1
|
Zou R, Zhou Y, Lu Y, Zhao Y, Zhang N, Liu J, Zhang Y, Fu Y. Preparation, pungency and bioactivity transduction of piperine from black pepper (Piper nigrum L.): A comprehensive review. Food Chem 2024; 456:139980. [PMID: 38850607 DOI: 10.1016/j.foodchem.2024.139980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Piperine, derived from black pepper (Piper nigrum L.), is responsible for the pungent sensation. The diverse bioactivities of piperine underscores its promising potential as a functional food ingredient. This review presents a comprehensive overview of the research progress in extraction, synthesis, pungency transduction mechanism and bioactivities of piperine. Piperine can be extracted through various methods, such as traditional, modern, and innovative extraction techniques. Its synthesis mainly included both chemical and biosynthetic approaches. It exhibits a diverse range of bioactivities, including anticancer, anticonvulsant, antidepressant, anti-inflammatory, antioxidant, immunomodulatory, anti-obesity, neuroprotective, antidiabetic, hepatoprotective, and cardiovascular protective activities. Piperine can bind to TRPV1 receptor to elicit pungent sensation. Overall, the present review can provide a theoretical reference for advancing the potential application of piperine in the field of food science.
Collapse
Affiliation(s)
- Ruixuan Zou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhou
- College of Food Science, Southwest University, Chongqing 400715, China; Westa College, Southwest University, Chongqing, 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Jing Liu
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799, Copenhagen V, Denmark
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China.
| |
Collapse
|
2
|
Wiraswati HL, Ma'ruf IF, Sharifi-Rad J, Calina D. Piperine: an emerging biofactor with anticancer efficacy and therapeutic potential. Biofactors 2024. [PMID: 39467259 DOI: 10.1002/biof.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Anticancer drug discovery needs serious attention to overcome the high mortality rate caused by cancer. There are still many obstacles to treating this disease, such as the high cost of chemotherapeutic drugs, the resulting side effects from the drug, and the occurrence of multidrug resistance. Herbaceous plants are a reservoir of natural compounds that can be anticancer drugs with novel mechanisms of action. Piperine, a bioactive compound derived from Piper species, is gaining attention due to its unique dual role in directly inhibiting tumor growth and enhancing the bioavailability of chemotherapeutic drugs. Unlike conventional treatments, Piperine exhibits a novel mechanism of action by modulating multiple signaling pathways, including apoptosis and autophagy, with low toxicity. Additionally, Piperine acts as a bioenhancer by improving the absorption and effectiveness of other anticancer agents, reducing the required dosage, and minimizing side effects. Therefore, this review aims to visualize a summary of Piperine sources, phytochemistry, chemical structure-anticancer activity relationship, anticancer activities of semi-synthetic derivatives, pharmacokinetic and bioavailability, in vitro and in vivo preclinical studies, mechanism of antitumor action, human clinical trials, toxicity, side effects, and safety of Piperine. References were collected from the Pubmed/MedLine database (https://pubmed.ncbi.nlm.nih.gov/) with the following keywords: "Piperine anticancer," "Piperine derivatives," "Piperine antitumor mechanism" and "Piperine pharmacokinetic and bioavailability," after filter process by inclusion and exclusion criteria, 101 were selected from 444 articles. From 2013 to 2023, there were numerous studies regarding preclinical studies of Piperine of various cell lines, including breast cancer, prostate cancer, lung cancer, melanoma, cervical cancer, gastric cancer, osteosarcoma, colon cancer, hepatocellular carcinoma, ovarian cancer, leukemia, colorectal cancer, and hypopharyngeal carcinoma. In vivo, the anticancer study has also been conducted on some animal models, such as Ehrlich carcinoma-bearing mice, Ehrlich ascites carcinoma cells-bearing Balbc mice, hepatocellular carcinoma-bearing Wistar rat, A375SM cells-bearing mice, A375P cells-bearing mice, SNU-16 cells-bearing BalbC mice, and HGC-27-bearing baby mice. Treatment with this compound leads to cell proliferation inhibition and induction of apoptosis. Piperine has been used for clinical trials of diseases, but no cancer patient report exists. Various semi-synthetic derivatives of Piperine show efficacy as an anticancer drug across multiple cell lines. Piperine shows promise for use in cancer clinical trials, either as a standalone treatment or as a bioenhancer. Its bioenhancer properties may enhance the efficacy of existing chemotherapeutic agents, providing a valuable foundation for developing new anticancer therapies.
Collapse
Affiliation(s)
- Hesti Lina Wiraswati
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Ilma Fauziah Ma'ruf
- Oncology and Stem Cell Working Group, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
3
|
Charoensedtasin K, Kheansaard W, Roytrakul S, Tanyong D. Piperine, a black pepper compound, induces autophagy and cellular senescence mediated by NF-κB and IL-6 in acute leukemia. BMC Complement Med Ther 2024; 24:343. [PMID: 39342176 PMCID: PMC11438257 DOI: 10.1186/s12906-024-04641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
Acute leukemia is characterized by abnormal white blood cell proliferation with rapid onset and severe complications. Natural compounds, which are alternative treatments, are widely used in cancer treatment. Piperine, an alkaloid compound from black pepper, exerts anticancer effects through the cell death signaling pathway. Autophagy and senescence signaling pathways are considered target signaling pathways for cancer treatment. In this study, we investigated the effects of piperine via autophagy and senescence signaling pathways in NB4 and MOLT-4 cells. The MTT assay results demonstrated that piperine significantly decreased the viability of NB4 and MOLT-4 cells. Piperine induced autophagy by increasing LC3, Beclin-1 and ULK1 and decreasing mTOR and NF-κB1 expression in NB4 and MOLT-4 cells. In addition, piperine increased senescence-associated beta-galactosidase fluorescence intensity by increasing p21 and IL-6 expression while decreasing CDK2 expression in NB4 and MOLT-4 cells. In conclusion, our study provides additional information about the induction of autophagy and senescence by piperine in acute leukemia.
Collapse
Affiliation(s)
- Kantorn Charoensedtasin
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon sai 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Wasinee Kheansaard
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon sai 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology for Development Agency, Pathum Thani, 12120, Thailand
| | - Dalina Tanyong
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, 999 Phuttamonthon sai 4 Road, Salaya, Phuttamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
4
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
5
|
Talib WH, Baban MM, Bulbul MF, Al-Zaidaneen E, Allan A, Al-Rousan EW, Ahmad RHY, Alshaeri HK, Alasmari MM, Law D. Natural Products and Altered Metabolism in Cancer: Therapeutic Targets and Mechanisms of Action. Int J Mol Sci 2024; 25:9593. [PMID: 39273552 PMCID: PMC11394730 DOI: 10.3390/ijms25179593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Cancer is characterized by uncontrolled cell proliferation and the dysregulation of numerous biological functions, including metabolism. Because of the potential implications of targeted therapies, the metabolic alterations seen in cancer cells, such as the Warburg effect and disruptions in lipid and amino acid metabolism, have gained attention in cancer research. In this review, we delve into recent research examining the influence of natural products on altered cancer metabolism. Natural products were selected based on their ability to target cancer's altered metabolism. We identified the targets and explored the mechanisms of action of these natural products in influencing cellular energetics. Studies discussed in this review provide a solid ground for researchers to consider natural products in cancer treatment alone and in combination with conventional anticancer therapies.
Collapse
Affiliation(s)
- Wamidh H Talib
- Faculty of Allied Medical Sciences, Applied Science Private University, Amman 11931, Jordan
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| | - Media Mohammad Baban
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Mais Fuad Bulbul
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Esraa Al-Zaidaneen
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Aya Allan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Eiman Wasef Al-Rousan
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Rahaf Hamed Yousef Ahmad
- Department of Clinical Pharmacy and Therapeutics, Applied Science Private University, Amman 11931, Jordan
| | - Heba K Alshaeri
- Department of Pharmacology, Faculty of Medicine, King Abdul-Aziz University, Rabigh 25724, Saudi Arabia
| | - Moudi M Alasmari
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Jeddah 22233, Saudi Arabia
| | - Douglas Law
- Faculty of Health and Life Sciences, Inti International University, Nilai 71800, Negeri Sembilan, Malaysia
| |
Collapse
|
6
|
Andrés CMC, Pérez de la Lastra JM, Bustamante Munguira E, Andrés Juan C, Pérez-Lebeña E. Michael Acceptors as Anti-Cancer Compounds: Coincidence or Causality? Int J Mol Sci 2024; 25:6099. [PMID: 38892287 PMCID: PMC11172677 DOI: 10.3390/ijms25116099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Michael acceptors represent a class of compounds with potential anti-cancer properties. They act by binding to nucleophilic sites in biological molecules, thereby disrupting cancer cell function and inducing cell death. This mode of action, as well as their ability to be modified and targeted, makes them a promising avenue for advancing cancer therapy. We are investigating the molecular mechanisms underlying Michael acceptors and their interactions with cancer cells, in particular their ability to interfere with cellular processes and induce apoptosis. The anti-cancer properties of Michael acceptors are not accidental but are due to their chemical structure and reactivity. The electrophilic nature of these compounds allows them to selectively target nucleophilic residues on disease-associated proteins, resulting in significant therapeutic benefits and minimal toxicity in various diseases. This opens up new perspectives for the development of more effective and precise cancer drugs. Nevertheless, further studies are essential to fully understand the impact of our discoveries and translate them into clinical practice.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Spain
| | | | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain
| | | |
Collapse
|
7
|
Gusson-Zanetoni JP, Cardoso LP, de Sousa SO, de Melo Moreira Silva LL, de Oliveira Martinho J, Henrique T, Tajara EH, Oliani SM, Rodrigues-Lisoni FC. Molecular Aspects of Piperine in Signaling Pathways Associated with Inflammation in Head and Neck Cancer. Int J Mol Sci 2024; 25:5762. [PMID: 38891950 PMCID: PMC11172343 DOI: 10.3390/ijms25115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 06/21/2024] Open
Abstract
Piperine, an active plant alkaloid from black pepper (Piper nigrum), has several pharmacological effects, namely antioxidant, anti-inflammatory and immunomodulatory effects, which involve inhibiting molecular events associated with various stages of cancer development. The aim of this study was to investigate the molecular mechanisms of action of piperine in relation to its potential anticancer effect on head and neck cancer cells. Parameters related to neoplastic potential and cytokine, protein and gene expression were investigated in head and neck cancer cell lines (HEp-2 and SCC-25) treated with piperine. The results of the tests indicated that piperine modified morphology and inhibited viability and the formation of cell colonies. Piperine promoted genotoxicity by triggering apoptosis and cell cycle arrest in the G2/M and S phases. A decrease in cell migration was also observed, and there was decreased expression of MMP2/9 genes. Piperine also reduced the expression of inflammatory molecules (PTGS2 and PTGER4), regulated the secretion of cytokines (IFN-γ and IL-8) and modulated the expression of ERK and p38. These results suggest that piperine exerts anticancer effects on tumor cells by regulating signaling pathways associated with head and neck cancer.
Collapse
Affiliation(s)
- Juliana Prado Gusson-Zanetoni
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Luana Pereira Cardoso
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Stefanie Oliveira de Sousa
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Laura Luciana de Melo Moreira Silva
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Júlia de Oliveira Martinho
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, Brazil; (T.H.); (E.H.T.)
| | - Eloiza Helena Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto (FAMERP), São José do Rio Preto 15090-000, Brazil; (T.H.); (E.H.T.)
| | - Sonia Maria Oliani
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| | - Flávia Cristina Rodrigues-Lisoni
- Department of Biology, Institute of Biosciences, Humanities and Exact Science (IBILCE), São Paulo State University (UNESP), São José do Rio Preto 15054-000, Brazil; (J.P.G.-Z.); (L.P.C.); (S.O.d.S.); (L.L.d.M.M.S.); (J.d.O.M.); (S.M.O.)
| |
Collapse
|
8
|
Rezaei S, Meftah HS, Ebtehajpour Y, Rahimi HR, Chamani J. Investigation on the Effect of Fluorescence Quenching of Calf Thymus DNA by Piperine: Caspase Activation in the Human Breast Cancer Cell Line Studies. DNA Cell Biol 2024; 43:26-38. [PMID: 38079271 DOI: 10.1089/dna.2023.0269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
In this study, we determined the interaction of piperine and calf thymus DNA (ct DNA) in Tris-HCl buffer solution at pH = 6.8 and also evaluated the binding mechanism through the data of multi-spectroscopic techniques along with thermal melting and viscosity measurements. The outcomes of fluorescence quenching confirmed the occurrence of interactions between piperine and ctDNA and pointed out the role of piperine as the quencher. In addition, the KSV values were measured at three different temperatures of 298, 303, and 308 K to be 4.5 × 107 M-1, 5.65 × 107 M-1, and 9.36 × 107 M-1, respectively, which suggested the dominance of dynamic mechanism as the fluorescence quenching of piperine-ctDNA. The thermodynamic parameters revealed the predominance of hydrophobic forces in the interaction of ctDNA with piperine. According to the resonance light scattering data, the formation of a complex between piperine and ctDNA led to the creation of a larger particle. Ethidium bromide (EB) and acridine orange (AO) displacement studies, along with the ionic effects of NaCl and KI assessments, confirmed the interaction of piperine-ctDNA through a groove binding mode. The melting temperature assay of ctDNA upon the addition of piperine concentration indicated the probable groove binding of piperine to ctDNA, which was affirmed by relative viscosity measurement as well. The lack of detecting any alterations in the circular dichroism (CD) spectrum of CD investigation verified as a characteristic sign of groove binding mechanism and also confirmed all the experimental results with regard to the binding of piperine-ctDNA complex. Next to observing a concentration and time-dependent cytotoxicity in MDA-MB-231 cells, the impact of piperine on increasing lipid peroxidation and decreasing the activity of superoxide dismutase was also noticed. Apparently, piperine is capable of inducing caspase-3 activity as well.
Collapse
Affiliation(s)
- Sakineh Rezaei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hoda-Sadat Meftah
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Yasamin Ebtehajpour
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
9
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
10
|
Gilani SJ, Bin-Jumah MN, Fatima F. Development of Statistically Optimized Piperine-Loaded Polymeric Nanoparticles for Breast Cancer: In Vitro Evaluation and Cell Culture Studies. ACS OMEGA 2023; 8:44183-44194. [PMID: 38027324 PMCID: PMC10666216 DOI: 10.1021/acsomega.3c06605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Piperine (PPN) is a natural alkaloid derived from black pepper (Piper nigrum L.) and has garnered substantial attention for its potential in breast cancer therapy due to its diverse pharmacological properties. However, its highly lipophilic characteristics and poor dissolution in biological fluids limit its clinical application. Therefore, to overcome this limitation, we formulate and evaluate PPN-encapsulated polycaprolactone (PCL) nanoparticles (PPN-PCL-NPs). The nanoparticles were prepared by a single-step nanoprecipitation method and further optimized by a formulation design approach. The influence of selected independent variables PCL (X1), poloxamer 188 (P-188; X2), and stirring speed (SS; X3) were investigated on the particle size (PS), polydispersity index (PDI), and % encapsulation efficiency (EE). The selected optimized nanoparticles were further assessed for stability, in vitro release, and in vitro antibreast cancer activity in the MCF-7 cancer cell line. The PS, PDI, zeta potential, and % EE of the optimized PPN-PCL-NPs were observed to be 107.61 ± 5.28 nm, 0.136 ± 0.011, -20.42 ± 1.82 mV, and 79.53 ± 5.22%, respectively. The developed PPN-PCL-NPs were stable under different temperature conditions with insignificant changes in their pharmaceutical attributes. The optimized PPN-PCL-NPs showed a burst release for the first 6 h and later showed sustained release for 48 h. The PPN-PCL-NPs exhibit exceptional cytotoxic effects in MCF-7 breast tumor cells in comparison with the native PPN. Thus, the formulation of PPN-loaded PCL-NPs can be a promising approach for better therapeutic efficacy against breast cancer.
Collapse
Affiliation(s)
- Sadaf Jamal Gilani
- Department
of Basic Health Sciences, Foundation Year, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - May Nasser Bin-Jumah
- Biology
Department, College of Science, Princess
Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Environment
and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
- Saudi
Society for Applied Science, Princess Nourah
Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Farhat Fatima
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
11
|
Bershawy R, Hafez HS, El-Sakka SS, Hammad A, Soliman MH. The anticancer and anti-inflammatory activity screening of pyridazinone-based analogs against human epidermoid skin cancer with detailed mechanistic analyses. J Biomol Struct Dyn 2023:1-15. [PMID: 37916672 DOI: 10.1080/07391102.2023.2273985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/07/2023] [Indexed: 11/03/2023]
Abstract
3(2H)-Pyridazinone derivatives based on 4-biphenyl, naphtha-2-yl, pyridine, or piperidine moiety were synthesized and characterized using I-R and 1HNMR spectra. The activity and cytotoxicity of some synthesized compounds on the skin epidermoid cancer cell proliferation and progression were investigated. The pyridazine isomer with pyridine revealed a significant decrease in the level of nitric oxide p < 0.01 than the activity of caffeine phenecyl ester. The activity of the three active isomers recorded significant activity for their total antioxidant content that triggers their ability for the scavenging the oxygen free radicals significantly p < 0.01. Moreover, revealing the pharmaceutical activity of the isomers as anti-inflammatory agents, IL-6, IL10, and IL12 have been decreased by variable significant values. Additionally, the active isomers revealed variable actions on the skin cancer cell to induce apoptosis using annexin V-FITC/PI. Pyridine was the highest isomer to induce late apoptosis and necrosis for the skin cancer cells against the use of cisplatin. Importantly, Molecular modeling experiments including docking and dynamic simulations were done for the most active 3 analogs to explore the ligand binding and stability leading to exploring the structure-activity relationship with biological target PARP1 which showed a good binding propensity to pyridazine binding site which supports the in vitro data. In conclusion, the pyridazine moieties with piperdine, naphthayl, and pyridine have pharmacological activities against skin cancer epidermoid by triggering action in inhibition of the proliferation and progression with an up-regulated apoptotic mechanism that evades the emergence of cisplatin resistance among different cancer cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rana Bershawy
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Hani S Hafez
- Department of Zoology, Faculty of Science, Suez University, Suez, Egypt
| | - Sahar S El-Sakka
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| | - Ali Hammad
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohammed H Soliman
- Department of Chemistry, Faculty of Science, Suez University, Suez, Egypt
| |
Collapse
|
12
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM, Jung SH, Jung JY. Piperine Induces Apoptosis and Autophagy in HSC-3 Human Oral Cancer Cells by Regulating PI3K Signaling Pathway. Int J Mol Sci 2023; 24:13949. [PMID: 37762259 PMCID: PMC10530752 DOI: 10.3390/ijms241813949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, therapies for treating oral cancer have various side effects; therefore, research on treatment methods employing natural substances is being conducted. This study aimed to investigate piperine-induced apoptosis and autophagy in HSC-3 human oral cancer cells and their effects on tumor growth in vivo. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay demonstrated that piperine reduced the viability of HSC-3 cells and 4',6-diamidino-2-phenylindole staining, annexin-V/propidium iodide staining, and analysis of apoptosis-related protein expression confirmed that piperine induces apoptosis in HSC-3 cells. Additionally, piperine-induced autophagy was confirmed by the observation of increased acidic vesicular organelles and autophagy marker proteins, demonstrating that autophagy in HSC-3 cells induces apoptosis. Mechanistically, piperine induced apoptosis and autophagy by inhibiting the phosphatidylinositol-3-kinase (PI3K)/protein kinase B/mammalian target of rapamycin pathway in HSC-3 cells. We also confirmed that piperine inhibits oral cancer tumor growth in vivo via antitumor effects related to apoptosis and PI3K signaling pathway inhibition. Therefore, we suggest that piperine can be considered a natural anticancer agent for human oral cancer.
Collapse
Affiliation(s)
- Eun-Ji Han
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Eun-Young Choi
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Su-Ji Jeon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Sang-Woo Lee
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Jun-Mo Moon
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Soo-Hyun Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
| | - Ji-Youn Jung
- Laboratory Animal Science, Department of Companion, Kongju National University, Yesan-gun 32439, Republic of Korea; (E.-J.H.); (E.-Y.C.); (S.-J.J.); (S.-W.L.); (J.-M.M.); (S.-H.J.)
- Research Institute for Natural Products, Kongju National University, Yesan-gun 32439, Republic of Korea
| |
Collapse
|
13
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
14
|
Ramos INDF, da Silva MF, Lopes JMS, Cruz JN, Alves FS, do Rego JDAR, Costa MLD, Assumpção PPD, Barros Brasil DDS, Khayat AS. Extraction, Characterization, and Evaluation of the Cytotoxic Activity of Piperine in Its Isolated form and in Combination with Chemotherapeutics against Gastric Cancer. Molecules 2023; 28:5587. [PMID: 37513459 PMCID: PMC10385350 DOI: 10.3390/molecules28145587] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Gastric cancer is one of the most frequent types of neoplasms worldwide, usually presenting as aggressive and difficult-to-manage tumors. The search for new structures with anticancer potential encompasses a vast research field in which natural products arise as promising alternatives. In this scenario, piperine, an alkaloid of the Piper species, has received attention due to its biological activity, including anticancer attributes. The present work proposes three heating-independent, reliable, low-cost, and selective methods for obtaining piperine from Piper nigrum L. (Black pepper). Electronic (SEM) and optical microscopies, X-ray diffraction, nuclear magnetic resonance spectroscopies (13C and 1H NMR), and optical spectroscopies (UV-Vis, photoluminescence, and FTIR) confirm the obtention of piperine crystals. The MTT assay reveals that the piperine samples exhibit good cytotoxic activity against primary and metastasis models of gastric cancer cell lines from the Brazilian Amazon. The samples showed selective cytotoxicity on the evaluated models, revealing higher effectiveness in cells bearing a higher degree of aggressiveness. Moreover, the investigated piperine crystals demonstrated the ability to act as a good cytotoxicity enhancer when combined with traditional chemotherapeutics (5-FU and GEM), allowing the drugs to achieve the same cytotoxic effect in cells employing lower concentrations. These results establish piperine as a promising molecule for therapy investigations in aggressive gastric cancer, both in its isolated form or as a bioenhancer.
Collapse
Affiliation(s)
| | | | | | - Jordy Neves Cruz
- Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Fabrine Silva Alves
- Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
| | | | | | | | - Davi do Socorro Barros Brasil
- Institute of Technology, Federal University of Pará, Belém 66075-110, PA, Brazil
- Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, PA, Brazil
- Graduate Program in Science and Environment, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - André Salim Khayat
- Oncology Research Center, Federal University of Pará, Belém 66075-110, PA, Brazil
- Institute of Biological Science, Federal University of Pará, Belém 66075-110, PA, Brazil
| |
Collapse
|
15
|
Kazi M, Khan MF, Nasr FA, Ahmed MZ, Alqahtani AS, Ali MM, Aldughaim MS. Development of Curcumin and Piperine-Loaded Bio-Active Self-Nanoemulsifying Drugs and Investigation of Their Bioactivity in Zebrafish Embryos and Human Hematological Cancer Cell Lines. Int J Nanomedicine 2023; 18:1793-1808. [PMID: 37051315 PMCID: PMC10084868 DOI: 10.2147/ijn.s400330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/25/2023] [Indexed: 04/08/2023] Open
Abstract
Purpose Curcumin (CUR) and piperine (PP) are bioactive compounds with prominent pharmacological activities that have been investigated for the treatment of various diseases. The aim of the present study is to develop Bio-SNEDDS for CUR and PP as a combined delivery system for cancer therapy. Methods CUR and PP loaded Bio-SNEDDSs with varying compositions of bioactive lipid oils, surfactants, and cosolvents were prepared at room temperature. Bio-SNEDDSs were characterized using a Zetasizer Nano particle size analyzer and further examined by transmission electron microscopy (TEM) for morphology. The in vivo toxicity of the preparations of Bio-SNEDDS was investigated in wild-type zebrafish embryos and cytotoxicity in THP-1 (human leukemia monocytic cells), Jurkat (human T lymphocyte cells) and HUVEC (non-cancerous normal) cells. Results Bio-SNEDDSs were successfully developed with black seed oil, Imwitor 988, Transcutol P and Cremophor RH40 at a ratio of 20/20/10/50 (%w/w). The droplet size, polydispersity index and zeta potential of the optimized Bio-SNEDDS were found to be 42.13 nm, 0.59, and -19.30 mV, respectively. Bio-SNEDDS showed a spherical structure evident by TEM analysis. The results showed that Bio-SNEDDS did not induce toxicity in zebrafish embryos at concentrations between 0.40 and 30.00 μg/mL. In TG (fli1: EGFP) embryos treated with Bio-SNEDDS, there was no change in the blood vessel structure. The O-dianisidine staining of Bio-SNEDDS treated embryos at 48 h post-fertilization also showed a significant reduction in the number of blood cells compared to mock (DMSO 0.1% V/V) treated embryos. Bio-SNEDDS induced significant levels of cytotoxicity in the hematological cell lines THP-1 and Jurkat, while low toxicity in normal HUVEC cell lines was observed with IC50 values of 18.63±0.23 μg/mL, 26.03 ± 1.5 μg/mL and 17.52 ± 0.22 μg/mL, respectively. Conclusion Bio-SNEDDS exhibited enhanced anticancer activity and could thus be an important new pharmaceutical formulation to treat leukemia.
Collapse
Affiliation(s)
- Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
- Correspondence: Mohsin Kazi; Mohammed S Aldughaim, Email ;
| | - Muhammad Farooq Khan
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Kingdom of Saudi Arabia
| | - Meser M Ali
- Department of Neurosurgery, Henry Ford Health, Detroit, MI, 48202, USA
| | - Mohammed S Aldughaim
- Research Center, King Fahad Medical City, Riyadh Second Health Cluster, Riyadh, 11525, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Karimi H, Rabbani S, Babadi D, Dadashzadeh S, Haeri A. Piperine Liposome-Embedded in Hyaluronan Hydrogel as an Effective Platform for Prevention of Postoperative Peritoneal Adhesion. J Microencapsul 2023; 40:279-301. [PMID: 36948888 DOI: 10.1080/02652048.2023.2194415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
This study aimed to prepare piperine (PIP) loaded liposomes in hyaluronic acid (HA) hydrogel to provide a hybrid superstructure for postoperative adhesion prevention. Liposomes were prepared using thin-film hydration method. The optimised formulation was characterised by size, SEM, TEM, FTIR, encapsulation efficiency (EE)% (w/w), and release pattern. Liposome-in-hydrogel formulation was investigated by rheology, SEM, and release studies. The efficacy was evaluated in a rat peritoneal abrasion model. EE% (w/w) increased with increasing lipid concentration from 10 to 30; however, a higher percentage of Chol reduced EE% (w/w). The optimised liposome (EE: 68.10 ± 4.18% (w/w), average diameter: 513 ± 14.67 nm, PDI: 0.15 ± 0.04) was used for hydrogel embedding. No sign of adhesion in 5/8 rats and no collagen deposition confirmed the in vivo effectiveness of the optimised formulation. Overall, providing a sustained delivery of PIP, the developed liposome-in-hydrogel formulation can be a promising carrier to prevent postoperative adhesion.
Collapse
Affiliation(s)
- Hanieh Karimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Delaram Babadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Piperine Reduces Neoplastic Progression in Cervical Cancer Cells by Downregulating the Cyclooxygenase 2 Pathway. Pharmaceuticals (Basel) 2023; 16:ph16010103. [PMID: 36678600 PMCID: PMC9866887 DOI: 10.3390/ph16010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical cancer is the fourth-most common type of cancer in the world that causes death in women. It is mainly caused by persistent infection by human papillomavirus (HPV) that triggers a chronic inflammatory process. Therefore, the use of anti-inflammatory drugs is a potential treatment option. The effects of piperine, an amino alkaloid derived from Piper nigrum, are poorly understood in cervical cancer inflammation, making it a target of research. This work aimed to investigate the antitumor effect of piperine on cervical cancer and to determine whether this effect is modulated by the cyclooxygenase 2 (PTGS2) pathway using in vitro model of cervical cancer (HeLa, SiHa, CaSki), and non-tumoral (HaCaT) cell lines. The results showed that piperine reduces in vitro parameters associated with neoplastic evolution such as proliferation, viability and migration by cell cycle arrest in the G1/G0 and G2/M phases, with subsequent induction of apoptosis. This action was modulated by downregulation of cyclooxygenase 2 (PTGS2) pathway, which in turn regulates the secretion of cytokines and the expression of mitogen-activated protein kinases (MAPKs), metalloproteinases (MMPs), and their antagonists (TIMPs). These findings indicate the phytotherapeutic potential of piperine as complementary treatment in cervical cancer.
Collapse
|
18
|
Shi F, Li R, Wang W, Yu X, Zhu F, Huang Y, Wang J, Zhang Z. Carboxymethyl starch as a solid dispersion carrier to enhance the dissolution and bioavailability of piperine and 18 β-glycyrrhetinic acid. Drug Dev Ind Pharm 2023; 49:30-41. [PMID: 36803327 DOI: 10.1080/03639045.2023.2182120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
OBJECTIVE To investigate the applicability of carboxymethyl starch (CMS) as a carrier to prepare solid dispersions (SDs) of piperine (PIP) and 18β-glycyrrhetinic acid (β-GA) (PIP-CMS and β-GA-CMS SDs) and to explore the influence of drug properties on carrier selection. SIGNIFICANCE The low oral bioavailability of natural therapeutic molecules, including PIP and β-GA, severely restricts their pharmaceutical applications. Moreover, CMS, a natural polymer, is rarely reported as a carrier for SDs. METHODS PIP-CMS and β-GA-CMS SDs were prepared using the solvent evaporation method. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) were used for formulation characterization. Additionally, drug release characteristics were investigated. RESULTS In vitro dissolution studies showed that the dissolutions of PIP-CMS and β-GA-CMS SDs were 1.90-2.04 and 1.97-2.22 times higher than pure PIP and β-GA, respectively, at a drug:polymer ratio of 1:6. DSC, XRPD, FT-IR, and SEM analyses confirmed the formation of SDs in their amorphous states. Significant improvements in Cmax and AUC0-24 h of PIP-CMS and β-GA-CMS SDs (17.51 ± 8.15 μg/mL and 210.28 ± 117.13 μg·h/mL, respectively) and (32.17 ± 9.45 μg/mL and 165.36 ± 38.75 μg·h/mL, respectively) were observed in the pharmacokinetic study. Compared with weakly acidic β-GA, loading weakly basic PIP seemed to have a profound effect on stability through intermolecular forces. CONCLUSIONS Our findings showed CMS could be a promising carrier for SDs, and loading weakly basic drug may be more suitable, especially in binary SDs system.
Collapse
Affiliation(s)
- Fanli Shi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ruilong Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Wenjing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Xiangyu Yu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Fenxia Zhu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Yiping Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Jing Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| | - Zhenhai Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Key Laboratory of Oral Drug Delivery System of Chinese Meteria Medica of State Administration of Traditional Chinese Medicine, Jiangsu Branch of China Academy of Chinese Medical Science, Nanjing, China
| |
Collapse
|
19
|
Low-intensity focused ultrasound-assisted dox-piperine amplified therapy on anaplastic thyroid carcinoma by hybird tumor-targeting nanoparticles. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Shah D, Ajazuddin, Bhattacharya S. Role of natural P-gp inhibitor in the effective delivery for chemotherapeutic agents. J Cancer Res Clin Oncol 2023; 149:367-391. [PMID: 36269390 DOI: 10.1007/s00432-022-04387-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 09/27/2022] [Indexed: 02/03/2023]
Abstract
Multi-drug resistance has shown to be one of the leading threats faced currently in many chemotherapeutic agents. Permeability glycoprotein (P-gp) is an efflux transporter in membrane, an integral part of ATP-binding cassette (ABC) transporters widely distributed in the body for cellular uptake. It is present enormously in cancerous cells and is in charge of generating transporter mediated resistance to treatments of tumorous cells in addition to blocking the entry of chemotherapeutic drugs into the cell. Natural P-gp inhibitors are derived from natural plant sources possessing basic structures like alkaloids, flavonoids, phenolics, terpenoids, saponins, sapogenins, sterols, coumarins and miscellaneous structures acting on P-gp substrate for inhibition of multi-drug resistance via inhibiting the efflux pump. They do not depict their action on the healthy cells and thus it is proven to be more effective and less toxic than synthetic P-gp inhibitor leading to enhancement in bioavailability of chemotherapeutic drugs. The significant objective of the present review is surfing through the impact of natural P-gp inhibitors having basic structures derived from the plant sources and how it inhibits the resistance of chemotherapeutic drugs together with how well it delivers chemotherapy medicines.
Collapse
Affiliation(s)
- Disha Shah
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences & Research, Khoka-Kurud Road, Bhilai, Chhattisgarh, 490024, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, 425405, India.
| |
Collapse
|
21
|
Quirós-Fallas MI, Wilhelm-Romero K, Quesada-Mora S, Azofeifa-Cordero G, Vargas-Huertas LF, Alvarado-Corella D, Mora-Román JJ, Vega-Baudrit JR, Navarro-Hoyos M, Araya-Sibaja AM. Curcumin Hybrid Lipid Polymeric Nanoparticles: Antioxidant Activity, Immune Cellular Response, and Cytotoxicity Evaluation. Biomedicines 2022; 10:2431. [PMID: 36289694 PMCID: PMC9599193 DOI: 10.3390/biomedicines10102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Poor solubility and short biological half-life present a challenge that needs to be overcome in order to improve the recognized bioactivities of curcumin (CUR), the main phenolic compounds derived from the roots of Curcuma longa. However, drug delivery systems have proven to be an excellent strategy to improve and obtain greater bioavailability. Our previous studies on curcuminoid hybrid nanoparticles have shown promising results by significantly increasing the solubility of desmethoxycurcumin (DMC) and bisdemethoxycurcumin (BDM). In this contribution, we performed a detailed characterization of a CUR as well as in vitro and in vivo studies. The developed method produced CUR loaded nanoparticles with an average size of 49.46 ± 0.80. Moreover, the FT-IR analysis confirmed the encapsulation, and TEM images showed their spherical shape. The NP achieved an encapsulation efficiency greater than 99%. Further, the release studies found that the NPs obtained a significantly higher release than the pure compounds in water. In vivo delayed-type hypersensitivity (DTH) studies showed promising results by enhancing the immune activity response of CUR in NP compared to bulk CUR. Furthermore, we report a significant increase in antioxidant activity for CUR-NP in aqueous solution compared to free CUR. Finally, an important in vitro cytotoxic effect on gastric AGS and colon SW620 adenocarcinoma cell lines was found for CUR-NP while empty carrier nanoparticles are observed to exhibit low cytotoxicity, indicating the potential of these CUR-PLU NPs for further studies to assess their phytotherapeutic applications.
Collapse
Affiliation(s)
- María Isabel Quirós-Fallas
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | - Krissia Wilhelm-Romero
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica
| | - Silvia Quesada-Mora
- Departmento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | - Gabriela Azofeifa-Cordero
- Departmento de Bioquímica, Escuela de Medicina, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | - Luis Felipe Vargas-Huertas
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | - Diego Alvarado-Corella
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | - Juan José Mora-Román
- Facultad de Farmacia, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | - José Roberto Vega-Baudrit
- Laboratorio Nacional de Nanotecnología LANOTEC-CeNAT-CONARE, Pavas, San José 1174-1200, Costa Rica
- Laboratorio de Investigación y Tecnología de Polímeros POLIUNA, Escuela de Química, Universidad Nacional de Costa Rica, Heredia 86-3000, Costa Rica
| | - Mirtha Navarro-Hoyos
- Laboratorio BIODESS, Escuela de Química, Universidad de Costa Rica, San Pedro de Montes de Oca, San José 2060, Costa Rica
| | | |
Collapse
|
22
|
Mm Shehata E, A Gowayed M, El-Ganainy SO, Sheta E, Sr Elnaggar Y, Abdallah OY. Pectin coated Nanostructured Lipid Carriers for Targeted Piperine Delivery to Hepatocellular Carcinoma. Int J Pharm 2022; 619:121712. [PMID: 35367582 DOI: 10.1016/j.ijpharm.2022.121712] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
Piperine (PIP) is a herbal drug with well-known anticancer activity against different types of cancer including hepatocellular carcinoma. However, low aqueous solubility and extensive first-pass metabolism limit its clinical use. In this study, positively charged PIP-loaded nanostructured lipid carriers (PIP-NLCs) were prepared via melt-emulsification and ultra-sonication method followed by pectin coating to get novel pectin-coated NLCs (PIP-P-NLCs) targeting hepatocellular carcinoma. Complete in vitro characterization was performed. In addition, cytotoxicity and cellular uptake of nanosystems in HepG2 cells were evaluated. Finally, in vivo anticancer activity was tested in the diethylnitrosamine-induced hepatocellular carcinoma mice model. Successful pectin coating was confirmed by an increased particle size of PIP-NLCs from 150.28±2.51 nm to 205.24±5.13 nm and revered Zeta potential from 33.34±3.52 mV to -27.63±2.05 mV. Nanosystems had high entrapment efficiency, good stability, spherical shape, and sustained drug release over 24 hours. Targeted P-NLCs enhanced the cytotoxicity and cellular uptake compared to untargeted NLCs. Furthermore, PIP-P-NLCs improved in vivo anticancer effect of PIP as proved by histological examination of liver tissues, suppression of liver enzymes and oxidative stress environment in the liver, and alteration of cell cycle regulators. To conclude, PIP-P-NLCs can act as a promising approach for targeted delivery of PIP to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Eman Mm Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Yosra Sr Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Head of International Publication and Nanotechnology Consultation Center INCC, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
23
|
Mitra S, Anand U, Jha NK, Shekhawat MS, Saha SC, Nongdam P, Rengasamy KRR, Proćków J, Dey A. Anticancer Applications and Pharmacological Properties of Piperidine and Piperine: A Comprehensive Review on Molecular Mechanisms and Therapeutic Perspectives. Front Pharmacol 2022; 12:772418. [PMID: 35069196 PMCID: PMC8776707 DOI: 10.3389/fphar.2021.772418] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.
Collapse
Affiliation(s)
- Sicon Mitra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Mahipal S Shekhawat
- Department of Plant Biology and Biotechnology, Kanchi Mamunivar Government Institute for Postgraduate Studies and Research, Lawspet, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip, India
| | | | - Kannan R R Rengasamy
- Green Biotechnologies Research Centre of Excellence, University of Limpopo, Sovenga, South Africa
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Abhijit Dey
- Ethnopharmacology and Natural Product Research Laboratory, Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
24
|
Yadav SS, Singh MK, Hussain S, Dwivedi P, Khattri S, Singh K. Therapeutic spectrum of piperine for clinical practice: a scoping review. Crit Rev Food Sci Nutr 2022; 63:5813-5840. [PMID: 34996326 DOI: 10.1080/10408398.2021.2024792] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Translation of traditional knowledge of herbs into a viable product for clinical use is still an uphill task. Piperine, a pungent alkaloid molecule derived from Piper nigrum and Piper longum possesses diverse pharmacological effects. Traditionally, pepper is used for arthritis, bronchitis, gastritis, diarrhea, snake bite, menstrual pain, fever, and bacterial infections, etc. The anti-inflammatory, antioxidant and immunomodulatory actions of piperine are the possible mechanisms behind its therapeutic potential. Various in-silico and experimental studies have shown piperine as a possible promising molecule in coronavirus disease (COVID-19), ebola, and dengue due to its immunomodulatory and antiviral activities. The other important clinical applications of piperine are due to its bio enhancing effect on drugs, by modulating, absorption in the gastrointestinal tract, altering activities of transporters like p-glycoprotein substrates, and modulating drug metabolism by altering the expression of cytochrome P450 or UDP-glucuronosyltransferase enzymes. Piperine attracted clinicians in treating patients with arthritis, metabolic syndrome, diabetes, skin infections, gastric and liver disorders. This review focused on systematic, evidence-based insight into the use of piperine in clinical settings and mechanistic details behind its therapeutic actions. Also, highlights a number of clinical trials of piperine at various stages exploring its clinical application in cancer, neurological, respiratory, and viral disease, etc.
Collapse
|
25
|
Synthesis, characterization, and in-vitro evaluation of piperine-loaded silica/hydroxyapatite mesoporous nanoparticles. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Quijia CR, Chorilli M. Piperine for treating breast cancer: A review of molecular mechanisms, combination with anticancer drugs, and nanosystems. Phytother Res 2021; 36:147-163. [PMID: 34559416 DOI: 10.1002/ptr.7291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/30/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Piperine (PIP) is an alkaloid found primarily in Piper longum, and this natural compound has been shown to exert effects on proliferation and survival against various types of cancer. In particular, PIP has potent inhibitory effects on breast cancer (BC), the most prevalent type of cancer in women worldwide. PIP targets numerous signaling pathways associated with the therapy of BC cells through the following mechanisms: (a) induction of arrest of the cell cycle and apoptosis; (b) alteration of the signaling protein expression; (c) reduction in transcription factors; and (d) inhibition of tumor growth. BC cells have the ability to resist conventional drugs, so one of the strategies is the combination of PIP with other phytochemicals such as paclitaxel, thymoquinone, hesperidin, bee venom, tamoxifen, mitoxantrone, piperlongumin, and curcumin. Nanotechnology-based drug encapsulation systems are currently used to enhance the release of PIP. This includes polymer nanoparticles, carbon nanotubes, and liposomes. In the present review, the chemistry and bioavailability of PIP, its molecular targets in BC, and nanotechnological strategies are discussed. Future research directions are also discussed to further understand this promising natural product.
Collapse
Affiliation(s)
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
27
|
Peres RB, Fiuza LFDA, da Silva PB, Batista MM, Camillo FDC, Marques AM, de C. Brito L, Figueiredo MR, Soeiro MDNC. In Vitro Phenotypic Activity and In Silico Analysis of Natural Products from Brazilian Biodiversity on Trypanosoma cruzi. Molecules 2021; 26:5676. [PMID: 34577145 PMCID: PMC8472459 DOI: 10.3390/molecules26185676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Chagas disease (CD) affects more than 6 million people worldwide. The available treatment is far from ideal, creating a demand for new alternative therapies. Botanical diversity provides a wide range of novel potential therapeutic scaffolds. Presently, our aim was to evaluate the mammalian host toxicity and anti-Trypanosoma cruzi activity of botanic natural products including extracts, fractions and purified compounds obtained from Brazilian flora. In this study, 36 samples of extracts and fractions and eight pure compounds obtained from seven plant species were evaluated. The fraction dichloromethane from Aureliana fasciculata var. fasciculata (AFfPD) and the crude extract of Piper tectoniifolium (PTFrE) showed promising trypanosomicidal activity. AFfPD and PTFrE presented EC50 values 10.7 ± 2.8 μg/mL and 12.85 ± 1.52 μg/mL against intracellular forms (Tulahuen strain), respectively. Additionally, both were active upon bloodstream trypomastigotes (Y strain), exhibiting EC50 2.2 ± 1.0 μg/mL and 38.8 ± 2.1 μg/mL for AFfPD and PTFrE, respectively. Importantly, AFfPD is about five-fold more potent than Benznidazole (Bz), the reference drug for CD, also reaching lower EC90 value (7.92 ± 2.2 μg/mL) as compared to Bz (23.3 ± 0.6 μg/mL). Besides, anti-parasitic effect of eight purified botanic substances was also investigated. Aurelianolide A and B (compounds 1 and 2) from A. fasciculata and compound 8 from P. tuberculatum displayed the best trypanosomicidal effect. Compounds 1, 2 and 8 showed EC50 of 4.6 ± 1.3 μM, 1.6 ± 0.4 μM and 8.1 ± 0.9 μM, respectively against intracellular forms. In addition, in silico analysis of these three biomolecules was performed to predict parameters of absorption, distribution, metabolism and excretion. The studied compounds presented similar ADMET profile as Bz, without presenting mutagenicity and hepatotoxicity aspects as predicted for Bz. Our findings indicate that these natural products have promising anti-T. cruzi effect and may represent new scaffolds for future lead optimization.
Collapse
Affiliation(s)
- Raiza B. Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Ludmila F. de A. Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Patrícia B. da Silva
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Marcos M. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| | - Flávia da C. Camillo
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - André M. Marques
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - Lavínia de C. Brito
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - Maria R. Figueiredo
- Laboratório de Tecnologia para Biodiversidade em Saúde/LDFito, Instituto de Tecnologia em Fármacos (Farmanguinhos), Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (F.d.C.C.); (A.M.M.); (L.d.C.B.); (M.R.F.)
| | - Maria de N. C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Avenida Brasil 4365, Manguinhos, Rio de Janeiro 210360-040, Brazil; (R.B.P.); (L.F.d.A.F.); (P.B.d.S.); (M.M.B.)
| |
Collapse
|
28
|
Shao YM, Wu Y. Inhibitory effects of piperine on proliferation, migration, and invasion of human colon cancer SW480 cells. Shijie Huaren Xiaohua Zazhi 2021; 29:639-646. [DOI: 10.11569/wcjd.v29.i12.639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Many recent reports have shown that piperine has anticancer activity, but the specific roles and biological mechanisms of piperine in colon cancer are not well studied.
AIM To investigate the effects and potential mechanisms of piperine on the proliferation, migration, and invasion of human colon cancer SW480 cells.
METHODS SW480 cells were treated with 0 (blank control), 5, 10, and 20 μg/mL piperine for 24 h, respectively. Cell viability was detected by cell counting kit-8 (CCK-8) assay. Proliferation was detected by 5-ethynyl-2'-deoxyuridine (EDU) staining. Cell migration and invasion were detected by Transwell assay. The protein expression levels of microtubule-associated light chain 3 (LC3), p53, B cell lymphoma/lewkmia-2 (Bcl-2), Bcl-2 associated X protein (Bax), and cleaved cysteine aspartate proteinase-3 (Cleaved caspase 3) were detected by Western blotting.
RESULTS Piperine inhibited cell viability, proliferation, migration, and invasion in a concentration-dependent manner. Western blot analysis showed that piperine increased the expression of p53, Bax, and Cleaved caspase 3 but decreased the expression of Bcl-2 in SW480 cells compared with control cells.
CONCLUSION Piperine can inhibit the proliferation, migration, and invasion of SW480 cells, and the mechanism may be related to the up-regulation of p53 signaling pathway and the induction of autophagic cell death.
Collapse
Affiliation(s)
- Yi-Min Shao
- Department of Pharmacy, Tonglu Traditional Chinese Medicine Hospital, Hangzhou 311500, Zhejiang Province, China
| | - Yong Wu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 31006, Zhejiang Province, China
| |
Collapse
|
29
|
Jeong S, Jung S, Park GS, Shin J, Oh JW. Piperine synergistically enhances the effect of temozolomide against temozolomide-resistant human glioma cell lines. Bioengineered 2021; 11:791-800. [PMID: 32693671 PMCID: PMC8291786 DOI: 10.1080/21655979.2020.1794100] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Temozolomide (TMZ) is an alkylating chemotherapy agent used in the clinical treatment of glioblastoma multiforme (GBM) patients. Piperine (PIP) is a naturally occurring pungent nitrogenous substance present in the fruits of peppers. We investigated the anti-cancer efficacies of PIP alone and in combination with TMZ in GBM cellsusingparameters such as cell proliferation, cellular apoptosis,caspase-8/-9/-3 activities, cell cycle kinetics, wound-healing ability, and loss of mitochondrial membrane potential (MMP). Treatment with PIP and alow concentration of PIP-TMZ, inhibited cell growth, similar to TMZ.PIP-TMZ promoted apoptosis by activation of caspase-8/-9/-3, MMP loss, and inhibition of in vitro wound-healing motility. Reverse transcription polymerase chain reaction analysis showed significant inhibition of Cyclin-dependent kinases (CDK)4/6−cyclin D and CDK2−cyclin-E expression upon treatment with a low concentration PIP-TMZ, suggesting an S to G1 arrest. Our findings provide insight into the apoptotic potential of the combination of a low concentration of PIP-TMZ, though further in vivo study will be needed for its validation.
Collapse
Affiliation(s)
- Somi Jeong
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| | - Seunghwa Jung
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| | - Gyun-Seok Park
- Department of Bio-resources and Food Science, Konkuk University , Seoul, Korea
| | - Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University , Seoul, Korea
| |
Collapse
|
30
|
Imam SS, Alshehri S, Altamimi MA, Hussain A, Qamar W, Gilani SJ, Zafar A, Alruwaili NK, Alanazi S, Almutairy BK. Formulation of Piperine-Chitosan-Coated Liposomes: Characterization and In Vitro Cytotoxic Evaluation. Molecules 2021; 26:molecules26113281. [PMID: 34072306 PMCID: PMC8198173 DOI: 10.3390/molecules26113281] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 01/23/2023] Open
Abstract
The present research work is designed to prepare and evaluate piperine liposomes and piperine–chitosan-coated liposomes for oral delivery. Piperine (PPN) is a water-insoluble bioactive compound used for different diseases. The prepared formulations were evaluated for physicochemical study, mucoadhesive study, permeation study and in vitro cytotoxic study using the MCF7 breast cancer cell line. Piperine-loaded liposomes (PLF) were prepared by the thin-film evaporation method. The selected liposomes were coated with chitosan (PLFC) by electrostatic deposition to enhance the mucoadhesive property and in vitro therapeutic efficacy. Based on the findings of the study, the prepared PPN liposomes (PLF3) and chitosan coated PPN liposomes (PLF3C1) showed a nanometric size range of 165.7 ± 7.4 to 243.4 ± 7.5, a narrow polydispersity index (>0.3) and zeta potential (−7.1 to 29.8 mV). The average encapsulation efficiency was found to be between 60 and 80% for all prepared formulations. The drug release and permeation study profile showed biphasic release behavior and enhanced PPN permeation. The in vitro antioxidant study results showed a comparable antioxidant activity with pure PPN. The anticancer study depicted that the cell viability assay of tested PLF3C2 has significantly (p < 0.001)) reduced the IC50 when compared with pure PPN. The study revealed that oral chitosan-coated liposomes are a promising delivery system for the PPN and can increase the therapeutic efficacy against the breast cancer cell line.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
- Correspondence:
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Wajhul Qamar
- Central Laboratory, Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sadaf Jamal Gilani
- Department of Basic Health Sciences, Preparatory Year, Princess Nourahbint Adbulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf Region, Sakaka 72341, Saudi Arabia; (A.Z.); (N.K.A.)
| | - Nabil K. Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Aljouf Region, Sakaka 72341, Saudi Arabia; (A.Z.); (N.K.A.)
| | - Saleh Alanazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.I.); (M.A.A.); (A.H.); (S.A.)
| | - Bjad K. Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia;
| |
Collapse
|
31
|
Zeleznik OA, Balasubramanian R, Zhao Y, Frueh L, Jeanfavre S, Avila-Pacheco J, Clish CB, Tworoger SS, Eliassen AH. Circulating amino acids and amino acid-related metabolites and risk of breast cancer among predominantly premenopausal women. NPJ Breast Cancer 2021; 7:54. [PMID: 34006878 PMCID: PMC8131633 DOI: 10.1038/s41523-021-00262-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Known modifiable risk factors account for a small fraction of premenopausal breast cancers. We investigated associations between pre-diagnostic circulating amino acid and amino acid-related metabolites (N = 207) and risk of breast cancer among predominantly premenopausal women of the Nurses' Health Study II using conditional logistic regression (1057 cases, 1057 controls) and multivariable analyses evaluating all metabolites jointly. Eleven metabolites were associated with breast cancer risk (q-value < 0.2). Seven metabolites remained associated after adjustment for established risk factors (p-value < 0.05) and were selected by at least one multivariable modeling approach: higher levels of 2-aminohippuric acid, kynurenic acid, piperine (all three with q-value < 0.2), DMGV and phenylacetylglutamine were associated with lower breast cancer risk (e.g., piperine: ORadjusted (95%CI) = 0.84 (0.77-0.92)) while higher levels of creatine and C40:7 phosphatidylethanolamine (PE) plasmalogen were associated with increased breast cancer risk (e.g., C40:7 PE plasmalogen: ORadjusted (95%CI) = 1.11 (1.01-1.22)). Five amino acids and amino acid-related metabolites (2-aminohippuric acid, DMGV, kynurenic acid, phenylacetylglutamine, and piperine) were inversely associated, while one amino acid and a phospholipid (creatine and C40:7 PE plasmalogen) were positively associated with breast cancer risk among predominately premenopausal women, independent of established breast cancer risk factors.
Collapse
Affiliation(s)
- Oana A Zeleznik
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | - Raji Balasubramanian
- Department of Biostatistics & Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Yibai Zhao
- Department of Biostatistics & Epidemiology, University of Massachusetts - Amherst, Amherst, MA, USA
| | - Lisa Frueh
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Jeanfavre
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Julian Avila-Pacheco
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA
| | - A Heather Eliassen
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
32
|
Wojtowicz K, Sterzyńska K, Świerczewska M, Nowicki M, Zabel M, Januchowski R. Piperine Targets Different Drug Resistance Mechanisms in Human Ovarian Cancer Cell Lines Leading to Increased Sensitivity to Cytotoxic Drugs. Int J Mol Sci 2021; 22:ijms22084243. [PMID: 33921897 PMCID: PMC8073496 DOI: 10.3390/ijms22084243] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023] Open
Abstract
Our goal was to examine the anticancer effects of piperine against the resistant human ovarian cancer cells and to explore the molecular mechanisms responsible for its anticancer effects. Our study used drug-sensitive ovarian cancer cell line W1 and its sublines resistant to paclitaxel (PAC) and topotecan (TOP). We analyzed the cytotoxic effect of piperine and cytostatic drugs using an MTT assay. The impact of piperine on protein expression was determined by immunofluorescence and Western blot. We also examined its effect on cell proliferation and migration. We noticed a different level of piperine resistance between cell lines. Piperine increases the cytotoxic effect of PAC and TOP in drug-resistant cells. We observed an increase in PTPRK expression correlated with decreased pTYR level after piperine treatment and downregulation of P-gp and BCRP expression. We also noted a decrease in COL3A1 and TGFBI expression in investigated cell lines and increased COL3A1 expression in media from W1PR2 cells. The expression of Ki67 protein and cell proliferation rate decreased after piperine treatment. Piperine markedly inhibited W1TR cell migration. Piperine can be considered a potential anticancer agent that can increase chemotherapy effectiveness in cancer patients.
Collapse
Affiliation(s)
- Karolina Wojtowicz
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland; (K.S.); (M.Ś.); (M.N.)
- Correspondence: (K.W.); (R.J.)
| | - Karolina Sterzyńska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland; (K.S.); (M.Ś.); (M.N.)
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland; (K.S.); (M.Ś.); (M.N.)
| | - Michał Nowicki
- Department of Histology and Embryology, Poznań University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland; (K.S.); (M.Ś.); (M.N.)
| | - Maciej Zabel
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St., 65-046 Zielona Gora, Poland;
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, T. Chałubińskiego 6a St., 50-368 Wroclaw, Poland
| | - Radosław Januchowski
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Gora, Zyty 28 St., 65-046 Zielona Gora, Poland;
- Correspondence: (K.W.); (R.J.)
| |
Collapse
|
33
|
Singh P, Pandey KB, Rizvi SI. Piperine protects oxidative modifications in human erythrocytes. J Basic Clin Physiol Pharmacol 2021; 33:163-167. [PMID: 33559462 DOI: 10.1515/jbcpp-2020-0100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/31/2020] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Piperine (1-piperoyl piperidine), a major alkaloid constituent of Piper nigrum L. and Piper longum L. has pleiotropic biological effects, but the mechanism(s) involved remain to be elucidated. The current study was conducted to examine the efficacy of antioxidant ability of piperine on t-BHP induced markers of oxidative stress in human erythrocytes. METHODS Healthy human erythrocytes and erythrocytes membrane was stressed with free radical inducer chemical; t-BHP (10-5 M), and the effects of piperine was measured against free radical mediated modification in lipid and protein content, -SH and GSH value with antioxidant potential. RESULTS The results demonstrate that treatment of erythrocytes with piperine (10-5 to 10-7 M) significantly (p<0.05) ameliorated the adverse consequences of oxidative stress as evidenced by prevention of oxidation of erythrocyte reduced glutathione, membrane thiols, proteins, and peroxidation of lipids; the effects were in correlation with ferric reducing and radical scavenging abilities of piperine. CONCLUSIONS The study concludes that piperine possesses potent anti-oxidant potential which may explain many of its observed biological effects.
Collapse
Affiliation(s)
- Prabhakar Singh
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| | | | - Syed Ibrahim Rizvi
- Department of Biochemistry, University of Allahabad, Allahabad, Uttar Pradesh, India
| |
Collapse
|
34
|
Rehman MU, Rashid S, Arafah A, Qamar W, Alsaffar RM, Ahmad A, Almatroudi NM, Alqahtani SMA, Rashid SM, Ahmad SB. Piperine Regulates Nrf-2/Keap-1 Signalling and Exhibits Anticancer Effect in Experimental Colon Carcinogenesis in Wistar Rats. BIOLOGY 2020; 9:E302. [PMID: 32967203 PMCID: PMC7565681 DOI: 10.3390/biology9090302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023]
Abstract
Colon cancer is the most common cancer in men and women globally, killing millions of people annually. Though there widespread development has been made in the management of colorectal cancer, still there is an urgent need to find novel targets for its effective treatment. Piperine is an alkaloid found in black pepper having anticancer, anti-inflammatory activities, safe and nutritive for human consumption. Nuclear factor-erythroid 2-kelch-like ECH-associated protein 1(Nrf-2/Keap-1)/Heme-oxygenase1 (HO-1) signaling pathway plays a vital part in shielding cells from intracellular oxidative stress and inflammation. A potential cross-talk between the Nrf-2 and NF-κB pathways is recognized during cancerous growth and expansion. We studied this pathway extensively in the present study to discover novel targets in the prevention of chemically induced colon cancer with piperine to simulate human colon cancer pathology. Animals were divided into four groups. Groups1 and 2 were used as a negative control and positive control where 1,2-Dimethylhydrazine, DMH was administered in group 2, while group 3 and 4 were prevention groups where piperine at two different doses was given two weeks prior to DMH and continued until end of experiment. We found that piperine inhibited NF-κB by the activation of Nrf-2, blocking downstream inflammatory mediators/cytokines (TNF-α, IL-6, IL-1β, Cox-2, PGE-2, iNOS, NO, MPO), triggering an antioxidant response machinery (HO-1, NQO-1, GSH, GR, GPx, CAT, SOD), scavenging ROS, and decreasing lipid peroxidation. Histological findings further validated our molecular findings. It also downregulates CEA, MDF and ACF, markers of precancerous lesions in colon, alleviates infiltration of mast cells and depletes the mucous layer. Our results indicate that piperine may be an effective molecule for the prophylactic treatment of colon carcinogenesis by targeting the NF-κB/Nrf-2/Keap-1/HO-1 pathway as a progressive strategy in the preclusion and effective treatment of colorectal cancer.
Collapse
Affiliation(s)
- Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, J&K, India; or
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia or (S.R.); (R.M.A.)
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Wajhul Qamar
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (W.Q.); (S.M.A.A.)
| | - Rana M. Alsaffar
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia or (S.R.); (R.M.A.)
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (A.A.); (A.A.)
| | - Nada M. Almatroudi
- Department of Clinical Pharmacy, College of Pharmacy Girls Campus, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Saeed M. A. Alqahtani
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (W.Q.); (S.M.A.A.)
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, J&K, India; or
| | - Sheikh Bilal Ahmad
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Alustang, Shuhama 190006, J&K, India; or
| |
Collapse
|
35
|
Haq IU, Imran M, Nadeem M, Tufail T, Gondal TA, Mubarak MS. Piperine: A review of its biological effects. Phytother Res 2020; 35:680-700. [PMID: 32929825 DOI: 10.1002/ptr.6855] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/18/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023]
Abstract
Medicinal plants have been used for years as a source of food, spices, and, in traditional medicine, as a remedy to numerous diseases. Piper nigrum, belonging to the family Piperaceae is one of the most widely used spices all over the world. It has a distinct sharp flavor attributed to the presence of the phytochemical, piperine. Apart from its use as a spice, P. nigrum is frequently used for medicinal, preservation, and perfumery purposes. Black pepper contains 2-7.4% of piperine, varying in content is associated with the pepper plant. Piperine displays numerous pharmacological effects such as antiproliferative, antitumor, antiangiogenesis, antioxidant, antidiabetic, anti-obesity, cardioprotective, antimicrobial, antiaging, and immunomodulatory effects in various in vitro and in vivo experimental trials. Furthermore, piperine has also been documented for its hepatoprotective, anti-allergic, anti-inflammatory, and neuroprotective properties. This review highlights and discusses the medicinal and health-promoting effects of piperine, along with possible mechanisms of its action in health promotion and disease prevention. In addition, the present review summarizes the recent literature related to piperine as a therapeutic agent against several diseases.
Collapse
Affiliation(s)
- Iahtisham-Ul Haq
- Department of Diet and Nutritional Sciences, Faculty of Health and Allied Sciences, Imperial College of Business Studies, Lahore, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem
- Department of Environmental Sciences, Comsats University Islamabad, Vehari, Pakistan
| | - Tabussam Tufail
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Tanweer A Gondal
- School of Exercise and Nutrition, Faculty of Health, Deakin University, Geelong, Victoria, Australia
| | | |
Collapse
|
36
|
Li D, Wang R, Cheng X, Yang J, Yang Y, Qu H, Li S, Lin S, Wei D, Bai Y, Zheng X. Chemical constituents from the fruits of Piper longum L. and their vascular relaxation effect on rat mesenteric arteries. Nat Prod Res 2020; 36:674-679. [PMID: 32746709 DOI: 10.1080/14786419.2020.1797726] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Eight compounds were obtained from the dry fruits of Piper longum L., and their potential vascular relaxant activities were explored. The present study first revealed the access of Rosin (7) and Piperchabaoside (8) in the medicinal plant Piper longum L. The vessel tension studies showed that Piperine (2), (2E,4E,14Z)-N-isobutyleicosa-2,4,14-trienamide (3), and Piperlonguminine (6) exerted significant inhibitory effects on PE-induced mesenteric artery vasoconstriction. Furthermore, Calcium Imaging studies were applied to observe the effect of Piperine on the intracellular calcium in mesenteric artery smooth muscle cells (MASMCs). Piperine (2) was observed to promote the influx of extracellular calcium in MASMCs, and via an endothelium-independent mechanism involving Ca2+ entry. Piper longum L. might have a great potential to be further studied as a vascular relaxant, even to be a drug candidate of anti-hypertension.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Rui Wang
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Xiaohan Cheng
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Jianfeng Yang
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Yihui Yang
- College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huichong Qu
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Sen Li
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Shan Lin
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Donghua Wei
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Yuhua Bai
- College of Pharmacy, Harbin Medical University - Daqing, Daqing, China
| | - Xiaodong Zheng
- College of Basic Medicine, Harbin Medical University - Daqing, Daqing, China
| |
Collapse
|
37
|
Xie Y, Dong CD, Wu Q, Jiang Y, Yao K, Zhang J, Zhao S, Ren Y, Yuan Q, Chen X, Liu Z, Zhao J, Liu K. Ornithine decarboxylase inhibition downregulates multiple pathways involved in the formation of precancerous lesions of esophageal squamous cell cancer. Mol Carcinog 2019; 59:215-226. [PMID: 31793679 DOI: 10.1002/mc.23144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The high incidence and mortality of esophageal squamous cell cancer (ESCC) is a major health problem worldwide. Precancerous lesions of ESCC may either progress to cancer or revert to normal epithelium with appropriate interventions; the bidirectional instability of the precancerous lesions of ESCC provides opportunities for intervention. Reports suggest that the upregulation of ornithine decarboxylase (ODC) is closely related to carcinogenesis. In this study, we investigated whether ODC may act as a target for chemoprevention in ESCC. Immunohistochemistry (IHC) assays indicate that ODC expression is higher in esophageal precancerous lesions compared with normal tissue controls. Its overexpression promotes cell proliferation and transformation of normal esophageal epithelial cells, and its activity is increased after N-nitrosomethylbenzylamine (NMBA) induction in Shantou human embryonic esophageal cell line (SHEE) and human immortalized cells (Het1A) cells. In addition, p38 α, extracellular regulated kinase (ERK1/2) in the mitogen-activated protein kinase pathway and protein kinase B (AKT)/mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (p70S6K) pathways are activated in response to NMBA treatment. Difluoromethylornithine (DFMO) is an ODC inhibitor, which inhibits NMBA-induced activation of p38 α, ERK1/2 and AKT/mTOR/p70S6K pathways; this has been verified by Western blotting. DFMO was also found to suppress the development of esophageal precancerous lesions in an NMBA-induced rat model; IHC demonstrated p38 α, ERK1/2, and AKT/mTOR/p70S6K pathways to be downregulated in these rats. These findings indicate the mechanisms by which ODC inhibition suppresses the development of esophageal precancerous lesions by downregulating p38 α, ERK1/2, and AKT/mTOR/p70S6k signaling pathways, ODC may be a potential target for chemoprevention in ESCC.
Collapse
Affiliation(s)
- Yifei Xie
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | | | - Qiong Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Ke Yao
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Jing Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Simin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Ren
- Pathology Department, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qiang Yuan
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xinhuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhongyi Liu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, China.,Henan Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, China.,Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, China.,Henan Provincial Key Laboratory of Esophageal Cancer, Zhengzhou, Henan, China
| |
Collapse
|
38
|
Dichloroacetate (DCA) and Cancer: An Overview towards Clinical Applications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8201079. [PMID: 31827705 PMCID: PMC6885244 DOI: 10.1155/2019/8201079] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/12/2019] [Accepted: 10/11/2019] [Indexed: 12/19/2022]
Abstract
An extensive body of literature describes anticancer property of dichloroacetate (DCA), but its effective clinical administration in cancer therapy is still limited to clinical trials. The occurrence of side effects such as neurotoxicity as well as the suspicion of DCA carcinogenicity still restricts the clinical use of DCA. However, in the last years, the number of reports supporting DCA employment against cancer increased also because of the great interest in targeting metabolism of tumour cells. Dissecting DCA mechanism of action helped to understand the bases of its selective efficacy against cancer cells. A successful coadministration of DCA with conventional chemotherapy, radiotherapy, other drugs, or natural compounds has been tested in several cancer models. New drug delivery systems and multiaction compounds containing DCA and other drugs seem to ameliorate bioavailability and appear more efficient thanks to a synergistic action of multiple agents. The spread of reports supporting the efficiency of DCA in cancer therapy has prompted additional studies that let to find other potential molecular targets of DCA. Interestingly, DCA could significantly affect cancer stem cell fraction and contribute to cancer eradication. Collectively, these findings provide a strong rationale towards novel clinical translational studies of DCA in cancer therapy.
Collapse
|