1
|
Mohamed B, Ghareib SA, Alsemeh AE, El-Sayed SS. Telmisartan ameliorates nephropathy and restores the hippo pathway in rats with metabolic syndrome. Eur J Pharmacol 2024; 973:176605. [PMID: 38653362 DOI: 10.1016/j.ejphar.2024.176605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
The main objective of this study was to determine if the telmisartan-ameliorative effects of metabolic syndrome (MetS)-evoked nephropathy are attributed to the Hippo pathway. A secondary objective was to investigate the potential of vitamin D3 to enhance telmisartan-favourable effects. A diet composed of 24% fat and 3% salt, along with drinking water containing 10% fructose, was administered for 12 weeks to induce MetS. MetS-rats were given telmisartan (5 mg/kg/day), vitamin D3 (10 μg/kg/day) or both by gavage, starting in the sixth week of experimental diet administration. Assessments performed at closure included renal function, histological examination, catalase, malondialdehyde (MDA), nuclear factor kappa-B (NF-κB), interleukin-6 (IL-6), peroxisome proliferator-activated receptor-γ (PPAR-γ), phosphatase and tensin homolog (PTEN), and transforming growth factor-β (TGF-β). Matrix metalloproteinase-9 (MMP-9) immunostaining was conducted. The expression of the Hippo pathway components, as well as that of angiotensin II type 1 and type 2 (AT1 and AT2), receptors was evaluated. Telmisartan attenuated MetS-evoked nephropathy, as demonstrated by improvement of renal function and histological features, enhancement of catalase, reduction of MDA, inflammation (NF-κB, IL-6), and renal fibrosis (increased PPAR-γ and PTEN and reduced MMP-9 and TGF-β). Telmisartan downregulated AT1-receptor, upregulated AT2-receptor and restored the Hippo pathway. Vitamin D3 replicated most of the telmisartan-elicited effects and enhanced the antifibrotic actions of telmisartan. The alleviative effects of telmisartan on MetS-evoked nephropathy may be related to the restoration of the Hippo pathway. The combination of vitamin D3 and telmisartan exerted more favourable effects on metabolic and nephropathic biomarkers compared with either one administered alone.
Collapse
Affiliation(s)
- Badria Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Salah A Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| | - Amira Ebrahim Alsemeh
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Shaimaa S El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Wang Z, Fan H, Wu J. Food-Derived Up-Regulators and Activators of Angiotensin Converting Enzyme 2: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12896-12914. [PMID: 38810024 PMCID: PMC11181331 DOI: 10.1021/acs.jafc.4c01594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.
Collapse
Affiliation(s)
- Zihan Wang
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| | - Hongbing Fan
- Department
of Animal and Food Sciences, University
of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianping Wu
- Department
of Agricultural, Food and Nutritional Science, 4-10 Ag/For Building, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
- Cardiovascular
Research Centre, University of Alberta, Edmonton, Alberta T6G 2R7, Canada
| |
Collapse
|
3
|
Chen CY, Lin MW, Xie XY, Lin CH, Yang CW, Wu PC, Liu DH, Wu CJ, Lin CS. Studying the Roles of the Renin-Angiotensin System in Accelerating the Disease of High-Fat-Diet-Induced Diabetic Nephropathy in a db/db and ACE2 Double-Gene-Knockout Mouse Model. Int J Mol Sci 2023; 25:329. [PMID: 38203500 PMCID: PMC10779113 DOI: 10.3390/ijms25010329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Diabetic nephropathy (DN) is a crucial metabolic health problem. The renin-angiotensin system (RAS) is well known to play an important role in DN. Abnormal RAS activity can cause the over-accumulation of angiotensin II (Ang II). Angiotensin-converting enzyme inhibitor (ACEI) administration has been proposed as a therapy, but previous studies have also indicated that chymase, the enzyme that hydrolyzes angiotensin I to Ang II in an ACE-independent pathway, may play an important role in the progression of DN. Therefore, this study established a model of severe DN progression in a db/db and ACE2 KO mouse model (db and ACE2 double-gene-knockout mice) to explore the roles of RAS factors in DNA and changes in their activity after short-term (only 4 weeks) feeding of a high-fat diet (HFD) to 8-week-old mice. The results indicate that FD-fed db/db and ACE2 KO mice fed an HFD represent a good model for investigating the role of RAS in DN. An HFD promotes the activation of MAPK, including p-JNK and p-p38, as well as the RAS signaling pathway, leading to renal damage in mice. Blocking Ang II/AT1R could alleviate the progression of DN after administration of ACEI or chymase inhibitor (CI). Both ACE and chymase are highly involved in Ang II generation in HFD-induced DN; therefore, ACEI and CI are potential treatments for DN.
Collapse
Affiliation(s)
- Cheng-Yi Chen
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Hsinchu 300, Taiwan;
- MacKay Junior College of Medicine, Nursing and Management, Taipei 112, Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Xing-Yang Xie
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
| | - Chung-Wei Yang
- Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu 300, Taiwan;
| | - Pei-Ching Wu
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Department of Chinese Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Dung-Huan Liu
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung 404, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 100, Taiwan
- Division of Medicine, College of Medicine, Taipei Medical University, Taipei 100, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (M.-W.L.); (X.-Y.X.); (C.-H.L.)
- Doctoral Degree Program of Biomedical Science and Engineering, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; (P.-C.W.); (D.-H.L.)
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
4
|
Wu WQ, Qin HL. Synthesis of Pyrazolo[1,5- a]pyridinyl, Pyrazolo[1,5- a]quinolinyl, and Pyrazolo[5,1- a]isoquinolinyl Sulfonyl Fluorides via a [3 + 2] Annulation. J Org Chem 2023. [PMID: 36797220 DOI: 10.1021/acs.joc.2c02242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A [3 + 2] cycloaddition reaction of N-aminopyridines, N-aminoquinolines, and N-aminoisoquinolines with 1-bromoethene-1-sulfonyl fluoride (BESF) was performed to obtain optimum yields of various useful pyrazolo[1,5-a]pyridinyl, pyrazolo[1,5-a]quinolinyl, and pyrazolo[5,1-a]isoquinolinyl sulfonyl fluorides (43-90% yield). The transformation process showed broad substrate specificity, mild reaction conditions, and operational simplicity. Therefore, the reaction has great applicable value in the field of medicinal chemistry and other disciplines.
Collapse
Affiliation(s)
- Wen-Qian Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| | - Hua-Li Qin
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, 205 Luoshi Road, Wuhan, 430070, P. R. China
| |
Collapse
|
5
|
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by a new virus that causes respiratory illness. Older adults and individuals who have pre-existing chronic medical conditions are at higher risk for more serious complications from COVID-19. Hypovitaminosis D is attributed to the increased risk of lung injury and acute respiratory distress syndrome (ARDS) as well as diabetes, cardiovascular events and associated comorbidities, which are the main causes of severe clinical complications in COVID-19 patients. Considering the defensive role of vitamin D, mediated through modulation of the innate and adaptive immune system as well as inhibition of the Renin Angiotensin System (RAS), vitamin D supplementation might boost the immune system of COVID-19 patients and reduce severity of the disease in vitamin D deficient individuals.
Collapse
Affiliation(s)
- Maryam Honardoost
- Endocrine Research Center, Institute of Endocrinology and Metabolism, University of Medical Sciences, Tehran, Iran
- Cardio-Oncology Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghavideldarestani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, University of Medical Sciences, Tehran, Iran
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Daboul SM, Abusamak M, Mohammad BA, Alsayed AR, Habash M, Mosleh I, Al-Shakhshir S, Issa R, Abu-Samak M. The effect of omega-3 supplements on the serum levels of ACE/ACE2 ratio as a potential key in cardiovascular disease: A randomized clinical trial in participants with vitamin D deficiency. Pharm Pract (Granada) 2023; 21:2761. [PMID: 37090459 PMCID: PMC10117361 DOI: 10.18549/pharmpract.2023.1.2761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 04/25/2023] Open
Abstract
Objective The aim of this randomized controlled clinical trial was to determine the effect of the omega-3 fatty acid supplementations 300 mg per day for 8 weeks on the serum levels of ACE/ACE2 ratio in Jordanian participants with vitamin D deficiency (VDD). Methods The physical and clinical characteristic of individuals in both intervention and control randomized controlled clinical trial were measured and analyzed. The comparisons between the two groups and the changes in each group before and after taking omega-3 doses were studied through independent t test and paired t test, respectively. Possible factors that have a role in the changes were determined by multivariate stepwise regression. Follow-up period lasted 10 weeks. Results The sample consisted of 82 participants with VDD and a mean age of 37.85 ± 9.85 years. Omega-3 Supplements resulted in a significant decrease in serum ACE levels, ACE/ACE2 ratio and serum 25-hydroxy vitamin D (25OHD). While the change in serum ACE2 levels and serum triglycerides levels were insignificant. Also, a significant increase in serum LDL levels were observed. Conclusion It is possible that taking high doses of omega-3 fatty acid supplementations have positive effects on the heart and circulatory system and could protect from COVID-19 or decrease disease severity, in connection with a decrease in the ACE/ACE 2 ratio. On the other hand, omega-3 supplement may have negative effect on cardiovascular system due to the significant increase in serum LDL levels.
Collapse
Affiliation(s)
- Sara M Daboul
- MSc. Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Jordan.
| | - Mohammad Abusamak
- MD. Assistant Professor, Department of Surgery, School of Medicine, Al-Balqa Applied University, As-Salt, Jordan, Amman Eye Clinic, Amman, Jordan.
| | - Beisan A Mohammad
- PhD. Assistant Professor, Department of Pharmaceutical Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi
| | - Ahmad R Alsayed
- PhD. Associate Professor, Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan.
| | - Maha Habash
- PhD. Assistant Professor, Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.
| | - Ibrahim Mosleh
- PhD. Professor, Departments of Clinical Laboratories, Jordan University, Amman, Jordan.
| | - Sami Al-Shakhshir
- PhD. Assistant Professor, Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan.
| | - Reem Issa
- PhD. Associate Professor, Department of Pharmaceutical Sciences, Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Mahmoud Abu-Samak
- PhD. Professor, Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan.
| |
Collapse
|
7
|
Latic N, Erben RG. Interaction of Vitamin D with Peptide Hormones with Emphasis on Parathyroid Hormone, FGF23, and the Renin-Angiotensin-Aldosterone System. Nutrients 2022; 14:nu14235186. [PMID: 36501215 PMCID: PMC9736617 DOI: 10.3390/nu14235186] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
The seminal discoveries that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) are major endocrine regulators of vitamin D metabolism led to a significant improvement in our understanding of the pivotal roles of peptide hormones and small proteohormones in the crosstalk between different organs, regulating vitamin D metabolism. The interaction of vitamin D, FGF23 and PTH in the kidney is essential for maintaining mineral homeostasis. The proteohormone FGF23 is mainly secreted from osteoblasts and osteoclasts in the bone. FGF23 acts on proximal renal tubules to decrease production of the active form of vitamin D (1,25(OH)2D) by downregulating transcription of 1α-hydroxylase (CYP27B1), and by activating transcription of the key enzyme responsible for vitamin D degradation, 24-hydroxylase (CYP24A1). Conversely, the peptide hormone PTH stimulates 1,25(OH)2D renal production by upregulating the expression of 1α-hydroxylase and downregulating that of 24-hydroxylase. The circulating concentration of 1,25(OH)2D is a positive regulator of FGF23 secretion in the bone, and a negative regulator of PTH secretion from the parathyroid gland, forming feedback loops between kidney and bone, and between kidney and parathyroid gland, respectively. In recent years, it has become clear that vitamin D signaling has important functions beyond mineral metabolism. Observation of seasonal variations in blood pressure and the subsequent identification of vitamin D receptor (VDR) and 1α-hydroxylase in non-renal tissues such as cardiomyocytes, endothelial and smooth muscle cells, suggested that vitamin D may play a role in maintaining cardiovascular health. Indeed, observational studies in humans have found an association between vitamin D deficiency and hypertension, left ventricular hypertrophy and heart failure, and experimental studies provided strong evidence for a role of vitamin D signaling in the regulation of cardiovascular function. One of the proposed mechanisms of action of vitamin D is that it functions as a negative regulator of the renin-angiotensin-aldosterone system (RAAS). This finding established a novel link between vitamin D and RAAS that was unexplored until then. During recent years, major progress has been made towards a more complete understanding of the mechanisms by which FGF23, PTH, and RAAS regulate vitamin D metabolism, especially at the genomic level. However, there are still major gaps in our knowledge that need to be filled by future research. The purpose of this review is to highlight our current understanding of the molecular mechanisms underlying the interaction between vitamin D, FGF23, PTH, and RAAS, and to discuss the role of these mechanisms in physiology and pathophysiology.
Collapse
|
8
|
Araújo TSS, Santos CS, Soares JKB, Freitas JCR. Vitamin D: a potentially important secosteroid for coping with COVID-19. AN ACAD BRAS CIENC 2022; 94:e20201545. [PMID: 36000671 DOI: 10.1590/0001-3765202220201545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a disease that has caused a high number of deaths in the world, and despite being controlled, it requires attention and the search for new quick and economical therapeutic strategies. In this sense, vitamin D stands out, an immunomodulator that has shown beneficial effects in decreasing the risk and severity of acute respiratory tract infections, including COVID-19. Therefore, this review presents a number of experimental, observational and clinical studies on the importance of vitamin D against viral infections with an emphasis on COVID-19, highlighting the relationship between vitamin D, Renin-Angiotensin System and cytokine storms with decreased inflammatory lesions in patients with COVID-19. In addition, aspects of pathophysiology, metabolism, risk factors, sources and recommendations of vitamin D are described. We conclude that vitamin D plays a protective role against inflammatory lesions and can decrease the risk of infections and the severity of COVID-19. Therefore, it is essential to maintain adequate levels of vitamin D to avoid complications related to its deficiency.
Collapse
Affiliation(s)
- Thayanne S S Araújo
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Rua Professora Maria Anita Furtado Coelho, s/n, Sítio Olho D'água da Bica, 58175-000 Cuité, PB, Brazil
| | - Cosme S Santos
- Universidade Federal Rural de Pernambuco, Departamento de Química, Rua Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| | - Juliana K B Soares
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Rua Professora Maria Anita Furtado Coelho, s/n, Sítio Olho D'água da Bica, 58175-000 Cuité, PB, Brazil
| | - Juliano C R Freitas
- Universidade Federal de Campina Grande, Centro de Educação e Saúde, Rua Professora Maria Anita Furtado Coelho, s/n, Sítio Olho D'água da Bica, 58175-000 Cuité, PB, Brazil.,Universidade Federal Rural de Pernambuco, Departamento de Química, Rua Dom Manoel de Medeiros, s/n, 52171-900 Recife, PE, Brazil
| |
Collapse
|
9
|
Udaya Kumar V, Pavan G, Murti K, Kumar R, Dhingra S, Haque M, Ravichandiran V. Rays of immunity: Role of sunshine vitamin in management of COVID-19 infection and associated comorbidities. Clin Nutr ESPEN 2021; 46:21-32. [PMID: 34857198 PMCID: PMC8474796 DOI: 10.1016/j.clnesp.2021.09.727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/10/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
The catastrophic pandemic engendered due to the Novel coronavirus (COVID-19) outbreak which causes severe clinical afflictions on the respiratory system has severely high morbidity and mortality rates. The requirement of novel compounds is at utmost importance due to lack of targeted drug molecule to treat the afflictions and restrict the viral infection and for the usage of prophylactic treatment to avoid the spread of the infection is of utmost importance. Vitamin D is one such naturally available multifunctional molecule, which plays an eminent role in the immune system and instigation of numerous cellular pathways further promoting health benefits and enhancing the human quality of life. This article reviews the current standpoint scenario and future prevalence of vitamin D supplementation in the management of covid-19 patients. Novel findings of Vitamin D suggest that along with regulation of cell growth, neuroprotective and mood-stabilizing effects, it regulates the immune response also modulate cytokine Interleukin-6 (IL-6) by inducing progesterone-induced blocking factor (PIBF), given the IL-6 levels are considerably high in COVID-19 patients which increases the further complications. Vitamin D also have its effect on angiotensin converting enzyme (ACEII) inhibitor through which the COVID-19 virus makes cell entry. Numerous research data elucidate the play of Vitamin D, in complications of COVID-19 including the most common comorbid conditions, neurological manifestations and immunological aspects makes it an ideal molecule for adjuvant therapy. Including Vitamin D as add-on therapy in the management of COVID-19 might aid the arrest of infection and helps fight this arduous epidemic.
Collapse
Affiliation(s)
- V Udaya Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Garapati Pavan
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India.
| | - Rahul Kumar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Sameer Dhingra
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health Universiti Pertahanan, Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Kem Perdana Sungai Besi, Malaysia
| | - V Ravichandiran
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur, Bihar, India
| |
Collapse
|
10
|
Al-Kaleel A, Al-Gailani L, Demir M, Aygün H. Vitamin D may prevent COVID-19 induced pregnancy complication. Med Hypotheses 2021; 158:110733. [PMID: 34784554 PMCID: PMC8576050 DOI: 10.1016/j.mehy.2021.110733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/08/2021] [Accepted: 10/28/2021] [Indexed: 11/28/2022]
Abstract
SARS-CoV-2 enters target cells via the ACE2 receptor and downregulates it. ACE2 exhibits high catalytic activity to produce Angiotensin 1-7 (Ang-1-7), which has a vasodilator effect and also inactivates the vasoconstrictor Angiotensin II. In normal pregnancy ACE2 expression is raising in the uterus and placenta. Ang-1-7 levels in plasma are significantly higher in third-trimester pregnant women when compared to non-pregnant women. This may be contributing to systemic vasodilation and reduced blood pressure and modulating hemodynamics during pregnancy. Interestingly, Ang-1-7 plasma levels are lower in pregnancies complicated by pre-eclampsia than normal pregnancies. COVID-19 infection increased the inflammatory cytokines and reduced ACE2 level. This may lead to pre-eclampsia or hypertensive pregnancies, then increasing the perinatal and maternal mortality and morbidity. Vitamin D increased ACE2 expression and Ang-1-7 plasma levels and also decreased Ang II level in plasma. Moreover, Vitamin D reduced the inflammatory cytokine storm. So, Vitamin D supplementation can prevent the risk of preeclampsia or hypertension in pregnant women with COVID-19.
Collapse
Affiliation(s)
- Ali Al-Kaleel
- Faculty of Medicine, Cyprus International University, Cyprus.
| | | | - Mustafa Demir
- Department of Nephrology, Tokat State Hospital, Tokat, Turkey
| | - Hatice Aygün
- Department of Physiology, Tokat Gaziosmanpasa University, Faculty of Medicine, Tokat, Turkey
| |
Collapse
|
11
|
Getachew B, Tizabi Y. Vitamin D and COVID-19: Role of ACE2, age, gender, and ethnicity. J Med Virol 2021; 93:5285-5294. [PMID: 33990955 PMCID: PMC8242434 DOI: 10.1002/jmv.27075] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, disproportionally targets older people, particularly men, ethnic minorities, and individuals with underlying diseases such as compromised immune system, cardiovascular disease, and diabetes. The discrepancy in COVID-19 incidence and severity is multifaceted and likely involves biological, social, as well as nutritional status. Vitamin D deficiency, notably common in Black and Brown people and elderly, is associated with an increased susceptibility to many of the diseases comorbid with COVID-19. Vitamin D deficiency can cause over-activation of the pulmonary renin-angiotensin system (RAS) leading to the respiratory syndrome. RAS is regulated in part at least by angiotensin-converting enzyme 2 (ACE2), which also acts as a primary receptor for SARS-CoV-2 entry into the cells. Hence, vitamin D deficiency can exacerbate COVID-19, via its effects on ACE2. In this review we focus on influence of age, gender, and ethnicity on vitamin D-ACE2 interaction and susceptibility to COVID-19.
Collapse
Affiliation(s)
- Bruk Getachew
- Department of PharmacologyCollege of Medicine, Howard UniversityWashington DCUSA
| | - Yousef Tizabi
- Department of PharmacologyCollege of Medicine, Howard UniversityWashington DCUSA
| |
Collapse
|
12
|
Al-Ishaq RK, Kubatka P, Brozmanova M, Gazdikova K, Caprnda M, Büsselberg D. Health implication of vitamin D on the cardiovascular and the renal system. Arch Physiol Biochem 2021; 127:195-209. [PMID: 31291127 DOI: 10.1080/13813455.2019.1628064] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Vitamin D regulates the calcium and phosphorus balance in the body. The activated form of vitamin D (1 α,25-dihydroxyvitamin D) binds to vitamin D receptor which regulates genes that control cell proliferation, differentiation and apoptosis. In the cardiovascular system, the vitamin D receptor is present in cardiomyocytes and the arterial wall. A clear correlation between vitamin D level and cardiovascular diseases is established. Vitamin D deficiency affects the renin-angiotensin system leading to ventricular hypertrophy and eventually to stroke. While clinical trials highlighted the positive effects of vitamin D supplements on cardiovascular disease these still need to be confirmed. This review outlines the association between vitamin D and cardiovascular and renal disease summarising the experimental data of selective cardiovascular disorders.
Collapse
Affiliation(s)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Martina Brozmanova
- Department of Pathophysiology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
- Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University, in Bratislava, Martin, Slovakia
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovak
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak
| | - Martin Caprnda
- 1st Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell College of Medicine, Doha, Qatar
| |
Collapse
|
13
|
Peng MY, Liu WC, Zheng JQ, Lu CL, Hou YC, Zheng CM, Song JY, Lu KC, Chao YC. Immunological Aspects of SARS-CoV-2 Infection and the Putative Beneficial Role of Vitamin-D. Int J Mol Sci 2021; 22:5251. [PMID: 34065735 PMCID: PMC8155889 DOI: 10.3390/ijms22105251] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still an ongoing global health crisis. Immediately after the inhalation of SARS-CoV-2 viral particles, alveolar type II epithelial cells harbor and initiate local innate immunity. These particles can infect circulating macrophages, which then present the coronavirus antigens to T cells. Subsequently, the activation and differentiation of various types of T cells, as well as uncontrollable cytokine release (also known as cytokine storms), result in tissue destruction and amplification of the immune response. Vitamin D enhances the innate immunity required for combating COVID-19 by activating toll-like receptor 2. It also enhances antimicrobial peptide synthesis, such as through the promotion of the expression and secretion of cathelicidin and β-defensin; promotes autophagy through autophagosome formation; and increases the synthesis of lysosomal degradation enzymes within macrophages. Regarding adaptive immunity, vitamin D enhances CD4+ T cells, suppresses T helper 17 cells, and promotes the production of virus-specific antibodies by activating T cell-dependent B cells. Moreover, vitamin D attenuates the release of pro-inflammatory cytokines by CD4+ T cells through nuclear factor κB signaling, thereby inhibiting the development of a cytokine storm. SARS-CoV-2 enters cells after its spike proteins are bound to angiotensin-converting enzyme 2 (ACE2) receptors. Vitamin D increases the bioavailability and expression of ACE2, which may be responsible for trapping and inactivating the virus. Activation of the renin-angiotensin-aldosterone system (RAS) is responsible for tissue destruction, inflammation, and organ failure related to SARS-CoV-2. Vitamin D inhibits renin expression and serves as a negative RAS regulator. In conclusion, vitamin D defends the body against SARS-CoV-2 through a novel complex mechanism that operates through interactions between the activation of both innate and adaptive immunity, ACE2 expression, and inhibition of the RAS system. Multiple observation studies have shown that serum concentrations of 25 hydroxyvitamin D are inversely correlated with the incidence or severity of COVID-19. The evidence gathered thus far, generally meets Hill's causality criteria in a biological system, although experimental verification is not sufficient. We speculated that adequate vitamin D supplementation may be essential for mitigating the progression and severity of COVID-19. Future studies are warranted to determine the dosage and effectiveness of vitamin D supplementation among different populations of individuals with COVID-19.
Collapse
Affiliation(s)
- Ming-Yieh Peng
- Division of Infectious Disease, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Wen-Chih Liu
- Division of Nephrology, Department of Medicine, Taipei Hospital, Ministry of Health and Welfare, New Taipei City 242, Taiwan;
| | - Jing-Quan Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (J.-Q.Z.); (Y.-C.H.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (J.-Q.Z.); (Y.-C.H.)
- Division of Nephrology, Department of Medicine, Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 234, Taiwan
| | - Cai-Mei Zheng
- Taipei Medical University-Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Jenn-Yeu Song
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| | - You-Chen Chao
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
14
|
Oz M, Lorke DE, Kabbani N. A comprehensive guide to the pharmacologic regulation of angiotensin converting enzyme 2 (ACE2), the SARS-CoV-2 entry receptor. Pharmacol Ther 2021; 221:107750. [PMID: 33275999 PMCID: PMC7854082 DOI: 10.1016/j.pharmthera.2020.107750] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023]
Abstract
The recent emergence of coronavirus disease-2019 (COVID-19) as a global pandemic has prompted scientists to address an urgent need for defining mechanisms of disease pathology and treatment. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent for COVID-19, employs angiotensin converting enzyme 2 (ACE2) as its primary target for cell surface attachment and likely entry into the host cell. Thus, understanding factors that may regulate the expression and function of ACE2 in the healthy and diseased body is critical for clinical intervention. Over 66% of all adults in the United States are currently using a prescription drug and while earlier findings have focused on possible upregulation of ACE2 expression through the use of renin angiotensin system (RAS) inhibitors, mounting evidence suggests that various other widely administered drugs used in the treatment of hypertension, heart failure, diabetes mellitus, hyperlipidemias, coagulation disorders, and pulmonary disease may also present a varied risk for COVID-19. Specifically, we summarize mechanisms on how heparin, statins, steroids and phytochemicals, besides their established therapeutic effects, may also interfere with SARS-CoV-2 viral entry into cells. We also describe evidence on the effect of several vitamins, phytochemicals, and naturally occurring compounds on ACE2 expression and activity in various tissues and disease models. This comprehensive review aims to provide a timely compendium on the potential impact of commonly prescribed drugs and pharmacologically active compounds on COVID-19 pathology and risk through regulation of ACE2 and RAS signaling.
Collapse
Key Words
- adam17, a disintegrin and metalloprotease 17
- ace, angiotensin i converting enzyme
- ace-inh., angiotensin i converting enzyme inhibitor
- ampk, amp-activated protein kinase
- ang-ii, angiotensin ii
- arb, angiotensin ii type 1-receptor blocker
- ards, acute respiratory distress syndrome
- at1-r, angiotensin ii type 1-receptor
- βarb, β-adrenergic receptor blockers
- bk, bradykinin
- ccb, calcium channel blockers
- ch25h, cholesterol-25-hydroxylase
- copd, chronic obstructive lung disease
- cox, cyclooxygenase
- covid-19, coronavirus disease-2019
- dabk, [des-arg9]-bradykinin
- erk, extracellular signal-regulated kinase
- 25hc, 25-hydroxycholesterol
- hs, heparan sulfate
- hspg, heparan sulfate proteoglycan
- ibd, inflammatory bowel disease
- map, mitogen-activated protein
- mers, middle east respiratory syndrome
- mrb, mineralocorticoid receptor blocker
- nos, nitric oxide synthase
- nsaid, non-steroid anti-inflammatory drug
- ras, renin-angiotensin system
- sars-cov, severe acute respiratory syndrome coronavirus
- sh, spontaneously hypertensive
- s protein, spike protein
- sirt1, sirtuin 1
- t2dm, type 2 diabetes mellitus
- tcm, traditional chinese medicine
- tmprss2, transmembrane protease, serine 2
- tnf, tumor necrosis factor
- ufh, unfractionated heparin
Collapse
Affiliation(s)
- Murat Oz
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait.
| | - Dietrich Ernst Lorke
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates; Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Nadine Kabbani
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
15
|
Suh SH, Ma SK, Kim SW, Bae EH. Angiotensin-converting enzyme 2 and kidney diseases in the era of coronavirus disease 2019. Korean J Intern Med 2021; 36:247-262. [PMID: 33617712 PMCID: PMC7969072 DOI: 10.3904/kjim.2020.355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/19/2020] [Indexed: 01/08/2023] Open
Abstract
In the decades since the discovery of angiotensin-converting enzyme 2 (ACE2), its protective role in terms of antagonizing activation of the classical renin-angiotensin system (RAS) axis has been recognized in clinical and experimental studies on kidney and cardiovascular diseases. The effects of ACE inhibitor/angiotensin type 1 receptor blockers (ACEi/ARBs) on ACE2-angiotensin-(1-7) (Ang- (1-7))-Mas receptor (MasR) axis activation has encouraged the use of such blockers in patients with kidney and cardiovascular diseases, until the emergence of coronavirus disease 2019 (COVID-19). The previously unchallenged functions of the ACE2-Ang-(1-7)-MasR axis and ACEi/ARBs are being re-evaluated in the era of COVID-19; the hypothesis is that ACEi/ARBs may increase the risk of severe acute respiratory syndrome coronavirus 2 infection by upregulating the human ACE2 receptor expression level. In this review, we examine ACE2 molecular structure, function (as an enzyme of the RAS), and distribution. We explore the roles played by ACE2 in kidney, cardiovascular, and pulmonary diseases, highlighting studies that defined the benefits imparted when ACEi/ARBs activated the local ACE2- Ang-(1-7)-MasR axis. Finally, the question of whether ACEi/ARBs therapies should be stopped in COVID-19-infected patients will be reviewed by reference to the available evidence.
Collapse
Affiliation(s)
- Sang Heon Suh
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Seong Kwon Ma
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Soo Wan Kim
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| | - Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
- Correspondence to Eun Hui Bae, M.D. Department of Internal Medicine, Chonnam National University Medical School, 42 Jebong-ro, Dong-gu, Gwangju 61469, Korea Tel: +82-62-220-6503 Fax: +82-62-225-8578 E-mail:
| |
Collapse
|
16
|
Liu BH, Chong FL, Yuan CC, Liu YL, Yang HM, Wang WW, Fang QJ, Wu W, Wang MZ, Tu Y, Wan ZY, Wan YG, Wu GW. Fucoidan Ameliorates Renal Injury-Related Calcium-Phosphorus Metabolic Disorder and Bone Abnormality in the CKD-MBD Model Rats by Targeting FGF23-Klotho Signaling Axis. Front Pharmacol 2021; 11:586725. [PMID: 33708111 PMCID: PMC7941278 DOI: 10.3389/fphar.2020.586725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Recently, chronic kidney disease (CKD)-mineral and bone disorder (MBD) has become one of common complications occurring in CKD patients. Therefore, development of a new treatment for CKD-MBD is very important in the clinic. In China, Fucoidan (FPS), a natural compound of Laminaria japonica has been frequently used to improve renal dysfunction in CKD. However, it remains elusive whether FPS can ameliorate CKD-MBD. FGF23-Klotho signaling axis is reported to be useful for regulating mineral and bone metabolic disorder in CKD-MBD. This study thereby aimed to clarify therapeutic effects of FPS in the CKD-MBD model rats and its underlying mechanisms in vivo and in vitro, compared to Calcitriol (CTR). Methods: All male rats were divided into four groups: Sham, CKD-MBD, FPS and CTR. The CKD-MBD rat models were induced by adenine administration and uninephrectomy, and received either FPS or CTR or vehicle after induction of renal injury for 21 days. The changes in parameters related to renal dysfunction and renal tubulointerstitial damage, calcium-phosphorus metabolic disorder and bone lesion were analyzed, respectively. Furthermore, at sacrifice, the kidneys and bone were isolated for histomorphometry, immunohistochemistry and Western blot. In vitro, the murine NRK-52E cells were used to investigate regulative actions of FPS or CTR on FGF23-Klotho signaling axis, ERK1/2-SGK1-NHERF-1-NaPi-2a pathway and Klotho deficiency. Results: Using the modified CKD-MBD rat model and the cultured NRK-52E cells, we indicated that FPS and CTR alleviated renal dysfunction and renal tubulointerstitial damage, improved calcium-phosphorus metabolic disorder and bone lesion, and regulated FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. In addition, using the shRNA-Klotho plasmid-transfected cells, we also detected, FPS accurately activated ERK1/2-SGK1-NHERF-1-NaPi-2a pathway through Klotho loss reversal. Conclusion: In this study, we emphatically demonstrated that FPS, a natural anti-renal dysfunction drug, similar to CTR, improves renal injury-related calcium-phosphorus metabolic disorder and bone abnormality in the CKD-MBD model rats. More importantly, we firstly found that beneficial effects in vivo and in vitro of FPS on phosphorus reabsorption are closely associated with regulation of FGF23-Klotho signaling axis and ERK1/2-SGK1-NHERF-1-NaPi-2a pathway in the kidney. This study provided pharmacological evidences that FPS directly contributes to the treatment of CKD-MBD.
Collapse
Affiliation(s)
- Bu-Hui Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Nephrology Division, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Fee-Lan Chong
- The School of Pharmacy, Management and Science University, Shah Alam, Malaysia
| | - Can-Can Yuan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying-Lu Liu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Hai-Ming Yang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wen-Wen Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Jun Fang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Wu
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Mei-Zi Wang
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Tu
- Department of Traditional Chinese Medicine Health Preservation, Acupuncture, Moxibustion and Massage College, Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Yue Wan
- Department of Social Work, Meiji Gakuin University, Tokyo, Japan
| | - Yi-Gang Wan
- Department of Traditional Chinese Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Guo-Wen Wu
- Jilin Province Huinan Chonglong Bio-Pharmacy Co., Ltd., Huinan, China
| |
Collapse
|
17
|
Miao D, Goltzman D. Probing the Scope and Mechanisms of Calcitriol Actions Using Genetically Modified Mouse Models. JBMR Plus 2021; 5:e10434. [PMID: 33553990 PMCID: PMC7839819 DOI: 10.1002/jbm4.10434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Genetically modified mice have provided novel insights into the mechanisms of activation and inactivation of vitamin D, and in the process have provided phenocopies of acquired human disease such as rickets and osteomalacia and inherited diseases such as pseudovitamin D deficiency rickets, hereditary vitamin D resistant rickets, and idiopathic infantile hypercalcemia. Both global and tissue-specific deletion studies leading to decreases of the active form of vitamin D, calcitriol [1,25(OH)2D], and/or of the vitamin D receptor (VDR), have demonstrated the primary role of calcitriol and VDR in bone, cartilage and tooth development and in the regulation of mineral metabolism and of parathyroid hormone (PTH) and FGF23, which modulate calcium and phosphate fluxes. They have also, however, extended the spectrum of actions of calcitriol and the VDR to include, among others: modulation, jointly and independently, of skin metabolism; joint regulation of adipose tissue metabolism; cardiovascular function; and immune function. Genetic studies in older mice have also shed light on the molecular mechanisms underlying the important role of the calcitriol/VDR pathway in diseases of aging such as osteoporosis and cancer. In the course of these studies in diverse tissues, important upstream and downstream, often tissue-selective, pathways have been illuminated, and intracrine, as well as endocrine actions have been described. Human studies to date have focused on acquired or genetic deficiencies of the prohormone vitamin D or the (generally inactive) precursor metabolite 25-hyrodxyvitamin D, but have yet to probe the pleiotropic aspects of deficiency of the active form of vitamin D, calcitriol, in human disease. © 2020 American Society for Bone and Mineral Research © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Dengshun Miao
- The Research Center for AgingAffiliated Friendship Plastic Surgery Hospital of Nanjing Medical UniversityNanjingChina
| | - David Goltzman
- Department of MedicineMcGill University Health Centre and McGill UniversityMontrealQCCanada
| |
Collapse
|
18
|
Rathi H, Burman V, Datta SK, Rana SV, Mirza AA, Saha S, Kumar R, Naithani M. Review on COVID-19 Etiopathogenesis, Clinical Presentation and Treatment Available with Emphasis on ACE2. Indian J Clin Biochem 2021; 36:3-22. [PMID: 33424145 PMCID: PMC7778574 DOI: 10.1007/s12291-020-00953-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023]
Abstract
In December 2019, Wuhan city in the Hubei province of China reported for the first time a cluster of patients infected with a novel coronavirus, since then there has been an outburst of this disease across the globe affecting millions of human inhabitants. Severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2), is a member of beta coronavirus family which upon exposure caused a highly infectious disease called novel coronavirus disease-2019 (COVID-19). COVID-19, a probably bat originated disease was declared by World Health Organization (WHO) as a global pandemic in March 2020. Since then, despite rigorous global containment and quarantine efforts, the disease has affected nearly 56,261,952 laboratory confirmed human population and caused deaths of over 1,349,506 lives worldwide. Virus passes in majority through respiratory droplets and then enters lung epithelial cells by binding to angiotensin converting enzyme 2 (ACE2) receptor and there it undergoes replication and targeting host cells causing severe pathogenesis. Majority of human population exposed to SARS-CoV-2 having fully functional immune system undergo asymptomatic infection while 5-10% are symptomatic and only 1-2% are critically affected and requires ventilation support. Older people or people with co-morbidities are severely affected by COVID-19. These categories of patients also display cytokine storm due to dysfunctional immune response which brutally destroys the affected organs and may lead to death in some. Real time PCR is still considered as standard method of diagnosis along with other serology, radiological and biochemical investigations. Till date, no specific validated medication is available for the treatment of COVID-19 patients. Thus, this review provides detailed knowledge about the different landscapes of disease incidence, etiopathogenesis, involvement of various organs, diagnostic criteria's and treatment guidelines followed for management of COVID-19 infection since its inception. In conclusion, extensive research to recognize novel pathways and their cross talk to combat this virus in precarious settings is our future positive hope.
Collapse
Affiliation(s)
- Himani Rathi
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Vishakha Burman
- Department of Biotechnology, SVBP University of Agriculture and Technology, Meerut, Uttar Pradesh India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Satya Vati Rana
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Anissa Atif Mirza
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Raman Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| | - Manisha Naithani
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand India
| |
Collapse
|
19
|
Santaolalla A, Beckmann K, Kibaru J, Josephs D, Van Hemelrijck M, Irshad S. Association Between Vitamin D and Novel SARS-CoV-2 Respiratory Dysfunction - A Scoping Review of Current Evidence and Its Implication for COVID-19 Pandemic. Front Physiol 2020; 11:564387. [PMID: 33324234 PMCID: PMC7726316 DOI: 10.3389/fphys.2020.564387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To assess the association between vitamin D deficiency and increased morbidity/mortality with COVID-19 respiratory dysfunction. DESIGN Scoping review. DATA SOURCES Ovid MEDLINE (1946 to 24 of April 2020) and PubMed (2020 to 17 of September 2020). ELIGIBILITY CRITERIA FOR SELECTING STUDIES A search using the search terms: [(cholecalciferol or ergocalciferol or vitamin D2 or vitamin D3 or vitamin D or 25OHD) and (SARS-CoV-2 or coronavirus or COVID or betacoronavirus or MERS-CoV or SARS-CoV or respiratory infection or acute respiratory distress syndrome or ARDS)]m.p. was conducted on the 24/04/2020 (Search A) and 17/09/2020 (Search B). RESULTS 91 studies were identified as being concerned with Acute Respiratory Infection (ARI)/Acute Respiratory Distress Syndrome (ARDS) and vitamin D, and 25 publications specifically explored the role of vitamin D deficiency in the development and progression of SARS-CoV-2/COVID-19 related ARDS. Search "A" identified three main themes of indirect evidence supporting such an association. Consistent epidemiological evidence exists linking low vitamin D levels to increased risk and severity of respiratory tract infections. We also report on plausible biological processes supporting such an association; and present weaker evidence supporting the benefit of vitamin D supplementation in reducing the risk and severity of ARIs. Uncertainty remains about what constitutes an appropriate dosing regimen in relation to reducing risk/severity of ARI/ARDS. More recent evidence (Search B) provided new insights into some direct links between vitamin D and COVID-19; with a number of cohort and ecological studies supporting an association with PCR-positivity for SARS-CoV-2 and vitamin D deficiency. The exact efficacy of the vitamin D supplementation for prevention of, or as an adjunct treatment for COVID-19 remains to be determined; but a number of randomized control trials (RCTs) currently underway are actively investigating these potential benefits. CONCLUSION Our rapid review of literature supports the need for observational studies with COVID-19 infected populations to measure and assess vitamin D levels in relation to risk/severity and outcomes; alongside RCTs designed to evaluate the efficacy of supplementation both in preventive and therapeutic contexts. The overlap in the vitamin D associated biological pathways with the dysregulation reported to drive COVID-19 outcomes warrants further investigation.
Collapse
Affiliation(s)
- Aida Santaolalla
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Kerri Beckmann
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Joyce Kibaru
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Debra Josephs
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Mieke Van Hemelrijck
- Translational Oncology and Urology Research, School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Sheeba Irshad
- Department of Medical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
20
|
Kaur U, Acharya K, Mondal R, Singh A, Saso L, Chakrabarti S, Chakrabarti SS. Should ACE2 be given a chance in COVID-19 therapeutics: A semi-systematic review of strategies enhancing ACE2. Eur J Pharmacol 2020; 887:173545. [PMID: 32926917 PMCID: PMC7485553 DOI: 10.1016/j.ejphar.2020.173545] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
The severe acute respiratory syndrome corona virus-2 (SARS-CoV-2) has resulted in almost 28 million cases of COVID-19 (Corona virus disease-2019) and more than 900000 deaths worldwide since December 2019. In the absence of effective antiviral therapy and vaccine, treatment of COVID-19 is largely symptomatic. By making use of its spike (S) protein, the virus binds to its primary human cell receptor, angiotensin converting enzyme 2 (ACE2) which is present in the pulmonary epithelial cells as well as other organs. SARS-CoV-2 may cause a downregulation of ACE2. ACE2 plays a protective role in the pulmonary system through its Mas-receptor and alamandine-MrgD-TGR7 pathways. Loss of this protective effect could be a major component of COVID-19 pathogenesis. An attractive strategy in SARS-CoV-2 therapeutics would be to augment ACE2 either directly by supplementation or indirectly through drugs which increase its levels or stimulate its downstream players. In this semi-systematic review, we have analysed the pathophysiological interplay between ACE and ACE2 in the cardiopulmonary system, the modulation of these two proteins by SARS-CoV-2, and potential therapeutic avenues targeting ACE-Ang II and ACE2-Ang (1-7) axes, that can be utilized against COVID-19 disease progression.
Collapse
Affiliation(s)
- Upinder Kaur
- Department of Pharmacology, All India Institute of Medical Sciences, Gorakhpur, UP, India
| | - Kumudini Acharya
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, UP, India
| | - Ritwick Mondal
- Department of Internal Medicine, Institute of Post Graduate Medical Education and Research, Kolkata, WB, India
| | - Amit Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, UP, India
| | - Luciano Saso
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Sasanka Chakrabarti
- Department of Biochemistry and Central Research Cell, Maharishi Markandeshwar (deemed to be) University, Mullana, Ambala, Haryana, India.
| | | |
Collapse
|
21
|
Hoong CWS, Huilin K, Cho S, Aravamudan VM, Lin JHX. Are Adequate Vitamin D Levels Helpful in Fighting COVID-19? A Look at the Evidence. Horm Metab Res 2020; 52:775-783. [PMID: 32942311 DOI: 10.1055/a-1243-5462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
COVID-19 is a global pandemic with high mortality in vulnerable groups. Given the current lack of definitive treatment or vaccine that significantly reduces mortality rate, governments, researchers and healthcare providers are racing to find possible solutions to the crisis. Vitamin D and its analogues have been previously studied for their non-skeletal benefits. In particular, questions regarding their role in the modulation of immunity have re-surfaced, in view of possible epidemiological links observed between COVID-19 and vitamin D levels in selected populations. In this review, we highlight potential mechanisms and summarise the evidence for and against the potential role of vitamin D supplementation in our fight against COVID-19.
Collapse
Affiliation(s)
| | - Koh Huilin
- Woodlands Health Campus, National Healthcare Group, Singapore
| | - Sanda Cho
- Warrington and Halton Hospitals NHS Foundation Trust, Warrington, United Kingdom
| | | | | |
Collapse
|
22
|
Hoevenaar M, Goossens D, Roorda J. Angiotensin-converting enzyme 2, the complement system, the kallikrein-kinin system, type-2 diabetes, interleukin-6, and their interactions regarding the complex COVID-19 pathophysiological crossroads. J Renin Angiotensin Aldosterone Syst 2020; 21:1470320320979097. [PMID: 33283602 PMCID: PMC7724427 DOI: 10.1177/1470320320979097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the current COVID-19-pandemic, the world is currently being held hostage in various lockdowns. ACE2 facilitates SARS-CoV-2 cell-entry, and is at the very center of several pathophysiological pathways regarding the RAAS, CS, KKS, T2DM, and IL-6. Their interactions with severe COVID-19 complications (e.g. ARDS and thrombosis), and potential therapeutic targets for pharmacological intervention, will be reviewed.
Collapse
Affiliation(s)
| | | | - Janne Roorda
- Medical Doctor, General Practice
van Dijk, Oisterwijk, The Netherlands
| |
Collapse
|
23
|
Dambha-Miller H, Albasri A, Hodgson S, Wilcox CR, Khan S, Islam N, Little P, Griffin SJ. Currently prescribed drugs in the UK that could upregulate or downregulate ACE2 in COVID-19 disease: a systematic review. BMJ Open 2020; 10:e040644. [PMID: 32928868 PMCID: PMC7490921 DOI: 10.1136/bmjopen-2020-040644] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/02/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To review evidence on routinely prescribed drugs in the UK that could upregulate or downregulate ACE2 and potentially affect COVID-19 disease. DESIGN Systematic review. DATA SOURCE MEDLINE, EMBASE, CINAHL, the Cochrane Library and Web of Science. STUDY SELECTION Any design with animal or human models examining a currently prescribed UK drug compared with a control, placebo or sham group, and reporting an effect on ACE2 level, activity or gene expression. DATA EXTRACTION AND SYNTHESIS MEDLINE, EMBASE, CINAHL, the Cochrane Library, Web of Science and OpenGrey from inception to 1 April 2020. Methodological quality was assessed using the SYstematic Review Centre for Laboratory animal Experimentation (SYRCLE) risk-of-bias tool for animal studies and Cochrane risk-of-bias tool for human studies. RESULTS We screened 3360 titles and included 112 studies with 21 different drug classes identified as influencing ACE2 activity. Ten studies were in humans and one hundred and two were in animal models None examined ACE2 in human lungs. The most frequently examined drugs were angiotensin receptor blockers (ARBs) (n=55) and ACE inhibitors (ACE-I) (n=22). More studies reported upregulation than downregulation with ACE-I (n=22), ARBs (n=55), insulin (n=8), thiazolidinedione (n=7) aldosterone agonists (n=3), statins (n=5), oestrogens (n=5) calcium channel blockers (n=3) glucagon-like peptide 1 (GLP-1) agonists (n=2) and Non-steroidal anti-inflammatory drugs (NSAIDs) (n=2). CONCLUSIONS There is an abundance of the academic literature and media reports on the potential of drugs that could attenuate or exacerbate COVID-19 disease. This is leading to trials of repurposed drugs and uncertainty among patients and clinicians concerning continuation or cessation of prescribed medications. Our review indicates that the impact of currently prescribed drugs on ACE2 has been poorly studied in vivo, particularly in human lungs where the SARS-CoV-2 virus appears to enact its pathogenic effects. We found no convincing evidence to justify starting or stopping currently prescribed drugs to influence outcomes of COVID-19 disease.
Collapse
Affiliation(s)
- Hajira Dambha-Miller
- Department of Primary Care, University of Southampton, Southampton, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Ali Albasri
- Department of Primary Care Health Sciences, University of Oxford, Oxford, UK
| | - Sam Hodgson
- Department of Primary Care, University of Southampton, Southampton, UK
| | | | - Shareen Khan
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Nazrul Islam
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Department of Population Health, University of Oxford, Oxford, UK
| | - Paul Little
- Department of Primary Care, University of Southampton, Southampton, UK
| | - Simon J Griffin
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
Malek Mahdavi A. A brief review of interplay between vitamin D and angiotensin-converting enzyme 2: Implications for a potential treatment for COVID-19. Rev Med Virol 2020; 30:e2119. [PMID: 32584474 PMCID: PMC7362103 DOI: 10.1002/rmv.2119] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/03/2020] [Accepted: 05/07/2020] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) is rapidly expanding and causing many deaths all over the world with the World Health Organization (WHO) declaring a pandemic in March 2020. Current therapeutic options are limited and there is no registered and/or definite treatment or vaccine for this disease or the causative infection, severe acute respiratory coronavirus 2 syndrome (SARS-CoV-2). Angiotensin-converting enzyme 2 (ACE2), a part of the renin-angiotensin system (RAS), serves as the major entry point into cells for SARS-CoV-2 which attaches to human ACE2, thereby reducing the expression of ACE2 and causing lung injury and pneumonia. Vitamin D, a fat-soluble-vitamin, is a negative endocrine RAS modulator and inhibits renin expression and generation. It can induce ACE2/Ang-(1-7)/MasR axis activity and inhibits renin and the ACE/Ang II/AT1R axis, thereby increasing expression and concentration of ACE2, MasR and Ang-(1-7) and having a potential protective role against acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Therefore, targeting the unbalanced RAS and ACE2 down-regulation with vitamin D in SARS-CoV-2 infection is a potential therapeutic approach to combat COVID-19 and induced ARDS.
Collapse
MESH Headings
- Acute Lung Injury/pathology
- Acute Lung Injury/prevention & control
- Acute Lung Injury/virology
- Angiotensin I/genetics
- Angiotensin I/metabolism
- Angiotensin-Converting Enzyme 2
- Angiotensin-Converting Enzyme Inhibitors/therapeutic use
- Betacoronavirus/genetics
- Betacoronavirus/metabolism
- Betacoronavirus/pathogenicity
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Gene Expression Regulation/drug effects
- Humans
- Pandemics
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- Protein Binding
- Proto-Oncogene Mas
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Virus/antagonists & inhibitors
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Renin-Angiotensin System/drug effects
- SARS-CoV-2
- Severity of Illness Index
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
- Vitamin D/therapeutic use
Collapse
Affiliation(s)
- Aida Malek Mahdavi
- Connective Tissue Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
25
|
Akhtar S, Benter IF, Danjuma MI, Doi SAR, Hasan SS, Habib AM. Pharmacotherapy in COVID-19 patients: a review of ACE2-raising drugs and their clinical safety. J Drug Target 2020; 28:683-699. [PMID: 32700580 DOI: 10.1080/1061186x.2020.1797754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The COVID-19 pandemic is caused by the severe acute-respiratory-syndrome-coronavirus-2 that uses ACE2 as its receptor. Drugs that raise serum/tissue ACE2 levels include ACE inhibitors (ACEIs) and angiotensin-II receptor blockers (ARBs) that are commonly used in patients with hypertension, cardiovascular disease and/or diabetes. These comorbidities have adverse outcomes in COVID-19 patients that might result from pharmacotherapy. Increasing ACE2 could potentially increase the risk of infection, severity or mortality in COVID-19 or it might be protective as it forms angiotensin-(1-7) which exhibits anti-inflammatory/anti-oxidative effects and prevents diabetes- and/or hypertension-induced end-organ damage. Thus, there existed clinical uncertainty. Here, we review studies implicating 15 classes of drugs in increasing ACE2 levels in vivo and the available literature on the clinical safety of these drugs in COVID-19 patients. Further, in a re-analysis of clinical data from a meta-analysis of 9 studies, we show that ACEIs/ARBs usage was not associated with an increased risk of all-cause mortality. Literature suggests that ACEIs/ARBs usage generally appears to be clinically safe though their use in severe COVID-19 patients might increase the risk of acute renal injury. For definitive clarity, further clinical and mechanistic studies are needed in assessing the safety of all classes of ACE2 raising medications.
Collapse
Affiliation(s)
- Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Mohammed I Danjuma
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Division of Internal Medicine, Hamad Medical Corporation Hospital, Doha, Qatar
| | - Suhail A R Doi
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Syed S Hasan
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
26
|
Ohadian Moghadam S. A Review on Currently Available Potential Therapeutic Options for COVID-19. Int J Gen Med 2020; 13:443-467. [PMID: 32801840 PMCID: PMC7387864 DOI: 10.2147/ijgm.s263666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
A series of unexplained pneumonia cases currently were first reported in December 2019 in Wuhan, China. Official names have been announced for the virus responsible, previously known as "2019 novel coronavirus" and the diseases it causes are, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease (COVID-19), respectively. Despite great efforts worldwide to control SARS-CoV-2, the spread of the virus has reached a pandemic. Infection prevention and control of this virus is the primary concern of public health officials and professionals. Currently, several therapeutic options for COVID-19 are proposed and vaccine development has been initiated for prevention purposes. In this review, we will discuss the most recent evidence about the current potential treatment options including anti-inflammatory drugs, angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, nucleoside analogs, protease inhibitors, monoclonal antibodies, and convalescent plasma therapy. Some other agents such as vitamin D and melatonin, which were recommended as potential adjuvant treatments for COVID-19 infection are also presented. Moreover, the potential use of convalescent plasma for treatment of COVID-19 infection was described. Furthermore, in the next part of the current review, various vaccination approaches against COVID-19 including whole virus vaccines, recombinant subunit vaccine, DNA vaccines, and mRNA vaccines are discussed.
Collapse
|
27
|
Rashedi J, Mahdavi Poor B, Asgharzadeh M. Vitamin D 3 Administration to Patients with Confirmed COVID-19. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:141-142. [PMID: 34268226 PMCID: PMC8265999 DOI: 10.18502/ijph.v49is1.3690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 12/03/2022]
Affiliation(s)
- Jalil Rashedi
- Department of Laboratory Sciences, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behroz Mahdavi Poor
- Department of Laboratory Sciences, School of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
28
|
Aleksova A, Ferro F, Gagno G, Padoan L, Saro R, Santon D, Stenner E, Barbati G, Cappelletto C, Rossi M, Beltrami AP, Sinagra G. Diabetes Mellitus and Vitamin D Deficiency:Comparable Effect on Survival and a DeadlyAssociation after a Myocardial Infarction. J Clin Med 2020; 9:E2127. [PMID: 32640692 PMCID: PMC7408858 DOI: 10.3390/jcm9072127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
Survivors after a myocardial infarction (MI), especially those with diabetes mellitus (DM),remain at high risk of further events. Identifying and treating factors that may influence survivalmay open new therapeutic strategies. We assessed the impact on prognosis of DM andhypovitaminosis D (hypovitD), alone or combined. In this prospective, observational study, 1081patients were enrolled surviving an MI and divided into four groups according to their diabetic andVitD status. The primary end-point was composite of all-cause mortality, angina/MI and heartfailure (HF). Secondary outcomes were mortality, HF and angina/MI. During a follow-up of 26.1months (IQR 6.6-64.5), 391 subjects experienced the primary end-point. Patients with DM orhypovitD had similar rate of the composite end-point. Patients with only hypovitD or DM did notdiffer regarding components of composite end-point (angina p = 0.97, HF p = 0.29, mortality p = 0.62).DM and VitD deficiency had similarly adjusted risks for primary end-point (HR 1.3, 95%CI 1.05-1.61; HR 1.3, 95% CI 1.04-1.64). The adjusted HR for primary composite end-point for patients withhypovitD and DM was 1.69 (95%CI 1.25-2.29, p = 0.001) in comparison to patients with neitherhypoD nor DM. In conclusion, DM and hypovitD, individually and synergistically, are associatedwith a worse outcome after MI.
Collapse
Affiliation(s)
- Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| | - Federico Ferro
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| | - Giulia Gagno
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| | - Laura Padoan
- Azienda Ospedaliera di Perugia and University of Perugia, Cardiology and Cardiovascular Physiopathology, 06156 Perugia, Italy;
| | - Riccardo Saro
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| | - Daniela Santon
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34100 Trieste, Italy; (D.S.); (E.S.)
| | - Elisabetta Stenner
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34100 Trieste, Italy; (D.S.); (E.S.)
| | - Giulia Barbati
- Biostatistics Unit, Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy;
| | - Chiara Cappelletto
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| | - Maddalena Rossi
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| | | | - Gianfranco Sinagra
- Cardiovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI) and Department of Medical Surgical and Health Sciences, University of Trieste, 34100 Trieste, Italy; (F.F.); (G.G.); (R.S.); (C.C.); (M.R.); (G.S.)
| |
Collapse
|
29
|
Ghafouri-Fard S, Noroozi R, Omrani MD, Branicki W, Pośpiech E, Sayad A, Pyrc K, Łabaj PP, Vafaee R, Taheri M, Sanak M. Angiotensin converting enzyme: A review on expression profile and its association with human disorders with special focus on SARS-CoV-2 infection. Vascul Pharmacol 2020; 130:106680. [PMID: 32423553 PMCID: PMC7211701 DOI: 10.1016/j.vph.2020.106680] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
Angiotensin-converting enzyme (ACE) and its homologue, ACE2, have been mostly associated with hypertensive disorder. However, recent pandemia of SARS-CoV-2 has put these proteins at the center of attention, as this virus has been shown to exploit ACE2 protein to enter cells. Clear difference in the response of affected patients to this virus has urged researchers to find the molecular basis and pathophysiology of the cell response to this virus. Different levels of expression and function of ACE proteins, underlying disorders, consumption of certain medications and the existence of certain genomic variants within ACE genes are possible explanations for the observed difference in the response of individuals to the SARS-CoV-2 infection. In the current review, we discuss the putative mechanisms for this observation.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Noroozi
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Wojciech Branicki
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Ewelina Pośpiech
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Krzysztof Pyrc
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Paweł P Łabaj
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Reza Vafaee
- Proteomics Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
30
|
Aygun H. Vitamin D can prevent COVID-19 infection-induced multiple organ damage. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1157-1160. [PMID: 32451597 PMCID: PMC7246956 DOI: 10.1007/s00210-020-01911-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/17/2020] [Indexed: 12/23/2022]
Abstract
Vitamin D is an immunomodulator hormone with an anti-inflammatory and antimicrobial effect with a high safety profile. A lot of COVID-19 infected patients develop acute respiratory distress syndrome (ARDS), which may lead to multiple organ damage. These symptoms are associated with a cytokine storm syndrome. The aim of this letter is to note the 5 crucial points that vitamin D could have protective and therapeutic effects against COVID-19. For that reason, COVID-19 infection-induced multiple organ damage might be prevented by vitamin D.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, Tokat Gaziosmanpasa University, 60030, Tokat, Turkey.
| |
Collapse
|
31
|
Mansur JL. Letter: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment Pharmacol Ther 2020; 52:411-412. [PMID: 32402107 PMCID: PMC7272828 DOI: 10.1111/apt.15820] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
LINKED CONTENT This article is linked to Rhodes et al papers. To view these articles, visit https://doi.org/10.1111/apt.15777 and https://doi.org/10.1111/apt.15823 .
Collapse
Affiliation(s)
- Jose L. Mansur
- Center of Endocrinology and Osteoporosis, La PlataUniversidad Nacional de la Plata Facultad de Ciencias MedicasBuenos AiresArgentina
| |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW The renin-angiotensin system (RAS) is a pivotal player in the physiology and pathophysiology of cardiovascular and renal systems. Discovery of angiotensin-converting enzyme 2 (ACE2), capable of cleaving RAS effector peptide angiotensin (Ang) II into biologically active Ang-(1-7), has increased the complexity of our knowledge of the RAS. ACE2 expression is abundant in the kidney and is thought to provide protection against injury. This review emphasizes current experimental and clinical findings that examine ACE2 in the context of kidney injury and its potential therapeutic impact for treatment of kidney disease. RECENT FINDINGS Clinical studies have reported upregulation of ACE2 in urine from diabetic patients, which may be reflective of pathological shedding of renal ACE2 as suggested by mechanistic experiments. Studies in experimental models have investigated the feasibility of pharmacological induction of ACE2 for improvement of renal function, inflammation, and fibrosis. SUMMARY Emerging concepts about the RAS indicate that ACE2 is a critical regulator of angiotensin peptide metabolism and the pathogenesis of renal disease. Human recombinant ACE2 is available and may be a practical clinical approach to enzyme replacement. Elucidating precise roles of ACE2 throughout disease progression will enrich our view of the RAS and help identify novel targets and appropriate strategies for intervention.
Collapse
|
33
|
Editorial over the Many Faces of Vitamin D in Chronic Kidney Disease: from Mineral to Immune-Inflammatory Modulator. Inflammation 2017; 41:365-367. [PMID: 29177788 DOI: 10.1007/s10753-017-0707-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Abstract
PURPOSE OF REVIEW The intrarenal renin-angiotensin-aldosterone system (RAS) is an independent paracrine hormonal system with an increasingly prominent role in hypertension and renal disease. Two enzyme components of this system are angiotensin-converting enzyme (ACE) and more recently discovered ACE2. The purpose of this review is to describe recent discoveries regarding the roles of intrarenal ACE and ACE2 and their interaction. RECENT FINDINGS Renal tubular ACE contributes to salt-sensitive hypertension. Additionally, the relative expression and activity of intrarenal ACE and ACE2 are central to promoting or inhibiting different renal pathologies including renovascular hypertension, diabetic nephropathy, and renal fibrosis. Renal ACE and ACE2 represent two opposing axes within the intrarenal RAS system whose interaction determines the progression of several common disease processes. While this relationship remains complex and incompletely understood, further investigations hold the potential for creating novel approaches to treating hypertension and kidney disease.
Collapse
|
35
|
de Almeida LF. Vitamin D Actions on Cell Differentiation, Proliferation and Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ijcam.2017.06.00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|