiple single nucleotide polymorphisms (SNPs) have been found to be associated with PSA levels. However, the relationship between the effects of SNPs and age on PSA remains unknown. METHODS To test for SNP × age interaction, we conducted a genome-wide association study using 2394 men without prostate cancer diagnosis from Malmö, Sweden as a discovery set and 2137 men from the eMERGE study (USA) for validation. Linear regression was used to identify significant interactions between SNP and age (p < 1 × 10-4 for discovery, p < .05 for validation). RESULTS The 15 SNPs from three different loci (8p11.22, 8p12, 3q25.31) are found to have age-specific effect on PSA levels. Expression quantitative trait loci (eQTLs) analysis shows that 12 SNPs from 3q25.31 locus affect the expression level of three genes: KCNAB1, SLC33A1, PLCH1. CONCLUSIONS Our results suggest that SNPs may have age-specific effect on PSA levels, which provides new direction to study genetic markers for PSA.
Collapse
Affiliation(s)
- Weiqiang Li
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Mesude Bicak
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Daniel D. Sjoberg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Emily Vertosick
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Anders Dahlin
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund University, Malmö, Sweden
| | - David Ulmert
- Molecular pharmacology program, Sloan Kettering Institute, New York, NY USA
| | - Hans Lilja
- Departments of Laboratory Medicine, Surgery, and Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA; Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Robert J. Klein
- Icahn Institute for Genomics and Multiscale Biology and Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| |
Collapse
|
16
|
Grzeszczak K, Kwiatkowski S, Kosik-Bogacka D. The Role of Fe, Zn, and Cu in Pregnancy. Biomolecules 2020; 10:E1176. [PMID: 32806787 PMCID: PMC7463674 DOI: 10.3390/biom10081176] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Iron (Fe), copper (Cu), and zinc (Zn) are microelements essential for the proper functioning of living organisms. These elements participatein many processes, including cellular metabolism and antioxidant and anti-inflammatory defenses, and also influence enzyme activity, regulate gene expression, and take part in protein synthesis. Fe, Cu, and Zn have a significant impact on the health of pregnant women and in the development of the fetus, as well as on the health of the newborn. A proper concentration of these elements in the body of women during pregnancy reduces the risk of complications such as anemia, induced hypertension, low birth weight, preeclampsia, and postnatal complications. The interactions between Fe, Cu, and Zn influence their availability due to their similar physicochemical properties. This most often occurs during intestinal absorption, where metal ions compete for binding sites with transport compounds. Additionally, the relationships between these ions have a great influence on the course of reactions in the tissues, as well as on their excretion, which can be stimulated or delayed. This review aims to summarize reports on the influence of Fe, Cu, and Zn on the course of single and multiple pregnancies, and to discuss the interdependencies and mechanisms occurring between Fe, Cu, and Zn.
Collapse
Affiliation(s)
- Konrad Grzeszczak
- Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Sebastian Kwiatkowski
- Department of Obstetrics and Gynecology, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Danuta Kosik-Bogacka
- Independent Laboratory of Pharmaceutical Botany, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
17
|
Genetic Disorders Associated with Metal Metabolism. Cells 2019; 8:cells8121598. [PMID: 31835360 PMCID: PMC6952812 DOI: 10.3390/cells8121598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/12/2022] Open
Abstract
Genetic disorders associated with metal metabolism form a large group of disorders and mostly result from defects in the proteins/enzymes involved in nutrient metabolism and energy production. These defects can affect different metabolic pathways and cause mild to severe disorders related to metal metabolism. Some disorders have moderate to severe clinical consequences. In severe cases, these elements accumulate in different tissues and organs, particularly the brain. As they are toxic and interfere with normal biological functions, the severity of the disorder increases. However, the human body requires a very small amount of these elements, and a deficiency of or increase in these elements can cause different genetic disorders to occur. Some of the metals discussed in the present review are copper, iron, manganese, zinc, and selenium. These elements may play a key role in the pathology and physiology of the nervous system.
Collapse
|
18
|
Dieterich IA, Lawton AJ, Peng Y, Yu Q, Rhoads TW, Overmyer KA, Cui Y, Armstrong EA, Howell PR, Burhans MS, Li L, Denu JM, Coon JJ, Anderson RM, Puglielli L. Acetyl-CoA flux regulates the proteome and acetyl-proteome to maintain intracellular metabolic crosstalk. Nat Commun 2019; 10:3929. [PMID: 31477734 PMCID: PMC6718414 DOI: 10.1038/s41467-019-11945-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
AT-1/SLC33A1 is a key member of the endoplasmic reticulum (ER) acetylation machinery, transporting acetyl-CoA from the cytosol into the ER lumen where acetyl-CoA serves as the acetyl-group donor for Nε-lysine acetylation. Dysfunctional ER acetylation, as caused by heterozygous or homozygous mutations as well as gene duplication events of AT-1/SLC33A1, has been linked to both developmental and degenerative diseases. Here, we investigate two models of AT-1 dysregulation and altered acetyl-CoA flux: AT-1S113R/+ mice, a model of AT-1 haploinsufficiency, and AT-1 sTg mice, a model of AT-1 overexpression. The animals display distinct metabolic adaptation across intracellular compartments, including reprogramming of lipid metabolism and mitochondria bioenergetics. Mechanistically, the perturbations to AT-1-dependent acetyl-CoA flux result in global and specific changes in both the proteome and the acetyl-proteome (protein acetylation). Collectively, our results suggest that AT-1 acts as an important metabolic regulator that maintains acetyl-CoA homeostasis by promoting functional crosstalk between different intracellular organelles. The Endoplasmic Reticulum acetylation machinery ensures proper quality control and disposal of newly folded proteins transiting the secretory pathway. Here, the authors show that this machinery acts as a metabolic regulator of acetyl-CoA homeostasis, impacting intracellular crosstalk.
Collapse
Affiliation(s)
- Inca A Dieterich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexis J Lawton
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Yajing Peng
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Qing Yu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.,Harvard Medical School, Boston, MA, USA
| | - Timothy W Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Chemistry, Biomolecular Chemistry and Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Yusi Cui
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric A Armstrong
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Porsha R Howell
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Maggie S Burhans
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - John M Denu
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Joshua J Coon
- Department of Chemistry, Biomolecular Chemistry and Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Rozalyn M Anderson
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin, WI, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA. .,Waisman Center, University of Wisconsin-Madison, Madison, WI, USA. .,Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, Wisconsin, WI, USA. .,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Hermann W. Classification and differential diagnosis of Wilson's disease. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:S63. [PMID: 31179300 PMCID: PMC6531651 DOI: 10.21037/atm.2019.02.07] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
Abstract
Wilson's disease is characterized by hepatic and extrapyramidal movement disorders (EPS) with variable manifestation primarily between age 5 and 45. This variability often makes an early diagnosis difficult. A classification defines different clinical variants of Wilson's disease, which enables classifying the current clinical findings and making an early tentative diagnosis. Until the unequivocal proof or an autosomal recessive disorder of the hepatic copper transporter ATP7B has been ruled out, differential diagnoses have to be examined. Laboratory-chemical parameters of copper metabolism can both be deviations from the norm not related to the disease as well as other copper metabolism disorders besides Wilson's disease. In addition to known diseases such as Menkes disease, occipital horn syndrome (OHS), Indian childhood cirrhosis (ICC) and ceruloplasmin deficiency, recently discovered disorders are taken into account. These include MEDNIK syndrome, Huppke-Brendel syndrome and CCS chaperone deficiency. Another main focus is on differential diagnoses of childhood icterus correlated with age and anaemia as well as disorders of the extrapyramidal motor system. The Kayser-Fleischer ring (KFR) is qualified as classical ophthalmologic manifestation. The recently described manganese storage disease presents another rare metabolic disorder with symptoms similar to Wilson's disease. As this overview shows, Wilson's disease fits into a broad spectrum of internal and neurological disease patterns with icterus, anaemia and EPS.
Collapse
Affiliation(s)
- Wieland Hermann
- Department of Neurology, SRO AG Spital Langenthal, Langenthal, Switzerland
| |
Collapse
|
20
|
Farrugia MA, Puglielli L. Nε-lysine acetylation in the endoplasmic reticulum - a novel cellular mechanism that regulates proteostasis and autophagy. J Cell Sci 2018; 131:131/22/jcs221747. [PMID: 30446507 DOI: 10.1242/jcs.221747] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Protein post-translational modifications (PTMs) take many shapes, have many effects and are necessary for cellular homeostasis. One of these PTMs, Nε-lysine acetylation, was thought to occur only in the mitochondria, cytosol and nucleus, but this paradigm was challenged in the past decade with the discovery of lysine acetylation in the lumen of the endoplasmic reticulum (ER). This process is governed by the ER acetylation machinery: the cytosol:ER-lumen acetyl-CoA transporter AT-1 (also known as SLC33A1), and the ER-resident lysine acetyltransferases ATase1 and ATase2 (also known as NAT8B and NAT8, respectively). This Review summarizes the more recent biochemical, cellular and mouse model studies that underscore the importance of the ER acetylation process in maintaining protein homeostasis and autophagy within the secretory pathway, and its impact on developmental and age-associated diseases.
Collapse
Affiliation(s)
- Mark A Farrugia
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA.,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA .,Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Geriatric Research Education Clinical Center, VA Medical Center, Madison, WI 53705, USA
| |
Collapse
|
21
|
Peng Y, Shapiro SL, Banduseela VC, Dieterich IA, Hewitt KJ, Bresnick EH, Kong G, Zhang J, Schueler KL, Keller MP, Attie AD, Hacker TA, Sullivan R, Kielar‐Grevstad E, Arriola Apelo SI, Lamming DW, Anderson RM, Puglielli L. Increased transport of acetyl-CoA into the endoplasmic reticulum causes a progeria-like phenotype. Aging Cell 2018; 17:e12820. [PMID: 30051577 PMCID: PMC6156544 DOI: 10.1111/acel.12820] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/12/2018] [Accepted: 06/26/2018] [Indexed: 12/31/2022] Open
Abstract
The membrane transporter AT-1/SLC33A1 translocates cytosolic acetyl-CoA into the lumen of the endoplasmic reticulum (ER), participating in quality control mechanisms within the secretory pathway. Mutations and duplication events in AT-1/SLC33A1 are highly pleiotropic and have been linked to diseases such as spastic paraplegia, developmental delay, autism spectrum disorder, intellectual disability, propensity to seizures, and dysmorphism. Despite these known associations, the biology of this key transporter is only beginning to be uncovered. Here, we show that systemic overexpression of AT-1 in the mouse leads to a segmental form of progeria with dysmorphism and metabolic alterations. The phenotype includes delayed growth, short lifespan, alopecia, skin lesions, rectal prolapse, osteoporosis, cardiomegaly, muscle atrophy, reduced fertility, and anemia. In terms of homeostasis, the AT-1 overexpressing mouse displays hypocholesterolemia, altered glycemia, and increased indices of systemic inflammation. Mechanistically, the phenotype is caused by a block in Atg9a-Fam134b-LC3β and Atg9a-Sec62-LC3β interactions, and defective reticulophagy, the autophagic recycling of the ER. Inhibition of ATase1/ATase2 acetyltransferase enzymes downstream of AT-1 restores reticulophagy and rescues the phenotype of the animals. These data suggest that inappropriately elevated acetyl-CoA flux into the ER directly induces defects in autophagy and recycling of subcellular structures and that this diversion of acetyl-CoA from cytosol to ER is causal in the progeria phenotype. Collectively, these data establish the cytosol-to-ER flux of acetyl-CoA as a novel event that dictates the pace of aging phenotypes and identify intracellular acetyl-CoA-dependent homeostatic mechanisms linked to metabolism and inflammation.
Collapse
Affiliation(s)
- Yajing Peng
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Samantha L. Shapiro
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Varuna C. Banduseela
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
- Present address:
Department of Internal MedicineUniversity of MichiganAnn ArborMichigan
| | - Inca A. Dieterich
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
- Neuroscience Training ProgramUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Kyle J. Hewitt
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Emery H. Bresnick
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Guangyao Kong
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Jing Zhang
- Department of Cell and Regenerative BiologyUniversity of Wisconsin‐MadisonMadisonWisconsin
| | | | - Mark P. Keller
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Alan D. Attie
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Timothy A. Hacker
- Cardiovascular Research CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Ruth Sullivan
- Department of Comparative BiosciencesUniversity of Wisconsin‐MadisonMadisonWisconsin
| | | | - Sebastian I. Arriola Apelo
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Present address:
Department of Dairy ScienceUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Dudley W. Lamming
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Rozalyn M. Anderson
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Geriatric Research Education Clinical CenterVeterans Affairs Medical CenterMadisonWisconsin
| | - Luigi Puglielli
- Department of MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
- Waisman CenterUniversity of Wisconsin‐MadisonMadisonWisconsin
- Geriatric Research Education Clinical CenterVeterans Affairs Medical CenterMadisonWisconsin
- Department of NeuroscienceUniversity of Wisconsin‐MadisonMadisonWisconsin
| |
Collapse
|
22
|
Smith HS, Swint JM, Lalani SR, Yamal JM, de Oliveira Otto MC, Castellanos S, Taylor A, Lee BH, Russell HV. Clinical Application of Genome and Exome Sequencing as a Diagnostic Tool for Pediatric Patients: a Scoping Review of the Literature. Genet Med 2018; 21:3-16. [PMID: 29760485 DOI: 10.1038/s41436-018-0024-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Availability of clinical genomic sequencing (CGS) has generated questions about the value of genome and exome sequencing as a diagnostic tool. Analysis of reported CGS application can inform uptake and direct further research. This scoping literature review aims to synthesize evidence on the clinical and economic impact of CGS. METHODS PubMed, Embase, and Cochrane were searched for peer-reviewed articles published between 2009 and 2017 on diagnostic CGS for infant and pediatric patients. Articles were classified according to sample size and whether economic evaluation was a primary research objective. Data on patient characteristics, clinical setting, and outcomes were extracted and narratively synthesized. RESULTS Of 171 included articles, 131 were case reports, 40 were aggregate analyses, and 4 had a primary economic evaluation aim. Diagnostic yield was the only consistently reported outcome. Median diagnostic yield in aggregate analyses was 33.2% but varied by broad clinical categories and test type. CONCLUSION Reported CGS use has rapidly increased and spans diverse clinical settings and patient phenotypes. Economic evaluations support the cost-saving potential of diagnostic CGS. Multidisciplinary implementation research, including more robust outcome measurement and economic evaluation, is needed to demonstrate clinical utility and cost-effectiveness of CGS.
Collapse
Affiliation(s)
- Hadley Stevens Smith
- Baylor College of Medicine, The University of Texas School of Public Health, Houston, Texas, USA
| | - J Michael Swint
- The University of Texas School of Public Health, The Center for Clinical Research and Evidence-Based Medicine, The University of Texas McGovern Medical School, Houston, Texas, USA
| | - Seema R Lalani
- Baylor College of Medicine, Baylor Genetics Laboratory, Houston, Texas, USA
| | - Jose-Miguel Yamal
- The University of Texas School of Public Health, Houston, Texas, USA
| | | | | | - Amy Taylor
- Texas Medical Center Library, Houston, Texas, USA
| | | | - Heidi V Russell
- Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|