1
|
Huber MJ, Ivleva NP, Booth AM, Beer I, Bianchi I, Drexel R, Geiss O, Mehn D, Meier F, Molska A, Parot J, Sørensen L, Vella G, Prina-Mello A, Vogel R, Caputo F. Physicochemical characterization and quantification of nanoplastics: applicability, limitations and complementarity of batch and fractionation methods. Anal Bioanal Chem 2023:10.1007/s00216-023-04689-5. [PMID: 37106123 DOI: 10.1007/s00216-023-04689-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023]
Abstract
A comprehensive physicochemical characterization of heterogeneous nanoplastic (NPL) samples remains an analytical challenge requiring a combination of orthogonal measurement techniques to improve the accuracy and robustness of the results. Here, batch methods, including dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), tunable resistive pulse sensing (TRPS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM), as well as separation/fractionation methods such as centrifugal liquid sedimentation (CLS) and field-flow fractionation (FFF)-multi-angle light scattering (MALS) combined with pyrolysis gas chromatography mass spectrometry (pyGC-MS) or Raman microspectroscopy (RM) were evaluated for NPL size, shape, and chemical composition measurements and for quantification. A set of representative/test particles of different chemical natures, including (i) polydisperse polyethylene (PE), (ii) (doped) polystyrene (PS) NPLs, (iii) titanium dioxide, and (iv) iron oxide nanoparticles (spherical and elongated), was used to assess the applicability and limitations of the selected methodologies. Particle sizes and number-based concentrations obtained by orthogonal batch methods (DLS, NTA, TRPS) were comparable for monodisperse spherical samples, while higher deviations were observed for polydisperse, agglomerated samples and for non-spherical particles, especially for light scattering methods. CLS and TRPS offer further insight with increased size resolution, while detailed morphological information can be derived by electron microscopy (EM)-based approaches. Combined techniques such as FFF coupled to MALS and RM can provide complementary information on physical and chemical properties by online measurements, while pyGC-MS analysis of FFF fractions can be used for the identification of polymer particles (vs. inorganic particles) and for their offline (semi)quantification. However, NPL analysis in complex samples will continue to present a serious challenge for the evaluated techniques without significant improvements in sample preparation.
Collapse
Affiliation(s)
- Maximilian J Huber
- Institute of Water Chemistry (IWC), Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences (NAT, Dep. Chemistry), Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Natalia P Ivleva
- Institute of Water Chemistry (IWC), Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences (NAT, Dep. Chemistry), Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany.
| | - Andy M Booth
- Department of Climate and Environment, SINTEF Ocean AS, Trondheim, Norway.
| | - Irina Beer
- Institute of Water Chemistry (IWC), Chair of Analytical Chemistry and Water Chemistry, School of Natural Sciences (NAT, Dep. Chemistry), Technical University of Munich (TUM), Lichtenbergstr. 4, 85748, Garching, Germany
| | - Ivana Bianchi
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | | | - Otmar Geiss
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | - Dora Mehn
- Joint Research Centre (JRC), European Commission, Ispra, Italy
| | | | - Alicja Molska
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Jeremie Parot
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean AS, Trondheim, Norway
| | - Gabriele Vella
- Laboratory of Biological Characterization for Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Adriele Prina-Mello
- Laboratory of Biological Characterization for Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Robert Vogel
- School of Mathematics and Physics, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Fanny Caputo
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway.
- Laboratoire National de Métrologie et d'Essais, Paris, France.
| |
Collapse
|
2
|
Brüngel R, Rückert J, Müller P, Babick F, Friedrich CM, Ghanem A, Hodoroaba VD, Mech A, Weigel S, Wohlleben W, Rauscher H. NanoDefiner Framework and e-Tool Revisited According to the European Commission's Nanomaterial Definition 2022/C 229/01. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:990. [PMID: 36985884 PMCID: PMC10056892 DOI: 10.3390/nano13060990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The new recommended definition of a nanomaterial, 2022/C 229/01, adopted by the European Commission in 2022, will have a considerable impact on European Union legislation addressing chemicals, and therefore tools to implement this new definition are urgently needed. The updated NanoDefiner framework and its e-tool implementation presented here are such instruments, which help stakeholders to find out in a straightforward way whether a material is a nanomaterial or not. They are two major outcomes of the NanoDefine project, which is explicitly referred to in the new definition. This work revisits the framework and e-tool, and elaborates necessary adjustments to make these outcomes applicable for the updated recommendation. A broad set of case studies on representative materials confirms the validity of these adjustments. To further foster the sustainability and applicability of the framework and e-tool, measures for the FAIRification of expert knowledge within the e-tool's knowledge base are elaborated as well. The updated framework and e-tool are now ready to be used in line with the updated recommendation. The presented approach may serve as an example for reviewing existing guidance and tools developed for the previous definition 2011/696/EU, particularly those adopting NanoDefine project outcomes.
Collapse
Affiliation(s)
- Raphael Brüngel
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, 45122 Essen, Germany
- Institute for Artificial Intelligence in Medicine (IKIM), University Hospital Essen, 45131 Essen, Germany
| | - Johannes Rückert
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany
| | - Philipp Müller
- Analytical and Material Science, BASF SE, 67056 Ludwigshafen, Germany
| | - Frank Babick
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany
| | - Christoph M. Friedrich
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, 45122 Essen, Germany
| | - Antoine Ghanem
- R&I Centre Brussels, Solvay S.A., 1120 Brussels, Belgium
| | - Vasile-Dan Hodoroaba
- Division 6.1 Surface Analysis and Interfacial Chemistry, Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany
| | - Agnieszka Mech
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Stefan Weigel
- Department Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany
| | - Wendel Wohlleben
- Analytical and Material Science, BASF SE, 67056 Ludwigshafen, Germany
| | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| |
Collapse
|
3
|
Labuda J, Barek J, Gajdosechova Z, Goenaga-Infante H, Johnston LJ, Mester Z, Shtykov S. Analytical chemistry of engineered nanomaterials: Part 1. Scope, regulation, legislation, and metrology (IUPAC Technical Report). PURE APPL CHEM 2023. [DOI: 10.1515/pac-2021-1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Abstract
Analytical chemistry is crucial for understanding the complex behavior observed for engineered nanomaterials (ENMs). A variety of analytical chemistry techniques and methodological approaches are used for isolation/purification and determination of the composition of pristine nanomaterials and for the detection, identification, and quantification of nanomaterials in nano-enabled consumer products and the complex matrices found in cosmetics, food, and environmental and biological samples. Adequate characterization of ENMs also requires physicochemical characterization of number of other properties, including size, shape, and structure. The requirement for assessment of a number of ENM properties frequently requires interdisciplinary approaches and multi-modal analysis methods. This technical report starts with an overview of ENMs definitions and classification, their properties, and analytical scenarios encountered with the analysis of both pristine nanomaterials and complex matrices containing different nanomaterials. An evaluation of the current status regarding nanomaterial identification and characterization for regulatory purposes and legislation, including emerging regulations and related scientific opinions, is provided. The technical report also presents a large and critical overview of the metrology of nanomaterials, including available reference materials and the development and validation of standardized methods that are currently available to address characterization and analysis challenges. The report focuses mainly on chemical analysis techniques and thus it is complementary to previous IUPAC technical reports focused on characterizing the physical parameters of ENMs and on nanotoxicology.
Collapse
Affiliation(s)
- Jan Labuda
- Institute of Analytical Chemistry , Slovak University of Technology in Bratislava , Bratislava , Slovakia
| | - Jiří Barek
- Department of Analytical Chemistry , Charles University in Prague , Prague , Czech Republic
| | | | | | | | - Zoltan Mester
- National Research Council Canada , Ottawa , ON K1A 0R6 , Canada
| | - Sergei Shtykov
- Institute of Chemistry , Saratov State University , Saratov , Russia
| |
Collapse
|
4
|
Cross RK, Bossa N, Stolpe B, Loosli F, Sahlgren NM, Clausen PA, Delpivo C, Persson M, Valsesia A, Ponti J, Mehn D, Seleci DA, Müller P, von der Kammer F, Rauscher H, Spurgeon D, Svendsen C, Wohlleben W. Reproducibility of methods required to identify and characterize nanoforms of substances. NANOIMPACT 2022; 27:100410. [PMID: 35787478 DOI: 10.1016/j.impact.2022.100410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Nanoforms (NFs) of a substance may be distinguished from one another through differences in their physicochemical properties. When registering nanoforms of a substance for assessment under the EU REACH framework, five basic descriptors are required for their identification: composition, surface chemistry, size, specific surface area and shape. To make the risk assessment of similar NFs efficient, a number of grouping frameworks have been proposed, which often require assessment of similarity on individual physicochemical properties as part of the group justification. Similarity assessment requires an understanding of the achievable accuracy of the available methods. It must be demonstrated that measured differences between NFs are greater than the achievable accuracy of the method, to have confidence that the measured differences are indeed real. To estimate the achievable accuracy of a method, we assess the reproducibility of six analytical techniques routinely used to measure these five basic descriptors of nanoforms: inductively coupled plasma mass spectrometry (ICP-MS), Thermogravimetric analysis (TGA), Electrophoretic light scattering (ELS), Brunauer-Emmett-Teller (BET) specific surface area and transmission and scanning electron microscopy (TEM and SEM). Assessment was performed on representative test materials to evaluate the reproducibility of methods on single NFs of substances. The achievable accuracy was defined as the relative standard deviation of reproducibility (RSDR) for each method. Well established methods such as ICP-MS quantification of metal impurities, BET measurements of specific surface area, TEM and SEM for size and shape and ELS for surface potential and isoelectric point, all performed well, with low RSDR, generally between 5 and 20%, with maximal fold differences usually <1.5 fold between laboratories. Applications of technologies such as TGA for measuring water content and putative organic impurities, additives or surface treatments (through loss on ignition), which have a lower technology readiness level, demonstrated poorer reproducibility, but still within 5-fold differences. The expected achievable accuracy of ICP-MS may be estimated for untested analytes using established relationships between concentration and reproducibility, but this is not yet the case for TGA measurements of loss on ignition or water content. The results here demonstrate an approach to estimate the achievable accuracy of a method that should be employed when interpreting differences between NFs on individual physicochemical properties.
Collapse
Affiliation(s)
- Richard K Cross
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom.
| | - Nathan Bossa
- LEITAT Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Barcelona, Spain
| | | | - Frédéric Loosli
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria
| | | | - Per Axel Clausen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Camilla Delpivo
- LEITAT Technological Center, Carrer de la Innovació 2, 08225 Terrassa, Barcelona, Spain
| | | | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Jessica Ponti
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Didem Ag Seleci
- BASF SE, Department of Material Physics and Department of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Philipp Müller
- BASF SE, Department of Material Physics and Department of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| | - Frank von der Kammer
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria
| | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Dave Spurgeon
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Pollution, Wallingford, Oxfordshire, United Kingdom
| | - Wendel Wohlleben
- BASF SE, Department of Material Physics and Department of Experimental Toxicology & Ecology, Ludwigshafen, Germany
| |
Collapse
|
5
|
Counting Small Particles in Electron Microscopy Images—Proposal for Rules and Their Application in Practice. NANOMATERIALS 2022; 12:nano12132238. [PMID: 35808073 PMCID: PMC9268650 DOI: 10.3390/nano12132238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022]
Abstract
Electron microscopy (EM) is the gold standard for the characterisation of the morphology (size and shape) of nanoparticles. Visual observation of objects under examination is always a necessary first step in the characterisation process. Several questions arise when undertaking to identify and count particles to measure their size and shape distribution. In addition to challenges with the dispersion and identification of the particles, more than one protocol for counting particles is in use. This paper focuses on precise rules for the counting of particles in EM micrographs, as this influences the measurement accuracy of the number of particles, thus implicitly affecting the size values of the counted particles. We review and compare four different, commonly used methods for counting, which we then apply in case studies. The impact of the selected counting rule on the obtained final particle size distribution is highlighted. One main aim of this analysis is to support the application of a specific, well-defined counting approach in accordance with regulatory requirements to contribute to achieving more reliable and reproducible results. It is also useful for the new harmonised measurement procedures for determining the particle size and particle size distribution of nanomaterials.
Collapse
|
6
|
|
7
|
A review of optical methods for ultrasensitive detection and characterization of nanoparticles in liquid media with a focus on the wide field surface plasmon microscopy. Anal Chim Acta 2022; 1204:339633. [DOI: 10.1016/j.aca.2022.339633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/27/2022]
|
8
|
Barhoum A, García-Betancourt ML, Jeevanandam J, Hussien EA, Mekkawy SA, Mostafa M, Omran MM, S. Abdalla M, Bechelany M. Review on Natural, Incidental, Bioinspired, and Engineered Nanomaterials: History, Definitions, Classifications, Synthesis, Properties, Market, Toxicities, Risks, and Regulations. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:177. [PMID: 35055196 PMCID: PMC8780156 DOI: 10.3390/nano12020177] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023]
Abstract
Nanomaterials are becoming important materials in several fields and industries thanks to their very reduced size and shape-related features. Scientists think that nanoparticles and nanostructured materials originated during the Big Bang process from meteorites leading to the formation of the universe and Earth. Since 1990, the term nanotechnology became very popular due to advances in imaging technologies that paved the way to specific industrial applications. Currently, nanoparticles and nanostructured materials are synthesized on a large scale and are indispensable for many industries. This fact fosters and supports research in biochemistry, biophysics, and biochemical engineering applications. Recently, nanotechnology has been combined with other sciences to fabricate new forms of nanomaterials that could be used, for instance, for diagnostic tools, drug delivery systems, energy generation/storage, environmental remediation as well as agriculture and food processing. In contrast with traditional materials, specific features can be integrated into nanoparticles, nanostructures, and nanosystems by simply modifying their scale, shape, and composition. This article first summarizes the history of nanomaterials and nanotechnology. Followed by the progress that led to improved synthesis processes to produce different nanoparticles and nanostructures characterized by specific features. The content finally presents various origins and sources of nanomaterials, synthesis strategies, their toxicity, risks, regulations, and self-aggregation.
Collapse
Affiliation(s)
- Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
- School of Chemical Sciences, Dublin City University, D09 V209 Dublin, Ireland
| | | | - Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Campus da Penteada, Universidade da Madeira, 9020-105 Funchal, Portugal;
| | - Eman A. Hussien
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Sara A. Mekkawy
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Menna Mostafa
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (E.A.H.); (M.M.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mohga S. Abdalla
- Chemistry Department, Faculty of Science, Helwan University, Helwan 11795, Egypt; (S.A.M.); (M.M.O.); (M.S.A.)
| | - Mikhael Bechelany
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, 34000 Montpellier, France
| |
Collapse
|
9
|
Bouzakher-Ghomrasni N, Taché O, Leroy J, Feltin N, Testard F, Chivas-Joly C. Dimensional measurement of TiO 2 (Nano) particles by SAXS and SEM in powder form. Talanta 2021; 234:122619. [PMID: 34364428 DOI: 10.1016/j.talanta.2021.122619] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/28/2022]
Abstract
The market for nano-additive materials has been growing exponentially since 2012, with almost 5040 consumer products containing nanoparticles in 2021. In parallel, the increasing recommendations, definitions and legislations underline the need for traceability of manufactured nanoparticles and for methods able to identify and quantify the "nano" dimensional character in manufactured product. From a multi-technic approach, this paper aims to compare the mesurands extracted from SAXS/BET (specific surface area) and SEM (diameter equivalent to a projected surface area) on different TiO2 powder issued from referenced, synthesized materials, raw materials (additives) and extracted materials from manufactured products. The influence of various parameters such as the anisotropic factor, the interaction between particles, the size distribution and the extraction steps are discussed to illustrate their impact on the diameter values issued from two different measurands. These results illustrate the difficulties in (nano)particles characterization. SEM and SAXS are complementary techniques depending on the level of dimensional characterization required.
Collapse
Affiliation(s)
- Najoua Bouzakher-Ghomrasni
- Laboratoire National de Métrologie et D'Essais, Nanometrology, CARMEN Platform, 29 Avenue Hennequin, 78197, Trappes Cedex, France
| | - Olivier Taché
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Jocelyne Leroy
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Nicolas Feltin
- Laboratoire National de Métrologie et D'Essais, Nanometrology, CARMEN Platform, 29 Avenue Hennequin, 78197, Trappes Cedex, France
| | - Fabienne Testard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Carine Chivas-Joly
- Laboratoire National de Métrologie et D'Essais, Nanometrology, CARMEN Platform, 29 Avenue Hennequin, 78197, Trappes Cedex, France.
| |
Collapse
|
10
|
Peters R, Elbers I, Undas A, Sijtsma E, Briffa S, Carnell-Morris P, Siupa A, Yoon TH, Burr L, Schmid D, Tentschert J, Hachenberger Y, Jungnickel H, Luch A, Meier F, Kocic J, Kim J, Park BC, Hardy B, Johnston C, Jurkschat K, Radnik J, Hodoroaba VD, Lynch I, Valsami-Jones E. Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules 2021; 26:molecules26175315. [PMID: 34500752 PMCID: PMC8433974 DOI: 10.3390/molecules26175315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/16/2022] Open
Abstract
ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.
Collapse
Affiliation(s)
- Ruud Peters
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
- Correspondence:
| | - Ingrid Elbers
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
| | - Anna Undas
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
| | - Eelco Sijtsma
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (I.E.); (A.U.); (E.S.)
| | - Sophie Briffa
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (S.B.); (I.L.); (E.V.-J.)
| | - Pauline Carnell-Morris
- Malvern Panalytical, Enigma Business Park, Grovewood Road, Malvern, Worcestershire WR14 1XZ, UK; (P.C.-M.); (A.S.)
| | - Agnieszka Siupa
- Malvern Panalytical, Enigma Business Park, Grovewood Road, Malvern, Worcestershire WR14 1XZ, UK; (P.C.-M.); (A.S.)
| | - Tae-Hyun Yoon
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 04763, Korea;
- Institute of Next Generation Material Design, Hanyang University, Seoul 04763, Korea
| | - Loïc Burr
- CSEM, Centre Suisse d’Electronique et de Microtechnique SA, Bahnhofstrasse 1, 7302 Lanfquart, Switzerland; (L.B.); (D.S.)
| | - David Schmid
- CSEM, Centre Suisse d’Electronique et de Microtechnique SA, Bahnhofstrasse 1, 7302 Lanfquart, Switzerland; (L.B.); (D.S.)
| | - Jutta Tentschert
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Yves Hachenberger
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Andreas Luch
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (J.T.); (Y.H.); (H.J.); (A.L.)
| | - Florian Meier
- Postnova Analytics GmbH, Rankine-Str. 1, 86899 Landsberg, Germany;
| | - Jovana Kocic
- Department of Chemistry and Applied Biosciences ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland;
| | - Jaeseok Kim
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (B.C.P.)
| | - Byong Chon Park
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Korea; (J.K.); (B.C.P.)
| | - Barry Hardy
- Edelweiss Connect GmbH, Technology Park Basel, Hochbergerstrasse 60C, 4057 Basel, Switzerland;
| | - Colin Johnston
- Department of Materials, University of Oxford, Begbroke Science Park, Begbroke Hill, Oxford OX5 1PF, UK; (C.J.); (K.J.)
| | - Kerstin Jurkschat
- Department of Materials, University of Oxford, Begbroke Science Park, Begbroke Hill, Oxford OX5 1PF, UK; (C.J.); (K.J.)
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (J.R.); (V.-D.H.)
| | - Vasile-Dan Hodoroaba
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany; (J.R.); (V.-D.H.)
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (S.B.); (I.L.); (E.V.-J.)
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (S.B.); (I.L.); (E.V.-J.)
| |
Collapse
|
11
|
More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Hougaard Bennekou S, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano (deceased) V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R. Guidance on risk assessment of nanomaterials to be applied in the food and feed chain: human and animal health. EFSA J 2021; 19:e06768. [PMID: 34377190 PMCID: PMC8331059 DOI: 10.2903/j.efsa.2021.6768] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2021] [Indexed: 02/08/2023] Open
Abstract
The EFSA has updated the Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain, human and animal health. It covers the application areas within EFSA's remit, including novel foods, food contact materials, food/feed additives and pesticides. The updated guidance, now Scientific Committee Guidance on nano risk assessment (SC Guidance on Nano-RA), has taken account of relevant scientific studies that provide insights to physico-chemical properties, exposure assessment and hazard characterisation of nanomaterials and areas of applicability. Together with the accompanying Guidance on Technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles (Guidance on Particle-TR), the SC Guidance on Nano-RA specifically elaborates on physico-chemical characterisation, key parameters that should be measured, methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. The SC Guidance on Nano-RA also details aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vitro/in vivo toxicological studies are discussed and a tiered framework for toxicological testing is outlined. Furthermore, in vitro degradation, toxicokinetics, genotoxicity, local and systemic toxicity as well as general issues relating to testing of nanomaterials are described. Depending on the initial tier results, additional studies may be needed to investigate reproductive and developmental toxicity, chronic toxicity and carcinogenicity, immunotoxicity and allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read-across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes or mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis.
Collapse
|
12
|
Kaegi R, Fierz M, Hattendorf B. Quantification of Nanoparticles in Dispersions Using Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 33973509 DOI: 10.1017/s1431927621000398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The quantification of the particle size and the number concentration (PNC) of nanoparticles (NPs) is key for the characterization of nanomaterials. Transmission electron microscopy (TEM) is often considered as the gold standard for assessing the size of NPs; however, the TEM sample preparation suitable for estimating the PNC based on deposited NPs is challenging. Here, we use an ultrasonic nebulizer (USN) to transfer NPs from aqueous suspensions into dried aerosols which are deposited on TEM grids in an electrostatic precipitator of an aerosol monitor. The deposition efficiency of the electrostatic precipitator was ≈2%, and the transport efficiency of the USN was ≈7%. Experiments using SiO2 NPs (50–200 nm) confirmed an even deposition of the nebulized particles in the center of the TEM grids. PNCs of the SiO2 NPs derived from TEM images underestimated the expected PNCs of the suspensions by a factor of up to three, most likely resulting from droplet coagulation and NP aggregation in the USN. Nevertheless, single particles still dominated the PNC. Our approach results in reproducible and even deposition of particles on TEM grids suitable for morphological analysis and allows an estimation of the PNC in the suspensions based on the number of particles detected by TEM.
Collapse
Affiliation(s)
- Ralf Kaegi
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600Dübendorf, Switzerland
| | - Martin Fierz
- naneos particle solutions GmbH, Dorfstr. 69, 5210Windisch, Switzerland
| | - Bodo Hattendorf
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Bau S, Dazon C, Rastoix O, Bardin-Monnier N. Effect of constituent particle polydispersion on VSSA-based equivalent particle diameter: Theoretical rationale and application to a set of eight powders with constituent particle median diameters ranging from 9 to 130 nm. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.02.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Camassa LMA, Ervik TK, Zegeye FD, Mdala I, Valen H, Ansteinsson V, Zienolddiny S. Characterization and toxicity evaluation of air-borne particles released by grinding from two dental resin composites in vitro. Dent Mater 2021; 37:1121-1133. [PMID: 33846018 DOI: 10.1016/j.dental.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/02/2023]
Abstract
OBJECTIVE The project aims to evaluate whether inhalation of particles released upon grinding of dental composites may pose a health hazard to dentists. The main objective of the study was to characterize the dust from polymer-based dental composites ground with different grain sized burs and investigate particle uptake and the potential cytotoxic effects in human bronchial cells. METHODS Polymerized blocks of two dental composites, Filtek™ Z250 and Filtek™ Z500 from 3M™ ESPE, were ground with super coarse (black) and fine (red) burs inside a glass chamber. Ultrafine airborne dust concentration and particle size distribution was measured real-time during grinding with a scanning mobility particle sizer (SMPS). Filter-collected airborne particles were characterized with dynamic light scattering (DLS) and scanning electron microscopy (SEM). Human bronchial epithelial cells (HBEC-3KT) were exposed to the dusts in dose-effect experiments. Toxicity was measured with lactate dehydrogenase (LDH) assay and cell counting kit-8 (CCK8). Cellular uptake was observed with transmission electron microscopy (TEM). RESULTS Airborne ultrafine particles showed that most particles were in the size range 15-35 nm (SMPS). SEM analysis proved that more than 80% of the particles have a minimum Feret diameter less than 1 μm. In solution (DLS), the particles have larger diameters and tend to agglomerate. Cell toxicity (LDH, CCK8) is shown after 48 h and 72 h exposure times and at the highest doses. TEM showed presence of the particles within the cell cytoplasm. SIGNIFICANCE Prolonged and frequent exposure through inhalation may have negative health implications for dentists.
Collapse
Affiliation(s)
- L M A Camassa
- National Institute of Occupational Health, Oslo, Norway
| | - T K Ervik
- National Institute of Occupational Health, Oslo, Norway
| | - F D Zegeye
- National Institute of Occupational Health, Oslo, Norway
| | - I Mdala
- Institute of Health and Society, University of Oslo, Oslo, Norway; Oral Health Centres of Expertise in Eastern Norway, Oslo, Norway
| | - H Valen
- Nordic Institute of Dental Materials, Oslo, Norway
| | - V Ansteinsson
- Oral Health Centres of Expertise in Eastern Norway, Oslo, Norway
| | - S Zienolddiny
- National Institute of Occupational Health, Oslo, Norway.
| |
Collapse
|
15
|
Radnik J, Kersting R, Hagenhoff B, Bennet F, Ciornii D, Nymark P, Grafström R, Hodoroaba VD. Reliable Surface Analysis Data of Nanomaterials in Support of Risk Assessment Based on Minimum Information Requirements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:639. [PMID: 33807515 PMCID: PMC8001671 DOI: 10.3390/nano11030639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/16/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The minimum information requirements needed to guarantee high-quality surface analysis data of nanomaterials are described with the aim to provide reliable and traceable information about size, shape, elemental composition and surface chemistry for risk assessment approaches. The widespread surface analysis methods electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) were considered. The complete analysis sequence from sample preparation, over measurements, to data analysis and data format for reporting and archiving is outlined. All selected methods are used in surface analysis since many years so that many aspects of the analysis (including (meta)data formats) are already standardized. As a practical analysis use case, two coated TiO2 reference nanoparticulate samples, which are available on the Joint Research Centre (JRC) repository, were selected. The added value of the complementary analysis is highlighted based on the minimum information requirements, which are well-defined for the analysis methods selected. The present paper is supposed to serve primarily as a source of understanding of the high standardization level already available for the high-quality data in surface analysis of nanomaterials as reliable input for the nanosafety community.
Collapse
Affiliation(s)
- Jörg Radnik
- Bundesanstalt für Materialforschung und-Prüfung (BAM), Division 6.1 Surface Analysis and Interfacial Chemistry, Unter den Eichen 87, 12205 Berlin, Germany; (F.B.); (D.C.); (V.-D.H.)
| | | | - Birgit Hagenhoff
- Tascon GmbH, Mendelstr. 17, 48149 Münster, Germany; (R.K.); (B.H.)
| | - Francesca Bennet
- Bundesanstalt für Materialforschung und-Prüfung (BAM), Division 6.1 Surface Analysis and Interfacial Chemistry, Unter den Eichen 87, 12205 Berlin, Germany; (F.B.); (D.C.); (V.-D.H.)
| | - Dmitri Ciornii
- Bundesanstalt für Materialforschung und-Prüfung (BAM), Division 6.1 Surface Analysis and Interfacial Chemistry, Unter den Eichen 87, 12205 Berlin, Germany; (F.B.); (D.C.); (V.-D.H.)
| | - Penny Nymark
- Department of Toxicology, Misvik Biology, Karjakatu 35, 20520 Turku, Finland; (P.N.); (R.G.)
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, 17177 Stockholm, Sweden
| | - Roland Grafström
- Department of Toxicology, Misvik Biology, Karjakatu 35, 20520 Turku, Finland; (P.N.); (R.G.)
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, 17177 Stockholm, Sweden
| | - Vasile-Dan Hodoroaba
- Bundesanstalt für Materialforschung und-Prüfung (BAM), Division 6.1 Surface Analysis and Interfacial Chemistry, Unter den Eichen 87, 12205 Berlin, Germany; (F.B.); (D.C.); (V.-D.H.)
| |
Collapse
|
16
|
Workflow towards automated segmentation of agglomerated, non-spherical particles from electron microscopy images using artificial neural networks. Sci Rep 2021; 11:4942. [PMID: 33654161 PMCID: PMC7925552 DOI: 10.1038/s41598-021-84287-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/15/2021] [Indexed: 11/08/2022] Open
Abstract
We present a workflow for obtaining fully trained artificial neural networks that can perform automatic particle segmentations of agglomerated, non-spherical nanoparticles from scanning electron microscopy images "from scratch", without the need for large training data sets of manually annotated images. The whole process only requires about 15 min of hands-on time by a user and can typically be finished within less than 12 h when training on a single graphics card (GPU). After training, SEM image analysis can be carried out by the artificial neural network within seconds. This is achieved by using unsupervised learning for most of the training dataset generation, making heavy use of generative adversarial networks and especially unpaired image-to-image translation via cycle-consistent adversarial networks. We compare the segmentation masks obtained with our suggested workflow qualitatively and quantitatively to state-of-the-art methods using various metrics. Finally, we used the segmentation masks for automatically extracting particle size distributions from the SEM images of TiO2 particles, which were in excellent agreement with particle size distributions obtained manually but could be obtained in a fraction of the time.
Collapse
|
17
|
Xavier M, Parente IA, Rodrigues PM, Cerqueira MA, Pastrana L, Gonçalves C. Safety and fate of nanomaterials in food: The role of in vitro tests. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.050] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Function of Hemoglobin-Based Oxygen Carriers: Determination of Methemoglobin Content by Spectral Extinction Measurements. Int J Mol Sci 2021; 22:ijms22041753. [PMID: 33578723 PMCID: PMC7916497 DOI: 10.3390/ijms22041753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/03/2021] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
Suspensions of hemoglobin microparticles (HbMPs) are promising tools as oxygen therapeutics. For the approval of clinical studies extensive characterization of these HbMPs with a size of about 750 nm is required regarding physical properties, function, pharmaco-kinetics and toxicology. The standard absorbance measurements in blood gas analyzers require dissolution of red blood cells which does not work for HbMP. Therefore, we have developed a robust and rapid optical method for the quality and functionality control of HbMPs. It allows simultaneous determination of the portion of the two states of hemoglobin oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) as well as the content of methemoglobin (metHb). Based on the measurement of collimated transmission spectra between 300 nm and 800 nm, the average extinction cross section of HbMPs is derived. A numerical method is applied to determine the composition of the HbMPs based on their wavelength-dependent refractive index (RI), which is a superposition of the three different states of Hb. Thus, light-scattering properties, including extinction cross sections can be simulated for different compositions and sizes. By comparison to measured spectra, the relative concentrations of oxyHb, deoxyHb, metHb are accessible. For validation of the optically determined composition of the HbMPs, we used X-ray fluorescence spectrometry for the ratio of Fe(II) (oxyHb/deoxyHb) and Fe(III) (metHb). High accuracy density measurements served to access heme-free proteins, size was determined by dynamic light scattering and analytical centrifugation and the shape of the HbMPs was visualized by electron and atomic force microscopy.
Collapse
|
19
|
Alasonati E, Caebergs T, Pétry J, Sebaïhi N, Fisicaro P, Feltin N. Size measurement of silica nanoparticles by Asymmetric Flow Field-Flow Fractionation coupled to Multi-Angle Light Scattering: A comparison exercise between two metrological institutes. J Chromatogr A 2020; 1638:461859. [PMID: 33465582 DOI: 10.1016/j.chroma.2020.461859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 11/29/2022]
Abstract
In this work we present a comparison exercise between two metrological institutes for size measurement of silica nanoparticles by Asymmetrical Flow Field-Flow Fractionation (AF4) coupled to static light scattering. The work has been performed in the frame of a French inter-laboratory comparison (ILC) exercise organized by the nanoMetrology Club (CnM). The general aim of this multi-technique comparison was to improve the measurement process for each technique, after establishing a well-defined measurement procedure. The results obtained by two national metrological institutes (NMIs), the LNE (France) and the SMD (Belgium) by AF4-UV-DRI-MALS will be presented and discussed. Three different samples were characterized: the reference material ERM®-FD304, which is a suspension of colloidal silica in aqueous solution and two silica bimodal samples consisting of two populations of SiO2 nanoparticles of unknown size in aqueous solution, with different populations' ratios. The procedure for the preparation of the sample before the analysis, and main separation parameters have been previously defined between the two institutes and will be described. The principals measured parameters were the weight-average (dge_w), number-average (dge_n) and z-average (dge_z) geometric diameter; the average hydrodynamic diameter (dh); and the diameter obtained by external calibration using polystyrene latex standards (dcal). Results between the two NMIs were comparable and coherent with the expected size values of those obtained by other techniques like Scanning Mobility Particle Sizer (SMPS) and Scanning Electron Microscopy (SEM) also involved in this ILC exercise. Where discrepancies are observed, they leave the results compatible within their uncertainties and underpin the challenges in analysing data and reporting results, making AF4 a powerful tool to compare to other measurement techniques.
Collapse
Affiliation(s)
- Enrica Alasonati
- Department of Biomedical and Inorganic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75015 Paris, France; LNE Nanotech Institut, Laboratoire National de Métrologie et d'Essais (LNE), 29 av. Roger Hennequin, 78197 Trappes, France.
| | - Thierry Caebergs
- FPS Economy, DG Quality and Safety, Metrology Division (SMD), Bvd du Roi Albert II, 16 - 1000 Brussels, Belgium.
| | - Jasmine Pétry
- FPS Economy, DG Quality and Safety, Metrology Division (SMD), Bvd du Roi Albert II, 16 - 1000 Brussels, Belgium.
| | - Noham Sebaïhi
- FPS Economy, DG Quality and Safety, Metrology Division (SMD), Bvd du Roi Albert II, 16 - 1000 Brussels, Belgium.
| | - Paola Fisicaro
- Department of Biomedical and Inorganic Chemistry, Laboratoire National de Métrologie et d'Essais (LNE), 1 rue Gaston Boissier, 75015 Paris, France; LNE Nanotech Institut, Laboratoire National de Métrologie et d'Essais (LNE), 29 av. Roger Hennequin, 78197 Trappes, France.
| | - Nicolas Feltin
- LNE Nanotech Institut, Laboratoire National de Métrologie et d'Essais (LNE), 29 av. Roger Hennequin, 78197 Trappes, France.
| |
Collapse
|
20
|
Janer G, Landsiedel R, Wohlleben W. Rationale and decision rules behind the ECETOC NanoApp to support registration of sets of similar nanoforms within REACH. Nanotoxicology 2020; 15:145-166. [PMID: 33320695 DOI: 10.1080/17435390.2020.1842933] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New registration requirements for nanomaterials under REACH consider the possibility to form 'sets of similar nanoforms' for a joined human health and environmental hazard, exposure and risk assessment. We developed a tool to create and justify sets of similar nanoforms and to ensure that each of the nanoforms is sufficiently similar to all other nanoforms. The decision logic is following the ECHA guidance in a transparent and evidence-based manner. For each two nanoforms the properties under consideration are compared and corresponding thresholds for maximal differences are proposed. In tier1, similarity is assessed based on intrinsic properties that mostly correspond to those required for nanoform identification under REACH: composition, impurities/additives, size, crystallinity, shape and surface treatment. Moreover, potential differences in the agglomeration/aggregation state resulting from different production processes are considered. If nanoforms were not sufficiently similar based on tier1 criteria, additional data from functional assays are required in tier2. In rare cases, additional short-term in vivo rodent data could be required in a third tier. Data required by tier 2 are triggered by the intrinsic properties in the first tier that did not match the similarity criteria. Most often this will be data on dissolution and surface reactivity followed by in vitro toxicity, dispersion stability, dustiness. Out of several nanoforms given by the user, the tool concludes which nanoforms could be justified to be in the same set and which nanoforms are outside. It defines the boundaries of sets of similar nanoforms and generates a justification for the REACH registration.
Collapse
Affiliation(s)
- Gemma Janer
- Leitat Technological Center, Barcelona, Spain
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen am Rhein, Germany
| | - Wendel Wohlleben
- Department of Material Physics and Analytics, BASF SE, Ludwigshafen am Rhein, Germany
| |
Collapse
|
21
|
Alxneit I. Particle Size Distributions from Electron Microscopy Images: Avoiding Pitfalls. J Phys Chem A 2020; 124:10075-10081. [PMID: 33203210 DOI: 10.1021/acs.jpca.0c07840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An important property of heterogeneous catalysts is the size distribution of the catalytically active phase. This is typically obtained form a long list of particles sizes (manually) compiled from electron micrographs. These raw data are then represented as histogram to approximate the underlying continuous distribution. Selecting the proper bin width, w, for the histogram is important as one has to balance resolution with statistical significance of the bin count in each bin. For most published particle size distributions, the selection criterion for w is not reported transparently. In this contribution, it is demonstrated how operator's bias can be avoided by using estimators for w that are based on the raw data only. First, synthetic data are analyzed to illustrate the importance of selecting a proper value for w. Then a survey of published data is presented which reveals that the values for the bin width w was chosen too large in many cases. By using statistically founded bin width estimators not only is operator's bias avoided but also hidden features in the distribution are sometimes revealed; in one case, a distinct bimodal distribution was missed in the original report. Finally, a work-flow is suggested which avoids operator's bias to generate particles size distributions from a list of experimentally determined particle sizes.
Collapse
Affiliation(s)
- Ivo Alxneit
- Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
| |
Collapse
|
22
|
Laycock A, Wright MD, Römer I, Buckley A, Smith R. Characterisation of particles within and aerosols produced by nano-containing consumer spray products. ATMOSPHERIC ENVIRONMENT: X 2020; 8:100079. [PMID: 33392499 PMCID: PMC7770152 DOI: 10.1016/j.aeaoa.2020.100079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/12/2023]
Abstract
Nanoparticles have been incorporated into a range of consumer spray products, providing the potential for inadvertent inhalation by users and bystanders. The levels and characteristics of nanoparticle inhalation exposures arising from the use of such products are important inputs to risk assessments and informing dose regimes for in vitro and in vivo studies investigating hazard potentials. To date, only a small number of studies have been undertaken to explore both the aerosols generated from such products and the metal nanoparticles within them. The objective of the current study was to add to the limited data in this field by investigating a range of nano-containing spray products available within the UK. Six products were selected and the nanoparticles characterised using a combination of techniques, including: inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy energy-dispersive X-ray spectroscopy (TEM-EDX) and single particle ICP-MS (spICP-MS). The aerosol produced by these products, when sprayed within a glovebox, was characterised by scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). A cascade impactor with thirteen stages (NanoMOUDI) was used with one product to generate information on the size specific nanoparticle elemental distribution within the aerosol. The results demonstrated the presence of solid nanoparticles (silver, gold or silica) in each of the products at low concentrations (<13 ppm). TEM and (sp)ICP-MS provided reliable information on nanoparticle size, shape, number and mass, while the light scattering methods were less effective due to the complex matrices of the products and their lack of chemical specificity. The aerosols varied significantly across products, with particle and mass concentrations spanning 5 orders of magnitude (10 - 106 cm-3 and 0.3-7600 μg m-3, respectively). The NanoMOUDI results clearly indicated non-uniform distribution of silver within different aerosol particle size ranges.
Collapse
Affiliation(s)
- Adam Laycock
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Matthew D. Wright
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Isabella Römer
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Alison Buckley
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| | - Rachel Smith
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Harwell Campus, Didcot, OX11 0RQ, UK
| |
Collapse
|
23
|
Zhang Z, Kappenstein O, Ebner I, Ruggiero E, Müller P, Luch A, Wohlleben W, Haase A. Investigating ion-release from nanocomposites in food simulant solutions: Case studies contrasting kaolin, CaCO3 and Cu-phthalocyanine. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Machine learning approach for elucidating and predicting the role of synthesis parameters on the shape and size of TiO 2 nanoparticles. Sci Rep 2020; 10:18910. [PMID: 33144623 PMCID: PMC7609603 DOI: 10.1038/s41598-020-75967-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 01/03/2023] Open
Abstract
In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm.
Collapse
|
25
|
Kestens V, Gerganova T, Roebben G, Held A. A new certified reference material for size and shape analysis of nanorods using electron microscopy. Anal Bioanal Chem 2020; 413:141-157. [PMID: 33048174 PMCID: PMC7801322 DOI: 10.1007/s00216-020-02984-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 11/04/2022]
Abstract
A new certified reference material (CRM) for size and shape analysis of elongated nanoparticles has been developed by the European Commission’s Joint Research Centre. The CRM consists of titanium dioxide nanorods dispersed in 1-butanol, was coded ERM-FD103 and has been certified for different electron microscopy–based operationally defined measurands such as the modal and median values of the particle number-weighted distributions of the minimum and maximum Feret diameter, the maximum inscribed circle diameter, the area-equivalent circular diameter and the aspect ratio. The nanorods have nominal dimensions of 15 nm in width and 55 nm in length. Homogeneity and stability measurements were performed using transmission electron microscopy. The relative standard uncertainty for homogeneity ranged from 0.3 to 1.7%. No significant instability was detected for a shelf life of 18 months and a storage temperature of 18 °C. The certified values have been determined from the results of an interlaboratory comparison in which qualified expert laboratories participated with scanning and transmission electron microscopy. The certified values are traceable to the unit of length in the International System of Units, the metre, and the relative expanded uncertainties (confidence level of approximately 95%) range from 4 to 6%. These properties allow the CRM to be used for quality assurance and calibration of electron microscopy methods for nanoparticle size and shape analysis in ranges relevant for the implementation of EU legislation related to nanomaterials. The presented study discusses the purpose and results of the different steps that were followed to turn an industrially relevant raw titanium dioxide nanorod material into a fit-for-purpose CRM. Graphical abstract![]()
Collapse
Affiliation(s)
- Vikram Kestens
- European Commission, Joint Research Centre (JRC), 2440, Geel, Belgium.
| | - Tsvetelina Gerganova
- European Commission, Joint Research Centre (JRC), 2440, Geel, Belgium.,European Commission, EUROSTAT, 2920, Luxembourg, Luxembourg
| | - Gert Roebben
- European Commission, Joint Research Centre (JRC), 2440, Geel, Belgium.,European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs, 1049, Brussels, Belgium
| | - Andrea Held
- European Commission, Joint Research Centre (JRC), 2440, Geel, Belgium
| |
Collapse
|
26
|
Meija J, Bushell M, Couillard M, Beck S, Bonevich J, Cui K, Foster J, Will J, Fox D, Cho W, Heidelmann M, Park BC, Park YC, Ren L, Xu L, Stefaniak AB, Knepp AK, Theissmann R, Purwin H, Wang Z, de Val N, Johnston LJ. Particle Size Distributions for Cellulose Nanocrystals Measured by Transmission Electron Microscopy: An Interlaboratory Comparison. Anal Chem 2020; 92:13434-13442. [PMID: 32865398 DOI: 10.1021/acs.analchem.0c02805] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Particle size is a key parameter that must be measured to ensure reproducible production of cellulose nanocrystals (CNCs) and to achieve reliable performance metrics for specific CNC applications. Nevertheless, size measurements for CNCs are challenging due to their broad size distribution, irregular rod-shaped particles, and propensity to aggregate and agglomerate. We report an interlaboratory comparison (ILC) that tests transmission electron microscopy (TEM) protocols for image acquisition and analysis. Samples of CNCs were prepared on TEM grids in a single laboratory, and detailed data acquisition and analysis protocols were provided to participants. CNCs were imaged and the size of individual particles was analyzed in 10 participating laboratories that represent a cross section of academic, industrial, and government laboratories with varying levels of experience with imaging CNCs. The data for each laboratory were fit to a skew normal distribution that accommodates the variability in central location and distribution width and asymmetries for the various datasets. Consensus values were obtained by modeling the variation between laboratories using a skew normal distribution. This approach gave consensus distributions with values for mean, standard deviation, and shape factor of 95.8, 38.2, and 6.3 nm for length and 7.7, 2.2, and 2.9 nm for width, respectively. Comparison of the degree of overlap between distributions for individual laboratories indicates that differences in imaging resolution contribute to the variation in measured widths. We conclude that the selection of individual CNCs for analysis and the variability in CNC agglomeration and staining are the main factors that lead to variations in measured length and width between laboratories.
Collapse
Affiliation(s)
- Juris Meija
- National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Michael Bushell
- National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Martin Couillard
- National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| | | | - John Bonevich
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kai Cui
- National Research Council Canada, Nanotechnology Research Centre, Edmonton, Alberta T6G 2M9, Canada
| | - Johan Foster
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States.,Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John Will
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Douglas Fox
- Department of Chemistry, American University, Washington, District of Columbia 20016, United States
| | - Whirang Cho
- Department of Chemistry, American University, Washington, District of Columbia 20016, United States
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Byong Chon Park
- Center for Nanocharacterization, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Yun Chang Park
- Division of Measurement & Analysis, National Nanofab Center, Daejeon 34141, Republic of Korea
| | - Lingling Ren
- National Institute of Metrology, Chaoyang District, Beijing 100029, China
| | - Li Xu
- National Institute of Metrology, Chaoyang District, Beijing 100029, China
| | - Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Ralf Theissmann
- KRONOS INTERNATIONAL Inc., Peschstrasse 5, 51373 Leverkusen, Germany
| | - Horst Purwin
- KRONOS INTERNATIONAL Inc., Peschstrasse 5, 51373 Leverkusen, Germany
| | - Ziqiu Wang
- Electron Microscopy Laboratory, National Cancer Institute, Center for Cancer Research, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland 21702, United States
| | - Natalia de Val
- Electron Microscopy Laboratory, National Cancer Institute, Center for Cancer Research, Leidos Biomedical Research, Frederick National Laboratory, Frederick, Maryland 21702, United States
| | - Linda J Johnston
- National Research Council Canada, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
27
|
Bushell M, Beauchemin S, Kunc F, Gardner D, Ovens J, Toll F, Kennedy D, Nguyen K, Vladisavljevic D, Rasmussen PE, Johnston LJ. Characterization of Commercial Metal Oxide Nanomaterials: Crystalline Phase, Particle Size and Specific Surface Area. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1812. [PMID: 32932807 PMCID: PMC7558088 DOI: 10.3390/nano10091812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
Physical chemical characterization of nanomaterials is critical to assessing quality control during production, evaluating the impact of material properties on human health and the environment, and developing regulatory frameworks for their use. We have investigated a set of 29 nanomaterials from four metal oxide families (aluminum, copper, titanium and zinc) with a focus on the measurands that are important for the basic characterization of dry nanomaterials and the determination of the dose metrics for nanotoxicology. These include crystalline phase and crystallite size, measured by powder X-ray diffraction, particle shape and size distributions from transmission electron microscopy, and specific surface area, measured by gas adsorption. The results are compared to the nominal data provided by the manufacturer, where available. While the crystalline phase data are generally reliable, data on minor components that may impact toxicity is often lacking. The crystal and particle size data highlight the issues in obtaining size measurements of materials with broad size distributions and significant levels of aggregation, and indicate that reliance on nominal values provided by the manufacturer is frequently inadequate for toxicological studies aimed at identifying differences between nanoforms. The data will be used for the development of models and strategies for grouping and read-across to support regulatory human health and environmental assessments of metal oxide nanomaterials.
Collapse
Affiliation(s)
- Michael Bushell
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| | - Suzanne Beauchemin
- Health Canada, Environmental Health Research Science Bureau, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | - Filip Kunc
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| | - David Gardner
- X-ray Core Facility, University of Ottawa, STEM Complex, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; (D.G.); (J.O.)
| | - Jeffrey Ovens
- X-ray Core Facility, University of Ottawa, STEM Complex, 150 Louis Pasteur, Ottawa, ON K1N 6N5, Canada; (D.G.); (J.O.)
| | - Floyd Toll
- Energy Mining & Environment Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada;
| | - David Kennedy
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| | - Kathy Nguyen
- Health Canada, New Substances Assessment Control Bureau, 269 Laurier Avenue West, Ottawa, ON K1A 0K9, Canada; (K.N.); (D.V.)
| | - Djordje Vladisavljevic
- Health Canada, New Substances Assessment Control Bureau, 269 Laurier Avenue West, Ottawa, ON K1A 0K9, Canada; (K.N.); (D.V.)
| | - Pat E. Rasmussen
- Health Canada, Environmental Health Research Science Bureau, 251 Sir Frederick Banting Driveway, Ottawa, ON K1A 0K9, Canada;
| | - Linda J. Johnston
- Metrology Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (M.B.); (F.K.); (D.K.)
| |
Collapse
|
28
|
Mech A, Wohlleben W, Ghanem A, Hodoroaba VD, Weigel S, Babick F, Brüngel R, Friedrich CM, Rasmussen K, Rauscher H. Nano or Not Nano? A Structured Approach for Identifying Nanomaterials According to the European Commission's Definition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002228. [PMID: 32743899 DOI: 10.1002/smll.202002228] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Identifying nanomaterials (NMs) according to European Union legislation is challenging, as there is an enormous variety of materials, with different physico-chemical properties. The NanoDefiner Framework and its Decision Support Flow Scheme (DSFS) allow choosing the optimal method to measure the particle size distribution by matching the material properties and the performance of the particular measurement techniques. The DSFS leads to a reliable and economic decision whether a material is an NM or not based on scientific criteria and respecting regulatory requirements. The DSFS starts beyond regulatory requirements by identifying non-NMs by a proxy approach based on their volume-specific surface area. In a second step, it identifies NMs. The DSFS is tested on real-world materials and is implemented in an e-tool. The DSFS is compared with a decision flowchart of the European Commission's (EC) Joint Research Centre (JRC), which rigorously follows the explicit criteria of the EC NM definition with the focus on identifying NMs, and non-NMs are identified by exclusion. The two approaches build on the same scientific basis and measurement methods, but start from opposite ends: the JRC Flowchart starts by identifying NMs, whereas the NanoDefiner Framework first identifies non-NMs.
Collapse
Affiliation(s)
- Agnieszka Mech
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Wendel Wohlleben
- BASF SE, Material Physics Research, Ludwigshafen, 67056, Germany
| | - Antoine Ghanem
- Solvay-Research and Innovation Centre Brussels, Brussels, 1120, Belgium
| | - Vasile-Dan Hodoroaba
- Federal Institute for Materials Research and Testing (BAM), Berlin, 12205, Germany
| | - Stefan Weigel
- German Federal Institute for Risk Assessment (BfR), Berlin, 10589, Germany
| | - Frank Babick
- Technische Universität Dresden, Institute of Process Engineering and Environmental Technology, Dresden, 01069, Germany
| | - Raphael Brüngel
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), Dortmund, 44227, Germany
| | - Christoph M Friedrich
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), Dortmund, 44227, Germany
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, Essen, 45122, Germany
| | - Kirsten Rasmussen
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, 21027, Italy
| |
Collapse
|
29
|
Franz R, Bott J, Störmer A. Considerations for and Guidance to Testing and Evaluating Migration/Release of Nanoparticles from Polymer Based Nanocomposites. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1113. [PMID: 32516881 PMCID: PMC7353253 DOI: 10.3390/nano10061113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
Abstract
The use of nanoadditives in food contact materials requires risk assessment to ensure consumers' safety. The evaluation of health risk is based on the combination of two elements: hazard and exposure. For nanomaterials (NM) used as additives in nanocomposites, the exposure is directly linked to the level of migration or release of the NM into the food. In principle, appropriate methods for experimental determination and theoretical estimation of migration are available but need diligent considerations to avoid erroneous conclusions from the measured data. We propose a comprehensive test scheme based on these methods, starting with characterization of the nanomaterial itself and when incorporated in the polymer. These data form the basis for making a decision whether migration of the NM can be excluded by migration theoretical considerations or if experimental migration testing and/or abrasion testing for mechanical release should be carried out. Guidance to and considerations for each of these steps and regarding the applicable methods are discussed. In conclusion, the results will provide a basis for risk assessment, either directly when exposure of consumers to the nanomaterials can be excluded or will be very low or, in the case of evidenced exposure, in combination with then needed toxicological data.
Collapse
Affiliation(s)
| | - Johannes Bott
- Departement of Product Safety and Analytics, Fraunhofer Institute for Process Engineering and Packaging (IVV), 85354 Freising, Germany; (R.F.); (A.S.)
| | | |
Collapse
|
30
|
Hachenberger YU, Rosenkranz D, Kriegel FL, Krause B, Matschaß R, Reichardt P, Tentschert J, Laux P, Jakubowski N, Panne U, Luch A. Tackling Complex Analytical Tasks: An ISO/TS-Based Validation Approach for Hydrodynamic Chromatography Single Particle Inductively Coupled Plasma Mass Spectrometry. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1447. [PMID: 32235788 PMCID: PMC7143856 DOI: 10.3390/ma13061447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/20/2020] [Indexed: 11/17/2022]
Abstract
Nano-carrier systems such as liposomes have promising biomedical applications. Nevertheless, characterization of these complex samples is a challenging analytical task. In this study a coupled hydrodynamic chromatography-single particle-inductively coupled plasma mass spectrometry (HDC-spICP-MS) approach was validated based on the technical specification (TS) 19590:2017 of the international organization for standardization (ISO). The TS has been adapted to the hyphenated setup. The quality criteria (QC), e.g., linearity of the calibration, transport efficiency, were investigated. Furthermore, a cross calibration of the particle size was performed with values from dynamic light scattering (DLS) and transmission electron microscopy (TEM). Due to an additional Y-piece, an online-calibration routine was implemented. This approach allows the calibration of the ICP-MS during the dead time of the chromatography run, to reduce the required time and enhance the robustness of the results. The optimized method was tested with different gold nanoparticle (Au-NP) mixtures to investigate the characterization properties of HDC separations for samples with increasing complexity. Additionally, the technique was successfully applied to simultaneously determine both the hydrodynamic radius and the Au-NP content in liposomes. With the established hyphenated setup, it was possible to distinguish between different subpopulations with various NP loads and different hydrodynamic diameters inside the liposome carriers.
Collapse
Affiliation(s)
- Yves U Hachenberger
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Daniel Rosenkranz
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Fabian L Kriegel
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Benjamin Krause
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - René Matschaß
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Philipp Reichardt
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Jutta Tentschert
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Peter Laux
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | | | - Ulrich Panne
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Strasse 11, 12489 Berlin, Germany
| | - Andreas Luch
- Department of Chemical & Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| |
Collapse
|
31
|
Keller JG, Peijnenburg W, Werle K, Landsiedel R, Wohlleben W. Understanding Dissolution Rates via Continuous Flow Systems with Physiologically Relevant Metal Ion Saturation in Lysosome. NANOMATERIALS 2020; 10:nano10020311. [PMID: 32059359 PMCID: PMC7075195 DOI: 10.3390/nano10020311] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/29/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022]
Abstract
Dissolution rates of nanomaterials can be decisive for acute in vivo toxicity (via the released ions) and for biopersistence (of the remaining particles). Continuous flow systems (CFSs) can screen for both aspects, but operational parameters need to be adjusted to the specific physiological compartment, including local metal ion saturation. CFSs have two adjustable parameters: the volume flow-rate and the initial particle loading. Here we explore the pulmonary lysosomal dissolution of nanomaterials containing the metals Al, Ba, Zn, Cu over a wide range of volume flow-rates in a single experiment. We identify the ratio of particle surface area (SA) per volume flow-rate (SA/V) as critical parameter that superimposes all dissolution rates of the same material. Three complementary benchmark materials—ZnO (quick dissolution), TiO2 (very slow dissolution), and BaSO4 (partial dissolution)—consistently identify the SA/V range of 0.01 to 0.03 h/cm as predictive for lysosomal pulmonary biodissolution. We then apply the identified method to compare against non-nanoforms of the same substances and test aluminosilicates. For BaSO4 and TiO2, we find high similarity of the dissolution rates of their respective nanoform and non-nanoform, governed by the local ion solubility limit at relevant SA/V ranges. For aluminosilicates, we find high similarity of the dissolution rates of two Kaolin nanoforms but significant dissimilarity against Bentonite despite the similar composition.
Collapse
Affiliation(s)
- Johannes G. Keller
- BASF SE, Dept. Experimental Toxicology and Ecology and Dept. Advanced Materials Research, 67056 Ludwigshafen, Germany; (J.G.K.); (K.W.)
- Institute of Pharmacy, Faculty of Biology, Chemistry & Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment RIVM, 3721 Bilthoven, The Netherlands
- Institute of Environmental Sciences (CML), Leiden University, 2333 Leiden, The Netherlands
| | - Kai Werle
- BASF SE, Dept. Experimental Toxicology and Ecology and Dept. Advanced Materials Research, 67056 Ludwigshafen, Germany; (J.G.K.); (K.W.)
| | - Robert Landsiedel
- BASF SE, Dept. Experimental Toxicology and Ecology and Dept. Advanced Materials Research, 67056 Ludwigshafen, Germany; (J.G.K.); (K.W.)
| | - Wendel Wohlleben
- BASF SE, Dept. Experimental Toxicology and Ecology and Dept. Advanced Materials Research, 67056 Ludwigshafen, Germany; (J.G.K.); (K.W.)
- Correspondence: ; Tel.: +49-621-609-5339
| |
Collapse
|
32
|
Lung Toxicity Analysis of Nano-Sized Kaolin and Bentonite: Missing Indications for a Common Grouping. NANOMATERIALS 2020; 10:nano10020204. [PMID: 31991556 PMCID: PMC7075023 DOI: 10.3390/nano10020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/04/2023]
Abstract
Kaolin and bentonite (nanoclay NM-600) are nanostructured aluminosilicates that share a similar chemical composition, platelet-like morphology, and high binding capacity for biomolecules. To investigate if these material-based criteria allow for a common grouping, we prepared particle suspensions of kaolin and bentonite with a similar hydrodynamic diameter and administered them to NR8383 alveolar macrophages in vitro and also to a rat lung using quartz DQ12 as a reference material. Bentonite was far more bioactive in vitro, indicated by a lower threshold for the release of enzymes, tumor necrosis factor α, and H2O2. In addition, in the lung, the early effects of bentonite exceeded those of kaolin and even those of quartz, due to strongly increased numbers of inflammatory cells, and elevated concentrations of total protein and fibronectin within the bronchoalveolar lavage fluid. The pro-inflammatory effects of bentonite decreased over time, although assemblies of particle-laden alveolar macrophages (CD68 positive), numerous type-2 epithelial cells (immunopositive for pro-surfactant protein C), and hypertrophic lung epithelia persisted until day 21. At this point in time, kaolin-treated lungs were completely recovered, whereas quartz DQ12 had induced a progressive inflammation. We conclude that bentonite is far more bioactive than equally sized kaolin. This argues against a common grouping of aluminosilicates, previously suggested for different kaolin qualities.
Collapse
|
33
|
Lankone RS, Ruggiero E, Goodwin DG, Vilsmeier K, Mueller P, Pulbere S, Challis K, Bi Y, Westerhoff P, Ranville J, Fairbrother DH, Sung LP, Wohlleben W. Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NANOIMPACT 2020. [PMID: 33029568 DOI: 10.1016/j.impact.2019.100199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.
Collapse
Affiliation(s)
- Ronald S Lankone
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - David G Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Philipp Mueller
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Sorin Pulbere
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Katie Challis
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | - Yuqiang Bi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - James Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | | | - Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| |
Collapse
|
34
|
Challenges in sample preparation for measuring nanoparticles size by scanning electron microscopy from suspensions, powder form and complex media. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
35
|
Lankone RS, Ruggiero E, Goodwin DG, Vilsmeier K, Mueller P, Pulbere S, Challis K, Bi Y, Westerhoff P, Ranville J, Fairbrother DH, Sung LP, Wohlleben W. Evaluating performance, degradation, and release behavior of a nanoform pigmented coating after natural and accelerated weathering. NANOIMPACT 2020; 17:https://doi.org/10.1016/j.impact.2019.100199. [PMID: 33029568 PMCID: PMC7537477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/30/2024]
Abstract
Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.
Collapse
Affiliation(s)
- Ronald S. Lankone
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Emmanuel Ruggiero
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - David G. Goodwin
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Klaus Vilsmeier
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Philipp Mueller
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Sorin Pulbere
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| | - Katie Challis
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | - Yuqiang Bi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, USA
| | - James Ranville
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, USA
| | | | - Li-Piin Sung
- Engineering Laboratory, National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
| | - Wendel Wohlleben
- BASF SE, Dept. Material Physics & Analytics, Carl-Bosch-Strasse 38, Ludwigshafen 67056, Germany
| |
Collapse
|
36
|
Brüngel R, Rückert J, Wohlleben W, Babick F, Ghanem A, Gaillard C, Mech A, Rauscher H, Hodoroaba VD, Weigel S, Friedrich CM. NanoDefiner e-Tool: An Implemented Decision Support Framework for Nanomaterial Identification. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3247. [PMID: 31590255 PMCID: PMC6803960 DOI: 10.3390/ma12193247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/02/2022]
Abstract
The European Commission's recommendation on the definition of nanomaterial (2011/696/EU) established an applicable standard for material categorization. However, manufacturers face regulatory challenges during registration of their products. Reliable categorization is difficult and requires considerable expertise in existing measurement techniques (MTs). Additionally, organizational complexity is increased as different authorities' registration processes require distinct reporting. The NanoDefine project tackled these obstacles by providing the NanoDefiner e-tool: A decision support expert system for nanomaterial identification in a regulatory context. It provides MT recommendations for categorization of specific materials using a tiered approach (screening/confirmatory), and was constructed with experts from academia and industry to be extensible, interoperable, and adaptable for forthcoming revisions of the nanomaterial definition. An implemented MT-driven material categorization scheme allows detailed description. Its guided workflow is suitable for a variety of user groups. Direct feedback and explanation enable transparent decisions. Expert knowledge is held in a knowledge base for representation of MT performance criteria and physicochemical particle type properties. Continuous revision ensured data quality and validity. Recommendations were validated by independent case studies on industry-relevant particulate materials. Besides supporting material identification and registration, the free and open-source e-tool may serve as template for other expert systems within the nanoscience domain.
Collapse
Affiliation(s)
- Raphael Brüngel
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany.
| | - Johannes Rückert
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany.
| | - Wendel Wohlleben
- Material Physics Research, BASF SE, 67056 Ludwigshafen, Germany.
| | - Frank Babick
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden (TU Dresden), 01062 Dresden, Germany.
| | - Antoine Ghanem
- R&I Centre Brussels, Solvay S.A., 1120 Brussels, Belgium.
| | | | | | | | - Vasile-Dan Hodoroaba
- Division 6.1 Surface Analysis and Interfacial Chemistry, Bundesanstalt für Materialforschung und -prüfung (BAM), 12205 Berlin, Germany.
| | - Stefan Weigel
- Institute of Food Safety, RIKILT Wageningen UR, 6708 WB Wageningen, The Netherlands.
| | - Christoph M Friedrich
- Department of Computer Science, University of Applied Sciences and Arts Dortmund (FH Dortmund), 44227 Dortmund, Germany.
- Institute for Medical Informatics, Biometry and Epidemiology (IMIBE), University Hospital Essen, 45122 Essen, Germany.
| |
Collapse
|
37
|
Wohlleben W, Hellack B, Nickel C, Herrchen M, Hund-Rinke K, Kettler K, Riebeling C, Haase A, Funk B, Kühnel D, Göhler D, Stintz M, Schumacher C, Wiemann M, Keller J, Landsiedel R, Broßell D, Pitzko S, Kuhlbusch TAJ. The nanoGRAVUR framework to group (nano)materials for their occupational, consumer, environmental risks based on a harmonized set of material properties, applied to 34 case studies. NANOSCALE 2019; 11:17637-17654. [PMID: 31539006 DOI: 10.1039/c9nr03306h] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The project nanoGRAVUR (BMBF, 2015-2018) developed a framework for grouping of nanomaterials. Different groups may result for each of the three distinct perspectives of occupational, consumer and environmental safety. The properties, methods and descriptors are harmonised between the three perspectives and are based on: Tier 1 intrinsic physico-chemical properties (what they are) or GHS classification of the non-nano-form (human tox, ecotox, physical hazards); Tier 2 extrinsic physico-chemical properties, release from nano-enabled products, in vitro assays with cells (where they go; what they do); Tier 3 case-specific tests, potentially in vivo studies to substantiate the similarity within groups or application-specific exposure testing. Amongst all properties, dissolution and transformation are least modulated by different nanoforms within one substance, whereas dustiness, dispersion stability, abiotic and especially in vitro surface reactivity vary more often between different nanoforms. The methods developed or selected by nanoGRAVUR fill several gaps highlighted in the ProSafe reviews, and are useful to implement (i) the concept of nanoforms of the European Chemicals Agency (ECHA) and (ii) the concept of discrete forms of the United States Environmental Protection Agency (EPA). One cannot assess the significance of a dissimilarity, if the dynamic range of that property is unknown. Benchmark materials span dynamic ranges that enable us to establish bands, often with order-of-magnitude ranges. In 34 case studies we observed high biological similarity within each substance when we compared different (nano)forms of SiO2, BaSO4, kaolin, CeO2, ZnO, organic pigments, especially when we compared forms that are all untreated on the surface. In contrast, different Fe2O3 or TiO2 (nano)forms differ more significantly. The same nanoforms were also integrated in nano-enabled products (NEPs) for automotive coatings, clinker-reduced cements, cosmetic sunscreen, and lightweight polymers.
Collapse
Affiliation(s)
- Wendel Wohlleben
- BASF SE, Dept. of Material Physics and Dept. of Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dazon C, Witschger O, Bau S, Fierro V, Llewellyn PL. Toward an operational methodology to identify industrial-scaled nanomaterial powders with the volume specific surface area criterion. NANOSCALE ADVANCES 2019; 1:3232-3242. [PMID: 36133619 PMCID: PMC9418128 DOI: 10.1039/c9na00010k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/09/2019] [Indexed: 05/28/2023]
Abstract
Nanoparticulate powders are increasingly found in the workplace. Inhalation exposure to airborne nanoparticles (NPs) is possible throughout the life-cycle of the powders. As the toxicity of NPs has never been demonstrated, it remains essential to evaluate the risks associated with NPs in order to propose preventative measures. The first step of a risk assessment strategy consists in the identification of the 'nano' nature of a material, which suffers from a lack of an operational methodology. Here, we present a simplified and operational strategy relying on the volume specific surface area (VSSA) for nanomaterial identification, based on the recommendation stemming from the European Commission and previous work on this topic from the European Project Nanodefine. The proposed strategy was tested on a set of 15 representative industrial powders (TiO2, SiO2, CuO, and ZnO), covering a wide range of properties, and previous published data. The VSSA classification was validated via a comparison with the particle size obtained by transmission electron microscopy (TEM). It was evidenced that the VSSA is in accordance with particle size for nanomaterial powder classification. The proposed methodology involves relatively accessible methods such as thermogravimetric analysis, nitrogen adsorption and helium pycnometry and limits the detection of false negatives. Moreover, it does not imply systematic confirmation of the results with the reference particle size criterion. Our results suggest that the VSSA is a promising parameter to be used for risk assessment and should be further investigated on powder mixings to confirm its relevancy to define nanomaterial powders.
Collapse
Affiliation(s)
- Claire Dazon
- Laboratoire de Métrologie des Aerosols F-54519 Vandoeuvre lès Nancy France
| | - Olivier Witschger
- Laboratoire de Métrologie des Aerosols F-54519 Vandoeuvre lès Nancy France
| | - Sébastien Bau
- Laboratoire de Métrologie des Aerosols F-54519 Vandoeuvre lès Nancy France
| | - Vanessa Fierro
- Institut Jean Lamour, UMR CNRS 7198 F-88051 Epinal France
| | | |
Collapse
|
39
|
Ullmann C, Babick F, Stintz M. Microfiltration of Submicron-Sized and Nano-Sized Suspensions for Particle Size Determination by Dynamic Light Scattering. NANOMATERIALS 2019; 9:nano9060829. [PMID: 31159329 PMCID: PMC6630251 DOI: 10.3390/nano9060829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/24/2019] [Accepted: 05/30/2019] [Indexed: 01/05/2023]
Abstract
Dynamic light scattering (DLS) is commonly used for the determination of average particle diameters and suspension stability and popular in academics and industry. However, DLS is not considered suitable for polydisperse samples. The presence of little quantities of micrometre particles in nano and submicrometre suspensions especially affect the reliability of DLS results. Microfiltration might be a suitable method for the removal of unwanted large particles. This study investigates the effect of microfiltration on the diameter distributions as measured by DLS. Polystyrene standards (40–900 nm diameter), and monomodal silica suspensions were filtered with polytetrafluoroethylene (PTFE) membranes (0.1–1.0 µm pore size) to investigate retention properties and grade efficiency. Non-ideal materials were used to prove the results. Experiments showed that a mono-exponential decay can be achieved by filtration. A size safety factor of at least three between labeled pore size and average diameter was found to keep separation as low as possible. Filtration in order to enhance DLS for particulate submicrometre materials was considered suitable for narrowly distributed coated titania and kaolin powder. In a regulatory context, this might have an impact on considering a substance false positive or false negative according to the European Commission (EC) recommendation of a definition of the term nanomaterial.
Collapse
Affiliation(s)
- Christian Ullmann
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany.
| | - Frank Babick
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany.
| | - Michael Stintz
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany.
| |
Collapse
|
40
|
Miernicki M, Hofmann T, Eisenberger I, von der Kammer F, Praetorius A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. NATURE NANOTECHNOLOGY 2019; 14:208-216. [PMID: 30837754 DOI: 10.1038/s41565-019-0396-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 01/28/2019] [Indexed: 05/24/2023]
Abstract
The European Union (EU) has adopted nano-specific provisions for cosmetics, food and biocides, among others, which include binding definitions of the term "nanomaterial". Here we take an interdisciplinary approach to analyse the respective definitions from a legal and practical perspective. Our assessment reveals that the definitions contain several ill-defined terms such as "insoluble" or "characteristic properties" and/or are missing thresholds. Furthermore, the definitions pose major and so far unsolved analytical challenges that, in practice, make it nearly impossible to classify nanomaterials according to EU regulatory requirements. An important purpose of the regulations, the protection of human health and the environment, may remain unfulfilled and the development of innovative applications of nanomaterials may be facing a path full of (legal) uncertainties. Based on our findings, we provide five recommendations for a more coherent and practical approach towards the regulation of nanomaterials.
Collapse
Affiliation(s)
- Martin Miernicki
- University of Vienna, Department of Environmental Geosciences, Vienna, Austria
- University of Vienna, Department of Business Law, Vienna, Austria
| | - Thilo Hofmann
- University of Vienna, Department of Environmental Geosciences, Vienna, Austria.
- University of Vienna, Research Platform Nano-Norms-Nature, Vienna, Austria.
| | - Iris Eisenberger
- University of Vienna, Research Platform Nano-Norms-Nature, Vienna, Austria
- University of Natural Resources and Life Sciences, Vienna, Institute of Law, Vienna, Austria
| | | | - Antonia Praetorius
- University of Vienna, Research Platform Nano-Norms-Nature, Vienna, Austria.
| |
Collapse
|
41
|
Gaillard C, Mech A, Wohlleben W, Babick F, Hodoroaba VD, Ghanem A, Weigel S, Rauscher H. A technique-driven materials categorisation scheme to support regulatory identification of nanomaterials. NANOSCALE ADVANCES 2019; 1:781-791. [PMID: 36132245 PMCID: PMC9473175 DOI: 10.1039/c8na00175h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/01/2018] [Indexed: 05/31/2023]
Abstract
Worldwide there is a variety of regulatory provisions addressing nanomaterials. The identification as nanomaterial in a regulatory context often has the consequence that specific legal rules apply. In identifying nanomaterials, and to find out whether nanomaterial-specific provisions apply, the external size of particles is globally used as a criterion. For legal certainty, its assessment for regulatory purposes should be based on measurements and methods that are robust, fit for the purpose and ready to be accepted by different stakeholders and authorities. This should help to assure the safety of nanomaterials and at the same time facilitate their international trading. Therefore, we propose a categorisation scheme which is driven by the capabilities of common characterisation techniques for particle size measurement. Categorising materials according to this scheme takes into account the particle properties that are most important for a determination of their size. The categorisation is exemplified for the specific particle number based size metric of the European Commission's recommendation on the definition of nanomaterial, but it is applicable to other metrics as well. Matching the performance profiles of the measurement techniques with the material property profiles (i) allows selecting the most appropriate size determination technique for every type of material considered, (ii) enables proper identification of nanomaterials, and (iii) has the potential to be accepted by regulators, industry and consumers alike. Having such a scheme in place would facilitate the regulatory assessment of nanomaterials in regional legislation as well as in international relations between different regulatory regions assuring the safe trade of nanomaterials.
Collapse
Affiliation(s)
- Claire Gaillard
- European Commission, Joint Research Centre 21027 Ispra (VA) Italy
| | - Agnieszka Mech
- European Commission, Joint Research Centre 21027 Ispra (VA) Italy
| | | | - Frank Babick
- Technische Universität Dresden, Institute of Process Engineering and Environmental Technology Dresden Germany
| | | | - Antoine Ghanem
- Solvay - Research & Innovation Centre Brussels 1120 Brussels Belgium
| | - Stefan Weigel
- RIKILT - Wageningen UR 6708 Wageningen The Netherlands
| | - Hubert Rauscher
- European Commission, Joint Research Centre 21027 Ispra (VA) Italy
| |
Collapse
|
42
|
Dazon C, Maxit B, Witschger O. Comparison between a low-voltage benchtop electron microscope and conventional TEM for number size distribution of nearly spherical shape constituent particles of nanomaterial powders and colloids. Micron 2018; 116:124-129. [PMID: 30388437 DOI: 10.1016/j.micron.2018.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/13/2018] [Accepted: 09/13/2018] [Indexed: 11/28/2022]
Abstract
Nanomaterial powders and colloids are already a large industry and are expected to continue to grow rapidly. In the context of risk assessment associated with nanomaterials, characterization of nanoparticle size and morphology is required. Until now, the best method giving direct access to these parameters has been electron microscopy (EM), in particular, transmission electron microscopy (TEM). Although this method is widely used, several issues are highlighted such as cost, maintenance, sample representativity and damage for sensitive materials. Low-voltage transmission electron microscopes (LVTEMs) could be an alternative approach to solve some of these issues. This paper presents a first comparison between a benchtop LVTEM and a conventional device to determine the number size distribution of the constitutent particles of two polydispersed industrial powders (TiO2 and SiO2) with particle sizes close to 100 nm and two colloids referenced for their particle size (ERM FD 304 and NM 300 K). The samples were prepared with an optimized deposition protocol involving glow discharging and Alcian blue solution pre-treatment on the EM grids. The benchtop LVTEM produced a rather good resolution and the relative differences obtained for the median diameters D50 are generally within ± 15 %. On the basis of these results, benchtop LVTEM could be promoted for identifying nanomaterials within the framework of risk assessment strategy.
Collapse
Affiliation(s)
- C Dazon
- Institut National de Recherche et de Sécurité, INRS, Laboratoire de Métrologie des Aérosols, Rue du Morvan CS 60027, 54519 Vandoeuvre Cedex, France
| | - B Maxit
- Cordouan Technologies, Cité de la photonique, Pessac, France
| | - O Witschger
- Institut National de Recherche et de Sécurité, INRS, Laboratoire de Métrologie des Aérosols, Rue du Morvan CS 60027, 54519 Vandoeuvre Cedex, France.
| |
Collapse
|
43
|
Kah M, Kookana RS, Gogos A, Bucheli TD. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. NATURE NANOTECHNOLOGY 2018; 13:677-684. [PMID: 29736032 DOI: 10.1038/s41565-018-0131-1] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/29/2018] [Indexed: 05/20/2023]
Abstract
Among a wide range of possible applications of nanotechnology in agriculture, there has been a particular interest in developing novel nanoagrochemicals. While some concerns have been expressed regarding altered risk profile of the new products, many foresee a great potential to support the necessary increase in global food production in a sustainable way. A critical evaluation of nanoagrochemicals against conventional analogues is essential to assess the associated benefits and risks. In this assessment, recent literature was critically analysed to determine the extent to which nanoagrochemicals differ from conventional products. Our analysis was based on 78 published papers and shows that median gain in efficacy relative to conventional products is about 20-30%. Environmental fate of agrochemicals can be altered by nanoformulations, but changes may not necessarily translate in a reduction of the environmental impact. Many studies lacked nano-specific quality assurance and adequate controls. Currently, there is no comprehensive study in the literature that evaluates efficacy and environmental impact of nanoagrochemicals under field conditions. This is a crucial knowledge gap and more work will thus be necessary for a sound evaluation of the benefits and new risks that nanoagrochemicals represent relative to existing products.
Collapse
Affiliation(s)
- Melanie Kah
- Department of Environmental Geosciences and Environmental Science Research Network, University of Vienna, Vienna, Austria.
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Adelaide, South Australia, Australia.
| | - Rai Singh Kookana
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Land and Water, Adelaide, South Australia, Australia
| | - Alexander Gogos
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | | |
Collapse
|
44
|
Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen HK, More S, Naegeli H, Noteborn H, Ockleford C, Ricci A, Rychen G, Schlatter JR, Silano V, Solecki R, Turck D, Younes M, Chaudhry Q, Cubadda F, Gott D, Oomen A, Weigel S, Karamitrou M, Schoonjans R, Mortensen A. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J 2018; 16:e05327. [PMID: 32625968 PMCID: PMC7009542 DOI: 10.2903/j.efsa.2018.5327] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The European Food Safety Authority has produced this Guidance on human and animal health aspects (Part 1) of the risk assessment of nanoscience and nanotechnology applications in the food and feed chain. It covers the application areas within EFSA's remit, e.g. novel foods, food contact materials, food/feed additives and pesticides. The Guidance takes account of the new developments that have taken place since publication of the previous Guidance in 2011. Potential future developments are suggested in the scientific literature for nanoencapsulated delivery systems and nanocomposites in applications such as novel foods, food/feed additives, biocides, pesticides and food contact materials. Therefore, the Guidance has taken account of relevant new scientific studies that provide more insights to physicochemical properties, exposure assessment and hazard characterisation of nanomaterials. It specifically elaborates on physicochemical characterisation of nanomaterials in terms of how to establish whether a material is a nanomaterial, the key parameters that should be measured, the methods and techniques that can be used for characterisation of nanomaterials and their determination in complex matrices. It also details the aspects relating to exposure assessment and hazard identification and characterisation. In particular, nanospecific considerations relating to in vivo/in vitro toxicological studies are discussed and a tiered framework for toxicological testing is outlined. It describes in vitro degradation, toxicokinetics, genotoxicity as well as general issues relating to testing of nanomaterials. Depending on the initial tier results, studies may be needed to investigate reproductive and developmental toxicity, immunotoxicity, allergenicity, neurotoxicity, effects on gut microbiome and endocrine activity. The possible use of read‐across to fill data gaps as well as the potential use of integrated testing strategies and the knowledge of modes/mechanisms of action are also discussed. The Guidance proposes approaches to risk characterisation and uncertainty analysis, and provides recommendations for further research in this area. This publication is linked to the following EFSA Supporting Publications article: http://onlinelibrary.wiley.com/doi/10.2903/sp.efsa.2018.EN-1430/full
Collapse
|
45
|
Fleming PJ, Fleming KG. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties. Biophys J 2018; 114:856-869. [PMID: 29490246 PMCID: PMC5984988 DOI: 10.1016/j.bpj.2018.01.002] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 11/16/2022] Open
Abstract
Hydrodynamic properties are useful parameters for estimating the size and shape of proteins and nucleic acids in solution. The calculation of such properties from structural models informs on the solution properties of these molecules and complements corresponding structural studies. Here we report, to our knowledge, a new method to accurately predict the hydrodynamic properties of molecular structures. This method uses a convex hull model to estimate the hydrodynamic volume of the molecule and is orders of magnitude faster than common methods. It works well for both folded proteins and ensembles of conformationally heterogeneous proteins and for nucleic acids. Because of its simplicity and speed, the method should be useful for the modification of computer-generated, intrinsically disordered protein ensembles and ensembles of flexible, but folded, molecules in which rapid calculation of experimental parameters is needed. The convex hull method is implemented in a Python script called HullRad. The use of the method is facilitated by a web server and the code is freely available for batch applications.
Collapse
Affiliation(s)
- Patrick J Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Karen G Fleming
- T. C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
46
|
Rasmussen K, Rauscher H, Mech A, Riego Sintes J, Gilliland D, González M, Kearns P, Moss K, Visser M, Groenewold M, Bleeker EAJ. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul Toxicol Pharmacol 2018; 92:8-28. [PMID: 29074277 PMCID: PMC5817049 DOI: 10.1016/j.yrtph.2017.10.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/03/2017] [Accepted: 10/19/2017] [Indexed: 11/27/2022]
Abstract
Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted.
Collapse
Affiliation(s)
- Kirsten Rasmussen
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Hubert Rauscher
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Agnieszka Mech
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Juan Riego Sintes
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Douglas Gilliland
- European Commission, Joint Research Centre, Ispra, Via E. Fermi 2749, 21027 Ispra, VA, Italy.
| | - Mar González
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775 Paris CEDEX 16, France.
| | - Peter Kearns
- Organisation for Economic Co-operation and Development (OECD), Environment Directorate, 75775 Paris CEDEX 16, France.
| | - Kenneth Moss
- United States Environmental Protection Agency (US-EPA), Office of Pollution Prevention and Toxics (7405M), 1200 Pennsylvania Avenue, NW, Washington DC, 20460 United States.
| | - Maaike Visser
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Monique Groenewold
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| |
Collapse
|
47
|
Lecloux AJ, Atluri R, Kolen'ko YV, Deepak FL. Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition. Part two: experimental approach. NANOSCALE 2017; 9:14952-14966. [PMID: 28953278 DOI: 10.1039/c7nr02585h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The first part of this study was dedicated to the modelling of the influence of particle shape, porosity and particle size distribution on the volume specific surface area (VSSA) values in order to check the applicability of this concept to the identification of nanomaterials according to the European Commission Recommendation. In this second part, experimental VSSA values are obtained for various samples from nitrogen adsorption isotherms and these values were used as a screening tool to identify and classify nanomaterials. These identification results are compared to the identification based on the 50% of particles with a size below 100 nm criterion applied to the experimental particle size distributions obtained by analysis of electron microscopy images on the same materials. It is concluded that the experimental VSSA values are able to identify nanomaterials, without false negative identification, if they have a mono-modal particle size, if the adsorption data cover the relative pressure range from 0.001 to 0.65 and if a simple, qualitative image of the particles by transmission or scanning electron microscopy is available to define their shape. The experimental conditions to obtain reliable adsorption data as well as the way to analyze the adsorption isotherms are described and discussed in some detail in order to help the reader in using the experimental VSSA criterion. To obtain the experimental VSSA values, the BET surface area can be used for non-porous particles, but for porous, nanostructured or coated nanoparticles, only the external surface of the particles, obtained by a modified t-plot approach, should be considered to determine the experimental VSSA and to avoid false positive identification of nanomaterials, only the external surface area being related to the particle size. Finally, the availability of experimental VSSA values together with particle size distributions obtained by electron microscopy gave the opportunity to check the representativeness of the two models described in the first part of this study. They were also used to calculate the VSSA values and these calculated values were compared to the experimental results. For narrow particle size distributions, both models give similar VSSA values quite comparable to the experimental ones. But when the particle size distribution broadens or is of multi-bimodal shape, as theoretically predicted, one model leads to VSSA values higher than the experimental ones while the other most often leads to VSSA values lower than the experimental ones. The experimental VSSA approach then appears as a reliable, simple screening tool to identify nano and non-nano-materials. The modelling approach cannot be used as a formal identification tool but could be useful to screen for potential effects of shape, polydispersity and size, for example to compare various possible nanoforms.
Collapse
Affiliation(s)
- André J Lecloux
- ENVICAT Consulting, Avenue Montesquieu 36, B-1300 Wavre, Belgium.
| | | | | | | |
Collapse
|
48
|
Fiala P, Göhler D, Wessely B, Stintz M, Lazzerini GM, Yacoot A. Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:1774-1785. [PMID: 28904839 PMCID: PMC5588544 DOI: 10.3762/bjnano.8.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
Dimensional measurements on nano-objects by atomic force microscopy (AFM) require samples of safely fixed and well individualized particles with a suitable surface-specific particle number on flat and clean substrates. Several known and proven particle preparation methods, i.e., membrane filtration, drying, rinsing, dip coating as well as electrostatic and thermal precipitation, were performed by means of scanning electron microscopy to examine their suitability for preparing samples for dimensional AFM measurements. Different suspensions of nano-objects (with varying material, size and shape) stabilized in aqueous solutions were prepared therefore on different flat substrates. The drop-drying method was found to be the most suitable one for the analysed suspensions, because it does not require expensive dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique.
Collapse
Affiliation(s)
- Petra Fiala
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany
| | - Daniel Göhler
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany
| | - Benno Wessely
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany
| | - Michael Stintz
- Research Group Mechanical Process Engineering, Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, Münchner Platz 3, D-01062 Dresden, Germany
| | | | - Andrew Yacoot
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
| |
Collapse
|
49
|
Hüffer T, Praetorius A, Wagner S, von der Kammer F, Hofmann T. Microplastic Exposure Assessment in Aquatic Environments: Learning from Similarities and Differences to Engineered Nanoparticles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2499-2507. [PMID: 28125881 DOI: 10.1021/acs.est.6b04054] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Microplastics (MPs) have been identified as contaminants of emerging concern in aquatic environments and research into their behavior and fate has been sharply increasing in recent years. Nevertheless, significant gaps remain in our understanding of several crucial aspects of MP exposure and risk assessment, including the quantification of emissions, dominant fate processes, types of analytical tools required for characterization and monitoring, and adequate laboratory protocols for analysis and hazard testing. This Feature aims at identifying transferrable knowledge and experience from engineered nanoparticle (ENP) exposure assessment. This is achieved by comparing ENP and MPs based on their similarities as particulate contaminants, whereas critically discussing specific differences. We also highlight the most pressing research priorities to support an efficient development of tools and methods for MPs environmental risk assessment.
Collapse
Affiliation(s)
- Thorsten Hüffer
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| | - Antonia Praetorius
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
- University of Vienna , Research Platform Nano-Norms-Nature, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephan Wagner
- Helmholtz Centre for Environmental Research - UFZ, Department of Analytical Chemistry , Permoserstrasse 15, 04318 Leipzig, Germany
| | - Frank von der Kammer
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
| | - Thilo Hofmann
- University of Vienna , Department of Environmental Geosciences and Environmental Science Research Network, Althanstrasse 14, 1090 Vienna, Austria
- University of Vienna , Research Platform Nano-Norms-Nature, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
50
|
Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Front Chem 2017; 5:6. [PMID: 28271059 PMCID: PMC5318410 DOI: 10.3389/fchem.2017.00006] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/06/2017] [Indexed: 12/22/2022] Open
Abstract
Silver nanoparticles (AgNPs) show different physical and chemical properties compared to their macroscale analogs. This is primarily due to their small size and, consequently, the exceptional surface area of these materials. Presently, advances in the synthesis, stabilization, and production of AgNPs have fostered a new generation of commercial products and intensified scientific investigation within the nanotechnology field. The use of AgNPs in commercial products is increasing and impacts on the environment and human health are largely unknown. This article discusses advances in AgNP production and presents an overview of the commercial, societal, and environmental impacts of this emerging nanoparticle (NP), and nanomaterials in general. Finally, we examine the challenges associated with AgNP characterization, discuss the importance of the development of NP reference materials (RMs) and explore their role as a metrological mechanism to improve the quality and comparability of NP measurements.
Collapse
Affiliation(s)
- Bryan Calderón-Jiménez
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and TechnologyGaithersburg, MD, USA
- Chemical Metrology Division, National Laboratory of MetrologySan Jose, Costa Rica
| | - Monique E. Johnson
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and TechnologyGaithersburg, MD, USA
| | - Antonio R. Montoro Bustos
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and TechnologyGaithersburg, MD, USA
| | - Karen E. Murphy
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and TechnologyGaithersburg, MD, USA
| | - Michael R. Winchester
- Material Measurement Laboratory, Chemical Sciences Division, National Institute of Standards and TechnologyGaithersburg, MD, USA
| | - José R. Vega Baudrit
- National Laboratory of Nanotechnology, National Center of High TechnologySan Jose, Costa Rica
| |
Collapse
|