1
|
Kim J, Jeong J, Jo JK, So H. Hollow microneedles as a flexible dosing control solution for transdermal drug delivery. Mater Today Bio 2025; 32:101754. [PMID: 40290896 PMCID: PMC12033995 DOI: 10.1016/j.mtbio.2025.101754] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
Microneedles, small needle-like structures typically less than 1000 μm in length, are effective tools for transporting substances across biological barriers via minimally invasive pathways. Various microelectromechanical system (MEMS) processes enable the production of different types of microneedles, including solid, coated, dissolving, hydrogel, and hollow microneedles, each tailored to specific drug and fluid delivery mechanisms. Among these, hollow microneedles stand out for their ability to offer flexible dosage control adaptable to varying drug formulations, making them particularly promising for transdermal drug delivery systems. This review examines the fabrication processes of hollow microneedles, highlights the advantages of their hollow structure for medical applications, and discusses the key factors influencing their performance. Finally, it proposes directions for advancing these technologies in both industrial and research settings.
Collapse
Affiliation(s)
- Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jaeheon Jeong
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Jung Ki Jo
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Urology, College of Medicine, Hanyang University, Seoul, 04763, South Korea
| | - Hongyun So
- Department of Medical and Digital Engineering, Hanyang University, Seoul, 04763, South Korea
- Department of Mechanical Engineering, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
2
|
Mohizin A, Sung B. Biophysical simulation of transcutaneous drug delivery for the rational design of hollow microneedle-based insulin infusion. Comput Biol Med 2025; 193:110365. [PMID: 40403633 DOI: 10.1016/j.compbiomed.2025.110365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 05/24/2025]
Abstract
Drug delivery through the skin using miniaturised needles is a promising microtechnology-based strategy for precise control of drug release dynamics. Active injection of therapeutic insulin through hollow microneedles has recently been implemented as patch-type microsystems in which liquid dispensers and drug reservoirs are integrated with the microneedle array. Nevertheless, little is known about the relationship of the micro-infusion parameters, such as the microfluid flow rate, geometry and opening size of hollow microneedle, and needle insertion depth, to the biomechanics of viable skin multilayers and its associated pain perception, and to insulin absorption kinetics by microcirculation. In this study, we developed a novel computational modelling method that encapsulates numerical analysis modules to simulate (i) insulin infusion processes by intradermal and subcutaneous injection, (ii) skin tissue deformation and pain sensation during micro-infusion, and (iii) microfluid transport and pharmacokinetics. Our model predicts that the convection-diffusion behaviour of the insulin solution in the tissue matrix can be dramatically affected by the different target skin layers, that is, the dermis and hypodermis. Furthermore, this could be extended to the differences in insulin absorption kinetics depending on the skin layer where insulin is injected. We found that coupling between the biomicrofluidics of insulin infusion and the biomechanics of heterogeneous skin tissues could result in a prominent variation in plasma insulin concentration as a function of time. In addition, a numerical relationship between the pain perception level and microflow characteristics at the opening of the needle tip was obtained. Our model could serve as a versatile tool for designing skin drug delivery microdevices, by considering the quantitative interactions of the multifaceted biophysical mechanisms involved in microneedle-based drug infusion.
Collapse
Affiliation(s)
- Abdul Mohizin
- Biosensor Group, KIST Europe Forschungsgesellschaft mbH, 66123, Saarbrücken, Germany
| | - Baeckkyoung Sung
- Biosensor Group, KIST Europe Forschungsgesellschaft mbH, 66123, Saarbrücken, Germany; Division of Energy & Environment Technology, University of Science & Technology, 34113, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Justyna K, Patrycja Ś, Krzysztof M, Rafał W. Dissolving microneedles fabricated from 3D-printed master molds for application in veterinary medicine. Sci Rep 2025; 15:14102. [PMID: 40269064 PMCID: PMC12019400 DOI: 10.1038/s41598-025-98984-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025] Open
Abstract
Microneedle (MN) technology is gaining popularity as it offers many benefits and advantages over the conventional drug delivery methods. The transdermal drug delivery system (TDDS) with MNs offers painless, precise, and easy-to-use solutions that can be obtained using cost-effective technologies such as 3D printing. Numerous examples of microneedle applications have been reported for human use, especially given the context of the recent pandemic and the development of vaccination technologies. However, there is limited exploration of microneedles in veterinary medicine. In the following work, we presented a proposal for the efficient production of quickly dissolving microneedle patches from PVP (polyvinylpyrrolidone) and PVA (polyvinyl alcohol) polymers based on a model microneedle array printed using DLP (Digital Light Processing) technology. We have developed a repeatable process in which the obtained microneedles can easily penetrate the outer layers of skin and quickly deliver the model drug. Such a versatile platform can be used, among others, in the treatment of animal gingival diseases, which affect a significant amount of the cat and dog population. An important advantage of the presented solution is the possibility of implementing the whole technological process in a veterinary office in a short time and the possibility of easy adjusting the size of the patches to a specific animal.
Collapse
Affiliation(s)
- Kornicka Justyna
- Division of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wrocław, Poland.
| | - Śniadek Patrycja
- Division of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wrocław, Poland
| | - Marycz Krzysztof
- International Institute of Translational Medicine, Jesionowa 11, 55-114, Malin, Poland
| | - Walczak Rafał
- Division of Microsystems, Faculty of Electronics, Photonics and Microsystems, Wroclaw University of Science and Technology, 27 Wybrzeze Wyspianskiego Street, 50-370, Wrocław, Poland
| |
Collapse
|
4
|
Guan W, Zhang L. Applications and prospects of biomaterials in diabetes management. Front Bioeng Biotechnol 2025; 13:1547343. [PMID: 40124248 PMCID: PMC11926158 DOI: 10.3389/fbioe.2025.1547343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/30/2025] [Indexed: 03/25/2025] Open
Abstract
Diabetes is a widespread metabolic disorder that presents considerable challenges in its management. Recent advancements in biomaterial research have shed light on innovative approaches for the treatment of diabetes. This review examines the role of biomaterials in diabetes diagnosis and treatment, as well as their application in managing diabetic wounds. By evaluating recent research developments alongside future obstacles, the review highlights the promising potential of biomaterials in diabetes care, underscoring their importance in enhancing patient outcomes and refining treatment methodologies.
Collapse
Affiliation(s)
- Wenhe Guan
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Liang Zhang
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Shu W, Kilroy S, Ní Annaidh A, O'Cearbhaill ED. Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery. Acta Biomater 2025; 194:233-245. [PMID: 39710220 DOI: 10.1016/j.actbio.2024.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions. This may impede the accuracy of MNs pre-clinical assessments. Here, we develop a multiphysics finite element model which simulates the biomechanics of microneedle skin penetration and the subsequent permeation of therapeutics. Employing the aqueous pore path hypothesis, we consider how strain (induced through the insertion of a MN), affects pore geometry in the skin and therefore the diffusion of therapeutics. Our models show that considering the insertion-induced skin deformation alone reduces the transdermal permeation of insulin by 25 %, while considering the effect of strain can reduce the overall permeation by a further 45 % over 24 h. Our model also indicates that once the mechanical strain is removed i.e. through removal or dissolution of the array, the permeation through the skin will recover. Furthermore, our results indicate that the delivery of high molecular weight compounds may be most susceptible to strain-induced changes in drug permeation. These findings could have significant implications for the preferred type of microneedle administration when targeting, for example, intradermal or transdermal delivery. STATEMENT OF SIGNIFICANCE: This manuscript presents an advanced computational model of microneedle insertion into human skin. Here, we adopt a multiphysics modelling strategy, where we predict the influence of microneedle insertion on skin deformation and strain and how that influences subsequent therapeutic permeation through the skin. Our model predicts that whether or not the microneedle remains in situ, the resultant change in tissue deformation and strain has a major impact on how quickly the therapeutic diffuses through the skin. This has important implications for transdermal device design, administration strategies and protocols and associated clinical studies, where either intradermal or transdermal therapeutic delivery is being targetted.
Collapse
Affiliation(s)
- Wenting Shu
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sean Kilroy
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Aisling Ní Annaidh
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Eoin D O'Cearbhaill
- UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
6
|
Benbrook N, Zhan W. Mathematical modelling of hollow microneedle-mediated transdermal drug delivery. Drug Deliv Transl Res 2025:10.1007/s13346-025-01801-3. [PMID: 39913061 DOI: 10.1007/s13346-025-01801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/07/2025]
Abstract
Hollow microneedles represent a promising approach for overcoming the protective barrier of the stratum corneum, facilitating direct drug infusion into viable skin tissue and thereby enhancing the efficacy of transdermal delivery. However, delivery outcomes across different skin layers and into the systemic circulation can vary substantially due to the diverse properties of drug delivery systems, clinical settings, and environmental factors. The optimal strategies for enhancing the efficiency of hollow microneedle-mediated transdermal drug delivery remain to be elucidated. This study employs mathematical modelling and a reconstructed skin model with realistic anatomical structures to investigate drug transport and accumulation across different skin layers and into the bloodstream under different delivery conditions. The modelling results reveal the crucial role of interstitial fluid flow in determining drug transport in this transdermal delivery. Delivery outcomes of each skin layer and blood exhibit distinct responses to changes in delivery conditions. Specifically, increasing the vascular permeability or nanocarrier diffusivity raises drug concentration in the blood or reticular dermis, respectively, while leading to reductions in other skin layers. The use of microneedles with narrower infusion channels can only enhance drug availability in the viable epidermis. Optimisation requires a tailored approach to several parameters depending on the target skin layer, including drug release rate, infusion rate, infusion duration, and microneedle length. Environmental factors that promote trans-epidermal water loss can increase drug concentration in the viable epidermis but have a limited impact on deeper skin tissues. The findings support the selection or customisation of hollow microneedles and nanocarriers to address specific therapeutic needs, such as targeting specific skin layers or systemic circulation, while minimising the risk of side effects from high drug concentrations in normal tissues. This study provides guidance for optimising transdermal drug delivery systems.
Collapse
Affiliation(s)
- Neil Benbrook
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Wenbo Zhan
- School of Engineering, University of Aberdeen, Aberdeen, AB24 3UE, UK.
| |
Collapse
|
7
|
Lin Y, Dervisevic M, Yoh HZ, Guo K, Voelcker NH. Tailoring Design of Microneedles for Drug Delivery and Biosensing. Mol Pharm 2025; 22:678-707. [PMID: 39813711 DOI: 10.1021/acs.molpharmaceut.4c01266] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Microneedles (MNs) are emerging as versatile tools for both therapeutic drug delivery and diagnostic monitoring. Unlike hypodermic needles, MNs achieve these applications with minimal or no pain and customizable designs, making them suitable for personalized medicine. Understanding the key design parameters and the challenges during contact with biofluids is crucial to optimizing their use across applications. This review summarizes the current fabrication techniques and design considerations tailored to meet the distinct requirements for drug delivery and biosensing applications. We further underscore the current state of theranostic MNs that integrate drug delivery and biosensing and propose future directions for advancing MNs toward clinical use.
Collapse
Affiliation(s)
- Yuexi Lin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Muamer Dervisevic
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
| | - Hao Zhe Yoh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Keying Guo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion-Israel Institute of Technology, Shantou 515063, China
| | - Nicolas H Voelcker
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Materials Science and Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
8
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
9
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
10
|
Babu MR, Vishwas S, Khursheed R, Harish V, Sravani AB, Khan F, Alotaibi B, Binshaya A, Disouza J, Kumbhar PS, Patravale V, Gupta G, Loebenberg R, Arshad MF, Patel A, Patel S, Dua K, Singh SK. Unravelling the role of microneedles in drug delivery: Principle, perspectives, and practices. Drug Deliv Transl Res 2024; 14:1393-1431. [PMID: 38036849 DOI: 10.1007/s13346-023-01475-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2023] [Indexed: 12/02/2023]
Abstract
In recent year, the research of transdermal drug delivery systems has got substantial attention towards the development of microneedles (MNs). This shift has occurred due to multifaceted advantages of MNs as they can be utilized to deliver the drug deeper to the skin with minimal invasion, offer successful delivery of drugs and biomolecules that are susceptible to degradation in gastrointestinal tract (GIT), act as biosensors, and help in monitoring the level of biomarkers in the body. These can be fabricated into different types based on their applications as well as material for fabrication. Some of their types include solid MNs, hollow MNs, coated MNs, hydrogel forming MNs, and dissolving MNs. These MNs deliver the therapeutics via microchannels deeper into the skin. The coated and hollow MNs have been found successful. However, they suffer from poor drug loading and blocking of pores. In contrast, dissolving MNs offer high drug loading. These MNs have also been utilized to deliver vaccines and biologicals. They have also been used in cosmetics. The current review covers the different types of MNs, materials used in their fabrication, properties of MNs, and various case studies related to their role in delivering therapeutics, monitoring level of biomarkers/hormones in body such as insulin. Various patents and clinical trials related to MNs are also covered. Covered are the major bottlenecks associated with their clinical translation and potential future perspectives.
Collapse
Affiliation(s)
- Molakpogu Ravindra Babu
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Anne Boyina Sravani
- Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Farhan Khan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Abdulkarim Binshaya
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - John Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala , Kolhapur, Maharashtra, 416113, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, Maharashtra, 400019, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura , 30201, Jaipur, India
| | - Raimar Loebenberg
- University of Alberta, Faculty of Pharmacy and Pharmaceutical Sciences, Edmonton , AB T6G2N8, Alberta, Canada
| | - Mohammed Faiz Arshad
- Department of Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | - Archita Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Samir Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, At & Post: Changa, Tal.:- Petlad, Dist.:- Anand-388 421, Gujarat, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
11
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
12
|
Amouzadeh Tabrizi M. A Facile Method for the Fabrication of the Microneedle Electrode and Its Application in the Enzymatic Determination of Glutamate. BIOSENSORS 2023; 13:828. [PMID: 37622914 PMCID: PMC10452303 DOI: 10.3390/bios13080828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Herein, a simple method has been used in the fabrication of a microneedle electrode (MNE). To do this, firstly, a commercial self-dissolving microneedle patch has been used to make a hard-polydimethylsiloxane-based micro-pore mold (MPM). Then, the pores of the MPM were filled with the conductive platinum (Pt) paste and cured in an oven. Afterward, the MNE made of platinum (Pt-MNE) was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and scanning electron microscopy (SEM). To prove the electrochemical applicability of the Pt-MNE, the glutamate oxidase enzyme was immobilized on the surface of the electrode, to detect glutamate, using the cyclic voltammetry (CV) and chronoamperometry (CA) methods. The obtained results demonstrated that the fabricated biosensor could detect a glutamate concentration in the range of 10-150 µM. The limits of detection (LODs) (three standard deviations of the blank/slope) were also calculated to be 0.25 µM and 0.41 µM, using CV and CA, respectively. Furthermore, the Michaelis-Menten constant (KMapp) of the biosensor was calculated to be 296.48 µM using a CA method. The proposed biosensor was finally applied, to detect the glutamate concentration in human serum samples. The presented method for the fabrication of the mold signifies a step further toward the fabrication of a microneedle electrode.
Collapse
|
13
|
Monou PK, Andriotis EG, Tsongas K, Tzimtzimis EK, Katsamenis OL, Tzetzis D, Anastasiadou P, Ritzoulis C, Vizirianakis IS, Andreadis D, Fatouros DG. Fabrication of 3D Printed Hollow Microneedles by Digital Light Processing for the Buccal Delivery of Actives. ACS Biomater Sci Eng 2023; 9:5072-5083. [PMID: 37528336 DOI: 10.1021/acsbiomaterials.3c00116] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
In the present study, two different microneedle devices were produced using digital light processing (DLP). These devices hold promise as drug delivery systems to the buccal tissue as they increase the permeability of actives with molecular weights between 600 and 4000 Da. The attached reservoirs were designed and printed along with the arrays as a whole device. Light microscopy was used to quality control the printability of the designs, confirming that the actual dimensions are in agreement with the digital design. Non-destructive volume imaging by means of microfocus computed tomography was employed for dimensional and defect characterization of the DLP-printed devices, demonstrating the actual volumes of the reservoirs and the malformations that occurred during printing. The penetration test and finite element analysis showed that the maximum stress experienced by the needles during the insertion process (10 N) was below their ultimate compressive strength (240-310 N). Permeation studies showed the increased permeability of three model drugs when delivered with the MN devices. Size-exclusion chromatography validated the stability of all the actives throughout the permeability tests. The safety of these printed devices for buccal administration was confirmed by histological evaluation and cell viability studies using the TR146 cell line, which indicated no toxic effects.
Collapse
Affiliation(s)
- Paraskevi Kyriaki Monou
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| | - Eleftherios G Andriotis
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Tsongas
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
- Department of Industrial Engineering and Management, International Hellenic University, Thessaloniki 57001, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Orestis L Katsamenis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, Thessaloniki 57001, Greece
| | - Pinelopi Anastasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Thessaloniki 57400, Greece
| | - Ioannis S Vizirianakis
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
- Department of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Department of Life and Health Sciences, University of Nicosia, Nicosia CY-1700, Cyprus
| | - Dimitrios Andreadis
- μ-VIS X-ray Imaging Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, U.K
| | - Dimitrios G Fatouros
- Department of Pharmacy Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
- Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Thessaloniki 57001, Greece
| |
Collapse
|
14
|
Lammerding LC, Breitkreutz J. Technical evaluation of precisely manufacturing customized microneedle array patches via inkjet drug printing. Int J Pharm 2023:123173. [PMID: 37369288 DOI: 10.1016/j.ijpharm.2023.123173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Dissolvable microneedle array patches offer the possibility to deliver active pharmaceutical ingredients bypassing the gastrointestinal tract by piercing the stratum corneum. Usually, microneedles are produced by micromolding but this often results in a waste of active pharmaceutical ingredient. In this study, inkjet printing was investigated as a manufacturing technology for dissolvable microneedle array patches. A suitable ink for the printing process was developed for lisinopril as a peptidomimetic model drug. The printing process was optimized. Povidone was found to be a promising polymer for the precise and smooth production of dissolvable microneedles. Different patterns of microneedles and blank spaces were successfully printed into one microneedle array patch. It was possible to exactly define the cavities to be filled. The amount of lisinopril was precisely adjusted between 95.14 and 99.26 % of the target dose. The applied method demonstrated the precise dosage opportunities of the inkjet printing methodology for customization and drug waste reduction. Inkjet printing could be used as a precise manufacturing method for personalized microneedle array patches as well as to combine incompatible drug substances in a single patch.
Collapse
Affiliation(s)
- Lukas C Lammerding
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Duesseldorf, Germany
| | - Jörg Breitkreutz
- Heinrich Heine University Duesseldorf, Institute of Pharmaceutics and Biopharmaceutics, Universitätsstraße 1, 40225 Duesseldorf, Germany.
| |
Collapse
|
15
|
Anbazhagan G, Suseela SB, Sankararajan R. Design, analysis and fabrication of solid polymer microneedle patch using CO 2 laser and polymer molding. Drug Deliv Transl Res 2023; 13:1813-1827. [PMID: 36807879 DOI: 10.1007/s13346-023-01296-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
Microneedle-based transdermal drug delivery into the skin has gained attraction for the past few years. An affordable and effective fabrication methodology is required for the development of micron size needle. Manufacturing cost-effective microneedle patches in batch production is a challenging process. In this work, we proposed a cleanroom-free technique for fabrication of conical and pyramidal geometry of microneedle array for transdermal drug delivery. Using the COMSOL Multiphysics tool, the mechanical strength of the designed microneedle array under axial, bending, and buckling loads for the geometries during skin insertion was investigated. A CO2 laser and polymer molding technique are used to fabricate 10 × 10 designed microneedle array structure. On an acrylic sheet, a designed pattern is engraved to produce a 20 mm × 20 mm sharp conical and pyramidal shape master mold. We successfully created a biocompatible polydimethylsiloxane (PDMS) microneedle patch with an average height of 1200 µm, base diameter of 650 µm, and a tip diameter of 50 µm using acrylic master mold. According to structural simulation analysis, the microneedle array will experience resultant stress that is within a safe range. The mechanical stability of the fabricated microneedle patch was investigated using hardness test and universal testing machine. The depth of penetration studies were performed in an in vitro Parafilm® M model by manual compression tests and its detailed insertion depth was reported. The developed master mold is efficient to replicate several polydimethylsiloxane microneedle patches. The proposed combined method of laser processing and molding mechanism is simple and low-cost for rapid prototyping of microneedle array.
Collapse
Affiliation(s)
- Gowthami Anbazhagan
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India.
| | - Sreeja Balakrishnapillai Suseela
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India
| | - Radha Sankararajan
- Department of Electronics and Communication Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu, 603110, India
| |
Collapse
|
16
|
Downs AM, Bolotsky A, Weaver BM, Bennett H, Wolff N, Polsky R, Miller PR. Microneedle electrochemical aptamer-based sensing: Real-time small molecule measurements using sensor-embedded, commercially-available stainless steel microneedles. Biosens Bioelectron 2023; 236:115408. [PMID: 37267688 DOI: 10.1016/j.bios.2023.115408] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/04/2023]
Abstract
Microneedle sensors could enable minimally-invasive, continuous molecular monitoring - informing on disease status and treatment in real-time. Wearable sensors for pharmaceuticals, for example, would create opportunities for treatments personalized to individual pharmacokinetics. Here, we demonstrate a commercial-off-the-shelf (COTS) approach for microneedle sensing using an electrochemical aptamer-based sensor that detects the high-toxicity antibiotic, vancomycin. Wearable monitoring of vancomycin could improve patient care by allowing targeted drug dosing within its narrow clinical window of safety and efficacy. To produce sensors, we miniaturize the electrochemical aptamer-based sensors to a microelectrode format, and embed them within stainless steel microneedles (sourced from commercial insulin pen needles). The microneedle sensors achieve quantitative measurements in body-temperature undiluted blood. Further, the sensors effectively maintain electrochemical signal within porcine skin. This COTS approach requires no cleanroom fabrication or specialized equipment, and produces individually-addressable, sterilizable microneedle sensors capable of easily penetrating the skin. In the future, this approach could be adapted for multiplexed detection, enabling real-time monitoring of a range of biomarkers.
Collapse
Affiliation(s)
- Alex M Downs
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA.
| | - Adam Bolotsky
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Bryan M Weaver
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Haley Bennett
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Nathan Wolff
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Ronen Polsky
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| | - Philip R Miller
- Biological & Chemical Sensors Department, Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, New Mexico 87123, USA
| |
Collapse
|
17
|
Wang S, Zhao M, Yan Y, Li P, Huang W. Flexible Monitoring, Diagnosis, and Therapy by Microneedles with Versatile Materials and Devices toward Multifunction Scope. RESEARCH (WASHINGTON, D.C.) 2023; 6:0128. [PMID: 37223469 PMCID: PMC10202386 DOI: 10.34133/research.0128] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/25/2023]
Abstract
Microneedles (MNs) have drawn rising attention owing to their merits of convenience, noninvasiveness, flexible applicability, painless microchannels with boosted metabolism, and precisely tailored multifunction control. MNs can be modified to serve as novel transdermal drug delivery, which conventionally confront with the penetration barrier caused by skin stratum corneum. The micrometer-sized needles create channels through stratum corneum, enabling efficient drug delivery to the dermis for gratifying efficacy. Then, incorporating photosensitizer or photothermal agents into MNs can conduct photodynamic or photothermal therapy, respectively. Besides, health monitoring and medical detection by MN sensors can extract information from skin interstitial fluid and other biochemical/electronic signals. Here, this review discloses a novel monitoring, diagnostic, and therapeutic pattern by MNs, with elaborate discussion about the classified formation of MNs together with various applications and inherent mechanism. Hereby, multifunction development and outlook from biomedical/nanotechnology/photoelectric/devices/informatics to multidisciplinary applications are provided. Programmable intelligent MNs enable logic encoding of diverse monitoring and treatment pathways to extract signals, optimize the therapy efficacy, real-time monitoring, remote control, and drug screening, and take instant treatment.
Collapse
Affiliation(s)
| | | | - Yibo Yan
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Peng Li
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| | - Wei Huang
- Address correspondence to: (Y.Y.); (P.L.); (W.H.)
| |
Collapse
|
18
|
Sultana N, Waheed A, Ali A, Jahan S, Aqil M, Sultana Y, Mujeeb M. Exploring new frontiers in drug delivery with minimally invasive microneedles: fabrication techniques, biomedical applications and regulatory aspects. Expert Opin Drug Deliv 2023:1-17. [PMID: 37038271 DOI: 10.1080/17425247.2023.2201494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
INTRODUCTION Transdermal drug delivery is limited by the stratum corneum, inhibiting the therapeutic potential of the permeants. Microneedles (MN) have opened new frontiers in transdermal drug delivery systems. These micro-sized needles offer painless and accentuated delivery of drugs even with high molecular weights. AREAS COVERED The review embodies drug delivery strategies with microneedles with a description of MN types and fabrication techniques using various materials. The application of MN is not limited to drug delivery, but it also encompasses in vaccine delivery, diagnosis, phlebotomy and even in the cosmetic industry. The review also tabulates microneedle-based marketed formulations. In a nutshell, we aim to present a panoramic view of microneedles including the design, applications, and regulatory aspects of MN. EXPERT OPINION With the availability of numerous materials at the disposal of pharmaceutical scientists; the microneedle-based drug delivery technology has offered significant interventions towards the management of chronic maladies including cardiovascular disorders, diabetes, asthma, mental depression, etc. As happens with any new technology there are concerns with MN also such as biocompatibility issues with the material used for the fabrication. Nevertheless, the pharmaceutical industry must strive for preparing harmless, efficient, and cost-effective MN based delivery systems for wider acceptance and patient compliance.
Collapse
Affiliation(s)
- Niha Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Ayesha Waheed
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Asad Ali
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Samreen Jahan
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohd Aqil
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Yasmin Sultana
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| | - Mohd Mujeeb
- School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, India-110062
| |
Collapse
|
19
|
O'Mahony C, Sebastian R, Tjulkins F, Whelan D, Bocchino A, Hu Y, O'Brien J, Scully J, Hegarty M, Blake A, Slimi I, Clover AJP, Lyness A, Kelleher AM. Hollow silicon microneedles, fabricated using combined wet and dry etching techniques, for transdermal delivery and diagnostics. Int J Pharm 2023; 637:122888. [PMID: 36977451 DOI: 10.1016/j.ijpharm.2023.122888] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
Microneedle-based technologies are the subject of intense research and commercial interest for applications in transdermal delivery and diagnostics, primarily because of their minimally invasive and painless nature, which in turn could lead to increased patient compliance and self-administration. In this paper, a process for the fabrication of arrays of hollow silicon microneedles is described. This method uses just two bulk silicon etches - a front-side wet etch to define the 500 μm tall octagonal needle structure itself, and a rear-side dry etch to create a 50 μm diameter bore through the needle. This reduces the number of etches and process complexity over the approaches described elsewhere. Ex-vivo human skin and a customised applicator were used to demonstrate biomechanical reliability and the feasibility of using these microneedles for both transdermal delivery and diagnostics. Microneedle arrays show no damage even when applied to skin up to 40 times, are capable of delivering several mL of fluid at flowrates of 30 μL/min, and of withdrawing 1 μL of interstitial fluid using capillary action.
Collapse
Affiliation(s)
- Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland; Insight Centre for Data Analytics, Tyndall National Institute, University College Cork, Cork, Ireland.
| | - Ryan Sebastian
- Tyndall National Institute, University College Cork, Cork, Ireland; Insight Centre for Data Analytics, Tyndall National Institute, University College Cork, Cork, Ireland
| | - Fjodors Tjulkins
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Derek Whelan
- Department of Biomedical, Mechanical and Manufacturing Engineering, Munster Technological University, Cork, Ireland
| | - Andrea Bocchino
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Yuan Hu
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Joe O'Brien
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Jim Scully
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Margaret Hegarty
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Alan Blake
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Inès Slimi
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - A James P Clover
- Department of Plastic and Reconstructive Surgery, Cork University Hospital, Cork, Ireland
| | | | | |
Collapse
|
20
|
3D Printed Hollow Microneedles for Treating Skin Wrinkles Using Different Anti-Wrinkle Agents: A Possible Futuristic Approach. COSMETICS 2023. [DOI: 10.3390/cosmetics10020041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Skin wrinkles are an inevitable phenomenon that is brought about by aging due to the degradation of scleroprotein fibers and significant collagen reduction, which is the fundamental basis of anti-wrinkle technology in use today. Conventional treatments such as lasering and Botulinum toxin have some drawbacks including allergic skin reactions, cumbersome treatment procedures, and inefficient penetration of the anti-wrinkle products into the skin due to the high resistance of stratum corneum. Bearing this in mind, the cosmetic industry has exploited the patient-compliant technology of microneedles (MNs) to treat skin wrinkles, developing several products based on solid and dissolvable MNs incorporated with antiwrinkle formulations. However, drug administration via these MNs is limited by the high molecular weight of the drugs. Hollow MNs (HMNs) can deliver a wider array of active agents, but that is a relatively unexplored area in the context of antiwrinkle technology. To address this gap, we discuss the possibility of bioinspired 3D printed HMNs in treating skin wrinkles in this paper. We compare the previous and current anti-wrinkling treatment options, as well as the techniques and challenges involved with its manufacture and commercialization.
Collapse
|
21
|
Duan X, Ma J, Ning M, Gao Y. Dissolving Microneedles Loaded with Gestodene: Fabrication and Characterization In Vitro and In Vivo. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e131819. [PMID: 38116561 PMCID: PMC10728855 DOI: 10.5812/ijpr-131819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/25/2023] [Accepted: 04/04/2023] [Indexed: 12/21/2023]
Abstract
Background Gestodene (GEST) is widely used in female contraception. It is currently being used as an oral contraceptive. However, unfortunately, oral contraceptives are often associated with several bothersome side effects and poor compliance. Therefore, a sustained delivery system for GEST to overcome these shortcomings is highly desirable. Objectives The present study successfully developed a kind of novel dissolving microneedles (DMNs) with a potential for sustained release and a minimally invasive intradermal treatment of GEST. Methods The dissolving microneedles containing GEST were fabricated using polyvinylpyrrolidone as the base material. The characteristics in vitro and pharmacokinetics in vivo of GEST-loaded DMNs were investigated. Results The results showed that the microneedle could pierce the porcine skin and release the drug at an average dose of 20µg/cm2 daily for seven days. The pharmacokinetic experiment of the microneedles indicated that the plasma level of GEST in rats increased with increasing drug dosage, and the plasma drug concentration-time curves were much flatter compared with subcutaneous injection and oral administration. In addition, no cutaneous irritation was observed. Conclusions GEST-loaded DMNs may be a promising intradermal sustained delivery system for contraceptive use.
Collapse
Affiliation(s)
- Xueyan Duan
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Jianan Ma
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Meiying Ning
- Center of Drug and Medical Polymer Materials, National Research Institute for Family Planning, Beijing, China
| | - Yunhua Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Thirunavukkarasu A, Nithya R, Jeyanthi J. Transdermal drug delivery systems for the effective management of type 2 diabetes mellitus: A review. Diabetes Res Clin Pract 2022; 194:109996. [PMID: 35850300 DOI: 10.1016/j.diabres.2022.109996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/02/2022] [Accepted: 07/11/2022] [Indexed: 12/14/2022]
Abstract
Type 2 Diabetes mellitus (T2DM) is characterized by either insufficient insulin production or the inability to take it up for the glycemic regulation in the human body. According to WHO reports, T2DM will be the seventh-largest syndrome resulting in mortality by 2030. To tackle this chronic metabolic disorder, the person with diabetes population depends on subcutaneous administration (Sub-Q) of insulin and certain oral hypoglycemic drugs. However, these current invasive practices suffered from painful injections, needle phobia, multiple doses, risk of infection and poor-patient compliance. Hence, the search for a non-invasive and patient-friendly insulin administration system was high in the past decades leading to the development of Transdermal Drug Delivery Systems (TDDS). These can offer rapid and sustained release of therapeutic compounds at controlled rates with no pain during the administration. In recent years, the usage of such TDDS has been increasing at an exponential rate in Type 2 diabetes management. In the present review, the scholarly works on the different modes of TDDS were comprehensively reported chronlogically to appreciate their developments. Conclusively, this review critically identified prevailing research gaps in the current TDDS research and presented potential research hotspots for the prospect development in T2DM management.
Collapse
Affiliation(s)
| | - Rajarathinam Nithya
- Department of Industrial Biotechnology, Government College of Technology, Coimbatore 641013, India.
| | | |
Collapse
|
23
|
Treating allergies via skin - Recent advances in cutaneous allergen immunotherapy. Adv Drug Deliv Rev 2022; 190:114458. [PMID: 35850371 DOI: 10.1016/j.addr.2022.114458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 01/24/2023]
Abstract
Subcutaneous allergen immunotherapy has been practiced clinically for decades to treat airborne allergies. Recently, the cutaneous route, which exploits the immunocompetence of the skin has received attention, which is evident from attempts to use it to treat peanut allergy. Delivery of allergens into the skin is inherently impeded by the barrier imposed by stratum corneum, the top layer of the skin. While the stratum corneum barrier must be overcome for efficient allergen delivery, excessive disruption of this layer can predispose to development of allergic inflammation. Thus, the most desirable allergen delivery approach must provide a balance between the level of skin disruption and the amount of allergen delivered. Such an approach should aim to achieve high allergen delivery efficiency across various skin types independent of age and ethnicity, and optimize variables such as safety profile, allergen dosage, treatment frequency, application time and patient compliance. The ability to precisely quantify the amount of allergen being delivered into the skin is crucial since it can allow for allergen dose optimization and can promote consistency and reproducibility in treatment response. In this work we review prominent cutaneous delivery approaches, and offer a perspective on further improvisation in cutaneous allergen-specific immunotherapy.
Collapse
|
24
|
Liu C, Zhao Z, Lv H, Yu J, Zhang P. Microneedles-mediated drug delivery system for the diagnosis and treatment of melanoma. Colloids Surf B Biointerfaces 2022; 219:112818. [PMID: 36084509 DOI: 10.1016/j.colsurfb.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
As an emerging novel drug delivery system, microneedles (MNs) have a wide range of applications in the medical field. They can overcome the physiological barriers of the skin, penetrate the outermost skin of the human body, and form hundreds of reversible microchannels to enhance the penetration of drugs and deliver drugs to the diseased sites. So they have great applications in the diagnosis and treatment of melanoma. Melanoma is a kind of malignant tumor, the survival rate of patients with metastases is extremely low. The traditional methods of surgery and drug treatment for melanoma are often accompanied by large adverse reactions in the whole body, and the drug concentration is low. The use of MNs for transdermal administration can increase the drug concentration, reduce adverse reactions in the treatment process, and have good therapeutic effect on melanoma. This paper introduced various types of MNs and their preparation methods, summarized the diagnosis and various treatment options for melanoma with MNs, focused on the treatment of melanoma with dissolved MNs, and made prospect of MNs-mediated transdermal drug delivery in the treatment of melanoma.
Collapse
Affiliation(s)
- Cheng Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongqian Lv
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
25
|
Chen J, Ren H, Zhou P, Zheng S, Du B, Liu X, Xiao F. Microneedle-mediated drug delivery for cutaneous diseases. Front Bioeng Biotechnol 2022; 10:1032041. [PMID: 36324904 PMCID: PMC9618658 DOI: 10.3389/fbioe.2022.1032041] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Microneedles have garnered significant interest as transdermal drug delivery route owing to the advantages of nonselective loading capacity, minimal invasiveness, simple operation, and good biocompatibility. A number of therapeutics can be loaded into microneedles, including hydrophilic and hydrophobic small molecular drugs, and macromolecular drugs (proteins, mRNA, peptides, vaccines) for treatment of miscellaneous diseases. Microneedles feature with special benefits for cutaneous diseases owing to the direct transdermal delivery of therapeutics to the skin. This review mainly introduces microneedles fabricated with different technologies and transdermal delivery of various therapeutics for cutaneous diseases, such as psoriasis, atopic dermatitis, skin and soft tissue infection, superficial tumors, axillary hyperhidrosis, and plantar warts.
Collapse
Affiliation(s)
- Jian Chen
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Hui Ren
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Pan Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shuai Zheng
- Department of Orthopaedics, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| | - Xiaowen Liu
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| | - Fei Xiao
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Bin Du, ; Xiaowen Liu, ; Fei Xiao,
| |
Collapse
|
26
|
Shukla S, Huston RH, Cox BD, Satoskar AR, Narayan RJ. Transdermal delivery via medical device technologies. Expert Opin Drug Deliv 2022; 19:1505-1519. [PMID: 36222232 DOI: 10.1080/17425247.2022.2135503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Despite their effectiveness and indispensability, many drugs are poorly solvated in aqueous solutions. Over recent decades, the need for targeted drug delivery has led to the development of pharmaceutical formulations with enhanced lipid solubility to improve their delivery properties. Therefore, a dependable approach for administering lipid-soluble drugs needs to be developed. AREAS COVERED The advent of 3D printing or additive manufacturing (AM) has revolutionized the development of medical devices, which can effectively enable the delivery of lipophilic drugs to the targeted tissues. This review focuses on the use of microneedles and iontophoresis for transdermal drug delivery. Microneedle arrays, inkjet printing, and fused deposition modeling have emerged as valuable approaches for delivering several classes of drugs. In addition, iontophoresis has been successfully employed for the effective delivery of macromolecular drugs. EXPERT OPINION Microneedle arrays, inkjet printing, and fused deposition are potentially useful for many drug delivery applications; however, the clinical and commercial adoption rates of these technologies are relatively low. Additional efforts is needed to enable the pharmaceutical community to fully realize the benefits of these technologies.
Collapse
Affiliation(s)
- Shubhangi Shukla
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Ryan H Huston
- Department of Microbiology, The Ohio State University, 484 W. 12 Ave, Columbus, OH 43210, USA
| | - Blake D Cox
- Division of Anatomy, The Ohio State University, 370 W. 9th Avenue, Columbus, OH 43210, USA
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, USA
| | - Roger J Narayan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| |
Collapse
|
27
|
Park S, Lee K, Ryu W. Research progress on detachable microneedles for advanced applications. Expert Opin Drug Deliv 2022; 19:1115-1131. [PMID: 36062366 DOI: 10.1080/17425247.2022.2121388] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Microneedles (MNs) have undergone great advances in transdermal drug delivery, and commercialized MN applications are currently available in vaccination and cosmetic products. Despite the development of MN technologies, common limitations of MN products still exist. Typical MN patches are applied to target tissues, where the substrate of an MN patch must remain until the drug is delivered, which reduces patients' compliance and hinders the applicability of the MN technique to many diseases in various tissues. MN research is ongoing to solve this issue. AREAS COVERED Most recent MNs developed by combining various biomaterials with appropriate fabrication processes are detachable MNs (DeMNs). Because of advances in biomaterials and fabrication techniques, various DeMNs have been rapidly developed. In this review, we discuss four types of DeMN: substrate-separable, multi-layered, crack-inducing, and shell DeMN. These DeMNs deliver various therapeutic agents ranging from small- and large-molecular-weight drugs to proteins and even stem cells for regeneration therapy. Furthermore, DeMNs are applied to skin as well as non-transdermal tissues. EXPERT OPINION It has become increasingly evident that novel MN technologies can be expected in terms of designs, fabrication methods, materials, and even possible application sites given the recent advances in DeMNs.
Collapse
Affiliation(s)
- SeungHyun Park
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Republic of Korea
| | - WonHyoung Ryu
- Department of Mechanical Engineering, Yonsei University, Republic of Korea
| |
Collapse
|
28
|
Sebastian R, Guillerm T, Tjulkins F, Hu Y, Clover AJP, Lyness A, O'Mahony C. A Comparison of Flow- and Pressure-Controlled Infusion Strategies for Microneedle-based Transdermal Drug Delivery. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:2573-2576. [PMID: 36085690 DOI: 10.1109/embc48229.2022.9871582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microneedle-based transdermal drug delivery is considered an attractive alternative to conventional injections using hypodermic needles due to its minimally invasive and painless nature; this has the potential to improve patient adherence to medication regimens. Hollow microneedles (MNs) are sharp, sub-millimeter protrusions with a channel that serves as a fluidic interface with the skin. This technology could be coupled with micro-pumps, embedded sensors, actuators and electronics to create Micro Transdermal Interface Platforms - smart, wearable infusion systems capable of delivering precise microdoses over a prolonged period. Using 500 µm tall hollow microneedles, ex-vivo human skin and a customized application/retraction device, this work focuses on comparing two infusion control strategies, namely 'set pressure' (SP) and 'set flow' (SF) infusion. It was found that flow-controlled infusion was capable of delivering higher volumes than pressure-driven delivery, and a mean volume of 3.8 mL was delivered using a set flowrate of 50 µL/minute. This suggests that flow driven delivery is a better control strategy and confirms that MN array retraction is beneficial for transdermal MN infusion.
Collapse
|
29
|
Nagra U, Barkat K, Ashraf MU, Shabbir M. Feasibility of Enhancing Skin Permeability of Acyclovir through Sterile Topical Lyophilized Wafer on Self-Dissolving Microneedle-Treated Skin. Dose Response 2022; 20:15593258221097594. [PMID: 35602585 PMCID: PMC9122490 DOI: 10.1177/15593258221097594] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
Acyclovir is an antiviral drug that is frequently prescribed for the herpes
virus. However, the drug requires frequent dosing due to limited bioavailability
(10–26.7%). The rationale of the present study was to develop a self-dissolving
microneedle system for local and systemic delivery of acyclovir using a topical
lyophilized wafer on microneedle-treated skin to provide the drug at the site of
infection. The microneedles prepared with hydroxypropyl methylcellulose (HPMC)
(8% w/w) or HPMC (8% w/w)-polyvinyl pyrrolidone (PVP) (30% w/w) penetrated
excised rat skin, showing sufficient mechanical strength and rapid polymer
dissolution. The topical wafer was prepared with acyclovir (40% w/w; equivalent
to 200 mg of drug), gelatin (10% w/w), mannitol (5% w/w), and sodium chloride
(5% w/w). The uniform distribution of acyclovir within the wafer in an amorphous
form was confirmed by differential scanning calorimetry (DSC) and
thermogravimetric analysis (TGA). No polymer–drug interaction was evident in the
lyophilized wafer as per Fourier transform infrared spectroscopy (FTIR)
analysis. The wafer showed a sufficiently porous structure for rapid hydration
as per scanning electron microscopy (SEM) analysis. During
ex-vivo analysis, the skin was pre-treated with a
self-dissolving microneedle array for 5 minutes, and the wafer was placed on
this microporated-skin. Topical wafer provided ∼7–11 times higher skin
concentration than the ID99 reported with a lower lag-time. Based on
in-vivo testing, ∼2.58 µg/ml of Cmax was achieved in rabbit
plasma during 24 hours’ study. Our findings suggest that the self-dissolving
microneedle-assisted topical wafer, proposed for the first time, would be
efficacious against the infection residing in the skin layer and for systemic
therapy.
Collapse
Affiliation(s)
- Uzair Nagra
- Department of Pharmacy, The University of Lahore - New Campus, Lahore, Pakistan
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | | | | | - Maryam Shabbir
- Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
30
|
Bao L, Park J, Bonfante G, Kim B. Recent advances in porous microneedles: materials, fabrication, and transdermal applications. Drug Deliv Transl Res 2022; 12:395-414. [PMID: 34415566 PMCID: PMC8724174 DOI: 10.1007/s13346-021-01045-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2021] [Indexed: 12/20/2022]
Abstract
In the past two decades, microneedles (MNs), as a painless and simple drug delivery system, have received increasing attention for various biomedical applications such as transdermal drug delivery, interstitial fluid (ISF) extraction, and biosensing. Among the various types of MNs, porous MNs have been recently researched owing to their distinctive and unique characteristics, where porous structures inside MNs with continuous nano- or micro-sized pores can transport drugs or biofluids by capillary action. In addition, a wide range of materials, including non-polymers and polymers, were researched and used to form the porous structures of porous MNs. Adjustable porosity by different fabrication methods enables the achievement of sufficient mechanical strength by optimising fluid flows inside MNs. Moreover, biocompatible porous MNs integrated with biosensors can offer portable detection and rapid measurement of biomarkers in a minimally invasive manner. This review focuses on several aspects of current porous MN technology, including material selection, fabrication processes, biomedical applications, primarily covering transdermal drug delivery, ISF extraction, and biosensing, along with future prospects as well as challenges.
Collapse
Affiliation(s)
- Leilei Bao
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Jongho Park
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | | | - Beomjoon Kim
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
- LIMMS/CNRS-IIS UMI 2820, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
31
|
Amarnani R, Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomed Microdevices 2021; 24:4. [PMID: 34878589 PMCID: PMC8651504 DOI: 10.1007/s10544-021-00604-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology plays an important role in biomedical engineering for their less intrusive access to the skin due to minimally or painless penetration, enhancement of drug permeability, improvement of detectability of biomolecules in the epidermal and dermal layers with therapeutic efficacy and safety. Furthermore, MNs possess some major disadvantages like difficulty in scale-up technique, variation in drug delivery pattern with respect to external environment of skin, blockage of arrays due to dermal tissues, induction of inflammation or allergy at the site of administration and restriction of dosing range based on the size of active. Additionally, microneedle acts as a transdermal theranostic device for monitoring the physiological parameters in clinical studies. The investigation of drug transfer mechanisms through microneedles includes coat and poke, poke and flow, poke and patch and poke and release method. This review article discusses different categories of microneedles with fabrication methods such as photolithography, laser cutting, 3D printing, etc. in therapeutic applications for treating cancer, diabetes, arthritis, obesity, neurological disorders, and glaucoma. Biosensing devices based on microneedles may detect target analytes directly in the interstitial fluid by penetrating the stratum corneum of the skin and thus microneedles-based devices can be considered as a single tool in diagnostic sensing and therapeutic administration of drugs inside the body. Moreover, the clinical status and commercial availability of microneedle devices are discussed in this review article to offer new insights to researchers and scientists. Continuous monitoring particularly for the determination of blood glucose concentration is one of the most important requirements for the development of next-generation healthcare devices. The aim of this review article focuses mainly on the theranostic applications of microneedles in various medical conditions such as malaria, glaucoma, cancer, etc.
Collapse
Affiliation(s)
- Ragini Amarnani
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
32
|
|
33
|
Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent Advances in Microneedle-Based Sensors for Sampling, Diagnosis and Monitoring of Chronic Diseases. BIOSENSORS 2021; 11:296. [PMID: 34562886 PMCID: PMC8470661 DOI: 10.3390/bios11090296] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022]
Abstract
Chronic diseases (CDs) are noncommunicable illnesses with long-term symptoms accounting for ~70% of all deaths worldwide. For the diagnosis and prognosis of CDs, accurate biomarker detection is essential. Currently, the detection of CD-associated biomarkers is employed through complex platforms with certain limitations in their applicability and performance. There is hence unmet need to present innovative strategies that are applicable to the point-of-care (PoC) settings, and also, provide the precise detection of biomarkers. On the other hand, especially at PoC settings, microneedle (MN) technology, which comprises micron-size needles arranged on a miniature patch, has risen as a revolutionary approach in biosensing strategies, opening novel horizons to improve the existing PoC devices. Various MN-based platforms have been manufactured for distinctive purposes employing several techniques and materials. The development of MN-based biosensors for real-time monitoring of CD-associated biomarkers has garnered huge attention in recent years. Herein, we summarize basic concepts of MNs, including microfabrication techniques, design parameters, and their mechanism of action as a biosensing platform for CD diagnosis. Moreover, recent advances in the use of MNs for CD diagnosis are introduced and finally relevant clinical trials carried out using MNs as biosensing devices are highlighted. This review aims to address the potential use of MNs in CD diagnosis.
Collapse
Affiliation(s)
- Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Garbis Atam Akceoglu
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
| | - Yeşeren Saylan
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey;
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey; (Ö.E.); (I.E.); (G.A.A.)
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
34
|
|
35
|
Yadav V, Sharma PK, Murty US, Mohan NH, Thomas R, Dwivedy SK, Banerjee S. 3D printed hollow microneedles array using stereolithography for efficient transdermal delivery of rifampicin. Int J Pharm 2021; 605:120815. [PMID: 34153441 DOI: 10.1016/j.ijpharm.2021.120815] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
A 3D printed assembly of hollow microneedles (HMNs) array, conjoined with a reservoir void, was designed and additively manufactured using stereolithography (SLA) technology utilizing a proprietary class-I resin. The HMNs array was utilized for transdermal delivery of high molecular weight antibiotics, i.e., rifampicin (Mw 822.94 g/mol), which suffers from gastric chemical instability, low bioavailability, and severe hepatotoxicity. HMNs morphology was designed with sub-apical holes present in a quarter of the needle tip to improve its mechanical strength and integrity of the HMNs array. The HMNs array was characterized by optical microscopy and electron microscopy to ascertain the print quality and uniformity across the array. The system was also subjected to mechanical characterization for failure and penetration analyses. The ex vivo permeation and consequent transport of rifampicin across porcine skin were systematically evaluated. Finally, in vivo examinations of rifampicin administration through the microneedle reservoir system in SD rats revealed efficient penetration and desired bioavailability.
Collapse
Affiliation(s)
- Vivek Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India
| | - Peeyush Kumar Sharma
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India
| | | | - Narayan H Mohan
- Department of Animal Physiology, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, India
| | - Rajendran Thomas
- Department of Animal Physiology, ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, India
| | - Santosha Kumar Dwivedy
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati (IITG), Assam, India
| | - Subham Banerjee
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER)-Guwahati, Changsari, Assam, India; National Centre for Pharmacoengineering, NIPER-Guwahati, Changsari, Assam, India.
| |
Collapse
|
36
|
Paredes AJ, Ramöller IK, McKenna PE, Abbate MT, Volpe-Zanutto F, Vora LK, Kilbourne-Brook M, Jarrahian C, Moffatt K, Zhang C, Tekko IA, Donnelly RF. Microarray patches: Breaking down the barriers to contraceptive care and HIV prevention for women across the globe. Adv Drug Deliv Rev 2021; 173:331-348. [PMID: 33831475 DOI: 10.1016/j.addr.2021.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of a variety of contraceptive products for women, as well as decades of research into the prevention and treatment of human immunodeficiency virus (HIV), there is still a globally unmet need for easily accessible, acceptable, and affordable products to protect women's sexual and reproductive health. Microarray patches (MAPs) are a novel platform being developed for the delivery of hormonal contraception and antiretroviral drugs. MAPs provide enhanced drug delivery to the systemic circulation via the transdermal route when compared to transdermal patches, oral and injectable formulations. These minimally invasive patches can be self-administered by the user, reducing the burden on health care personnel. Since MAPs represent needle-free drug delivery, no sharps waste is generated after application, thereby eliminating possible MAP reuse and risk of needle-stick injuries. This review discusses the administration of contraceptive and antiretroviral drugs using MAPs, their acceptability by end-users, and the future perspective of the field.
Collapse
|
37
|
Microneedle for transdermal drug delivery: current trends and fabrication. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021; 51:503-517. [PMID: 33686358 PMCID: PMC7931162 DOI: 10.1007/s40005-021-00512-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/13/2021] [Indexed: 12/16/2022]
Abstract
Background Transdermal delivery has the advantage of bypassing the first-pass effect and allowing sustained release of the drug. However, the drug delivery is limited owing to the barrier created by the stratum corneum. Microneedles are a transdermal drug delivery system that is painless, less invasive, and easy to self-administer, with a high drug bioavailability. Area covered The dose, delivery rate, and efficacy of the drugs can be controlled by the microneedle design and drug formulations. This review introduces the types of microneedles and their design, materials used for fabrication, and manufacturing methods. Additionally, recent biological applications and clinical trials are introduced. Expert opinion With advancements made in formulation technologies, the drug-loading capability of microneedles can be improved. 3D printing and digital technology contribute to the improvement of microneedle fabrication technology. However, regulations regarding the manufacture of microneedle products should be established as soon as possible to promote commercialization.
Collapse
|
38
|
Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: A perspective in biomedical applications. Int J Pharm 2021; 599:120455. [PMID: 33676993 DOI: 10.1016/j.ijpharm.2021.120455] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/26/2022]
Abstract
Microneedles (MN) have the potential to become a highly progressive device for both drug delivery and monitoring purposes as they penetrate the skin and pierce the stratum corneum barrier, allowing the delivery of drugs in the viable skin layers and the extraction of body fluids. Despite the many years of research and the different types of MN developed, only hollow MN have reached the pharmaceutical market under the path of medical devices. Therefore, this review focuses on hollow MN, materials and methods for their fabrication as well as their application in drug delivery, vaccine delivery and monitoring purposes. Furthermore, novel approaches for the fabrication of hollow MN are included as well as prospects of microneedle-based products on the market.
Collapse
Affiliation(s)
| | - Brónach Mallon
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita K Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
39
|
Xenikakis I, Tsongas K, Tzimtzimis EK, Zacharis CK, Theodoroula N, Kalogianni EP, Demiri E, Vizirianakis IS, Tzetzis D, Fatouros DG. Fabrication of hollow microneedles using liquid crystal display (LCD) vat polymerization 3D printing technology for transdermal macromolecular delivery. Int J Pharm 2021; 597:120303. [PMID: 33540009 DOI: 10.1016/j.ijpharm.2021.120303] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022]
Abstract
The present study aimed to fabricate a hollow microneedle device consisting of an array and a reservoir by means of 3D printing technology for transdermal peptide delivery. Hollow microneedles (HMNs) were fabricated using a biocompatible resin material, while PLA filament was used for the reservoirs. The fabricated microdevice was characterized by means of optical microscopy, scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), contact angle measurements and leakage inspection studies to ensure the passageway of liquid formulations. Mechanical failure and penetration tests were carried out and supported by Finite Element Analysis (FEA). The cytocompatibility of the microneedle arrays was assessed to human keratinocytes (HaCaT). Finally, the transport of the model peptide octreotide acetate across artificial membranes was assessed in Franz cells using the aforementioned HMN design.
Collapse
Affiliation(s)
- Iakovos Xenikakis
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantinos Tsongas
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece
| | - Emmanouil K Tzimtzimis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece
| | - Constantinos K Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124, Greece
| | - Nikoleta Theodoroula
- School of Health, Faculty of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleni P Kalogianni
- Department of Food Science and Technology, International Hellenic University, Sindos Campus, 57400 Thessaloniki, Greece
| | - Euterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis S Vizirianakis
- School of Health, Faculty of Pharmacy, Laboratory of Pharmacology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; FunPATH (Functional Proteomics and Systems Biology Research Group at AUTH) Research Group, KEDEK - Aristotle University of Thessaloniki, Balkan Center, GR-57001 Thessaloniki, Greece
| | - Dimitrios Tzetzis
- Digital Manufacturing and Materials Characterization Laboratory, School of Science and Technology, International Hellenic University, School of Science and Technology, 14km Thessaloniki - N. Moudania, Thermi GR57001, Greece.
| | - Dimitrios G Fatouros
- School of Health, Faculty of Pharmacy, Division of Pharmaceutical Technology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
40
|
Elahpour N, Pahlevanzadeh F, Kharaziha M, Bakhsheshi-Rad HR, Ramakrishna S, Berto F. 3D printed microneedles for transdermal drug delivery: A brief review of two decades. Int J Pharm 2021; 597:120301. [PMID: 33540018 DOI: 10.1016/j.ijpharm.2021.120301] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 12/31/2022]
Abstract
Microneedle (MN) technology shows excellent potential in controlled drug delivery, which has got rising attention from investigators and clinics. MNs can pierce through the stratum corneum layer of the skin into the epidermis, evading interaction with nerve fibers. MN patches have been fabricated using various types of materials and application processes. Recently, three-dimensional (3D) printing gives the prototyping and manufacturing methods the flexibility to produce the MN patches in a one-step manner with high levels of shape complexity and duplicability. This review aims to go through the last successes in 3D printed MN-based patches. In this regard, after the evaluation of various types of MNs and fabrication techniques, we will study different 3D printing approaches applied for MN patch fabrication. We further highlight the state of the art of the long-acting MNs and related progress with a specific look at what should come within the scope of upcoming researches.
Collapse
Affiliation(s)
- Nafiseh Elahpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Farnoosh Pahlevanzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
41
|
Ahad A, Raish M, Bin Jardan YA, Al-Mohizea AM, Al-Jenoobi FI. Delivery of Insulin via Skin Route for the Management of Diabetes Mellitus: Approaches for Breaching the Obstacles. Pharmaceutics 2021; 13:pharmaceutics13010100. [PMID: 33466845 PMCID: PMC7830404 DOI: 10.3390/pharmaceutics13010100] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/14/2022] Open
Abstract
Insulin is used for the treatment of diabetes mellitus, which is characterized by hyperglycemia. Subcutaneous injections are the standard mode of delivery for insulin therapy; however, this procedure is very often invasive, which hinders patient compliance, particularly for individuals requiring insulin doses four times a day. Furthermore, cases have been reported of sudden hypoglycemia occurrences following multidose insulin injections. Such an invasive and intensive approach motivates the quest for alternative, more user-friendly insulin administration approaches. For example, transdermal delivery has numerous advantages, such as prolonged drug release, low variability in the drug plasma level, and improved patient compliance. In this paper, the authors summarize different approaches used in transdermal insulin delivery, including microneedles, chemical permeation enhancers, sonophoresis, patches, electroporation, iontophoresis, vesicular formulations, microemulsions, nanoparticles, and microdermabrasion. Transdermal systems for insulin delivery are still being widely researched. The conclusions presented in this paper are extracted from the literature, notably, that the transdermal route could effectively and reliably deliver insulin into the circulatory system. Consistent progress in this area will ensure that some of the aforementioned transdermal insulin delivery systems will be introduced in clinical practice and commercially available in the near future.
Collapse
|
42
|
Dugam S, Tade R, Dhole R, Nangare S. Emerging era of microneedle array for pharmaceutical and biomedical applications: recent advances and toxicological perspectives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-020-00176-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Microneedles (MNs) are the utmost unique, efficient, and minimally invasive inventions in the pharmaceutical field. Over the past decades, many scientists around the globe have reported MNs cautious because of their superb future in distinct areas. Concerning the wise use of MNs herein, we deal in depth with the present applications of MNs in drug delivery.
Main text
The present review comprises various fabrication materials and methods used for MN synthesis. The article also noted the distinctive advantages of these MNs, which holds huge potential for pharmaceutical and biomedical applications. The role of MNs in serving as a platform to treat various ailments has been explained accompanied by unusual approaches. The review also inculcates the pharmacokinetics of MNs, which includes permeation, absorption, and bioavailability enhancement. Besides this, the in vitro/in vivo toxicity, biosafety, and marketed product of MNs have been reviewed. We have also discussed the clinical trials and patents on the pharmaceutical applications of MNs in brief.
Conclusion
To sum up, this article gives insight into the MNs and provides a recent advancement in MNs, which pave the pathway for future pharmaceutical and biomedical applications.
Graphical abstract
Pharmaceutical and biomedical applications of MNs
Collapse
|
43
|
Permana AD, Nainu F, Moffatt K, Larrañeta E, Donnelly RF. Recent advances in combination of microneedles and nanomedicines for lymphatic targeted drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1690. [PMID: 33401339 DOI: 10.1002/wnan.1690] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022]
Abstract
Numerous diseases have been reported to affect the lymphatic system. As such, several strategies have been developed to deliver chemotherapeutics to this specific network of tissues and associated organs. Nanotechnology has been exploited as one of the main approaches to improve the lymphatic uptake of drugs. Different nanoparticle approaches utilized for both active and passive targeting of the lymphatic system are discussed here. Specifically, due to the rich abundance of lymphatic capillaries in the dermis, particular attention is given to this route of administration, as intradermal administration could potentially result in higher lymphatic uptake compared to other routes of administration. Recently, progress in microneedle research has attracted particular attention as an alternative for the use of conventional hypodermic injections. The benefits of microneedles, when compared to intradermal injection, are subsequently highlighted. Importantly, microneedles exhibit particular benefit in relation to therapeutic targeting of the lymphatic system, especially when combined with nanoparticles, which are further discussed. However, despite the apparent benefits provided by this combination approach, further comprehensive preclinical and clinical studies are now necessary to realize the potential extent of this dual-delivery platform, further taking into consideration eventual usability and acceptability in the intended patient end-users. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kurtis Moffatt
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | | | | |
Collapse
|
44
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
45
|
Seetharam AA, Choudhry H, Bakhrebah MA, Abdulaal WH, Gupta MS, Rizvi SMD, Alam Q, Siddaramaiah, Gowda DV, Moin A. Microneedles Drug Delivery Systems for Treatment of Cancer: A Recent Update. Pharmaceutics 2020; 12:E1101. [PMID: 33212921 PMCID: PMC7698361 DOI: 10.3390/pharmaceutics12111101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Microneedles (MNs) are tiny needle like structures used in drug delivery through layers of the skin. They are non-invasive and are associated with significantly less or no pain at the site of administration to the skin. MNs are excellent in delivering both small and large molecules to the subjects in need thereof. There exist several strategies for drug delivery using MNs, wherein each strategy has its pros and cons. Research in this domain lead to product development and commercialization for clinical use. Additionally, several MN-based products are undergoing clinical trials to evaluate its safety, efficacy, and tolerability. The present review begins by providing bird's-eye view about the general characteristics of MNs followed by providing recent updates in the treatment of cancer using MNs. Particularly, we provide an overview of various aspects namely: anti-cancerous MNs that work based on sensor technology, MNs for treatment of breast cancer, skin carcinoma, prostate cancer, and MNs fabricated by additive manufacturing or 3 dimensional printing for treatment of cancer. Further, the review also provides limitations, safety concerns, and latest updates about the clinical trials on MNs for the treatment of cancer. Furthermore, we also provide a regulatory overview from the "United States Food and Drug Administration" about MNs.
Collapse
Affiliation(s)
- Aravindram Attiguppe Seetharam
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (A.A.S.); (M.S.G.)
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (W.H.A.)
| | - Muhammed A. Bakhrebah
- Life Science & Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Wesam H. Abdulaal
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, Cancer & Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (H.C.); (W.H.A.)
| | - Maram Suresh Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (A.A.S.); (M.S.G.)
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81481, Saudi Arabia;
| | - Qamre Alam
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia;
| | - Siddaramaiah
- Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570016, India;
| | - Devegowda Vishakante Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSSAHER), Sri Shivarathreeshwara Nagar, Mysore 570015, India; (A.A.S.); (M.S.G.)
| | - Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81481, Saudi Arabia;
| |
Collapse
|
46
|
Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, Čekić A, Vranić E. Microneedles: Characteristics, Materials, Production Methods and Commercial Development. MICROMACHINES 2020; 11:mi11110961. [PMID: 33121041 PMCID: PMC7694032 DOI: 10.3390/mi11110961] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 01/19/2023]
Abstract
Although transdermal drug delivery systems (DDS) offer numerous benefits for patients, including the avoidance of both gastric irritation and first-pass metabolism effect, as well as improved patient compliance, only a limited number of active pharmaceutical ingredients (APIs) can be delivered accordingly. Microneedles (MNs) represent one of the most promising concepts for effective transdermal drug delivery that penetrate the protective skin barrier in a minimally invasive and painless manner. The first MNs were produced in the 90s, and since then, this field has been continually evolving. Therefore, different manufacturing methods, not only for MNs but also MN molds, are introduced, which allows for the cost-effective production of MNs for drug and vaccine delivery and even diagnostic/monitoring purposes. The focus of this review is to give a brief overview of MN characteristics, material composition, as well as the production and commercial development of MN-based systems.
Collapse
Affiliation(s)
- Amina Tucak
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
- Correspondence: (A.T.); (E.V.)
| | - Merima Sirbubalo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Lamija Hindija
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Ognjenka Rahić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Jasmina Hadžiabdić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
| | - Kenan Muhamedagić
- Department of Machinery Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (A.Č.)
| | - Ahmet Čekić
- Department of Machinery Production Engineering, Faculty of Mechanical Engineering, University of Sarajevo, Vilsonovo šetalište 9, 71000 Sarajevo, Bosnia and Herzegovina; (K.M.); (A.Č.)
| | - Edina Vranić
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Sarajevo, Zmaja od Bosne 8, 71000 Sarajevo, Bosnia and Herzegovina; (M.S.); (L.H.); (O.R.); (J.H.)
- Correspondence: (A.T.); (E.V.)
| |
Collapse
|
47
|
Akhtar N, Singh V, Yusuf M, Khan RA. Non-invasive drug delivery technology: development and current status of transdermal drug delivery devices, techniques and biomedical applications. ACTA ACUST UNITED AC 2020; 65:243-272. [PMID: 31926064 DOI: 10.1515/bmt-2019-0019] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 08/30/2019] [Indexed: 12/25/2022]
Abstract
Pay-load deliveries across the skin barrier to the systemic circulation have been one of the most challenging delivery options. Necessitated requirements of the skin and facilitated skin layer cross-over delivery attempts have resulted in development of different non-invasive, non-oral methods, devices and systems which have been standardized, concurrently used and are in continuous upgrade and improvements. Iontophoresis, electroporation, sonophoresis, magnetophoresis, dermal patches, nanocarriers, needled and needle-less shots, and injectors are among some of the methods of transdermal delivery. The current review covers the current state of the art, merits and shortcomings of the systems, devices and transdermal delivery patches, including drugs' and other payloads' passage facilitation techniques, permeation and absorption feasibility studies, as well as physicochemical properties affecting the delivery through different transdermal modes along with examples of drugs, vaccines, genes and other payloads.
Collapse
Affiliation(s)
- Naseem Akhtar
- Department of Pharmaceutics, College of Pharmacy,Buraydah Colleges, PO Box 31717, Qassim 51418, Saudi Arabia
| | - Varsha Singh
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India
| | - Mohammad Yusuf
- College of Pharmacy, University of Taif, Taif Al-Haweiah, Taif, Saudi Arabia.https://orcid.org/0000-0003- 1417-7774
| | - Riaz A Khan
- Manav Rachna International University (MRIU) and Manav Rachna International Institute of Research and Study (MRIIRS), Faridabad, HR 121 001, India.,Department of Medicinal Chemistry, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| |
Collapse
|
48
|
Yadav PR, Han T, Olatunji O, Pattanayek SK, Das DB. Mathematical Modelling, Simulation and Optimisation of Microneedles for Transdermal Drug Delivery: Trends and Progress. Pharmaceutics 2020; 12:E693. [PMID: 32707878 PMCID: PMC7464833 DOI: 10.3390/pharmaceutics12080693] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/05/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
In the last two decades, microneedles (MNs) have received significant interest due to their potential for painless transdermal drug delivery (TDD) and minimal skin damage. MNs have found applications in a range of research and development areas in drug delivery. They have been prepared using a variety of materials and fabrication techniques resulting in MN arrays with different dimensions, shapes, and geometries for delivery of a variety of drug molecules. These parameters play crucial roles in determining the drug release profiles from the MNs. Developing mathematical modelling, simulation, and optimisation techniques is vital to achieving the desired MN performances. These will then be helpful for pharmaceutical and biotechnological industries as well as professionals working in the field of regulatory affairs focusing on MN based TDD systems. This is because modelling has a great potential to reduce the financial and time cost of both the MNs' studies and manufacturing. For example, a number of robust mathematical models for predicting the performance of the MNs in vivo have emerged recently which incorporate the roles of the structural and mechanical properties of the skin. In addressing these points, this review paper aims to highlight the current status of the MN modelling research, in particular, the modelling, simulation and optimisation of the systems for drug delivery. The theoretical basis for the simulation of MN enhanced diffusion is discussed within this paper. Thus, this review paper provides a better understanding of the modelling of the MN mediated drug delivery process.
Collapse
Affiliation(s)
- Prateek Ranjan Yadav
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Tao Han
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| | - Ololade Olatunji
- Department of Chemical and Petroleum Engineering, University of Lagos, Lagos 100213, Nigeria
| | - Sudip K Pattanayek
- Chemical Engineering Department, Indian Institute of Technology, Delhi 110016, India
| | - Diganta Bhusan Das
- Chemical Engineering Department, Loughborough University, Loughborough LE11 3TU, Leicestershire, UK
| |
Collapse
|
49
|
Guillot AJ, Cordeiro AS, Donnelly RF, Montesinos MC, Garrigues TM, Melero A. Microneedle-Based Delivery: An Overview of Current Applications and Trends. Pharmaceutics 2020; 12:pharmaceutics12060569. [PMID: 32575392 PMCID: PMC7355570 DOI: 10.3390/pharmaceutics12060569] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microneedle arrays (MNA) are considered as one of the most promising resources to achieve systemic effects by transdermal delivery of drugs. They are designed as a minimally invasive, painless system which can bypass the stratum corneum, overcoming the potential drawbacks of subcutaneous injections and other transdermal delivery systems such as chemical enhancers, nano and microparticles, or physical treatments. As a trendy field in pharmaceutical and biomedical research, its applications are constantly evolving, even though they are based on very well-established techniques. The number of molecules administered by MNA are also increasing, with insulin and vaccines administration being the most investigated. Furthermore, MNA are being used to deliver cells and applied in other organs and tissues like the eyes and buccal mucosae. This review intends to offer a general overview of the current state of MNA research, focusing on the strategies, applications, and types of molecules delivered recently by these systems. In addition, some information about the materials and manufacturing processes is presented and safety data is discussed.
Collapse
Affiliation(s)
- Antonio José Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| | - Ana Sara Cordeiro
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - Ryan F. Donnelly
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; (A.S.C.); (R.F.D.)
| | - M. Carmen Montesinos
- Department of Pharmacology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
- Center of Molecular Recognition and Technological Development (IDM), 46100 Burjassot, Spain
- Correspondence: (M.C.M.); (T.M.G.)
| | - Teresa M. Garrigues
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
- Correspondence: (M.C.M.); (T.M.G.)
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain; (A.J.G.); (A.M.)
| |
Collapse
|
50
|
Microneedle Mediated Transdermal Delivery of Protein, Peptide and Antibody Based Therapeutics: Current Status and Future Considerations. Pharm Res 2020; 37:117. [PMID: 32488611 PMCID: PMC7266419 DOI: 10.1007/s11095-020-02844-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/21/2020] [Indexed: 02/08/2023]
Abstract
The success of protein, peptide and antibody based therapies is evident - the biopharmaceuticals market is predicted to reach $388 billion by 2024 [1], and more than half of the current top 20 blockbuster drugs are biopharmaceuticals. However, the intrinsic properties of biopharmaceuticals has restricted the routes available for successful drug delivery. While providing 100% bioavailability, the intravenous route is often associated with pain and needle phobia from a patient perspective, which may translate as a reluctance to receive necessary treatment. Several non-invasive strategies have since emerged to overcome these limitations. One such strategy involves the use of microneedles (MNs), which are able to painlessly penetrate the stratum corneum barrier to dramatically increase transdermal drug delivery of numerous drugs. This review reports the wealth of studies that aim to enhance transdermal delivery of biopharmaceutics using MNs. The true potential of MNs as a drug delivery device for biopharmaceuticals will not only rely on acceptance from prescribers, patients and the regulatory authorities, but the ability to upscale MN manufacture in a cost-effective manner and the long term safety of MN application. Thus, the current barriers to clinical translation of MNs, and how these barriers may be overcome are also discussed.
Collapse
|