1
|
Xu Q, Tu Y, Zhang Y, Xiu Y, Yu Z, Jiang H, Wang C. Discovery and biological evaluation of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives with promising antitumor activities as novel colchicine-binding site inhibitors. Eur J Med Chem 2024; 279:116869. [PMID: 39316845 DOI: 10.1016/j.ejmech.2024.116869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/26/2024]
Abstract
Tubulin, as the fundamental unit of microtubules, is a crucial target in the investigation of anticarcinogens. The synthesis and assessment of small-molecule tubulin polymerization inhibitors remains a promising avenue for the development of novel cancer therapeutics. Through an analysis of reported colchicine-binding site inhibitors (CBSIs) and tubulin binding models, a set of 6-aryl-4-(3,4,5-trimethoxyphenyl)quinoline derivatives were meticulously crafted as potential CBSIs. Notably, compound 14u exhibited potent anti-proliferative efficacy, displaying IC50 values ranging from 0.03 to 0.18 μM against three human cancer cell lines (Huh7, MCF-7, and SGC-7901). Mechanistic investigations revealed that compound 14u could disrupt tubulin polymerization, dismantle the microtubule architecture, arrest the cell cycle at G2/M phase, and induce apoptosis in cancer cells. Furthermore, compound 14u demonstrated significant inhibition of tumor proliferation in vivo with no discernible toxicity in the Huh7 orthotopic tumor model mice. Additionally, physicochemical property predictions indicated that compound 14u adhered well to Lipinski's rule of five. These findings collectively suggest that compound 14u holds promise as an antitumor agent targeting the colchicine-binding site on tubulin and warrants further investigation.
Collapse
Affiliation(s)
- Qianqian Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuxuan Tu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China
| | - Zongjiang Yu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 26610, Shandong, China.
| | - Hongfei Jiang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, Shandong, China; Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, Shandong, China.
| |
Collapse
|
2
|
Li J, Zhang T, Wu D, He C, Weng H, Zheng T, Liu J, Yao H, Chen J, Ren Y, Zhu Z, Xu J, Xu S. Palladium-Mediated Bioorthogonal System for Prodrug Activation of N-Benzylbenzamide-Containing Tubulin Polymerization Inhibitors for the Treatment of Solid Tumors. J Med Chem 2024. [PMID: 39484713 DOI: 10.1021/acs.jmedchem.4c02419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bioorthogonal cleavage reactions have been developed as an intriguing strategy to enhance the safety of chemotherapeutics. Aiming to reduce the toxicity and improve the targeted release properties of the colchicine binding site inhibitors (CBSIs) based on previous work, a series of biologically inert prodrugs were further designed and synthesized through a bioorthogonal prodrug strategy. The therapeutic effects of prodrugs could be "turned-on" once combined with palladium resins. Particularly, prodrug 2b was 68.3-fold less cytotoxic compared to the parent compound, while its cytotoxicity was recovered in situ in the presence of palladium resins. Mechanism studies confirmed that 2b inhibited cell growth in the same manner as CBSIs. More importantly, in vivo efficacy studies demonstrated the efficient activation of 2b by palladium resins, resulting in significant inhibition of tumor growth (63.2%). These results suggest that prodrug 2b with improved safety and targeted release property catalyzed by a Pd-mediated bioorthogonal cleavage reaction deserves further investigation.
Collapse
Affiliation(s)
- Jinlong Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tong Zhang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Di Wu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Chen He
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Haoxiang Weng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Tiandong Zheng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jie Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Hong Yao
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Yansong Ren
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, Nottingham NG7 2RD, U.K
| | - Jinyi Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
| | - Shengtao Xu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P.R. China
- Department of Hepatobiliary Surgery, The First People's Hospital of Kunshan, Suzhou 215132, P.R. China
| |
Collapse
|
3
|
Azimi S, Gallicchio E. Binding Selectivity Analysis from Alchemical Receptor Hopping and Swapping Free Energy Calculations. J Phys Chem B 2024. [PMID: 39468848 DOI: 10.1021/acs.jpcb.4c05732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
We present receptor hopping and receptor swapping free energy estimation protocols based on the Alchemical Transfer Method (ATM) to model the binding selectivity of a set of ligands to two arbitrary receptors. The receptor hopping protocol, where a ligand is alchemically transferred from one receptor to another in one simulation, directly yields the ligand's binding selectivity free energy (BSFE) for the two receptors, which is the difference between the two individual binding free energies. In the receptor swapping protocol, the first ligand of a pair is transferred from one receptor to another while the second ligand is simultaneously transferred in the opposite direction. The receptor swapping free energy yields the differences in binding selectivity free energies of a set of ligands, which, when combined using a generalized DiffNet algorithm, yield the binding selectivity free energies of the ligands. We test these algorithms on host-guest systems and show that they yield results that agree with experimental data and are consistent with differences in absolute and relative binding free energies obtained by conventional methods. Preliminary applications to the selectivity analysis of molecular fragments binding to the trypsin and thrombin serine protease confirm the potential of the receptor swapping technology in structure-based drug discovery. The novel methodologies presented in this work are a first step toward streamlined and computationally efficient protocols for ligand selectivity optimization between mutants and homologous proteins.
Collapse
Affiliation(s)
- Solmaz Azimi
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College of the City University of New York, New York, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
4
|
Foote JB, Mattox TE, Keeton AB, Chen X, Smith F, Berry KL, Holmes T, Wang J, Huang CH, Ward AB, Mitra AK, Ramirez-Alcantara V, Hardy C, Fleten KG, Flatmark K, Yoon KJ, Sarvesh S, Nagaraju GP, Bandi DSR, Maxuitenko YY, Valiyaveettil J, Carstens JL, Buchsbaum DJ, Yang J, Zhou G, Nurmemmedov E, Babic I, Gaponenko V, Abdelkarim H, Boyd MR, Gorman GS, Manne U, Bae S, El-Rayes BF, Piazza GA. A Novel Pan-RAS Inhibitor with a Unique Mechanism of Action Blocks Tumor Growth in Mouse Models of GI Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541233. [PMID: 38328254 PMCID: PMC10849544 DOI: 10.1101/2023.05.17.541233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Here, we describe a novel pan-RAS inhibitor, ADT-007, that potently inhibited the growth of RAS mutant cancer cells irrespective of the RAS mutation or isozyme. RAS WT cancer cells with GTP-activated RAS from upstream mutations were equally sensitive. Conversely, RAS WT cancer cells harboring downstream BRAF mutations and normal cells were essentially insensitive to ADT-007. Sensitivity of cancer cells to ADT-007 required activated RAS and dependence on RAS for proliferation, while insensitivity was attributed to metabolic deactivation by UDP-glucuronosyltransferases expressed in RAS WT and normal cells but repressed in RAS mutant cancer cells. ADT-007 binds nucleotide-free RAS to block GTP activation of effector interactions and MAPK/AKT signaling, resulting in mitotic arrest and apoptosis. ADT-007 displayed unique advantages over mutant-specific KRAS and pan-KRAS inhibitors, as well as other pan-RAS inhibitors that could impact in vivo antitumor efficacy by escaping compensatory mechanisms leading to resistance. Local administration of ADT-007 showed robust antitumor activity in syngeneic immune-competent and xenogeneic immune-deficient mouse models of colorectal and pancreatic cancer. The antitumor activity of ADT-007 was associated with the suppression of MAPK signaling and activation of innate and adaptive immunity in the tumor immune microenvironment. Oral administration of ADT-007 prodrug also inhibited tumor growth, supporting further development of this novel class of pan-RAS inhibitors for RAS-driven cancers. SIGNIFICANCE ADT-007 has unique pharmacological properties with distinct advantages over other RAS inhibitors by circumventing resistance and activating antitumor immunity. ADT-007 prodrugs and analogs with oral bioavailability warrant further development for RAS-driven cancers.
Collapse
|
5
|
Zhu M, Mao X, Huang X, Gan M, Zhang K, Chen Y. Novel Serum Markers that Distinguish Behcet's Disease from Idiopathic Recurrent Aphthous Stomatitis. Immunol Invest 2024:1-17. [PMID: 39356129 DOI: 10.1080/08820139.2024.2410743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
BACKGROUND Behcet's disease (BD) is a rare and recurrent autoinflammatory disorder characterized by systemic vasculitis, frequently manifested as recurrent aphthous stomatitis (RAS). We aim to identify specific serum proteins to discriminate between BD and idiopathicRAS. METHOD Peripheral blood was collected from 12 BD patients, 12 idiopathic RAS patients, and 21 healthy volunteers. The serum samples underwent Tandem Mass Tag-based mass spectrometry analysis. Differentially expressed proteins (DEPs) were identified for KEGG pathway enrichment, Gene Ontology (GO), and protein-protein interaction (PPI) analyses. ELISA was utilized to verify two BD-specific DEPs in another cohort consisting of 18 BD patients, 18 idiopathic RAS patients, and 18 controls. RESULTS Compared with RAS serum, BD serum showed 242 DEPs. 49 proteins were differentially expressed in BD but not RAS serum compared to healthy controls. KEGG pathway and GO analyses revealed that DEPs in BD and RAS have similar biological functions and cellular distributions, featuring a significant association with pathways regulating blood coagulation and immune response. When comparing DEPs between BD and RAS, several keratins emerged as markers that distinguish RAS from BD. We also identified multiple DEPs in BD but not RAS patients. PPI analysis uncovered that lipoprotein metabolism regulators serve as hub proteins, indicating their potentially essential roles in BD pathology. In addition, ELISA results confirmed the elevated LRG1 and SOD3 levels in BD, but not RAS patients, compared to healthy donors. CONCLUSION Our data uncovered novel serum proteins that distinguish BD from RAS, which may potentially be useful in BD diagnosis and treatment.
Collapse
Affiliation(s)
- Mengya Zhu
- Department of Rheumatology and Immunology, Ningbo No.2 hospital, Ningbo, China
| | - Xinliang Mao
- Emergency Department, Ningbo No.2 hospital, Ningbo, China
| | - Xianqian Huang
- Department of Rheumatology and Immunology, Ningbo No.2 hospital, Ningbo, China
| | - Minzhi Gan
- Department of Rheumatology and Immunology, Ningbo No.2 hospital, Ningbo, China
| | - Keyue Zhang
- Department of Rheumatology and Immunology, Ningbo No.2 hospital, Ningbo, China
| | - Yong Chen
- Department of Rheumatology and Immunology, Ningbo No.2 hospital, Ningbo, China
| |
Collapse
|
6
|
Tsai JF, Yu FY, Liu BH. Citrinin disrupts microtubule assembly in cardiac cells: Impact on mitochondrial organization and function. CHEMOSPHERE 2024; 365:143352. [PMID: 39293683 DOI: 10.1016/j.chemosphere.2024.143352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/31/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
Citrinin (CTN) is a mycotoxin commonly present in various foods and feeds worldwide, as well as dietary supplements in Asian countries, but the risks and cellular mechanisms associated with its cardiotoxicity remains unclear. In this study, RNA-seq analysis of CTN-treated H9c2 cardiac cells demonstrated significant perturbations in pathways related to microtubule cytoskeleton and mitochondrial network organization. CTN disrupted microtubule polymerization and downregulated mRNA levels of microtubule-assembling genes, Map2 and Tpx2, in H9c2 cardiac cells. Additionally, CTN interfered with the distribution of mitochondrial network along the microtubules, leading to the accumulation of dysfunctional mitochondria characterized by elevated superoxide levels and reduced membrane potential. This disruption also caused the buildup of lysosomes and ubiquitinated proteins, which hindered waste clearance in microtubule-disassembled H9c2 cells. Molecular docking analysis indicated that CTN could bind to the colchicine binding site on β-tubulin, thereby mimicking the microtubule-disrupting effect of colchicine. This study provides morphological, transcriptomic, and mechanistic evidence to elucidate the cardiotoxic mechanisms of CTN, which involve the dysregulated microtubule network, subsequent mitochondrial mislocalization, and impaired proteolysis of damaged proteins/organelles in cardiac cells. Our findings may enhance the fundamental understanding and facilitate future risk assessment of CTN.
Collapse
Affiliation(s)
- Jui-Feng Tsai
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Mustafa EM, Shahin AI, Alrashed AS, Bahaaddin AH, Alajmi AA, Hashem O, Anbar HS, El-Gamal MI. An overview of the latest outlook of sulfamate derivatives as anticancer candidates (2020-2024). Arch Pharm (Weinheim) 2024; 357:e2400331. [PMID: 38943437 DOI: 10.1002/ardp.202400331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024]
Abstract
Considering the emergence of new anticancer drugs, in this review we emphasized and highlighted the recent reports and advances related to sulfamate-incorporating compounds with potential anticancer activity during the last 5 years (2020-2024). Additionally, we discussed their structure-activity relationship, clarifying their potent bioactivity as anticancer agents. Sulfamate derivatives hold promise as effective therapeutic candidates against cancer. By targeting biological targets associated with the development of cancer, such as steroid sulfatases (STS), carbonic anhydrases (CAs), microtubules, NEDD8-activating enzyme, small ubiquitin-like modifiers (SUMO)-activating enzyme (SAE), cyclin-dependent kinases (CDKs), breast cancer susceptibility gene 1 (BRCA1), and so on, this can furnish small molecules as anticancer lead candidates serving the drug discovery field. For example, compound 2, an STS inhibitor, demonstrated superior activity compared to its reference, irosustat, by fivefold. In addition, compound 21, an SAE, is under phase I clinical trials. Continued research into sulfamate derivatives holds potential for the development of novel therapeutic agents targeting various diseases.
Collapse
Affiliation(s)
- Esra M Mustafa
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Afnan I Shahin
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Aishah S Alrashed
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Aesheh H Bahaaddin
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Aljawhra A Alajmi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Omar Hashem
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hanan S Anbar
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Research, Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Geng D, Chen Z, Li Y, Liu T, Wang L. Design and bio-evaluation of novel millepachine derivatives targeting tubulin colchicine binding site for treatment of osteosarcoma. Bioorg Chem 2024; 151:107624. [PMID: 39002514 DOI: 10.1016/j.bioorg.2024.107624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microtubules are recognized as an appealing target for cancer treatment. We designed and synthesized of novel tubulin colchicine binding site inhibitors based on millepachine. Biological evaluation revealed compound 5h exhibited significant antiproliferative activity against osteosarcoma cell U2OS and MG-63. And compound 5h also remarkably inhibited tubulin polymerization. Further investigations indicated compound 5h not only arrest U2OS cells cycle at the G2/M phases, but also induced U2OS cells apoptosis in dose-dependent manners. Moreover, compound 5h was verified to inhibit cell migration and angiogenesis of HUVECs, induce mitochondrial membrane potential decreased and promoted the elevation of ROS levels. Furthermore, compound 5h exhibited remarkable effects on tumor growth in vivo, and the TGI rate was up to 84.94 % at a dose of 20 mg/kg without obvious toxicity. These results indicated that 5h may be an appealing tubulin inhibitor for treatment of osteosarcoma.
Collapse
Affiliation(s)
- Dawei Geng
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China; Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhong Chen
- Department of Orthopaedics, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yin Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital, Jinan 250021, China
| | - Tianbao Liu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Liming Wang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
9
|
Aljuhani A, Nafie MS, Albujuq NR, Hourani W, Albelwi FF, Darwish KM, Samir Ayed A, Reda Aouad M, Rezki N. Unveiling the anti-cancer potentiality of phthalimide-based Analogues targeting tubulin polymerization in MCF-7 cancerous Cells: Rational design, chemical Synthesis, and Biological-coupled Computational investigation. Bioorg Chem 2024; 153:107827. [PMID: 39321715 DOI: 10.1016/j.bioorg.2024.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024]
Abstract
The present study deals with an anti-cancer investigation of an array of phthalimide-1,2,3-triazole molecular conjugates with various sulfonamide fragments against human breast MCF-7 and prostate PC3 cancer cell lines. The targeted 1,2,3-triazole derivatives 4a-l and 6a-c were synthesized from focused phthalimide-based alkyne precursors using a facile click synthesis approach and were thoroughly characterized using several spectroscopic techniques (IR, 1H, 13C NMR, and elemental analysis). The hybrid click adducts 4b, 4 h, and 6c displayed cytotoxic potency (IC50 values of 1.49, 1.07, and 0.56 μM, respectively) against MCF-7 cells. On the contrary, none of the synthesized compounds showed apparent cytotoxic efficacy for PC3 cells (IC50 ranging from 9.87- >100 μM). As a part of the mechanism analysis, compound 6c demonstrated a potent inhibitory effect (78.3 % inhibition) of tubulin polymerization in vitro with an IC50 value of 6.53 µM. In addition, biological assays showed that compound 6c could prompt apoptotic cell death and induce G2/M cell cycle arrest in MCF-7 cells. Accordingly, compound 6c can be further developed as an anti-breast cancer agent through apoptosis-induction.
Collapse
Affiliation(s)
- Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. 27272, United Arab Emirates (UAE); Chemistry Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Nader R Albujuq
- Department of Chemistry, School of Science, The University of Jordan, Amman 11942, Jordan.
| | - Wafa Hourani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan.
| | - Fawzia F Albelwi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Khaled M Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Aya Samir Ayed
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia.
| |
Collapse
|
10
|
Yan W, Zhou Y, Yuan X, Bai P, Tang M, Chen L, Wei H, Yang J. The cytotoxic natural compound erianin binds to colchicine site of β-tubulin and overcomes taxane resistance. Bioorg Chem 2024; 150:107569. [PMID: 38905886 DOI: 10.1016/j.bioorg.2024.107569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Erianin, a natural compound derived from Dendrobium, has shown significant anticancer properties against a wide range of cancer cells. Despite the identification of multiple mechanisms of action for erianin, none of these mechanisms fully account for its broad-spectrum effect. In this study, we aimed to identify the cellular target and underlying mechanism responsible for the broad-spectrum antitumor effects of erianin. We found that erianin effectively inhibited tubulin polymerization in cancer cells and purified tubulin. Through competition binding assays and X-ray crystallography, it was revealed that erianin bound to the colchicine site of β-tubulin. Importantly, the X-ray crystal structure of the tubulin-erianin complex was solved, providing clear insight into the orientation and position of erianin in the colchicine-binding site. Erianin showed activity against paclitaxel-resistant cells, evidenced by G2/M cell cycle arrest, apoptosis-related PARP and Caspase-3 cleavage, and in vivo xenograft studies. The study concluded that erianin bound reversibly to the colchicine site of β-tubulin, inhibited tubulin polymerization, and displayed anticancer activity against paclitaxel-resistant cells, offering valuable insights for further exploration as potential anticancer agents.
Collapse
Affiliation(s)
- Wei Yan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yongzhao Zhou
- Integrated Care Management Center, West China Hospital, Sichuan University, China.
| | - Xue Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Peng Bai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoche Wei
- Department of General Surgery, Gastric Cancer Center, Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| | - Jianhong Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
11
|
Hashem H, Hassan A, Abdelmagid WM, Habib AGK, Abdel-Aal MAA, Elshamsy AM, El Zawily A, Radwan IT, Bräse S, Abdel-Samea AS, Rabea SM. Synthesis of New Thiazole-Privileged Chalcones as Tubulin Polymerization Inhibitors with Potential Anticancer Activities. Pharmaceuticals (Basel) 2024; 17:1154. [PMID: 39338317 PMCID: PMC11435058 DOI: 10.3390/ph17091154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
A series of novel thiazole-based chalcones were evaluated for their anticancer activity as potential tubulin polymerization inhibitors. In vitro anticancer screening for the thiazole derivatives 2a-2p exhibited broad-spectrum antitumor activity against various cancer cell lines particularly Ovar-3 and MDA-MB-468 cells with a GI50 range from 1.55 to 2.95 μΜ, respectively. Compound 2e demonstrated significant inhibition of tubulin polymerization, with an IC50 value of 7.78 μM compared to Combretastatin-A4 (CA-4), with an IC50 value of 4.93 μM. Molecular docking studies of compounds 2e, 2g, and 2h into tubulin further supported these findings, revealing that they bind effectively to the colchicine binding site, mirroring key interactions exhibited by CA-4. Computational predictions suggested favorable oral bioavailability and drug-likeness for these compounds, highlighting their potential for further development as chemotherapeutic agents.
Collapse
Affiliation(s)
- Hamada Hashem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Sohag University, Sohag 82524, Egypt
| | - Abdelfattah Hassan
- Medicinal Chemistry Department, Faculty of Pharmacy, South Valley University, Qena 52242, Egypt
- Medicinal Chemistry Department, Clinical Pharmacy Program, South Valley National University, Qena 52242, Egypt
| | - Walid M Abdelmagid
- Medicinal Chemistry and Drug Discovery Research Centre, Swenam College, 210-6125 Sussex Avenue, Burnaby, BC V5H 4G1, Canada
| | - Ahmed G K Habib
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62521, Egypt
| | - Mohamed A A Abdel-Aal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ali M Elshamsy
- Medicinal Chemistry Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Amr El Zawily
- Department of Plant and Microbiology, Faculty of Science, Damanhour University, Damanhour 22511, Egypt
- Division of Pharmaceutics and Translation Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Ibrahim Taha Radwan
- Supplementary General Sciences Department, Faculty of Oral and Dental Medicine, Future University in Egypt, Cairo 11835, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstrasse 12, 76131 Karlsruhe, Germany
| | - Ahmed S Abdel-Samea
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Deraya University, New Minia 61768, Egypt
| | - Safwat M Rabea
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Apogee Pharmaceuticals Inc., 4475 Wayburne Dr., Suite 105, Burnaby, BC V6V2H8, Canada
| |
Collapse
|
12
|
Abdel-Motaal M, Aldakhili DA, Farag AB, Elmaaty AA, Sharaky M, Mohamed NA, Shaaban S, Alzahrani AYA, Al-Karmalawy AA. Design and synthesis of novel multi-target tetrabromophthalimides as CBS and Topo-II inhibitors and DNA intercalators. RSC Med Chem 2024:d4md00585f. [PMID: 39290384 PMCID: PMC11403875 DOI: 10.1039/d4md00585f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/19/2024] Open
Abstract
Microtubules are highly dynamic structures and constitute a crucial component of the cellular cytoskeleton. Besides, topoisomerases (Topo) play a fundamental role in maintaining the appropriate structure and organization of DNA. On the other hand, dual mechanism drug candidates for cancer treatment primarily aim to enhance the efficacy of cancer treatment and potentially overcome drug resistance. Hence, this work was tailored to design and synthesize new multi-target tetrabromophthalimide derivatives (2a-2k) that are capable of inhibiting the colchicine binding site (CBS) and topoisomerase II (Topo-II). The conducted in vitro studies showed that compound 2f showed the lowest IC50 value (6.7 μg mL-1) against the MDA-MB-468 cancer cell line. Additionally, compound 2f prompted upregulation of pro-apoptotic markers (caspases 3, 7, 8, and 9, Bax and p53). Moreover, some anti-apoptotic proteins (MMP2, MMP9, and BCL-2) were downregulated by compound 2f treatment. Besides, the colchicine binding assay showed that compounds 2f and 2k displayed promising inhibitory potential with IC50 values of 1.92 and 4.84 μg mL-1, respectively, in comparison with colchicine (1.55 μg mL-1). Furthermore, the Topo-II inhibition assay displayed the prominent inhibitory potential of compound 2f with an IC50 value of 15.75 μg mL-1, surpassing the IC50 of etoposide (20.82 μg mL-1). Cell cycle analysis revealed that compound 2f induced cell cycle arrest at both the G0-G1 and G2-M phases. The new candidates were docked against both the CBS (PDB ID: 5XIW) and Topo-II (PDB ID: 5CDP) targets to investigate their binding interactions and affinities as well. Accordingly, the synthesized compounds could serve as promising multi-target anticancer candidates with eligible apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
| | - Dalal Ali Aldakhili
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Ayman B Farag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University 6th of October City Giza 12566 Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University Port Said 42511 Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University Cairo Egypt
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University Buraydah 51452 Qassim Saudi Arabia
| | - Saad Shaaban
- Organic Chemistry Division, Department of Chemistry, College of Science, Mansoura University Mansoura Egypt
- Department of Chemistry, College of Science, King Faisal University P.O. Box 380 Al-Ahsa 31982 Saudi Arabia
| | | | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Mashreq Baghdad 10023 Iraq
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt New Damietta 34518 Egypt
| |
Collapse
|
13
|
Oluwalana D, Adeleye KL, Krutilina RI, Chen H, Playa H, Deng S, Parke DN, Abernathy J, Middleton L, Cullom A, Thalluri B, Ma D, Meibohm B, Miller DD, Seagroves TN, Li W. Biological activity of a stable 6-aryl-2-benzoyl-pyridine colchicine-binding site inhibitor, 60c, in metastatic, triple-negative breast cancer. Cancer Lett 2024; 597:217011. [PMID: 38849011 PMCID: PMC11290984 DOI: 10.1016/j.canlet.2024.217011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/21/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND Improving survival for patients diagnosed with metastatic disease and overcoming chemoresistance remain significant clinical challenges in treating breast cancer. Triple-negative breast cancer (TNBC) is an aggressive subtype characterized by a lack of therapeutically targetable receptors (ER/PR/HER2). TNBC therapy includes a combination of cytotoxic chemotherapies, including microtubule-targeting agents (MTAs) like paclitaxel (taxane class) or eribulin (vinca class); however, there are currently no FDA-approved MTAs that bind to the colchicine-binding site. Approximately 70 % of patients who initially respond to paclitaxel will develop taxane resistance (TxR). We previously reported that an orally bioavailable colchicine-binding site inhibitor (CBSI), VERU-111, inhibits TNBC tumor growth and treats pre-established metastatic disease. To further improve the potency and metabolic stability of VERU-111, we created next-generation derivatives of its scaffold, including 60c. RESULTS 60c shows improved in vitro potency compared to VERU-111 for taxane-sensitive and TxR TNBC models, and suppress TxR primary tumor growth without gross toxicity. 60c also suppressed the expansion of axillary lymph node metastases existing prior to treatment. Comparative analysis of excised organs for metastasis between 60c and VERU-111 suggested that 60c has unique anti-metastatic tropism. 60c completely suppressed metastases to the spleen and was more potent to reduce metastatic burden in the leg bones and kidney. In contrast, VERU-111 preferentially inhibited liver metastases and lung metastasis repression was similar. Together, these results position 60c as an additional promising CBSI for TNBC therapy, particularly for patients with TxR disease.
Collapse
Affiliation(s)
- Damilola Oluwalana
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Kelli L Adeleye
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Raisa I Krutilina
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Hilaire Playa
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Shanshan Deng
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Deanna N Parke
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - John Abernathy
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Leona Middleton
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Alexandra Cullom
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bhargavi Thalluri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Dejian Ma
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States
| | - Tiffany N Seagroves
- Department of Pathology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, United States; Center for Cancer Research, Memphis, TN 38163, United States.
| |
Collapse
|
14
|
Sun H, Wienkers LC, Lee A. Beyond cytotoxic potency: disposition features required to design ADC payload. Xenobiotica 2024; 54:442-457. [PMID: 39017706 DOI: 10.1080/00498254.2024.2381139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
1. Antibody-drug conjugates (ADCs) have demonstrated impressive clinical usefulness in treating several types of cancer, with the notion of widening of the therapeutic index of the cytotoxic payload through the minimisation of the systemic toxicity. Therefore, choosing the most appropriate payload molecule is a particularly important part of the early design phase of ADC development, especially given the highly competitive environment ADCs find themselves in today.2. The focus of the current review is to describe critical attributes/considerations needed in the discovery and ultimately development of cytotoxic payloads in support of ADC design. In addition to potency, several key dispositional characteristics including solubility, permeability and bystander effect, pharmacokinetics, metabolism, and drug-drug interactions, are described as being an integral part of the integrated activities required in the design of clinically safe and useful ADC therapeutic agents.
Collapse
Affiliation(s)
- Hao Sun
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Larry C Wienkers
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| | - Anthony Lee
- Clinical Pharmacology and Translational Sciences, Pfizer Oncology Division, Pfizer, Inc, Bothell, WA, USA
| |
Collapse
|
15
|
Adeleye K, Li A, Xie Y, Pochampally S, Hamilton D, Garcia-Godoy F, Miller D, Li W. Novel Antimitotic Agent SP-1-39 Inhibits Head and Neck Squamous Cell Carcinoma. J Dent Res 2024; 103:926-936. [PMID: 39101715 PMCID: PMC11465348 DOI: 10.1177/00220345241261982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024] Open
Abstract
Effective management of head and neck cancer (HNC) poses a significant challenge in the field of oncology, due to its intricate pathophysiology and limited treatment options. The most common HNC malignancy is head and neck squamous cell carcinoma (HNSCC). HNSCC treatment includes a combination of surgery, radiation, and chemotherapy. While HNSCC is treatable if diagnosed early, this is often not the case and is considered incurable once in its late stages and metastatic disease has developed. Therapies are also limited once resistant disease has occurred. SP-1-39, a novel colchicine-binding site inhibitor (CBSI), has been recently reported for its potential efficacy in a variety of cancer cell lines including breast, melanoma, pancreatic, and prostate. SP-1-39 also shows abilities to overcome paclitaxel resistance in a paclitaxel-resistant prostate cancer xenograft model. To evaluate the potential of SP-1-39 as a new HNSCC treatment option, herein we systematically performed preclinical studies in HNSCC models using SP-1-39 and demonstrated that, in vitro, SP-1-39 inhibits the proliferation of 2 HNSCC cell lines with low nanomolar IC50 values (1.4 to 2.1 nM), induces HNSCC cell apoptosis in a dose-dependent manner, interferes with migration of HNSCC cells, and leads to HNSCC cell cycle arrest in the G2/M phase. In vivo, SP-1-39 suppresses the primary tumor growth of a Detroit 562 subcutaneous xenograft mouse model in 6- to 8-wk-old, male NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice, with no detectable cytotoxic effects at a low dose of 2.5 mg/kg. This efficacy of SP-1-39 is better when compared with the treatment using a reference chemotherapy drug, paclitaxel at 10 mg/kg. Collectively, these data demonstrate that SP-1-39 is a promising candidate for further development for more efficacious HNSCC treatment.
Collapse
Affiliation(s)
- K.L. Adeleye
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - A.R. Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Y. Xie
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Pochampally
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D. Hamilton
- Department of Comparative Medicine, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - F. Garcia-Godoy
- Department of Bioscience Research, College of Dentistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - D.D. Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - W. Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
16
|
Jiang F, Yu M, Liang Y, Ding K, Wang Y. Discovery of Novel Diaryl-Substituted Fused Heterocycles Targeting Katanin and Tubulin with Potent Antitumor and Antimultidrug Resistance Efficacy. J Med Chem 2024; 67:12118-12142. [PMID: 38996194 DOI: 10.1021/acs.jmedchem.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Disrupting microtubule dynamics has emerged as a promising strategy for cancer treatment. However, drug resistance remains a challenge hindering the development of microtubule-targeting agents. In this work, a novel class of diaryl substituted fused heterocycles were designed, synthesized, and evaluated, which were demonstrated as effective dual katanin and tubulin regulators with antitumor activity. Following three rounds of stepwise optimization, compound 21b, featuring a 3H-imidazo[4,5-b]pyridine core, displayed excellent targeting capabilities on katanin and tubulin, along with notable antiproliferative and antimetastatic effects. Mechanistic studies revealed that 21b disrupts the microtubule network in tumor cells, leading to G2/M cell cycle arrest and apoptosis induction. Importantly, 21b exhibited significant inhibition of tumor growth in MDA-MB-231 and A549/T xenograft tumor models without evident toxicity and side effects. In conclusion, compound 21b presents a novel mechanism for disrupting microtubule dynamics, warranting further investigation as a dual-targeted antitumor agent with potential antimultidrug resistance properties.
Collapse
Affiliation(s)
- Fuhao Jiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Xiu Y, Zhang Y, Yang S, Shi L, Xing D, Wang C. Design, synthesis, and bioevaluation of diarylpyrimidine derivatives as novel microtubule destabilizers. Front Chem 2024; 12:1447831. [PMID: 39119517 PMCID: PMC11306069 DOI: 10.3389/fchem.2024.1447831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
In this work, a series of new diarylpyrimidine derivatives as microtubule destabilizers were designed, synthesized, and evaluated for anticancer activities. Based on restriction configuration strategy, we introduced the pyrimidine moiety containing the hydrogen-bond acceptors as cis-olefin bond of CA-4 analogs to improve structural stability. Compounds 11a-t exerted antiproliferative activities against three human cancer cell lines (SGC-7901, HeLa, and MCF-7), due to tubulin polymerization inhibition, showing high selectivity toward cancer cells in comparison with non-tumoral HSF cells, as evidenced by MTT assays. In mechanistic investigations, compound 11s remarkably inhibited tubulin polymerization and disorganized microtubule in SGC-7901 cells by binding to tubulin. Moreover, 11s caused G2/M phase cell cycle arrest in SGC-7901 cells in a concentration-dependent manner. Furthermore, molecular modeling analysis revealed that 11s interacts with tubulin through binding to the colchicine site. In addition, the prediction of physicochemical properties disclosed that 11s conformed well to the Lipinski's rule of five. This work offered a fresh viewpoint for the discovery of new tubulin-targeting anticancer drugs.
Collapse
Affiliation(s)
- Yutao Xiu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Yujing Zhang
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
| | - Shanbo Yang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Lingyu Shi
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Chao Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China
- Qingdao Cancer Institute, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
18
|
Abdel-Motaal M, Aldakhili DA, Abo Elmaaty A, Sharaky M, Mourad MAE, Alzahrani AYA, Mohamed NA, Al-Karmalawy AA. Design and synthesis of novel tetrabromophthalimide derivatives as potential tubulin inhibitors endowed with apoptotic induction for cancer treatment. Drug Dev Res 2024; 85:e22197. [PMID: 38751223 DOI: 10.1002/ddr.22197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024]
Abstract
Although various approaches exist for treating cancer, chemotherapy continues to hold a prominent role in the management of this disease. Besides, microtubules serve as a vital component of the cellular skeleton, playing a pivotal role in the process of cell division making it an attractive target for cancer treatment. Hence, the scope of this work was adapted to design and synthesize new anti-tubulin tetrabromophthalimide hybrids (3-17) with colchicine binding site (CBS) inhibitory potential. The conducted in vitro studies showed that compound 16 displayed the lowest IC50 values (11.46 µM) at the FaDu cancer cell lines, whereas compound 17 exhibited the lowest IC50 value (13.62 µM) at the PC3 cancer cell line. However, compound 7b exhibited the lowest IC50 value (11.45 µM) at the MDA-MB-468 cancer cell line. Moreover, compound 17 was observed to be the superior antitumor candidate against all three tested cancer cell lines (MDA-MB-468, PC3, and FaDu) with IC50 values of 17.22, 13.15, and 13.62 µM, respectively. In addition, compound 17 showed a well-established upregulation of apoptotic markers (Caspases 3, 7, 8, and 9, Bax, and P53). Moreover, compound 17 induced downregulation of the antiapoptotic markers (MMP2, MMP9, and BCL-2). Furthermore, the colchicine binding site inhibition assay showed that compounds 15a and 17 exhibited particularly significant inhibitory potentials, with IC50 values of 23.07 and 4.25 µM, respectively, compared to colchicine, which had an IC50 value of 3.89 µM. Additionally, cell cycle analysis was conducted, showing that compound 17 could prompt cell cycle arrest at both the G0-G1 and G2-M phases. On the other hand, a molecular docking approach was applied to investigate the binding interactions of the examined candidates compared to colchicine towards CBS of the β-tubulin subunit. Thus, the synthesized tetrabromophthalimide hybrids can be regarded as outstanding anticancer candidates with significant apoptotic activity.
Collapse
Affiliation(s)
- Marwa Abdel-Motaal
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Organic Chemistry Division, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Dalal A Aldakhili
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, Cairo, Egypt
- Biochemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Abdullah Y A Alzahrani
- Department of Chemistry, Faculty of Science and Arts, King Khalid University, Mohail Assir, Saudi Arabia
| | - Nadia A Mohamed
- Department of Chemistry, College of Science, Qassim University, Buraydah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
19
|
Arya GC, Khalid M, Mehla S, Jakhmola V. A review of synthetic strategy, SAR, docking, simulation studies, and mechanism of action of isoxazole derivatives as anticancer agents. J Biomol Struct Dyn 2024; 42:4909-4935. [PMID: 37315986 DOI: 10.1080/07391102.2023.2220819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/29/2023] [Indexed: 06/16/2023]
Abstract
Breast cancer (BC) is a global health concern and the leading cause of cancerous death among women across the world, BC has been characterized by fresh lump in the breast or underarm (armpit), thickened or swollen. Worldwide estimated 9.6 million deaths in 2018-2019. Numerous drugs have been approved by FDA for BC treatment but showed numerous adverse effects like bioavailability issues, selectivity issues, and toxicity issues. Therefore, there is an immediate need to develop new molecules that are non-toxic and more efficient for treating cancer. Isoxazole derivatives have gained popularity over the few years due to their effective antitumor potential. These derivatives work against cancer by inhibiting the thymidylate enzyme, inducing apoptosis, inhibiting tubulin polymerization, protein kinase inhibition, and aromatase inhibition. In this study, we have concentrated on the isoxazole derivative with structure-activity relationship study, various synthesis techniques, mechanism of action, docking, and simulation studies pertaining to BC receptors. Hence the development of isoxazole derivatives with improved therapeutic efficacy will inspire further progress in improving human health.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Girish Chandra Arya
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shefali Mehla
- University Institute of Pharmaceutical Sciences (UIPS), Chandigarh University, Mohali, India
| | - Vikash Jakhmola
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
20
|
Ouellette V, Bouzriba C, Chavez Alvarez AC, Hamel-Côté G, Fortin S. Modification of the phenyl ring B of phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates by pyridinyl moiety leads to novel antimitotics targeting the colchicine-binding site. Bioorg Med Chem Lett 2024; 105:129745. [PMID: 38614151 DOI: 10.1016/j.bmcl.2024.129745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, β-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.
Collapse
Affiliation(s)
- Vincent Ouellette
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Chahrazed Bouzriba
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Atziri Corin Chavez Alvarez
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada; Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval (IUCPQ), 2725 chemin Ste-Foy, Québec, QC, G1V 4G5, Canada.
| | - Geneviève Hamel-Côté
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada.
| | - Sébastien Fortin
- Centre de recherche du CHU de Québec-Université Laval, Axe Oncologie, Hôpital Saint-François d'Assise, 10 rue de l'Espinay, Québec, QC, G1L 3L5, Canada; Faculté de pharmacie, Université Laval, Pavillon Ferdinand-Vandry, 1050 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
21
|
Deshmukh SR, Nalkar AS, Sarkate AP, Tiwari SV, Lokwani DK, Thopate SR. Design, synthesis, and biological evaluation of novel 2,3-Di-O-Aryl/Alkyl sulfonate derivatives of l-ascorbic acid: Efficient access to novel anticancer agents via in vitro screening, tubulin polymerization inhibition, molecular docking study and ADME predictions. Bioorg Chem 2024; 147:107402. [PMID: 38688199 DOI: 10.1016/j.bioorg.2024.107402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/14/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A series of novel l-ascorbic acid derivatives bearing aryl and alkyl sulfonate substituents were synthesized and characterized. In vitro anticancer evaluation against MCF-7 (breast) and A-549 (lung) cancer cell lines revealed potent activity for most of the compounds, with 2b being equipotent to the standard drug colchicine against MCF-7 (IC50 = 0.04 μM). Notably, compound 2b displayed 89-fold selectivity for MCF-7 breast cancer over MCF-10A normal breast cells. Derivatives with two sulfonate groups (2a-g, 3a-g) exhibited superior potency over those with one sulfonate (4a-c,5g, 6b). Compounds 2b and 2c potently inhibited tubulin polymerization in A-549 cancer cells (73.12 % and 62.09 % inhibition, respectively), substantiating their anticancer potential through microtubule disruption. Molecular docking studies showed higher binding scores and affinities for these compounds at the colchicine-binding site of α, β-tubulin compared to colchicine itself. In-silico ADMET predictions indicated favourable drug-like properties, with 2b exhibiting the highest binding affinity. These sulfonate derivatives of l-ascorbic acid represents promising lead scaffolds for anticancer drug development.
Collapse
Affiliation(s)
- Santosh R Deshmukh
- Department of Chemistry, Ahmednagar College, Ahmednagar, Maharashtra 414001, India
| | - Archana S Nalkar
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalay, Ahmednagar, Maharashtra 414001, India
| | - Aniket P Sarkate
- Department of Chemical Technology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, Maharashtra 431004, India
| | - Shailee V Tiwari
- Department of Pharmaceutical Chemistry, Shri Ramkrishna Paramhans College of Pharmacy, Hasnapur, Parbhani, Maharashtra 431401, India
| | - Deepak K Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra 443001, India
| | - Shankar R Thopate
- Department of Chemistry, Radhabai Kale Mahila Mahavidyalay, Ahmednagar, Maharashtra 414001, India.
| |
Collapse
|
22
|
Yancheva D, Argirova M, Georgieva I, Milanova V, Guncheva M, Rangelov M, Todorova N, Tzoneva R. Antiproliferative and Pro-Apoptotic Activity and Tubulin Dynamics Modulation of 1 H-Benzimidazol-2-yl Hydrazones in Human Breast Cancer Cell Line MDA-MB-231. Molecules 2024; 29:2400. [PMID: 38792260 PMCID: PMC11123699 DOI: 10.3390/molecules29102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: The aim of the work is the evaluation of in vitro antiproliferative and pro-apoptotic activity of four benzimidazole derivatives containing colchicine-like and catechol-like moieties with methyl group substitution in the benzimidazole ring against highly invasive breast cancer cell line MDA-MB-231 and their related impairment of tubulin dynamics. (2) Methods: The antiproliferative activity was assessed with the MTT assay. Alterations in tubulin polymerization were evaluated with an in vitro tubulin polymerization assay and a docking analysis. (3) Results: All derivatives showed time-dependent cytotoxicity with IC50 varying from 40 to 60 μM after 48 h and between 13 and 20 μM after 72 h. Immunofluorescent and DAPI staining revealed the pro-apoptotic potential of benzimidazole derivatives and their effect on tubulin dynamics in living cells. Compound 5d prevented tubulin aggregation and blocked mitosis, highlighting the importance of the methyl group and the colchicine-like fragment. (4) Conclusions: The benzimidazole derivatives demonstrated moderate cytotoxicity towards MDA-MB-231 by retarding the initial phase of tubulin polymerization. The derivative 5d containing a colchicine-like moiety and methyl group substitution in the benzimidazole ring showed potential as an antiproliferative agent and microtubule destabilizer by facilitating faster microtubule aggregation and disrupting cellular and nuclear integrity.
Collapse
Affiliation(s)
- Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 9, 1113 Sofia, Bulgaria; (M.A.); (M.G.); (M.R.)
| | - Maria Argirova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 9, 1113 Sofia, Bulgaria; (M.A.); (M.G.); (M.R.)
| | - Irina Georgieva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 21, 1113 Sofia, Bulgaria; (I.G.); (V.M.)
| | - Vanya Milanova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 21, 1113 Sofia, Bulgaria; (I.G.); (V.M.)
| | - Maya Guncheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 9, 1113 Sofia, Bulgaria; (M.A.); (M.G.); (M.R.)
| | - Miroslav Rangelov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 9, 1113 Sofia, Bulgaria; (M.A.); (M.G.); (M.R.)
| | - Nadezhda Todorova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria;
| | - Rumiana Tzoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev St., Build. 21, 1113 Sofia, Bulgaria; (I.G.); (V.M.)
| |
Collapse
|
23
|
Njangiru IK, Bózsity-Faragó N, Resch VE, Paragi G, Frank É, Balogh GT, Zupkó I, Minorics R. A Novel 2-Methoxyestradiol Derivative: Disrupting Mitosis Inhibiting Cell Motility and Inducing Apoptosis in HeLa Cells In Vitro. Pharmaceutics 2024; 16:622. [PMID: 38794284 PMCID: PMC11125453 DOI: 10.3390/pharmaceutics16050622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The clinical application of 2-methoxyestradiol (2ME) in cancer therapy has been limited by its low solubility and rapid metabolism. Derivatives of 2ME have been synthesised to enhance bioavailability and decrease hepatic metabolism. Compound 4a, an analog of 2ME, has demonstrated exceptional pharmacological activity, in addition to promising pharmacokinetic profile. Our study, therefore, aimed at exploring the anticancer effects of 4a on the cervical cancer cell line, HeLa. Compound 4a exhibited a significant and dose-dependent antimetastatic and antiinvasive impact on HeLa cells, as determined by wound-healing and Boyden chamber assays, respectively. Hoechst/Propidium iodide (HOPI) double staining showcased a substantial induction of apoptosis via 4a, with minimal necrotic effect. Flow cytometry revealed a significant G2/M phase arrest, accompanied by a noteworthy rise in the sub-G1 cell population, indicating apoptosis, 18 h post-treatment. Moreover, a cell-independent tubulin polymerisation assay illustrated compound 4a's ability to stabilise microtubules by promoting tubulin polymerisation. Molecular modelling experiments depicted that 4a interacts with the colchicine-binding site, nestled between the α and β tubulin dimers. Furthermore, 4a displayed an affinity for binding to and activating ER-α, as demonstrated by the luciferase reporter assay. These findings underscore the potential of 4a in inhibiting HPV18+ cervical cancer proliferation and cellular motility.
Collapse
Affiliation(s)
- Isaac Kinyua Njangiru
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| | - Noémi Bózsity-Faragó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| | - Vivien Erzsébet Resch
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor Paragi
- Department of Medicinal Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- Department of Theoretical Physics, University of Szeged, Tisza Lajos krt. 84-86, 6720 Szeged, Hungary
- Institute of Physics, University of Pécs, H-7622 Pécs, Hungary
| | - Éva Frank
- Department of Molecular and Analytical Chemistry, University of Szeged, Dóm tér 7-8, H-6720 Szeged, Hungary
| | - György T. Balogh
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| | - Renáta Minorics
- Institute of Pharmacodynamics and Biopharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary (N.B.-F.)
| |
Collapse
|
24
|
González-Matos M, Aguado ME, Izquierdo M, Monzote L, González-Bacerio J. Compounds with potentialities as novel chemotherapeutic agents in leishmaniasis at preclinical level. Exp Parasitol 2024; 260:108747. [PMID: 38518969 DOI: 10.1016/j.exppara.2024.108747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Leishmaniasis are neglected infectious diseases caused by kinetoplastid protozoan parasites from the genus Leishmania. These sicknesses are present mainly in tropical regions and almost 1 million new cases are reported each year. The absence of vaccines, as well as the high cost, toxicity or resistance to the current drugs determines the necessity of new treatments against these pathologies. In this review, several compounds with potentialities as new antileishmanial drugs are presented. The discussion is restricted to the preclinical level and molecules are organized according to their chemical nature, source and molecular targets. In this manner, we present antimicrobial peptides, flavonoids, withanolides, 8-aminoquinolines, compounds from Leish-Box, pyrazolopyrimidines, and inhibitors of tubulin polymerization/depolymerization, topoisomerase IB, proteases, pteridine reductase, N-myristoyltransferase, as well as enzymes involved in polyamine metabolism, response against oxidative stress, signaling pathways, and sterol biosynthesis. This work is a contribution to the general knowledge of these compounds as antileishmanial agents.
Collapse
Affiliation(s)
- Maikel González-Matos
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Mirtha Elisa Aguado
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba
| | - Lianet Monzote
- Department of Parasitology, Center for Research, Diagnosis and Reference, Tropical Medicine Institute "Pedro Kourí", Autopista Novia Del Mediodía Km 6½, La Lisa, La Habana, Cuba.
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba; Department of Biochemistry, Faculty of Biology, University of Havana, Calle 25 #455 Entre I y J, Vedado, La Habana, Cuba.
| |
Collapse
|
25
|
Yao CH, Wu MH, Chang PW, Wu SH, Song JS, Huang HH, Chen YC, Lee JC. Design, synthesis, and anticancer evaluation of 1-benzo[1,3]dioxol-5-yl-3-N-fused heteroaryl indoles. Mol Divers 2024; 28:595-608. [PMID: 36735167 DOI: 10.1007/s11030-023-10605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
A series of 1-benzo[1,3]dioxol-5-yl-indoles bearing 3-N-fused heteroaryl moieties have been designed based on literature reports of the activity of indoles against various cancer cell lines, synthesized via a Pd-catalyzed C-N cross-coupling, and evaluated for their anticancer activity against prostate (LNCaP), pancreatic (MIA PaCa-2), and acute lymphoblastic leukemia (CCRF-CEM) cancer cell lines. A detailed structure-activity relationship study culminated in the identification of 3-N-benzo[1,2,5]oxadiazole 17 and 3-N-2-methylquinoline 20, whose IC50 values ranged from 328 to 644 nM against CCRF-CEM and MIA PaCa-2. Further mechanistic studies revealed that 20 caused cell cycle arrest at the S phase and induced apoptosis in CCRF-CEM cancer cells. These 1-benzo[1,3]dioxol-5-yl-3-N-fused heteroaryl indoles may serve as a template for further optimization to afford more active analogs and develop a comprehensive understanding of the structure-activity relationships of indole anticancer molecules.
Collapse
Affiliation(s)
- Chun-Hsu Yao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Wei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Szu-Huei Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jen-Shin Song
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Hsing-Hao Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jinq-Chyi Lee
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
26
|
El-Mernissi R, Khaldan A, Bouamrane S, Rehman HM, Alaqarbeh M, Ajana MA, Lakhlifi T, Bouachrine M. 3D-QSAR, molecular docking, simulation dynamic and ADMET studies on new quinolines derivatives against colorectal carcinoma activity. J Biomol Struct Dyn 2024; 42:3682-3699. [PMID: 37227776 DOI: 10.1080/07391102.2023.2214233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 05/27/2023]
Abstract
Cancer is the uncontrolled spread of abnormal cells that results in abnormal tissue growth in the affected organ. One of the most important organs is exposed to the growth of colon cancer cells, which start in the large intestine (colon) or the rectum. Several therapeutic protocols were used to treat different kinds of cancer. Recently, several studies have targeted tubulin and microtubules due to their remarkable prefoliation. Also, recent research shows that quinoline compounds have significant efficacy against human colorectal cancer. So, the present work investigated the potential of thirty quinoline compounds as tubulin inhibitors using computational methods. A 3D-QSAR approach using two contours (CoMFA and CoMSIA), molecular docking simulation to determine the binding type of the complexes (ligand-receptor), molecular dynamics simulation and identifying pharmacokinetic characteristics were used to design molecules. For all compounds designed (T1-5), molecular docking was used to compare the stability by type of binding. The ADMET has been utilized for molecules with good stability in molecular docking (T1-3); these compounds have good medicinal characteristics. Furthermore, a molecular dynamics simulation (MD) at 100 ns was performed to confirm the stability of the T1-3 compounds; the molecules (T1-3) remained the most stable throughout the simulation. The compounds T1, T2 and T3 are the best-designed drugs for colorectal carcinoma treatments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Reda El-Mernissi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Ayoub Khaldan
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Soukaina Bouamrane
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | | | | | - Mohammed Aziz Ajana
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Tahar Lakhlifi
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Mohammed Bouachrine
- Molecular Chemistry and Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
- EST Khenifra, Sultan Moulay Sliman University, Beni mellal, Morocco
| |
Collapse
|
27
|
Mohamed-Ezzat RA, Elgemeie GH. Novel synthesis of new triazine sulfonamides with antitumor, anti-microbial and anti-SARS-CoV-2 activities. BMC Chem 2024; 18:58. [PMID: 38532431 DOI: 10.1186/s13065-024-01164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Novel approach for synthesizing triazine sulfonamide derivatives is accomplished via reacting the sulfaguanidine derivatives with N-cyanodithioiminocarbonate. Further reaction of the novel triazine sulfonamide analogues with various secondary amines and anilines generated various substituted triazine sulfonamide analogues of promising broad-spectrum activities including anti-microbial, anti-tumor, and anti-viral properties. The in vitro anti-proliferative activities of most of the novel compounds were evaluated on the NCI-60 cell line panel. The antifungal and antibacterial activities of the compounds were also estimated. The anti-viral activity against SARS CoV-2 virus was performed using MTT cytotoxicity assay to evaluate the half-maximal cytotoxic concentration (CC50) and inhibitory concentration 50 (IC50) of a representative compound from the novel triazine sulfonamide category. Compound 3a demonstrated potent antiviral activity against SARS-CoV-2 with IC50 = 2.378 µM as compared to the activity of the antiviral drug remdesivir (IC50 = 10.11 µM). Our results indicate that, upon optimization, these new triazine sulfonamides could potentially serve as novel antiviral drugs.
Collapse
Affiliation(s)
- Reham A Mohamed-Ezzat
- Chemistry of Natural & Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Galal H Elgemeie
- Department of Chemistry, Faculty of Science, Helwan University, Helwan, Cairo, Egypt.
| |
Collapse
|
28
|
Homer JA, Koelln RA, Barrow AS, Gialelis TL, Boiarska Z, Steinohrt NS, Lee EF, Yang WH, Johnson RM, Chung T, Habowski AN, Vishwakarma DS, Bhunia D, Avanzi C, Moorhouse AD, Jackson M, Tuveson DA, Lyons SK, Lukey MJ, Fairlie WD, Haider SM, Steinmetz MO, Prota AE, Moses JE. Modular synthesis of functional libraries by accelerated SuFEx click chemistry. Chem Sci 2024; 15:3879-3892. [PMID: 38487227 PMCID: PMC10935723 DOI: 10.1039/d3sc05729a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.
Collapse
Affiliation(s)
- Joshua A Homer
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Rebecca A Koelln
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Andrew S Barrow
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Timothy L Gialelis
- La Trobe Institute for Molecular Science, La Trobe University Melbourne VIC 3086 Australia
| | - Zlata Boiarska
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Department of Chemistry, Università degli Studi di Milano Via Golgi 19 20133 Milan Italy
| | - Nikita S Steinohrt
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
| | - Erinna F Lee
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Wen-Hsuan Yang
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Robert M Johnson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Taemoon Chung
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Amber N Habowski
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | | | - Debmalya Bhunia
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - Adam D Moorhouse
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University Fort Collins CO 80523 USA
| | - David A Tuveson
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Scott K Lyons
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - Michael J Lukey
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| | - W Douglas Fairlie
- Olivia Newton-John Cancer Research Institute Heidelberg Victoria 3084 Australia
- School of Cancer Medicine, La Trobe University Melbourne Victoria 3086 Australia
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria 3086 Australia
| | - Shozeb M Haider
- School of Pharmacy, University College London 29-39 Brunswick Square London WC1N 1AX UK
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
- Biozentrum, University of Basel 4056 Basel Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut Villigen PSI 5232 Switzerland
| | - John E Moses
- Cancer Center, Cold Spring Harbor Laboratory 1 Bungtown Rd Cold Spring Harbor NY 11724 USA
| |
Collapse
|
29
|
Yang Y, Cao Y, Yu J, Yu X, Guo Y, Wang F, Ren Q, Li C. Design and synthesis of novel 3-amino-5-phenylpyrazole derivatives as tubulin polymerization inhibitors targeting the colchicine-binding site. Eur J Med Chem 2024; 267:116177. [PMID: 38280356 DOI: 10.1016/j.ejmech.2024.116177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
As the basic unit of microtubules, tubulin is one of the most important targets in the study of anticarcinogens. A novel series of 3-amino-5-phenylpyrazole derivatives were designed and synthesized, and evaluates for their biological activities. Among them, a majority of compounds exerted excellent inhibitory activities against five cancer cell lines in vitro. Especially, compound 5b showed a strong antiproliferative activity against MCF-7 cells, with IC50 value of 38.37 nM. Further research indicated that compound 5b can inhibit the polymerization of tubulin targeting the tubulin colchicine-binding sites. Furthermore, 5b could arrest MCF-7 cells at the G2/M phase and induce MCF-7 cells apoptotic in a dose-dependent and time-dependent manners, and regulate the level of related proteins expression. Besides, compound 5b could inhibit the cancer cell migration and angiogenesis. In addition, 5b could inhibit tumor growth in MCF-7 xenograft model without obvious toxicity. All these results indicating that 5b could be a promising antitumor agent targeting tubulin colchicine-binding site and it was worth further study.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China; Department of Trauma Center, Affiliated Hospital of Nantong University, No.20 Xisi Road, Chongchuan District, Nantong City, Jiangsu Province, 226001, PR China
| | - Yan Cao
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Jingwen Yu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xinyu Yu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yali Guo
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Wang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Qingjia Ren
- Tibetan Medicine Research Institute, Tibetan Traditional Medical College, Tibet, 850000, PR China.
| | - Caolong Li
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
30
|
Sonowal S, Gogoi U, Buragohain K, Nath R. Endophytic fungi as a potential source of anti-cancer drug. Arch Microbiol 2024; 206:122. [PMID: 38407579 DOI: 10.1007/s00203-024-03829-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/24/2023] [Accepted: 01/01/2024] [Indexed: 02/27/2024]
Abstract
Endophytes are considered one of the major sources of bioactive compounds used in different aspects of health care including cancer treatment. When colonized, they either synthesize these bioactive compounds as a part of their secondary metabolite production or augment the host plant machinery in synthesising such bioactive compounds. Hence, the study of endophytes has drawn the attention of the scientific community in the last few decades. Among the endophytes, endophytic fungi constitute a major portion of endophytic microbiota. This review deals with a plethora of anti-cancer compounds derived from endophytic fungi, highlighting alkaloids, lignans, terpenes, polyketides, polyphenols, quinones, xanthenes, tetralones, peptides, and spirobisnaphthalenes. Further, this review emphasizes modern methodologies, particularly omics-based techniques, asymmetric dihydroxylation, and biotic elicitors, showcasing the dynamic and evolving landscape of research in this field and describing the potential of endophytic fungi as a source of anticancer drugs in the future.
Collapse
Affiliation(s)
- Sukanya Sonowal
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Urvashee Gogoi
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Kabyashree Buragohain
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Ratul Nath
- Microbiology Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam, 786004, India.
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
31
|
Leng J, Zhao Y, Zhao S, Xie S, Sheng P, Zhu L, Zhang M, Chen T, Kong L, Yin Y. Discovery of Novel Isoquinoline Analogues as Dual Tubulin Polymerization/V-ATPase Inhibitors with Immunogenic Cell Death Induction. J Med Chem 2024; 67:3144-3166. [PMID: 38336655 DOI: 10.1021/acs.jmedchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Cancer immunotherapy has revolutionized clinical advances in a variety of cancers. Due to the low immunogenicity of the tumor, only a few patients can benefit from it. Specific microtubule inhibitors can effectively induce immunogenic cell death and improve immunogenicity of the tumor. A series of isoquinoline derivatives based on the natural products podophyllotoxin and diphyllin were designed and synthesized. Among them, F10 showed robust antiproliferation activity against four human cancer cell lines, and it was verified that F10 exerted antiproliferative activity by inhibiting tubulin and V-ATPase. Further studies indicated that F10 is able to induce immunogenic cell death in addition to apoptosis. Meanwhile, F10 inhibited tumor growth in an RM-1 homograft model with enhanced T lymphocyte infiltration. These results suggest that F10 may be a promising lead compound for the development of a new generation of microtubule drugs.
Collapse
Affiliation(s)
- Jiafu Leng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yongjun Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shifang Zhao
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Shanshan Xie
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Ping Sheng
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Liqiao Zhu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Mengyu Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Tingting Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Yong Yin
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| |
Collapse
|
32
|
Citarella A, Vittorio S, Dank C, Ielo L. Syntheses, reactivity, and biological applications of coumarins. Front Chem 2024; 12:1362992. [PMID: 38440776 PMCID: PMC10909861 DOI: 10.3389/fchem.2024.1362992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
This comprehensive review, covering 2021-2023, explores the multifaceted chemical and pharmacological potential of coumarins, emphasizing their significance as versatile natural derivatives in medicinal chemistry. The synthesis and functionalization of coumarins have advanced with innovative strategies. This enabled the incorporation of diverse functional fragments or the construction of supplementary cyclic architectures, thereby the biological and physico-chemical properties of the compounds obtained were enhanced. The unique chemical structure of coumarine facilitates binding to various targets through hydrophobic interactions pi-stacking, hydrogen bonding, and dipole-dipole interactions. Therefore, this important scaffold exhibits promising applications in uncountable fields of medicinal chemistry (e.g., neurodegenerative diseases, cancer, inflammation).
Collapse
Affiliation(s)
- Andrea Citarella
- Dipartimento di Chimica, Università degli Studi di Milano, Milano, Italy
| | - Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italy
| | - Christian Dank
- Institute of Organic Chemistry, University of Vienna, Vienna, Austria
| | - Laura Ielo
- Department of Chemistry, University of Turin, Turin, Italy
| |
Collapse
|
33
|
Patrón LA, Yeoman H, Wilson S, Tang N, Berens ME, Gokhale V, Suzuki TC. Novel Brain-Penetrant, Small-Molecule Tubulin Destabilizers for the Treatment of Glioblastoma. Biomedicines 2024; 12:406. [PMID: 38398008 PMCID: PMC10887108 DOI: 10.3390/biomedicines12020406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma (GB) is the most lethal brain cancer in adults, with a 5-year survival rate of 5%. The standard of care for GB includes maximally safe surgical resection, radiation, and temozolomide (TMZ) therapy, but tumor recurrence is inevitable in most GB patients. Here, we describe the development of a blood-brain barrier (BBB)-penetrant tubulin destabilizer, RGN3067, for the treatment of GB. RGN3067 shows good oral bioavailability and achieves high concentrations in rodent brains after oral dosing (Cmax of 7807 ng/mL (20 μM), Tmax at 2 h). RGN3067 binds the colchicine binding site of tubulin and inhibits tubulin polymerization. The compound also suppresses the proliferation of the GB cell lines U87 and LN-18, with IC50s of 117 and 560 nM, respectively. In four patient-derived GB cell lines, the IC50 values for RGN3067 range from 148 to 616 nM. Finally, in a patient-derived xenograft (PDX) mouse model, RGN3067 reduces the rate of tumor growth compared to the control. Collectively, we show that RGN3067 is a BBB-penetrant small molecule that shows in vitro and in vivo efficacy and that its design addresses many of the physicochemical properties that prevent the use of microtubule destabilizers as treatments for GB and other brain cancers.
Collapse
Affiliation(s)
- Lilian A. Patrón
- Reglagene, Inc., Tucson, AZ 85719, USA; (L.A.P.); (H.Y.); (V.G.)
| | - Helen Yeoman
- Reglagene, Inc., Tucson, AZ 85719, USA; (L.A.P.); (H.Y.); (V.G.)
| | - Sydney Wilson
- Reglagene, Inc., Tucson, AZ 85719, USA; (L.A.P.); (H.Y.); (V.G.)
| | - Nanyun Tang
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.T.); (M.E.B.)
| | - Michael E. Berens
- Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA; (N.T.); (M.E.B.)
| | - Vijay Gokhale
- Reglagene, Inc., Tucson, AZ 85719, USA; (L.A.P.); (H.Y.); (V.G.)
| | - Teri C. Suzuki
- Reglagene, Inc., Tucson, AZ 85719, USA; (L.A.P.); (H.Y.); (V.G.)
| |
Collapse
|
34
|
Perużyńska M, Birger R, Piotrowska K, Kwiecień H, Droździk M, Kurzawski M. Microtubule destabilising activity of selected 7-methoxy-2-phenylbenzo[b]furan derivative against primary and metastatic melanoma cells. Eur J Pharmacol 2024; 964:176308. [PMID: 38142850 DOI: 10.1016/j.ejphar.2023.176308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Herein, we report the results of anticancer screening of two 2-phenylbenzo[b]furan derivatives functionalised at the 3-position with 4-hydroxy-3,5-dimethoxybenzoyl (BF2) or 3,4,5-trimethoxybenzoyl (BF3) against 60 different cancer cell lines. The results confirmed the anticancer potential of the tested compounds against different cancer cell types, especially colon cancer, brain cancer and melanoma. BF3 was defined as the most potent (also as a tubulin polymerisation inhibitor). Its anticancer activity against melanoma cell lines that originated from different stages, i.e., primary skin-derived A375 and metastatic WM9/MDA-MB-435S, was evaluated (as the clinical success of melanoma therapy strictly depends on the disease stage). Moreover, to determine the BF3 mode of action and its effect on cell proliferation, intracellular microtubule networks, cell cycle phase distribution and apoptosis were evaluated. Our study revealed that BF3 inhibited cell proliferation in a dose-dependent manner, with IC50 yielding 0.09 ± 0.01 μM, 0.11 ± 0.01 μM and 0.18 ± 0.05 μM for A375, MDA-MB435S and WM9, respectively. The strong antiproliferative activity of compound BF3 correlated well with its inhibitory effect on tubulin polymerisation. Molecular docking proved that BF3 belongs to the colchicine binding site inhibitors (CBSIs), and experimental studies revealed that it disturbs cell cycle progression leading to G2/M arrest and apoptosis.
Collapse
Affiliation(s)
- Magdalena Perużyńska
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland.
| | - Radosław Birger
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Katarzyna Piotrowska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Halina Kwiecień
- Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave 42, 71-065, Szczecin, Poland
| | - Marek Droździk
- Department of Experimental & Clinical Pharmacology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Mateusz Kurzawski
- Laboratory of Pharmacodynamics, Pomeranian Medical University in Szczecin, 71-899, Szczecin, Poland
| |
Collapse
|
35
|
Ren W, Deng Y, Ward JD, Vairin R, Bai R, Wanniarachchi HI, Hamal KB, Tankoano PE, Tamminga CS, Bueno LMA, Hamel E, Mason RP, Trawick ML, Pinney KG. Synthesis and biological evaluation of structurally diverse 6-aryl-3-aroyl-indole analogues as inhibitors of tubulin polymerization. Eur J Med Chem 2024; 263:115794. [PMID: 37984295 PMCID: PMC11019941 DOI: 10.1016/j.ejmech.2023.115794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 11/22/2023]
Abstract
The synthesis and evaluation of small-molecule inhibitors of tubulin polymerization remains a promising approach for the development of new therapeutic agents for cancer treatment. The natural products colchicine and combretastatin A-4 (CA4) inspired significant drug discovery campaigns targeting the colchicine site located on the beta-subunit of the tubulin heterodimer, but so far these efforts have not yielded an approved drug for cancer treatment in human patients. Interest in the colchicine site was enhanced by the discovery that a subset of colchicine site agents demonstrated dual functionality as both potent antiproliferative agents and effective vascular disrupting agents (VDAs). Our previous studies led to the discovery and development of a 2-aryl-3-aroyl-indole analogue (OXi8006) that inhibited tubulin polymerization and demonstrated low nM IC50 values against a variety of human cancer cell lines. A water-soluble phosphate prodrug salt (OXi8007), synthesized from OXi8006, displayed promising vascular disrupting activity in mouse models of cancer. To further extend structure-activity relationship correlations, a series of 6-aryl-3-aroyl-indole analogues was synthesized and evaluated for their inhibition of tubulin polymerization and cytotoxicity against human cancer cell lines. Several structurally diverse molecules in this small library were strong inhibitors of tubulin polymerization and of MCF-7 and MDA-MB-231 human breast cancer cells. One of the most promising analogues (KGP591) caused significant G2/M arrest of MDA-MB-231 cells, disrupted microtubule structure and cell morphology in MDA-MB-231 cells, and demonstrated significant inhibition of MDA-MB-231 cell migration in a wound healing (scratch) assay. A phosphate prodrug salt, KGP618, synthesized from its parent phenolic precursor, KGP591, demonstrated significant reduction in bioluminescence signal when evaluated in vivo against an orthotopic model of kidney cancer (RENCA-luc) in BALB/c mice, indicative of VDA efficacy. The most active compounds from this series offer promise as anticancer therapeutic agents.
Collapse
Affiliation(s)
- Wen Ren
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Yuling Deng
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Jacob D Ward
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Rebecca Vairin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Ruoli Bai
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Hashini I Wanniarachchi
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Khagendra B Hamal
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Pouguiniseli E Tankoano
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Caleb S Tamminga
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Lorena M A Bueno
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Ernest Hamel
- Molecular Pharmacology Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD, 21702, United States.
| | - Ralph P Mason
- Department of Radiology, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390-9058, United States.
| | - Mary Lynn Trawick
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| | - Kevin G Pinney
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place, No. 97348, Waco, TX, 76798-7348, United States.
| |
Collapse
|
36
|
Lim S, Jung HR, Lee H, Chu Y, Kim H, Kim E, Lee S. Microtubule-destabilizing agents enhance STING-mediated innate immune response via biased mechanism in human monocyte cells. Biomed Pharmacother 2023; 169:115883. [PMID: 37979373 DOI: 10.1016/j.biopha.2023.115883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
The stimulator of the interferon gene (STING) signaling pathway acts as a primary defense system against DNA pathogens. Because of the crucial role of STING in type I interferon (IFN) response and innate immunity, extensive research has been conducted to elucidate the roles of various effector molecules involved in STING-mediated signal transduction. However, despite the substantial contribution of microtubules to the immune system, the association between the STING signaling pathway and microtubules remains unclear. In this study, we revealed that the modulation of STING via microtubule-destabilizing agents (MDAs) specifically induced type I IFN responses rather than inflammatory responses in human monocytes. Co-treatment of MDAs with STING agonists induced the elevation of phospho-TANK-binding kinase 1 (TBK1), amplifying the innate immune response. However, during the deficiency of TBK1, the non-canonical signaling pathway through nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) contributed to MDA-induced STING activation in type I IFN response which suggested the versatile regulation of MDA in STING-mediated immunity.
Collapse
Affiliation(s)
- Songhyun Lim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hee Ra Jung
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Hyelim Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yeonjeong Chu
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Hyejin Kim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon 34114, South Korea
| | - Eunha Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea
| | - Sanghee Lee
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
37
|
Gao L, Kaushik D, Van Tine BA, Ingham MA, Attia S, Meyer CF, Schwartz GK, Maliakal P, Baird JD, Ma J, Barrett R, D'Silva D, O'Keefe K, Kong R. Pharmacokinetics of Dacarbazine and Unesbulin and CYP1A2-Mediated Drug Interactions in Patients With Leiomyosarcoma. Clin Transl Sci 2023; 17:e13709. [PMID: 38129988 PMCID: PMC10825620 DOI: 10.1111/cts.13709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/28/2023] [Accepted: 11/05/2023] [Indexed: 12/23/2023] Open
Abstract
Unesbulin is being investigated in combination with dacarbazine (DTIC) as a potential therapeutic agent in patients with advanced leiomyosarcoma (LMS). This paper reports the pharmacokinetics (PK) of unesbulin, DTIC, and its unreactive surrogate metabolite 5-aminoimidazole-4-carboxamide (AIC) in 29 patients with advanced LMS. Drug interactions between DTIC (and AIC) and unesbulin were evaluated. DTIC (1000 mg/m2 ) was administered to patients with LMS via 1-hour intravenous (IV) infusion on Day 1 of every 21-day (q21d) cycle. Unesbulin dispersible tablets were administered orally twice weekly (BIW), starting on Day 2 of every cycle, except for Cycle 2 (C2), where unesbulin was dosed either on Day 1 together with DTIC or on Day 2, 1 day after DTIC administration. The PK of DTIC, AIC, and unesbulin in Cycle 1 (C1) and C2 were estimated using noncompartmental analysis. DTIC and AIC were measurable immediately after the start of infusion and reached Cmax immediately or shortly after end of infusion at 1.0 and 1.4 hours (Tmax ), respectively. Coadministration of unesbulin orally at 200 mg or above with DTIC inhibited cytochrome P450 (CYP)1A2-mediated DTIC metabolism, resulting in 66.7% reduction of AIC exposures. Such inhibition could be mitigated when unesbulin was dosed the day following DTIC infusion. Repeated unesbulin dosing demonstrated evidence of clinical CYP1A2 induction and increased AIC Cmax by 69.4% and AUCinf by 57.9%. No meaningful difference in unesbulin PK was observed between C2 and C1. The combination therapy of 1000 mg/m2 IV DTIC q21d and 300 mg unesbulin BIW in a staggered regimen is well tolerated in patients with LMS.
Collapse
Affiliation(s)
- Lan Gao
- PTC Therapeutics, Inc.South PlainfieldNew JerseyUSA
| | | | - Brian A. Van Tine
- Division of Medical OncologyWashington University in St. LouisSt. LouisMissouriUSA
- Division of Pediatric Hematology/OncologySt. Louis Children's HospitalSt. LouisMissouriUSA
- Siteman Cancer CenterSt. LouisMissouriUSA
| | | | | | - Christian F. Meyer
- Johns Hopkins Sidney Kimmel Comprehensive Cancer CenterBaltimoreMarylandUSA
| | | | | | | | - Jiyuan Ma
- PTC Therapeutics, Inc.South PlainfieldNew JerseyUSA
| | | | | | | | - Ronald Kong
- PTC Therapeutics, Inc.South PlainfieldNew JerseyUSA
| |
Collapse
|
38
|
Zhang H, Kreis J, Schelhorn SE, Dahmen H, Grombacher T, Zühlsdorf M, Zenke FT, Guan Y. Mapping combinatorial drug effects to DNA damage response kinase inhibitors. Nat Commun 2023; 14:8310. [PMID: 38097586 PMCID: PMC10721915 DOI: 10.1038/s41467-023-44108-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/22/2023] [Indexed: 12/17/2023] Open
Abstract
One fundamental principle that underlies various cancer treatments, such as traditional chemotherapy and radiotherapy, involves the induction of catastrophic DNA damage, leading to the apoptosis of cancer cells. In our study, we conduct a comprehensive dose-response combination screening focused on inhibitors that target key kinases involved in the DNA damage response (DDR): ATR, ATM, and DNA-PK. This screening involves 87 anti-cancer agents, including six DDR inhibitors, and encompasses 62 different cell lines spanning 12 types of tumors, resulting in a total of 17,912 combination treatment experiments. Within these combinations, we analyze the most effective and synergistic drug pairs across all tested cell lines, considering the variations among cancers originating from different tissues. Our analysis reveals inhibitors of five DDR-related pathways (DNA topoisomerase, PLK1 kinase, p53-inducible ribonucleotide reductase, PARP, and cell cycle checkpoint proteins) that exhibit strong combinatorial efficacy and synergy when used alongside ATM/ATR/DNA-PK inhibitors.
Collapse
Affiliation(s)
- Hanrui Zhang
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | - Yuanfang Guan
- Department of Computational Medicine and Bioinformatics, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
39
|
Huo Z, Min D, Zhang S, Tang ML, Sun X. Discovery of novel tubulin CBSI (R)-9k from the indanone scaffold for the treatment of colorectal cancer. RSC Med Chem 2023; 14:2738-2750. [PMID: 38107178 PMCID: PMC10718523 DOI: 10.1039/d3md00337j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
In view of the serious adverse reactions and clinical toxicity of first line therapy 5-fluorouracil and lack of small molecule therapeutics in colorectal cancer chemotherapy, a series of natural scaffold-based 3-arylindanone derivatives (9a-q) were designed, synthesized and evaluated as tubulin polymerization inhibitors targeting the colchicine site. The most potent colchicine binding site inhibitor (CBSI), (R)-9k, exhibited 14-38 times more dominant anti-proliferative activity against three colon cancer cell lines than 5-fluorouracil. Particularly, (R)-9k showed higher selectivity against human normal cells compared with 5-fluorouracil and colchicine, and displayed negligible cardiotoxicity through hERG assessment. Furthermore, the binding of (R)-9k to the colchicine site was strongly supported by EBI competition assay and (R)-9k inhibited more tubulin polymerization than colchicine. Besides, the mechanism of action and binding modes of (R)-9k were verified by molecular dynamics simulations and docking. Therefore, (R)-9k could be regarded as a promising CBSI for colorectal cancer therapy.
Collapse
Affiliation(s)
- Zhipeng Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Delin Min
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Shijie Zhang
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Mei-Lin Tang
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Xun Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University 826 Zhangheng Road Shanghai 201203 China
- The Institutes of Integrative Medicine of Fudan University 12 Wulumuqi Zhong Road Shanghai 200040 China
| |
Collapse
|
40
|
Xu S, Sun Y, Wang P, Tan Y, Shi L, Chen J. Design, synthesis and evaluation of dihydro-1 H-indene derivatives as novel tubulin polymerisation inhibitors with anti-angiogenic and antitumor potency. J Enzyme Inhib Med Chem 2023; 38:2247579. [PMID: 37587873 PMCID: PMC10438863 DOI: 10.1080/14756366.2023.2247579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Angiogenesis plays an important role in tumour generation and progression, which is used to supply nutrients and metastasis. Herein, a series of novel dihydro-1H-indene derivatives were designed and evaluated as tubulin polymerisation inhibitors by binding to colchicine site, exhibiting anti-angiogenic activities against new vessel forming. Through structure-activity relationships study, compound 12d was found to be the most potent derivative possessing the antiproliferative activity against four cancer lines with IC50 values among 0.028-0.087 µM. Compound 12d bound to colchicine site on tubulin and inhibited tubulin polymerisation in vitro. In addition, compound 12d induced cell cycle arrest at G2/M phase, stimulated cell apoptosis, inhibited tumour metastasis and angiogenesis. Finally, the results of in vivo assay suggested that compound 12d could prevent tumour generation, inhibit tumour proliferation and angiogenesis without obvious toxicity. Collectively, all these findings suggested that compound 12d is a novel tubulin polymerisation inhibitor deserving further research.
Collapse
Affiliation(s)
- Shengtao Xu
- Department of Hepatobiliary Surgery, China Medical University, The First People’s Hospital of Kunshan, Suzhou, P. R. China
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Yijun Sun
- Jiangsu KeyGEN BioTECH Co., Ltd, Nanjing, P. R. China
| | - Peng Wang
- Department of Neurosurgery, China Medical University, The First People’s Hospital of Kunshan, Suzhou, Jiangsu, P. R. China
| | - Yuchen Tan
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, P. R. China
| | - Lei Shi
- Department of Neurosurgery, China Medical University, The First People’s Hospital of Kunshan, Suzhou, Jiangsu, P. R. China
| | - Jian Chen
- Department of Hepatobiliary Surgery, China Medical University, The First People’s Hospital of Kunshan, Suzhou, P. R. China
| |
Collapse
|
41
|
AbouAitah K, Hassan HA, Ammar NM, Abou Baker DH, Higazy IM, Shaker OG, Elsayed AAA, Hassan AME. Novel delivery system with a dual–trigger release of savory essential oil by mesoporous silica nanospheres and its possible targets in leukemia cancer cells: in vitro study. Cancer Nanotechnol 2023. [DOI: 10.1186/s12645-022-00152-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Abstract
Introduction
Essential oils (EOs) are complex structures and possess several pharmacological effects. Nanomedicine offers a solution for their major limitations, including poor solubility, volatility, and non–controlled release, preventing their clinical use.
Methods
Here, we developed a novel delivery system by nanoformulations that were prepared by impregnating savory essential oil (SA) into mesoporous silica nanoparticles (MSNs). The nanoformulations were characterized and examined for their anticancer activities on cancer cells (HepG2 liver and HL60 leukemia cells) and MRC5 normal cells. We further tested the mechanisms of action and possible molecular targets against HL60 cells.
Results
The results demonstrated that SA was governed by nanoformulations under the dual–trigger release of pH/glutathione, and it typically fit the Korsmeyer–Peppas kinetic model. The nanoformulations enhanced the anticancer effect against HepG2 cells and HL60 cells compared to SA but were less cytotoxic to MRC5 normal cells and regulated various molecular pathways of apoptosis. Most importantly, new results were obtained on the genetic regulation principle through the high inhibition of long noncoding RNAs (HOTAIR, HULC, CCAT1, and H19) and matrix metalloproteinases (MMP–2 and MMP–9), providing a novel leukemia target.
Conclusions
These results suggest potential impacts for nanoformulations composed of SA with a sustained release pattern controlled by dual–trigger release of pH/GSH that enhanced anticancer cells. This approach may offer a new route for using EOs as new targets for cancers and open the door for deep preclinical investigations.
Collapse
|
42
|
Liu W, He Y, Guo Z, Wang M, Han X, Jia H, He J, Miao S, Wang S. Discovery of potent tubulin inhibitors targeting the colchicine binding site via structure-based lead optimization and antitumor evaluation. J Enzyme Inhib Med Chem 2023; 38:2155815. [PMID: 36629423 PMCID: PMC9848350 DOI: 10.1080/14756366.2022.2155815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The colchicine binding site of tubulin is a promising target for discovering novel antitumour agents. Previously, we identified 2-aryl-4-amide-quinoline derivatives displayed moderate tubulin polymerisation inhibitory activity and broad-spectrum in vitro antitumour activity. In this study, structure based rational design and systematic structural optimisation were performed to obtain analogues C1∼J2 bearing diverse substituents and scaffolds. Among them, analogue G13 bearing a hydroxymethyl group displayed good tubulin polymerisation inhibitory activity (IC50 = 13.5 μM) and potent antiproliferative activity (IC50 values: 0.65 μM∼0.90 μM). G13 potently inhibited the migration and invasion of MDA-MB-231 cells, and displayed potent antiangiogenic activity. It efficiently increased intracellular ROS level and decreased MMP in cancer cells, and obviously induced the fragmentation and disassembly of the microtubules network. More importantly, G13 exhibited good in vivo antitumour efficacy in MDA-MB-231 xenograft model (TGI = 38.2%; i.p., 30 mg/kg).
Collapse
Affiliation(s)
- Wei Liu
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Youyou He
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China,Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Zhongjie Guo
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Miaomiao Wang
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiaodong Han
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Hairui Jia
- Faculty of Pharmacy, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Jin He
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shanshan Miao
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| | - Shengzheng Wang
- Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China,CONTACT Shengzheng Wang Department of Medicinal Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
43
|
Lin J, Zhang B, Zou J, Luo Z, Yang H, Zhou P, Chen X, Zhou W. Induction of tetraploids in Paper Mulberry (Broussonetia papyrifera (L.) L'Hér. ex Vent.) by colchicine. BMC PLANT BIOLOGY 2023; 23:574. [PMID: 37978431 PMCID: PMC10655367 DOI: 10.1186/s12870-023-04487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/25/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Broussonetia papyrifera (L.) L'Hér. ex Vent. has the characteristics of strong stress resistance, high crude protein content, and pruning tolerance. It is an ecological, economic, and medicinal plant. Polyploid plants usually perform better than their corresponding diploid plants in terms of nutrients, active substances, and stress resistance. RESULTS In this study, the leaves, calli, and seeds of diploid B. papyrifera were used for tetraploid induction by colchicine. The induction effect of colchicine on B. papyrifera was summarized through the early morphology, chromosome count and flow cytometry. It was concluded that the best induction effect (18.6%) was obtained when the leaves of B. papyrifera were treated in liquid MS (Murashige and Skoog) medium containing 450 mg·L-1 colchicine for 3 d. The comparative analysis of the growth characteristics of diploid and tetraploid B. papyrifera showed that tetraploid B. papyrifera has larger ground diameter, larger stomata, thicker palisade tissue and thicker sponge tissue than diploid B. papyrifera. In addition, the measurement of photosynthetic features also showed that tetraploids had higher chlorophyll content and higher photosynthetic rates. CONCLUSION This study showed that tetraploid B. papyrifera could be obtained by treating leaves, callus and seeds with liquid and solid colchicine, but the induction efficiency was different. Moreover, there were differences in stomata, leaf cell structure and photosynthetic features between tetraploid B. papyrifera and its corresponding diploid. The induced tetraploid B. papyrifera can provide a technical basis and breeding material for the creation of B. papyrifera germplasm resources in the future.
Collapse
Affiliation(s)
- Jiana Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Bingnan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangzhou, 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Jintuo Zou
- Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou, 510642, China
| | - Zhen Luo
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hao Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Zhou
- Guangdong Eco-Engineering Polytechnic, Guangzhou, 510642, China
| | - Xiaoyang Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, Guangzhou, 510642, China.
| | - Wei Zhou
- Guangdong Province Research Center of Woody Forage Engineering Technology, Guangzhou, 510642, China.
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
44
|
Zarrabi A, Perrin D, Kavoosi M, Sommer M, Sezen S, Mehrbod P, Bhushan B, Machaj F, Rosik J, Kawalec P, Afifi S, Bolandi SM, Koleini P, Taheri M, Madrakian T, Łos MJ, Lindsey B, Cakir N, Zarepour A, Hushmandi K, Fallah A, Koc B, Khosravi A, Ahmadi M, Logue S, Orive G, Pecic S, Gordon JW, Ghavami S. Rhabdomyosarcoma: Current Therapy, Challenges, and Future Approaches to Treatment Strategies. Cancers (Basel) 2023; 15:5269. [PMID: 37958442 PMCID: PMC10650215 DOI: 10.3390/cancers15215269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Rhabdomyosarcoma is a rare cancer arising in skeletal muscle that typically impacts children and young adults. It is a worldwide challenge in child health as treatment outcomes for metastatic and recurrent disease still pose a major concern for both basic and clinical scientists. The treatment strategies for rhabdomyosarcoma include multi-agent chemotherapies after surgical resection with or without ionization radiotherapy. In this comprehensive review, we first provide a detailed clinical understanding of rhabdomyosarcoma including its classification and subtypes, diagnosis, and treatment strategies. Later, we focus on chemotherapy strategies for this childhood sarcoma and discuss the impact of three mechanisms that are involved in the chemotherapy response including apoptosis, macro-autophagy, and the unfolded protein response. Finally, we discuss in vivo mouse and zebrafish models and in vitro three-dimensional bioengineering models of rhabdomyosarcoma to screen future therapeutic approaches and promote muscle regeneration.
Collapse
Affiliation(s)
- Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - David Perrin
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
| | - Mahboubeh Kavoosi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Micah Sommer
- Section of Orthopaedic Surgery, Department of Surgery, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; (D.P.); (M.S.)
- Section of Physical Medicine and Rehabilitation, Department of Internal Medicine, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Parvaneh Mehrbod
- Department of Influenza and Respiratory Viruses, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Bhavya Bhushan
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Anatomy and Cell Biology, School of Biomedical Sciences, Faculty of Science, McGill University, Montreal, QC H3A 0C7, Canada
| | - Filip Machaj
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jakub Rosik
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Philip Kawalec
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Health Sciences Centre, Winnipeg, MB R3A 1R9, Canada
| | - Saba Afifi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Seyed Mohammadreza Bolandi
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Peiman Koleini
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Tayyebeh Madrakian
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Marek J. Łos
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland;
| | - Benjamin Lindsey
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Nilufer Cakir
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
| | - Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Türkiye; (A.Z.); (A.Z.)
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran;
| | - Ali Fallah
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
| | - Bahattin Koc
- Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul 34956, Türkiye; (S.S.); (N.C.); (B.K.)
- Integrated Manufacturing Technologies Research and Application Center, Sabanci University, Tuzla, Istanbul 34956, Türkiye;
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Türkiye
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Türkiye;
| | - Mazaher Ahmadi
- Department of Analytical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6517838695, Iran; (T.M.); (M.A.)
| | - Susan Logue
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), 01007 Vitoria-Gasteiz, Spain;
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Stevan Pecic
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, CA 92831, USA;
| | - Joseph W. Gordon
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- College of Nursing, Rady Faculty of Health Science, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 0V9, Canada; (M.K.); (B.B.); (F.M.); (J.R.); (P.K.); (S.A.); (S.M.B.); (P.K.); (B.L.); (S.L.); (J.W.G.)
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran
- Academy of Silesia, Faculty of Medicine, Rolna 43, 40-555 Katowice, Poland
- Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada
| |
Collapse
|
45
|
Peerzada MN, Dar MS, Verma S. Development of tubulin polymerization inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:797-820. [PMID: 38054831 DOI: 10.1080/13543776.2023.2291390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
INTRODUCTION Microtubules are intracellular, filamentous, polymeric structures that extend throughout the cytoplasm, composed of α-tubulin and β-tubulin subunits. They regulate many cellular functions including cell polarity, cell shape, mitosis, intracellular transport, cell signaling, gene expression, cell integrity, and are associated with tumorigenesis. Inhibition of tubulin polymerization within tumor cells represents a crucial focus in the pursuit of developing anticancer treatments. AREAS COVERED This review focuses on the natural product and their synthetic congeners as tubulin inhibitors along with their site of interaction on tubulin. This review also covers the developed novel tubulin inhibitors and important patents focusing on the development of tubulin inhibition for cancer treatment reported from 2018 to 2023. The scientific and patent literature has been searched on PubMed, Espacenet, ScienceDirect, and Patent Guru from 2018-2023. EXPERT OPINION Tubulin is one of the promising targets explored extensively for drug discovery. Compounds binding in the colchicine site could be given importance because they can elude resistance mediated by the P-glycoprotein efflux pump and no colchicine site binding inhibitor is approved by FDA so far. The research on the development of antibody drug conjugates (ADCs) for tubluin polymerization inhibition could be significant strategy for cancer treatment.
Collapse
Affiliation(s)
- Mudasir Nabi Peerzada
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammad Sultan Dar
- Department of Neurosurgery, Sub-District Hospital Sopore, Jammu and Kashmir, India
| | - Saurabh Verma
- Tumor Biology Department, Drug Discovery Laboratory, National Institute of Pathology, Indian Council of Medical Research, Safdarjung Hospital Campus, New Delhi, India
| |
Collapse
|
46
|
Lin JJ, Lin CL, Chen CC, Lin YH, Cho DY, Chen X, Chen DC, Chen HY. Unlocking Colchicine's Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers (Basel) 2023; 15:5031. [PMID: 37894398 PMCID: PMC10605746 DOI: 10.3390/cancers15205031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Background: Liver cancer and notably hepatocellular carcinoma (HCC), results in significantly high mortality rates worldwide. Chronic hepatitis and fatty liver, recognized precursors, underscore the imperative need for effective preventive strategies. This study explores colchicine, traditionally acknowledged for its anti-inflammatory properties and investigates its potential in liver cancer prevention. Methods: Utilizing the iHi Data Platform of China Medical University Hospital, Taiwan, this study analyzed two decades of medical data, incorporating 10,353 patients each in the Colchicine and Non-Colchicine cohorts, to investigate the association between colchicine use and liver cancer risk. Results: The study identified that colchicine users exhibited a 19% reduction in liver cancer risk, with a multivariable-adjusted odds ratio of 0.81 after accounting for confounding variables. Additionally, the influence of gender and comorbidities like diabetes mellitus on liver cancer risk was identified, corroborating the existing literature. A notable finding was that the prolonged use of colchicine was associated with improved outcomes, indicating a potential dose-response relationship. Conclusions: This study proposes a potential new role for colchicine in liver cancer prevention, extending beyond its established anti-inflammatory applications. While the findings are promising, further research is essential to validate these results. This research may serve as a foundation for future studies, aiming to further explore colchicine's role via clinical trials and in-depth investigations, potentially impacting preventive strategies for liver cancer.
Collapse
Affiliation(s)
- Jung-Ju Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan;
| | - Cheng-Li Lin
- Management Office for Health Data, China Medical University Hospital, Taichung 404, Taiwan;
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Acupuncture Science, China Medical University, Taichung 404, Taiwan
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Yu-Hsiang Lin
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - XianXiu Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
- Neuroscience and Brain Disease Center, China Medical University, Taichung 404, Taiwan
| | - Der-Cherng Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404, Taiwan; (C.-C.C.); (Y.-H.L.); (D.-Y.C.); (X.C.)
| | - Hung-Yao Chen
- School of Medicine, China Medical University, Taichung 404, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| |
Collapse
|
47
|
Hirao-Suzuki M, Kanameda K, Takiguchi M, Sugihara N, Takeda S. 2-Methoxyestradiol as an Antiproliferative Agent for Long-Term Estrogen-Deprived Breast Cancer Cells. Curr Issues Mol Biol 2023; 45:7336-7351. [PMID: 37754248 PMCID: PMC10527823 DOI: 10.3390/cimb45090464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
To identify effective treatment modalities for breast cancer with acquired resistance, we first compared the responsiveness of estrogen receptor-positive breast cancer MCF-7 cells and long-term estrogen-deprived (LTED) cells (a cell model of endocrine therapy-resistant breast cancer) derived from MCF-7 cells to G-1 and 2-methoxyestradiol (2-MeO-E2), which are microtubule-destabilizing agents and agonists of the G protein-coupled estrogen receptor 1 (GPER1). The expression of GPER1 in LTED cells was low (~0.44-fold), and LTED cells displayed approximately 1.5-fold faster proliferation than MCF-7 cells. Although G-1 induced comparable antiproliferative effects on both MCF-7 and LTED cells (IC50 values of >10 µM), 2-MeO-E2 exerted antiproliferative effects selective for LTED cells with an IC50 value of 0.93 μM (vs. 6.79 μM for MCF-7 cells) and induced G2/M cell cycle arrest. Moreover, we detected higher amounts of β-tubulin proteins in LTED cells than in MCF-7 cells. Among the β-tubulin (TUBB) isotype genes, the highest expression of TUBB2B (~3.2-fold) was detected in LTED cells compared to that in MCF-7 cells. Additionally, siTUBB2B restores 2-MeO-E2-mediated inhibition of LTED cell proliferation. Other microtubule-targeting agents, i.e., paclitaxel, nocodazole, and colchicine, were not selective for LTED cells. Therefore, 2-MeO-E2 can be an antiproliferative agent to suppress LTED cell proliferation.
Collapse
Affiliation(s)
- Masayo Hirao-Suzuki
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure-shi 737-0112, Hiroshima, Japan; (M.H.-S.); (M.T.)
| | - Koki Kanameda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama-shi 729-0292, Hiroshima, Japan; (K.K.); (N.S.)
| | - Masufumi Takiguchi
- Laboratory of Xenobiotic Metabolism and Environmental Toxicology, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure-shi 737-0112, Hiroshima, Japan; (M.H.-S.); (M.T.)
| | - Narumi Sugihara
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama-shi 729-0292, Hiroshima, Japan; (K.K.); (N.S.)
| | - Shuso Takeda
- Laboratory of Molecular Life Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Sanzou 1, Gakuen-cho, Fukuyama-shi 729-0292, Hiroshima, Japan; (K.K.); (N.S.)
| |
Collapse
|
48
|
Biharee A, Yadav A, Jangid K, Singh Y, Kulkarni S, Sawant DM, Kumar P, Thareja S, Jain AK. Flavonoids as promising anticancer agents: an in silico investigation of ADMET, binding affinity by molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:7835-7846. [PMID: 36165610 DOI: 10.1080/07391102.2022.2126397] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/11/2022] [Indexed: 10/14/2022]
Abstract
Cancer is one of the most concerning diseases to humankind. Various treatment strategies are being employed for its treatment, out of which use of natural products is an essential one. Flavonoids have proven to be promising anticancer targets since decades. Also, tubulin is a significant biological target for the development of anticancer agents due to its crucial role in mitosis and abundance throughout the body. In the current study, in silico ADMET parameters of 104 flavonoids were examined, followed by molecular docking with the colchicine binding site of Tubulin protein (PDB; Id 4O2B). The best conformation from each flavonoid subcategory with the best docking score (MolDock score) was further subjected to 100 ns of molecular dynamics to investigate the protein-ligand complex's stability. Different parameters such as RMSD, RMSF, rGy and SASA were calculated for the six flavonoids using molecular dynamic studies. The top most compound from all the six subcategories of flavonoids elicited best behavior in the colchicine binding site of Tubulin protein. This in silico study employing molecular docking and molecular dynamics simulation provides strong evidence for flavonoids to be excellent anti-tubulin agents for the treatment of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Avadh Biharee
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Arpita Yadav
- R.K. College of Pharmacy, Prayagraj, Uttar Pradesh, India
| | - Kailash Jangid
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Yogesh Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Swanand Kulkarni
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Devesh M Sawant
- Department of Pharmacy, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab, India
| | - Akhlesh Kumar Jain
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
49
|
Abdullah S, Ganguly S. An overview of imidazole and its analogues as potent anticancer agents. Future Med Chem 2023; 15:1621-1646. [PMID: 37727960 DOI: 10.4155/fmc-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The quest for novel, physiologically active imidazoles remains an exciting topic of research among medicinal chemists. The imidazole ring is a five-membered aromatic heterocycle that is found in both natural and synthesized compounds. Multiple anticancer drug classes are currently available on the market, but concerns including toxicity, limited efficacy and solubility have lowered the overall therapeutic index. Therefore, the hunt for new potential chemotherapeutic agents persists. The development of imidazole as a reliable and safer alternative to anticancer treatment is generating much attention among experts. Tubulin or microtubule polymerization inhibition and changes in the structure and function of DNA, VEGF, topoisomerase, kinases, histone deacetylases and certain other proteins that affect gene expression are among the putative targets.
Collapse
Affiliation(s)
- Salik Abdullah
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| | - Swastika Ganguly
- Department of Pharmaceutical Sciences, Birla Institute of Technology, Mesra, Jharkhand, 835215, India
| |
Collapse
|
50
|
Olivares-Ferretti P, Beltrán JF, Salazar LA, Fonseca-Salamanca F. Protein Modelling and Molecular Docking Analysis of Fasciola hepatica β-Tubulin's Interaction Sites, with Triclabendazole, Triclabendazole Sulphoxide and Triclabendazole Sulphone. Acta Parasitol 2023; 68:535-547. [PMID: 37330945 DOI: 10.1007/s11686-023-00692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 05/29/2023] [Indexed: 06/20/2023]
Abstract
PURPOSE Fasciola hepatica is a globally distributed trematode that causes significant economic losses. Triclabendazole is the primary pharmacological treatment for this parasite. However, the increasing resistance to triclabendazole limits its efficacy. Previous pharmacodynamics studies suggested that triclabendazole acts by interacting mainly with the β monomer of tubulin. METHODS We used a high-quality method to model the six isotypes of F. hepatica β-tubulin in the absence of three-dimensional structures. Molecular dockings were conducted to evaluate the destabilization regions in the molecule against the ligands triclabendazole, triclabendazole sulphoxide and triclabendazole sulphone. RESULTS The nucleotide binding site demonstrates higher affinity than the binding sites of colchicine, albendazole, the T7 loop and pβVII (p < 0.05). We suggest that the binding of the ligands to the polymerization site of β-tubulin can lead a microtubule disruption. Furthermore, we found that triclabendazole sulphone exhibited significantly higher binding affinity than other ligands (p < 0.05) across all isotypes of β-tubulin. CONCLUSIONS Our investigation has yielded new insight on the mechanism of action of triclabendazole and its sulphometabolites on F. hepatica β-tubulin through computational tools. These findings have significant implications for ongoing scientific research ongoing towards the discovery of novel therapeutics to treat F. hepatica infections.
Collapse
Affiliation(s)
- Pamela Olivares-Ferretti
- Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco, Chile
| | - Jorge F Beltrán
- Chemical Engineering Department, Faculty of Engineering and Science, Universidad de La Frontera, Temuco, Chile
| | - Luis A Salazar
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, 4811230, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Laboratory of Molecular Immunoparasitology, Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Temuco, Chile.
- Preclinical Sciences Department, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|