1
|
Hao Y, Wang XF, Guo Y, Li TY, Yang J, Ainouche ML, Salmon A, Ju RT, Wu JH, Li LF, Li B. Genomic and phenotypic signatures provide insights into the wide adaptation of a global plant invader. PLANT COMMUNICATIONS 2024; 5:100820. [PMID: 38221758 PMCID: PMC11009367 DOI: 10.1016/j.xplc.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Invasive alien species are primary drivers of biodiversity loss and species extinction. Smooth cordgrass (Spartina alterniflora) is one of the most aggressive invasive plants in coastal ecosystems around the world. However, the genomic bases and evolutionary mechanisms underlying its invasion success have remained largely unknown. Here, we assembled a chromosome-level reference genome and performed phenotypic and population genomic analyses between native US and introduced Chinese populations. Our phenotypic comparisons showed that introduced Chinese populations have evolved competitive traits, such as early flowering time and greater plant biomass, during secondary introductions along China's coast. Population genomic and transcriptomic inferences revealed distinct evolutionary trajectories of low- and high-latitude Chinese populations. In particular, genetic mixture among different source populations, together with independent natural selection acting on distinct target genes, may have resulted in high genome dynamics of the introduced Chinese populations. Our study provides novel phenotypic and genomic evidence showing how smooth cordgrass rapidly adapts to variable environmental conditions in its introduced ranges. Moreover, candidate genes related to flowering time, fast growth, and stress tolerance (i.e., salinity and submergence) provide valuable genetic resources for future improvement of cereal crops.
Collapse
Affiliation(s)
- Yan Hao
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Xin-Feng Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaolin Guo
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tian-Yang Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji Yang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Malika L Ainouche
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Armel Salmon
- UMR CNRS 6553, Université of Rennes, Campus de Beaulieu, 35042 Rennes Cedex Paris, France
| | - Rui-Ting Ju
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ji-Hua Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| | - Lin-Feng Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo Li
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai 200438, China; Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Centre for Invasion Biology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan 650504, China.
| |
Collapse
|
2
|
Yi J, Wan J, Tielbörger K, Tao Z, Siemann E, Huang W. Specialist reassociation and residence time modulate the evolution of defense in invasive plants: A meta-analysis. Ecology 2024; 105:e4253. [PMID: 38272490 DOI: 10.1002/ecy.4253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/11/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024]
Abstract
Invasive plants typically escape specialist herbivores but are often attacked by generalist herbivores in their introduced ranges. The shifting defense hypothesis suggests that this will cause invasive plants to evolve lower resistance against specialists, higher resistance against generalists, and greater tolerance to herbivore damage. However, the duration and direction of selective pressures can shape the evolutionary responses of resistance and tolerance for invasive plants. Two critical factors are (1) residence time (length of time that an invasive species has been in its introduced range) and (2) specialist herbivore reassociation (attack by purposely or accidentally introduced specialists). Yet, these two factors have not been considered simultaneously in previous quantitative syntheses. Here, we performed a meta-analysis with 367 effect sizes from 70 studies of 35 invasive plant species from native and invasive populations. We tested how the residence time of invasive plant species and specialist reassociation in their introduced ranges affected evolutionary responses of defenses against specialists and generalists, including herbivore resistance traits (physical barriers, digestibility reducers and toxins), resistance effects (performance of and damage caused by specialists or generalists) and tolerance to damage (from specialists or generalists). We found that residence time and specialist reassociation each significantly altered digestibility reducers, specialist performance, generalist damage, and tolerance to specialist damage. Furthermore, residence time and specialist reassociation strongly altered toxins and generalist performance, respectively. When we restricted consideration to invasive plant species with both longer residence times and no reassociation with specialists, invasive populations had lower resistance to specialists, similar resistance to generalists, and higher tolerance to damage from both herbivore types, compared with native populations. We conclude that the duration and direction of selective pressure shape the evolutionary responses of invasive plants. Under long-term (long residence time) and stable (no specialist reassociation) selective pressure, invasive plants generally decrease resistance to specialists and increase tolerance to generalist damage that provides mixed support for the shifting defense hypothesis.
Collapse
Affiliation(s)
- Jiahui Yi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinlong Wan
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Katja Tielbörger
- Department of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Zhibin Tao
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Wei Huang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Hubei Key Laboratory of Wetland Evolution and Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
3
|
Lau JA, Funk JL. How ecological and evolutionary theory expanded the 'ideal weed' concept. Oecologia 2023; 203:251-266. [PMID: 37340279 PMCID: PMC10684629 DOI: 10.1007/s00442-023-05397-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/29/2023] [Indexed: 06/22/2023]
Abstract
Since Baker's attempt to characterize the 'ideal weed' over 50 years ago, ecologists have sought to identify features of species that predict invasiveness. Several of Baker's 'ideal weed' traits are well studied, and we now understand that many traits can facilitate different components of the invasion process, such as dispersal traits promoting transport or selfing enabling establishment. However, the effects of traits on invasion are context dependent. The traits promoting invasion in one community or at one invasion stage may inhibit invasion of other communities or success at other invasion stages, and the benefits of any given trait may depend on the other traits possessed by the species. Furthermore, variation in traits among populations or species is the result of evolution. Accordingly, evolution both prior to and after invasion may determine invasion outcomes. Here, we review how our understanding of the ecology and evolution of traits in invasive plants has developed since Baker's original efforts, resulting from empirical studies and the emergence of new frameworks and ideas such as community assembly theory, functional ecology, and rapid adaptation. Looking forward, we consider how trait-based approaches might inform our understanding of less-explored aspects of invasion biology ranging from invasive species responses to climate change to coevolution of invaded communities.
Collapse
Affiliation(s)
- Jennifer A Lau
- Department of Biology and the Environmental Resilience Institute, Indiana University, Bloomington, IN, 47405, USA
| | - Jennifer L Funk
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
4
|
Costan CA, Godsoe W, Bufford JL, Hulme PE. Comparing the Above and Below-Ground Chemical Defences of Three Rumex Species Between Their Native and Introduced Provenances. J Chem Ecol 2023; 49:276-286. [PMID: 37121960 PMCID: PMC10495513 DOI: 10.1007/s10886-023-01427-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023]
Abstract
Compared to their native range, non-native plants often experience reduced levels of herbivory in the introduced range. This may result in reduced pressure to produce chemical defences that act against herbivores. We measured the most abundant secondary metabolites found in Rumex spp., namely oxalates, phenols and tannins. To test this hypothesis, we compared native (UK) and introduced (NZ) provenances of three different Rumex species (R. obtusifolius, R. crispus and R. conglomeratus, Polygonaceae) to assess whether any significant differences existed in their levels of chemical defences in either leaves and roots. All three species have previously been shown to support a lower diversity of insect herbivores and experience less herbivory in the introduced range. We further examined leaf herbivory on plants from both provenances when grown together in a common garden experiment in New Zealand to test whether any differences in damage might be consistent with variation in the quantity of chemical defences. We found that two Rumex species (R. obtusifolius and R. crispus) showed no evidence for a reduction in chemical defences, while a third (R. conglomeratus) showed only limited evidence. The common garden experiment revealed that the leaves analysed had low levels of herbivory (~ 0.5%) with no differences in damage between provenances for any of the three study species. Roots tended to have a higher concentration of tannins than shoots, but again showed no difference between the provenances. As such, the findings of this study provide no evidence for lower plant investments in chemical defences, suggesting that other factors explain the success of Rumex spp. in New Zealand.
Collapse
Affiliation(s)
- Cristian-Andrei Costan
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Foundation for Arable Research, Templeton, Canterbury 7678 New Zealand
| | - William Godsoe
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| | - Jennifer L. Bufford
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
- Manaaki Whenua – Landcare Research, Lincoln, Canterbury 7647 New Zealand
| | - Philip E. Hulme
- Bio-Protection Research Centre, Lincoln, Canterbury 7647 New Zealand
| |
Collapse
|
5
|
Wu S, Chen L, Zhou Y, Xiao F, Liu D, Wang Y. Invasive Plants Have Higher Resistance to Native Generalist Herbivores Than Exotic Noninvasive Congeners. ENVIRONMENTAL ENTOMOLOGY 2023; 52:81-87. [PMID: 36545824 DOI: 10.1093/ee/nvac108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Indexed: 06/17/2023]
Abstract
Research on the invasive plant Phytolacca americana (L.) mostly focuses on its medicinal value and enrichment of heavy metals. However, little is known regarding its impact on native herbivorous insects. In this study, we explored the effects of P. americana and the exotic noninvasive Phytolacca icosandra (L.) on the Spodoptera litura (Fabricius) (native tobacco cutworm) via bioassay, oviposition preference, detoxifying enzyme activity analysis, and phytochemical determination. We found that the oviposition preference index (OPI) of S. litura feeding on P. icosandra was higher than that of P. americana. The developmental duration of S. litura feeding on P. icosandra was shorter than that of P. americana. Additionally, the Acetylcholinesterase (AchE) and Glutathione-S-transferase (GST) activities of S. litura feeding on P. americana were higher than that of S. litura feeding on artificial diets or P. icosandra. The content of lignin and flavonoids in P. americana was relatively high, whereas starch content was relatively low. These findings suggest invasive plants have higher resistance to herbivores, thereby suffering less damage than exotic noninvasive plants.
Collapse
Affiliation(s)
- Shan Wu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Li Chen
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Yue Zhou
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Feng Xiao
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Danfeng Liu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| | - Yi Wang
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Yunnan University, Kunming 650500, China
- Centre for Invasion Biology, Institute of Biodiversity, Yunnan University, Kunming 650500, China
| |
Collapse
|
6
|
Barcellos L, Pham CK, Menezes G, Bettencourt R, Rocha N, Carvalho M, Felgueiras HP. A Concise Review on the Potential Applications of Rugulopteryx okamurae Macroalgae. Mar Drugs 2023; 21:40. [PMID: 36662213 PMCID: PMC9864944 DOI: 10.3390/md21010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
The brown macroalgae of the species Rugulopteryx okamurae has reached European waters and the Strait of Gibraltar as an invasive species. The proliferation and colonization of the species in subtidal and intertidal zones of these regions imposes significant threats to local ecosystems and additionally represents a significant socioeconomic burden related to the large amounts of biomass accumulated as waste. As a way to minimize the effects caused by the accumulation of algae biomass, investigations have been made to employ this biomass as a raw material in value-added products or technologies. The present review explores the potential uses of R. okamurae, focusing on its impact for biogas production, composting, bioplastic and pharmaceutical purposes, with potential anti-inflammatory, antibacterial and α-glucosity inhibitory activities being highlighted. Overall, this species appears to present many attributes, with remarkable potential for uses in several fields of research and in various industries.
Collapse
Affiliation(s)
- Ligia Barcellos
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
| | - Christopher K. Pham
- Institute of Marine Sciences—OKEANOS, University of the Azores, 9901-862 Horta, Portugal
| | - Gui Menezes
- Institute of Marine Sciences—OKEANOS, University of the Azores, 9901-862 Horta, Portugal
| | - Raúl Bettencourt
- Institute of Marine Sciences—OKEANOS, University of the Azores, 9901-862 Horta, Portugal
| | - Nieta Rocha
- Circular Blue Group, TERINOV—Science and Technology Park, Terceira Island, Terra Chã, 9700-702 Angra do Heroísmo, Portugal
| | - Miguel Carvalho
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
| | - Helena P. Felgueiras
- Centre for Textile Science and Technology (2C2T), University of Minho, Campus Azurém, 4800-058 Guimarães, Portugal
| |
Collapse
|
7
|
Variation in defensive traits against herbivores of native and invasive populations of Carpobrotus edulis. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Acito M, Russo C, Fatigoni C, Mercanti F, Moretti M, Villarini M. Cytotoxicity and Genotoxicity of Senecio vulgaris L. Extracts: An In Vitro Assessment in HepG2 Liver Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14824. [PMID: 36429544 PMCID: PMC9690910 DOI: 10.3390/ijerph192214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Senecio vulgaris L. is a herbaceous species found worldwide. The demonstrated occurrence of pyrrolizidine alkaloids in this species and its ability to invade a great variety of habitats result in a serious risk of contamination of plant material batches addressed to the herbal teas market; this presents a potential health risk for consumers. In light of the above, this work aimed to assess the cytotoxic and genotoxic activity of S. vulgaris extracts in HepG2 cells. Dried plants were ground and extracted using two different methods, namely an organic solvent-based procedure (using methanol and chloroform), and an environmentally friendly extraction procedure (i.e., aqueous extraction), which mimicked the domestic preparation of herbal teas (5, 15, and 30 min of infusion). Extracts were then tested in HepG2 cells for their cytotoxic and genotoxic potentialities. Results were almost superimposable in both extracts, showing a slight loss in cell viability at the highest concentration tested, and a marked dose-dependent genotoxicity exerted by non-cytotoxic concentrations. It was found that the genotoxic effect is even more pronounced in aqueous extracts, which induced primary DNA damage after five minutes of infusion even at the lowest concentration tested. Given the broad intake of herbal infusions worldwide, this experimental approach might be proposed as a screening tool in the analysis of plant material lots addressed to the herbal infusion market.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Cristina Fatigoni
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Federica Mercanti
- Sana Pianta Soc. Agricola S.a.s., Strada Tiberina Nord 228, 06134 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
- Inter-University Centre for the Environment (CIPLA-Centro Interuniversitario per l’Ambiente), University of Perugia, Piazza Università 1, 06123 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| |
Collapse
|
9
|
Oduor AMO. Invasive plant species that experience lower herbivory pressure may evolve lower diversities of chemical defense compounds in the exotic range. AMERICAN JOURNAL OF BOTANY 2022; 109:1382-1393. [PMID: 36000500 DOI: 10.1002/ajb2.16053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Invasive plant species often escape from specialist herbivores and are more likely to be attacked by generalist herbivores in the exotic range. Consequently, the shifting defense hypothesis predicts that invasive plants will produce higher concentrations of qualitative defense compounds to deter dominant generalist herbivores in the exotic range. Here, I additionally propose a reduced chemical diversity hypothesis (RCDH), which predicts that reduced herbivory pressure will select for invasive plant genotypes that produce lower diversities of chemical defense compounds in the exotic range. METHODS I tested whether (1) invasive Brassica nigra populations express a lower diversity and an overall higher concentration of glucosinolate compounds than native-range B. nigra; (2) Brassica nigra individuals that express high diversities and concentrations of glucosinolate compounds are more attractive to specialist and deterrent to generalist herbivores; and (3) tissues of invasive B. nigra are less palatable than tissues of native-range B. nigra to the generalist herbivores Theba pisana and Helix aspersa. RESULTS Invasive B. nigra populations produced a significantly lower diversity of glucosinolate compounds, a marginally higher concentration of total glucosinolates, and a significantly higher concentration of sinigrin (the dominant glucosinolate). Leaf tissues of invasive B. nigra were significantly less palatable to T. pisana and marginally less so to H. aspersa. Brassica nigra individuals that expressed high concentrations of total glucosinolate compounds were visited by a low diversity of generalist herbivore species in the field. CONCLUSIONS In line with the RCDH, the lower diversity of glucosinolate compounds produced by invasive B. nigra populations likely resulted from selection imposed by reduced herbivory pressure in the exotic range.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya
| |
Collapse
|
10
|
Callaway RM, Lucero JE, Hierro JL, Lortie CJ. The
EICA
is dead? Long live the
EICA
! Ecol Lett 2022; 25:2289-2302. [DOI: 10.1111/ele.14088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Ragan M. Callaway
- Division of Biological Sciences University of Montana Missoula Montana USA
| | - Jacob E. Lucero
- Division of Biological Sciences University of Montana Missoula Montana USA
- Department of Animal and Range Sciences New Mexico State University Las Cruces New Mexico USA
| | - José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV) Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP) Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de La Pampa (UNLPam) Santa Rosa Argentina
- Departamento de Biología Facultad de Ciencias Exactas y Naturales, UNLPam Santa Rosa Argentina
| | - C. J. Lortie
- Department of Biology York University Toronto Ontario Canada
| |
Collapse
|
11
|
Li YP, Feng YL, Li WT, Tomlinson K, Liao ZY, Zheng YL, Zhang JL. Leaf trait association in relation to herbivore defense, drought resistance, and economics in a tropical invasive plant. AMERICAN JOURNAL OF BOTANY 2022; 109:910-921. [PMID: 35471767 DOI: 10.1002/ajb2.1858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
PREMISE Exploring how functional traits vary and covary is important to understand plant responses to environmental change. However, we have limited understanding of the ways multiple functional traits vary and covary within invasive species. METHODS We measured 12 leaf traits of an invasive plant Chromolaena odorata, associated with plant or leaf economics, herbivore defense, and drought resistance on 10 introduced populations from Asia and 12 native populations from South and Central America, selected across a broad range of climatic conditions, and grown in a common garden. RESULTS Species' range and climatic conditions influenced leaf traits, but trait variation across climate space differed between the introduced and native ranges. Traits that confer defense against herbivores and drought resistance were associated with economic strategy, but the patterns differed by range. Plants from introduced populations that were at the fast-return end of the spectrum (high photosynthetic capacity) had high physical defense traits (high trichome density), whereas plants from native populations that were at the fast-return end of the spectrum had high drought escape traits (early leaf senescence and high percentage of withered shoots). CONCLUSIONS Our results indicate that invasive plants can rapidly adapt to novel environmental conditions. Chromolaena odorata showed multiple different functional trait covariation patterns and clines in the native and introduced ranges. Our results emphasize that interaction between multiple traits or functions should be considered when investigating the adaptive evolution of invasive plants.
Collapse
Affiliation(s)
- Yang-Ping Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Wei-Tao Li
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Kyle Tomlinson
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Zhi-Yong Liao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Yu-Long Zheng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| | - Jiao-Lin Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, 666303, China
| |
Collapse
|
12
|
Hierro JL, Eren Ö, Čuda J, Meyerson LA. Evolution of increased competitive ability (
EICA
) may explain dominance of introduced species in ruderal communities. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- José L. Hierro
- Laboratorio de Ecología, Biogeografía y Evolución Vegetal (LEByEV) Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de La Pampa (UNLPam) Santa Rosa Argentina
- Departamento de Biología Facultad de Ciencias Exactas y Naturales, UNLPam
| | - Özkan Eren
- Aydin Adnan Menderes Üniversitesi, Biyoloji Bölümü, Fen‐Edebiyat Fakültesi Aydın Turkey
| | - Jan Čuda
- Czech Academy of Sciences, Institute of Botany, Department of Invasion Ecology Průhonice Czech Republic
| | - Laura A. Meyerson
- The University of Rhode Island, Department of Natural Resources Science Kingston RI USA
| |
Collapse
|
13
|
Wang G, Ren Y, Wang S, Hou M, Weinberger F. Shifting chemical defence or novel weapons? A review of defence traits in Agarophyton vermiculophyllum and other invasive seaweeds. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:138-149. [PMID: 37073358 PMCID: PMC10077278 DOI: 10.1007/s42995-021-00109-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/27/2021] [Indexed: 05/03/2023]
Abstract
Seaweed bioinvasions increasingly affect coastal environments around the world, which increases the need for predictive models and mitigation strategies. The biotic interactions between seaweed invaders and invaded communities are often considered a key determinant of invasion success and failure and we here revise the current evidence that the capacity of seaweed invaders to deter enemies in newly reached environments correlates with their invasion success. Particularly efficient chemical defences have been described for several of the more problematic seaweed invaders during the last decades. However, confirmed cases in which seaweed invaders confronted un-adapted enemies in newly gained environments with deterrents that were absent from these environments prior to the invasion (so-called "novel weapons") are scarce, although an increasing number of invasive and non-invasive seaweeds are screened for defence compounds. More evidence exists that seaweeds may adapt defence intensities to changing pressure by biological enemies in newly invaded habitats. However, most of this evidence of shifting defence was gathered with only one particular model seaweed, the Asia-endemic red alga Agarophyton vermiculophyllum, which is particularly accessible for direct comparisons of native and non-native populations in common garden experiments. A. vermiculophyllum interacts with consumers, epibionts and bacterial pathogens and in most of these interactions, non-native populations have rather gained than lost defensive capacity relative to native conspecifics. The increases in the few examined cases were due to an increased production of broad-spectrum deterrents and the relative scarcity of specialized deterrents perhaps reflects the circumstance that seaweed consumers and epibionts are overwhelmingly generalists.
Collapse
Affiliation(s)
- Gaoge Wang
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Yifei Ren
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Shasha Wang
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| | - Minglei Hou
- Institute of Evolution and Marine Biodiversity, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Florian Weinberger
- Marine Ecology Division, GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
| |
Collapse
|
14
|
Kalske A, Luntamo N, Salminen JP, Ramula S. Introduced populations of the garden lupine are adapted to local generalist snails but have lost alkaloid diversity. Biol Invasions 2022. [DOI: 10.1007/s10530-021-02622-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AbstractIntraspecific variation in growth and defence among plant populations can be driven by differences in (a)biotic conditions, such as herbivory and resources. Introduction of species to novel environments affects simultaneously herbivory encountered by a plant and resource availability both directly and via altered competitive environment. Here, we address the question of how growth (leaf mass per area (LMA), plant size) and resistance traits (leaf alkaloids, leaf trichomes, resistance to a generalist snail) vary and covary between native and introduced populations of the garden lupine, Lupinus polyphyllus. We focused specifically on evolved differences among populations by measuring traits from plants grown from seed in a common environment. Plants from the introduced populations were more resistant against the generalist snail, Arianta arbustorum, and they had more leaf trichomes and higher LMA than plants from the native populations. The composition of alkaloids differed between native and introduced populations, with the native populations having more diversity in alkaloids among them. Resistance was positively associated with plant size and LMA across all populations. Other trait associations differed between native and introduced areas, implying that certain trade-offs may be fundamentally different between native and introduced populations. Our results suggest that, for the introduced populations, the loss of native herbivores and the alterations in resource availability have led to a lower diversity in leaf alkaloids among populations and may facilitate the evolution of novel trait optima without compensatory trade-offs. Such phytochemical similarity among introduced populations provides novel insights into mechanisms promoting successful plant invasions.
Collapse
|
15
|
Egli D, Harvey KJ, Moore BD, Mitchell C, Olckers T. Variations in chemical defences and patterns of natural enemy attack between native and introduced populations of fireweed (
Senecio madagascariensis
): Implications for biological control. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniella Egli
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Kerinne J. Harvey
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| | - Ben D. Moore
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Christopher Mitchell
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Terence Olckers
- School of Life Sciences University of KwaZulu‐Natal Private Bag X01 Scottsville 3209 South Africa
| |
Collapse
|
16
|
Simberloff D, Kaur H, Kalisz S, Bezemer TM. Novel chemicals engender myriad invasion mechanisms. THE NEW PHYTOLOGIST 2021; 232:1184-1200. [PMID: 34416017 DOI: 10.1111/nph.17685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Non-native invasive species (NIS) release chemicals into the environment that are unique to the invaded communities, defined as novel chemicals. Novel chemicals impact competitors, soil microbial communities, mutualists, plant enemies, and soil nutrients differently than in the species' native range. Ecological functions of novel chemicals and differences in functions between the native and non-native ranges of NIS are of immense interest to ecologists. Novel chemicals can mediate different ecological, physiological, and evolutionary mechanisms underlying invasion hypotheses. Interactions amongst the NIS and resident species including competitors, soil microbes, and plant enemies, as well as abiotic factors in the invaded community are linked to novel chemicals. However, we poorly understand how these interactions might enhance NIS performance. New empirical data and analyses of how novel chemicals act in the invaded community will fill major gaps in our understanding of the chemistry of biological invasions. A novel chemical-invasion mechanism framework shows how novel chemicals engender invasion mechanisms beyond plant-plant or plant-microorganism interactions.
Collapse
Affiliation(s)
- Daniel Simberloff
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - Harleen Kaur
- Plant BioSystems, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Susan Kalisz
- Ecology and Evolutionary Biology Department, University of Tennessee, Knoxville, TN, 37996, USA
| | - T Martijn Bezemer
- Plant Science and Natural Products, Institute of Biology Leiden (IBL), Leiden University, PO Box 9505, Leiden, 2300 RA, the Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 6700 AB, Wageningen, the Netherlands
| |
Collapse
|
17
|
Phenotypic plasticity of invasive Carpobrotus edulis modulates tolerance against herbivores. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02475-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Utermann C, Blümel M, Busch K, Buedenbender L, Lin Y, Haltli BA, Kerr RG, Briski E, Hentschel U, Tasdemir D. Comparative Microbiome and Metabolome Analyses of the Marine Tunicate Ciona intestinalis from Native and Invaded Habitats. Microorganisms 2020; 8:microorganisms8122022. [PMID: 33348696 PMCID: PMC7767289 DOI: 10.3390/microorganisms8122022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Massive fouling by the invasive ascidian Ciona intestinalis in Prince Edward Island (PEI, Canada) has been causing devastating losses to the local blue mussel farms. In order to gain first insights into so far unexplored factors that may contribute to the invasiveness of C. intestinalis in PEI, we undertook comparative microbiome and metabolome studies on specific tissues from C. intestinalis populations collected in invaded (PEI) and native regions (Helgoland and Kiel, Germany). Microbial community analyses and untargeted metabolomics revealed clear location- and tissue-specific patterns showing that biogeography and the sampled tissue shape the microbiome and metabolome of C. intestinalis. Moreover, we observed higher microbial and chemical diversity in C. intestinalis from PEI than in the native populations. Bacterial OTUs specific to C. intestinalis from PEI included Cyanobacteria (e.g., Leptolyngbya sp.) and Rhodobacteraceae (e.g., Roseobacter sp.), while populations from native sampling sites showed higher abundances of e.g., Firmicutes (Helgoland) and Epsilonproteobacteria (Kiel). Altogether 121 abundant metabolites were putatively annotated in the global ascidian metabolome, of which 18 were only detected in the invasive PEI population (e.g., polyketides and terpenoids), while six (e.g., sphingolipids) or none were exclusive to the native specimens from Helgoland and Kiel, respectively. Some identified bacteria and metabolites reportedly possess bioactive properties (e.g., antifouling and antibiotic) that may contribute to the overall fitness of C. intestinalis. Hence, this first study provides a basis for future studies on factors underlying the global invasiveness of Ciona species.
Collapse
Affiliation(s)
- Caroline Utermann
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Martina Blümel
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Kathrin Busch
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
| | - Larissa Buedenbender
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
| | - Yaping Lin
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China
| | - Bradley A. Haltli
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Russell G. Kerr
- Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; (B.A.H.); (R.G.K.)
| | - Elizabeta Briski
- Research Group Invasion Ecology, Research Unit Experimental Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (Y.L.); (E.B.)
| | - Ute Hentschel
- Research Unit Marine Symbioses, GEOMAR Helmholtz Centre for Ocean Research Kiel, Duesternbrooker Weg 20, 24105 Kiel, Germany; (K.B.); (U.H.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany; (C.U.); (M.B.); (L.B.)
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
- Correspondence: ; Tel.: +49-431-6004430
| |
Collapse
|
19
|
Egbon IN, Paterson ID, Compton S, Hill M. Evolution of growth traits in invasive Pereskia aculeata (Cactaceae): testing the EICA hypothesis using its specialist herbivore, Catorhintha schaffneri (Coreidae). PEST MANAGEMENT SCIENCE 2020; 76:4046-4056. [PMID: 32537809 DOI: 10.1002/ps.5959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 05/15/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Species introduced into new habitats are fitter than their native populations, as hypothesized by the 'evolution of increased competitive ability' (EICA). Here, Pereskia aculeata Miller was used as a model to test EICA and explore how 'enemy release' may have influenced the invasion success of its 400-year-old introduced populations (genotypes) compared with native populations. Plant growth traits (height and shoot length) of 15 genotypes [four from the introduced range (South Africa) and 11 from the native range (Brazil and Argentina, Venezuela and The Dominican Republic)] were assessed. Damage and impact of a shoot-feeding, sap-sucking specialist Catorhintha schaffneri Brailovsky & Garcia on ten genotypes were also compared. RESULTS All but one of the invasive genotypes were significantly taller than native genotypes. Although the invasive genotypes were relatively more damaged by herbivory than some of the native genotypes, the observed differences were not explained completely by their origins. Nonetheless, the findings partially supported the predictions of the EICA hypothesis because invasive genotypes were generally taller than native genotypes, but did not fully support the hypothesis because they were not always more damaged than the native genotypes by C. schaffneri. CONCLUSION Invasive genotypes had an advantage in the introduced range as they can climb neighbouring vegetation more quickly than native genotypes, but the damage incurred by the invasive genotypes relative to the native genotypes suggests only that C. schaffneri would be as damaging in South Africa, where it serves as a biocontrol agent, as it is in its native distribution in Brazil. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ikponmwosa N Egbon
- Centre for Biological Control, Rhodes University, Grahamstown, South Africa
- Department of Animal and Environmental Biology, University of Benin, PMB 1154 Benin City, Nigeria
| | - Iain D Paterson
- Centre for Biological Control, Rhodes University, Grahamstown, South Africa
| | - Stephen Compton
- Centre for Biological Control, Rhodes University, Grahamstown, South Africa
- Ecology and Evolution Department, University of Leeds, Leeds, UK
| | - Martin Hill
- Centre for Biological Control, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
20
|
Wilschut RA, Magnée KJH, Geisen S, van der Putten WH, Kostenko O. Plant population and soil origin effects on rhizosphere nematode community composition of a range-expanding plant species and a native congener. Oecologia 2020; 194:237-250. [PMID: 33009940 PMCID: PMC7561541 DOI: 10.1007/s00442-020-04749-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/02/2020] [Indexed: 12/01/2022]
Abstract
Climate change causes species range expansions to higher latitudes and altitudes. It is expected that, due to differences in dispersal abilities between plants and soil biota, range-expanding plant species will become associated with a partly new belowground community in their expanded range. Theory on biological invasions predicts that outside their native range, range-expanding plant species may be released from specialist natural enemies, leading to the evolution of enhanced defence against generalist enemies. Here we tested the hypothesis that expanded range populations of the range-expanding plant species Centaurea stoebe accumulate fewer root-feeding nematodes than populations from the original range. Moreover, we examined whether Centaurea stoebe accumulates fewer root-feeding nematodes in expanded range soil than in original range soil. We grew plants from three expanded range and three original range populations of C. stoebe in soil from the original and from the new range. We compared nematode communities of C. stoebe with those of C. jacea, a congeneric species native to both ranges. Our results show that expanded range populations of C. stoebe did not accumulate fewer root-feeding nematodes than populations from the original range, but that C. stoebe, unlike C. jacea, accumulated fewest root-feeding nematodes in expanded range soil. Moreover, when we examined other nematode feeding groups, we found intra-specific plant population effects on all these groups. We conclude that range-expanding plant populations from the expanded range were not better defended against root-feeding nematodes than populations from the original range, but that C. stoebe might experience partial belowground enemy release.
Collapse
Affiliation(s)
- Rutger A Wilschut
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands.
- Ecology Group, Department of Biology, University of Konstanz, Konstanz, The Netherlands.
| | - Kim J H Magnée
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - S Geisen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - W H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | - O Kostenko
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
21
|
Oduor AMO, van Kleunen M, Stift M. Allelopathic effects of native and invasive Brassica nigra do not support the novel-weapons hypothesis. AMERICAN JOURNAL OF BOTANY 2020; 107:1106-1113. [PMID: 32767569 DOI: 10.1002/ajb2.1516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
PREMISE The novel-weapons hypothesis predicts that some plants are successful invaders because they release allelopathic compounds that are highly suppressive to naïve competitors in invaded ranges but are relatively ineffective against competitors in the native range. For its part, the evolution of enhanced weaponry hypothesis predicts that invasive populations may evolve increased expression of the allelopathic compounds. However, these predictions have rarely been tested empirically. METHODS Here, we made aqueous extracts of roots and shoots of invasive (North American) and native (European) Brassica nigra plants. Seeds of nine species from North America and nine species from Europe were exposed to these extracts. As control solutions, we used pure distilled water and distilled water with the osmotic potential adjusted with polyethylene glycol (PEG) to match that of root and shoot extracts of B. nigra. RESULTS The extracts had a strong negative effect on germination rates and seedling root lengths of target species compared to the water-control. Compared to the osmolality-adjusted controls, the extracts had a negative effect on seedling root length. We found no differences between the effects of B. nigra plant extracts from the invasive vs. native populations on germination rates and seedling root growth of target plant species. Responses were largely independent of whether the target plant species were from the invaded or native range of B. nigra. CONCLUSIONS The results show that B. nigra can interfere with other species through allelochemical interactions, but do not support predictions of the novel-weapons hypothesis and evolution of increased allelopathy.
Collapse
Affiliation(s)
- Ayub M O Oduor
- Department of Applied Biology, Technical University of Kenya, P. O. Box 52428-00200, Nairobi, Kenya
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P.R. China
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitsätsstrasse 10, D-78457, Konstanz, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, P.R. China
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz, Universitsätsstrasse 10, D-78457, Konstanz, Germany
| |
Collapse
|
22
|
Tewes LJ, Müller C. Interactions of Bunias orientalis plant chemotypes and fungal pathogens with different host specificity in vivo and in vitro. Sci Rep 2020; 10:10750. [PMID: 32612111 PMCID: PMC7330031 DOI: 10.1038/s41598-020-67600-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 06/11/2020] [Indexed: 12/28/2022] Open
Abstract
Within several plant species, a high variation in the composition of particular defence metabolites can be found, forming distinct chemotypes. Such chemotypes show different effects on specialist and generalist plant enemies, whereby studies examining interactions with pathogens are underrepresented. We aimed to determine factors mediating the interaction of two chemotypes of Bunias orientalis (Brassicaceae) with two plant pathogenic fungal species of different host range, Alternaria brassicae (narrow host range = specialist) and Botrytis cinerea (broad host-range = generalist) using a combination of controlled bioassays. We found that the specialist, but not the generalist, was sensitive to differences between plant chemotypes in vivo and in vitro. The specialist fungus was more virulent (measured as leaf water loss) on one chemotype in vivo without differing in biomass produced during infection, while extracts from the same chemotype caused strong growth inhibition in that species in vitro. Furthermore, fractions of extracts from B. orientalis had divergent in vitro effects on the specialist versus the generalist, supporting presumed adaptations to certain compound classes. This study underlines the necessity to combine various experimental approaches to elucidate the complex interplay between plants and different pathogens.
Collapse
Affiliation(s)
- Lisa Johanna Tewes
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
23
|
Enders M, Havemann F, Ruland F, Bernard‐Verdier M, Catford JA, Gómez‐Aparicio L, Haider S, Heger T, Kueffer C, Kühn I, Meyerson LA, Musseau C, Novoa A, Ricciardi A, Sagouis A, Schittko C, Strayer DL, Vilà M, Essl F, Hulme PE, van Kleunen M, Kumschick S, Lockwood JL, Mabey AL, McGeoch MA, Palma E, Pyšek P, Saul W, Yannelli FA, Jeschke JM. A conceptual map of invasion biology: Integrating hypotheses into a consensus network. GLOBAL ECOLOGY AND BIOGEOGRAPHY : A JOURNAL OF MACROECOLOGY 2020; 29:978-991. [PMID: 34938151 PMCID: PMC8647925 DOI: 10.1111/geb.13082] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Since its emergence in the mid-20th century, invasion biology has matured into a productive research field addressing questions of fundamental and applied importance. Not only has the number of empirical studies increased through time, but also has the number of competing, overlapping and, in some cases, contradictory hypotheses about biological invasions. To make these contradictions and redundancies explicit, and to gain insight into the field's current theoretical structure, we developed and applied a Delphi approach to create a consensus network of 39 existing invasion hypotheses. RESULTS The resulting network was analysed with a link-clustering algorithm that revealed five concept clusters (resource availability, biotic interaction, propagule, trait and Darwin's clusters) representing complementary areas in the theory of invasion biology. The network also displays hypotheses that link two or more clusters, called connecting hypotheses, which are important in determining network structure. The network indicates hypotheses that are logically linked either positively (77 connections of support) or negatively (that is, they contradict each other; 6 connections). SIGNIFICANCE The network visually synthesizes how invasion biology's predominant hypotheses are conceptually related to each other, and thus, reveals an emergent structure - a conceptual map - that can serve as a navigation tool for scholars, practitioners and students, both inside and outside of the field of invasion biology, and guide the development of a more coherent foundation of theory. Additionally, the outlined approach can be more widely applied to create a conceptual map for the larger fields of ecology and biogeography.
Collapse
Affiliation(s)
- Martin Enders
- Department of Biology, Chemistry, PharmacyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Frank Havemann
- Philosophische FakultätInstitut für Bibliotheks‐ und InformationswissenschaftHumboldt‐Universität zu BerlinBerlinGermany
| | - Florian Ruland
- Department of Biology, Chemistry, PharmacyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Maud Bernard‐Verdier
- Department of Biology, Chemistry, PharmacyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Jane A. Catford
- Department of GeographyKing’s College LondonLondonUnited Kingdom
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Biological SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
| | | | - Sylvia Haider
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Tina Heger
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Biodiversity Research/Systematic BotanyUniversity of PotsdamPotsdamGermany
- Technical University of MunichFreisingGermany
| | - Christoph Kueffer
- Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
| | - Ingolf Kühn
- Martin Luther University Halle‐WittenbergInstitute of Biology/Geobotany and Botanical GardenHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Helmholtz Centre for Environmental Research – UFZDepartment Community EcologyHalle (Saale)Germany
| | - Laura A. Meyerson
- The University of Rhode IslandDepartment of Natural Resources ScienceKingstonRhode Island
| | - Camille Musseau
- Department of Biology, Chemistry, PharmacyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Ana Novoa
- Czech Academy of SciencesInstitute of BotanyDepartment of Invasion EcologyPrůhoniceCzech Republic
| | - Anthony Ricciardi
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
- Redpath MuseumMcGill UniversityMontrealQuebecCanada
| | - Alban Sagouis
- Department of Biology, Chemistry, PharmacyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| | - Conrad Schittko
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
- Biodiversity Research/Systematic BotanyUniversity of PotsdamPotsdamGermany
| | - David L. Strayer
- Cary Institute of Ecosystem StudiesMillbrookNew YorkUnited States
- Graham Sustainability InstituteUniversity of MichiganAnn ArborMichiganUnited States
| | - Montserrat Vilà
- Estación Biológica de Doñana (EBD‐CSIC)SevilleSpain
- Department of Plant Biology and EcologyUniversity of SevilleSevilleSpain
| | - Franz Essl
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
- Department of Botany and Biodiversity ResearchUniversity of ViennaViennaAustria
| | - Philip E. Hulme
- Bio‐Protection Research CentreLincoln UniversityLincoln, CanterburyNew Zealand
| | - Mark van Kleunen
- Ecology, Department of BiologyUniversity of KonstanzKonstanzGermany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
| | - Sabrina Kumschick
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
- South African National Biodiversity InstituteKirstenbosch National Botanical GardensClaremontSouth Africa
| | - Julie L. Lockwood
- Ecology, Evolution and Natural ResourcesRutgers UniversityNew BrunswickNew Jersey
| | - Abigail L. Mabey
- Biological SciencesUniversity of SouthamptonSouthamptonUnited Kingdom
- Ocean and Earth ScienceNational Oceanography CentreUniversity of SouthamptonSouthamptonUnited Kingdom
| | | | - Estíbaliz Palma
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Petr Pyšek
- Czech Academy of SciencesInstitute of BotanyDepartment of Invasion EcologyPrůhoniceCzech Republic
- Department of EcologyFaculty of ScienceCharles UniversityPragueCzech Republic
| | - Wolf‐Christian Saul
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
- Centre for Invasion BiologyDepartment of Mathematical SciencesStellenbosch UniversityMatielandSouth Africa
| | - Florencia A. Yannelli
- Centre for Invasion BiologyDepartment of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
| | - Jonathan M. Jeschke
- Department of Biology, Chemistry, PharmacyInstitute of BiologyFreie Universität BerlinBerlinGermany
- Leibniz‐Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
- Berlin‐Brandenburg Institute of Advanced Biodiversity Research (BBIB)BerlinGermany
| |
Collapse
|
24
|
Brandenburger CR, Kim M, Slavich E, Meredith FL, Salminen J, Sherwin WB, Moles AT. Evolution of defense and herbivory in introduced plants-Testing enemy release using a known source population, herbivore trials, and time since introduction. Ecol Evol 2020; 10:5451-5463. [PMID: 32607166 PMCID: PMC7319247 DOI: 10.1002/ece3.6288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
The enemy release hypothesis is often cited as a potential explanation for the success of introduced plants; yet, empirical evidence for enemy release is mixed. We aimed to quantify changes in herbivory and defense in introduced plants while controlling for three factors that might have confounded past studies: using a wide native range for comparison with the introduced range, measuring defense traits without determining whether they affect herbivore preferences, and not considering the effect of time since introduction. The first hypothesis we tested was that introduced plants will have evolved lower levels of plant defense compared to their source population. We grew South African (source) and Australian (introduced) beach daisies (Arctotheca populifolia) in a common-environment glasshouse experiment and measured seven defense traits. Introduced plants had more ash, alkaloids, and leaf hairs than source plants, but were also less tough, with a lower C:N ratio and less phenolics. Overall, we found no difference in defense between source and introduced plants. To determine whether the feeding habits of herbivores align with changes in defense traits, we conducted preference feeding trials using five different herbivore species. Herbivores showed no overall preference for leaves from either group. The second hypothesis we tested was that herbivory on introduced plant species will increase through time after introduction to a new range. We recorded leaf damage on herbarium specimens of seven species introduced to eastern Australia and three native control species. We found no change in the overall level of herbivory experienced by introduced plants since arriving in Australia. CONCLUSION In the field of invasion ecology, we need to rethink the paradigm that species introduced to a new range undergo simple decreases in defenses against herbivores. Instead, plants are likely to employ a range of defense traits that evolve in both coordinated and opposing ways in response to a plethora of different biotic and abiotic selective pressures.
Collapse
Affiliation(s)
- Claire R. Brandenburger
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Martin Kim
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Eve Slavich
- Stats CentralMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSWAustralia
| | - Floret L. Meredith
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Juha‐Pekka Salminen
- Natural Chemistry Research GroupDepartment of ChemistryUniversity of TurkuTurkuFinland
| | - William B. Sherwin
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| | - Angela T. Moles
- Evolution and Ecology Research CentreSchool of Biological, Earth and Environmental SciencesUniversity of New South WalesSydneyNSWAustralia
| |
Collapse
|
25
|
Biogeographic variation in resistance of the invasive plant, Alliaria petiolata, to a powdery mildew fungus and effect of resistance on competitive dynamics. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02210-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Ni G, Zhao P, Ye Y, Zhu L, Hou Y, Huang Q, Wu W, Ouyang L. High photosynthetic capacity and energy-use efficiency benefit both growth and chemical defense in invasive plants. CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00299-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
García JA, Rosas JE, García Y Santos C, Streitenberger N, Feijoo M, Dutra F. Senecio spp. transboundary introduction and expansion affecting cattle in Uruguay: Clinico-pathological, epidemiological and genetic survey, and experimental intoxication with Senecio oxyphyllus. Toxicon 2019; 173:68-74. [PMID: 31785285 DOI: 10.1016/j.toxicon.2019.11.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 10/25/2022]
Abstract
The genus Senecio is distributed worldwide, being responsible of poisoning in livestock and humans. Many species of Senecio have high invasion and expansion capacity, highly competitive with agricultural and native plant species, causing ecological damage. Particularly in Uruguay, poisoning by Senecio have grown exponentially to reach epidemic proportions. Herein we describe Seneciosis as a re-emerging and expanding epidemic disease affecting cattle, by describing clinico-pathological, epidemiological and genetic variation of species involved, as well as an experimental intoxication with Senecio oxyphyllus. For this, a study was carried out on 28 cattle farms in Eastern Uruguay, with history of seneciosis from 2010 to 2016. Plants of fifty populations of Senecio were sampled, in 2015 and 2016, for identification, analysis of alkaloids and study of genetic variation. In turn, post-mortem examination was performed in cattle of natural and an experimental case to confirm the intoxication, showing microscopic characteristic lesions (hepatomegalocytosis, diffuse fibrosis and ductal reaction). Four species of Senecio were identified: S. oxyphyllus, S. madagascariensis, S. selloi and S. brasiliensis. In the genetic study, 489 molecular markers of amplified sequence-related polymorphisms (SRAP), associated with species and pasture, were used for genetic variation analysis. There was no statistically significant association between genetic variation determined by molecular markers and population (specimens of same species collected from the same farm), botanically determined species, or geographical origin. The increase of seneciosis in cattle in the last years, the presence of species not identified to the moment with implication in the poisoning outbreaks and expansion of these plants shows that the disease is in an epidemic growing active stage. In turn, the experimental poisoning with S. oxyphyllus confirms its chronic hepatotoxic effect, being an emergent species for the region, of high distribution and toxic risk. This latter turned out the main Senecio species involved. This case of expansion of harmful plant for animal production and desirable plant species, can be useful as a model of ecopathological characterization, which is likely to occur with other toxic plants in different geographical ranges globally.
Collapse
Affiliation(s)
- Juan A García
- Centro Universitario Regional Este, Universidad de la República, Treinta y Tres, Uruguay
| | - Juan E Rosas
- Instituto Nacional de Investigación Agropecuaria, Treinta y Tres, Uruguay
| | | | - Nicolas Streitenberger
- Cátedra de Patología Especial, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Matías Feijoo
- Centro Universitario Regional Este, Universidad de la República, Treinta y Tres, Uruguay
| | - Fernando Dutra
- DILAVE "Miguel C Rubino" Regional Este, Treinta y Tres, Avelino Miranda 2045, CP33000, Treinta y Tres, Uruguay.
| |
Collapse
|
28
|
Jack CN, Friesen ML. Rapid evolution of Medicago polymorpha during invasion shifts interactions with the soybean looper. Ecol Evol 2019; 9:10522-10533. [PMID: 31632647 PMCID: PMC6787872 DOI: 10.1002/ece3.5572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
Abstract
The Enemy Release Hypothesis posits that invasion of novel habitats can be facilitated by the absence of coevolved herbivores. However, a new environment and interactions with unfamiliar herbivores may impose selection on invading plants for traits that reduce their attractiveness to herbivores or for enhanced defenses compared to native host plants, leading to a pattern similar to enemy release but driven by evolutionary change rather than ecological differences. The Shifting Defense Hypothesis posits that plants in novel habitats will shift from specialized defense mechanisms to defense mechanisms effective against generalist herbivores in the new range. We tested these ideas by comparing herbivore preference and performance of native (Eurasia)- and invasive (New World)-range Medicago polymorpha, using a generalist herbivore, the soybean looper, that co-occurs with M. polymorpha in its New World invaded range. We found that soybean loopers varied in preference and performance depending on host genotype and that overall the herbivore preferred to consume plant genotypes from naïve populations from Eurasia. This potentially suggests that range expansion of M. polymorpha into the New World has led to rapid evolution of a variety of traits that have helped multiple populations become established, including those that may allow invasive populations to resist herbivory. Thus, enemy release in a novel range can occur through rapid evolution by the plant during invasion, as predicted by the Shifting Defense Hypothesis, rather than via historical divergence.
Collapse
Affiliation(s)
- Chandra N. Jack
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
- BEACON Center for the Study of Evolution in ActionEast LansingMichigan
- Department of Plant PathologyWashington State UniversityPullmanWashington
| | - Maren L. Friesen
- Department of Plant BiologyMichigan State UniversityEast LansingMichigan
- BEACON Center for the Study of Evolution in ActionEast LansingMichigan
- Department of Plant PathologyWashington State UniversityPullmanWashington
- Department of Crop and Soil SciencesWashington State UniversityPullmanWashington
| |
Collapse
|
29
|
Castillo G, Calahorra‐Oliart A, Núñez‐Farfán J, Valverde PL, Arroyo J, Cruz LL, Tapia‐López R. Selection on tropane alkaloids in native and non-native populations of Datura stramonium. Ecol Evol 2019; 9:10176-10184. [PMID: 31632642 PMCID: PMC6787939 DOI: 10.1002/ece3.5520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
Theories of plant invasion based on enemy release in a new range assume that selection exerted by specialist herbivores on defence traits should be reduced, absent, or even selected against in the new environment. Here, we measured phenotypic selection on atropine and scopolamine concentration of Datura stramonium in eight native (Mexico) and 14 non-native (Spain) populations. Native populations produced between 20 and 40 times more alkaloid than non-native populations (atropine: 2.0171 vs. 0.0458 mg/g; scopolamine: 1.004 vs. 0.0488 mg/g, respectively). Selection on alkaloids was negative for atropine and positive for scopolamine concentration in both ranges. However, the effect sizes of selection gradients were only significant in the native range. Our results support the assumption that the reduction of plant defence in the absence of the plant's natural enemies in invasive ranges is driven by natural selection.
Collapse
Affiliation(s)
- Guillermo Castillo
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
- Present address:
Facultad de Enología y GastronomíaUniversidad Autónoma de Baja CaliforniaBaja CaliforniaMéxico
| | - Adriana Calahorra‐Oliart
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Juan Núñez‐Farfán
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Pedro L. Valverde
- Departamento de BiologíaUniversidad Autónoma Metropolitana‐IztapalapaMexico CityMexico
| | - Juan Arroyo
- Departamento de Biología Vegetal y EcologíaUniversidad de SevillaSevillaSpain
| | - Laura L. Cruz
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| | - Rosalinda Tapia‐López
- Departamento de Ecología EvolutivaInstituto de EcologíaUniversidad Nacional Autónoma de México (UNAM)Mexico CityMexico
| |
Collapse
|
30
|
Enders M, Havemann F, Jeschke JM. A citation-based map of concepts in invasion biology. NEOBIOTA 2019. [DOI: 10.3897/neobiota.47.32608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Invasion biology has been quickly expanding in the last decades so that it is now metaphorically flooded with publications, concepts, and hypotheses. Among experts, there is no clear consensus about the relationships between invasion concepts, and almost no one seems to have a good overview of the literature anymore. Similar observations can be made for other research fields. Science needs new navigation tools so that researchers within and outside of a research field as well as science journalists, students, teachers, practitioners, policy-makers, and others interested in the field can more easily understand its key ideas. Such navigation tools could, for example, be maps of the major concepts and hypotheses of a research field. Applying a bibliometric method, we created such maps for invasion biology. We analysed research papers of the last two decades citing at least two of 35 common invasion hypotheses. Co-citation analysis yields four distinct clusters of hypotheses. These clusters can describe the main directions in invasion biology and explain basic driving forces behind biological invasions. The method we outline here for invasion biology can be easily applied for other research fields.
Collapse
|
31
|
Manea A, Tabassum S, Carthey AJR, Cameron DNS, Leishman MR. Evidence for a shift in defence driving the invasion success of Acacia longifolia in Australia. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01968-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Lin T, Klinkhamer PGL, Pons TL, Mulder PPJ, Vrieling K. Evolution of Increased Photosynthetic Capacity and Its Underlying Traits in Invasive Jacobaea vulgaris. FRONTIERS IN PLANT SCIENCE 2019; 10:1016. [PMID: 31440269 PMCID: PMC6694182 DOI: 10.3389/fpls.2019.01016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/19/2019] [Indexed: 05/14/2023]
Abstract
The evolution of increased competitive ability (EICA) hypothesis and the shifting defense hypothesis (SDH) predict that evolutionary changes occur in a suite of traits related to defense and growth in invasive plant species as result of the absence of specialist herbivores. We tested how this suite of traits changed due to the absence of specialist herbivores in multiple invasive regions that differ in climatic conditions with native and invasive Jacobaea vulgaris in a controlled environment. We hypothesized that invasive J. vulgaris in all invasive regions have i) a higher plant growth and underlying traits, such as photosynthetic capacity, ii) lower regrowth-related traits, such as carbohydrate storage, and iii) an increased plant qualitative defense, such as pyrrolizidine alkaloids (PAs). Our results show that invasive J. vulgaris genotypes have evolved a higher photosynthetic rate and total PA concentration but a lower investment in root carbohydrates, which supports the SDH hypothesis. All the traits changed consistently and significantly in the same direction in all four invasive regions, indicative of a parallel evolution. Climatic and soil variables did differ between ranges but explained only a very small part of the variation in trait values. The latter suggests that climate and soil changes were not the main selective forces on these traits.
Collapse
Affiliation(s)
- Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu, China
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
- *Correspondence: Tiantian Lin,
| | - Peter G. L. Klinkhamer
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| | - Thijs L. Pons
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | | | - Klaas Vrieling
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, Leiden, Netherlands
| |
Collapse
|
33
|
Plant defense against generalist herbivores in the forest understory: a phylogenetic comparison of native and invasive species. Biol Invasions 2019. [DOI: 10.1007/s10530-018-1898-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
van Kleunen M, Bossdorf O, Dawson W. The Ecology and Evolution of Alien Plants. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062654] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review the state of the art of alien plant research with emphasis on conceptual advances and knowledge gains on general patterns and drivers, biotic interactions, and evolution. Major advances include the identification of different invasion stages and invasiveness dimensions (geographic range, habitat specificity, local abundance) and the identification of appropriate comparators while accounting for propagule pressure and year of introduction. Developments in phylogenetic and functional trait research bear great promise for better understanding of the underlying mechanisms. Global patterns are emerging with propagule pressure, disturbance, increased resource availability, and climate matching as major invasion drivers, but species characteristics also play a role. Biotic interactions with resident communities shape invasion outcomes, with major roles for species diversity, enemies, novel weapons, and mutualists. Mounting evidence has been found for rapid evolution of invasive aliens and evolutionary responses of natives, but a mechanistic understanding requires tighter integration of molecular and phenotypic approaches. We hope the open questions identified in this review will stimulate further research on the ecology and evolution of alien plants.
Collapse
Affiliation(s)
- Mark van Kleunen
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
- Ecology Group, Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Oliver Bossdorf
- Plant Evolutionary Ecology Group, Institute of Evolution and Ecology, University of Tübingen, 72076 Tübingen, Germany
| | - Wayne Dawson
- Department of Biosciences, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
35
|
Wilschut RA, Kostenko O, Koorem K, van der Putten WH. Nematode community responses to range-expanding and native plant communities in original and new range soils. Ecol Evol 2018; 8:10288-10297. [PMID: 30397466 PMCID: PMC6206179 DOI: 10.1002/ece3.4505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/01/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
Many plant species expand their range to higher latitudes in response to climate change. However, it is poorly understood how biotic interactions in the new range differ from interactions in the original range. Here, in a mesocosm experiment, we analyze nematode community responses in original and new range soils to plant communities with either (a) species native in both the original and new range, (b) range-expanding species related to these natives (related range expanders), or (c) range expanders without native congeneric species in the new range (unrelated range expanders). We hypothesized that nematode community shifts between ranges are strongest for unrelated range expanders and minimal for plant species that are native in both ranges. As a part of these community shifts, we hypothesized that range expanders, but not natives, would accumulate fewer root-feeding nematodes in their new range compared to their original range. Analyses of responses of nematodes from both original and new ranges and comparison between range expanders with and without close relatives have not been made before. Our study reveals that none of the plant communities experienced evident nematode community shifts between the original and new range. However, in soils from the new range, root-feeding nematode communities of natives and related range expanders were more similar than in soils from the original range, whereas the nematode community of unrelated range expanders was distinct from the communities of natives and related range expanders in soils from both ranges. The abundances of root-feeding nematodes were comparable between the original and new range for all plant communities. Unexpectedly, unrelated range expanders overall accumulated most root-feeding nematodes, whereas related range expanders accumulated fewest. We conclude that nematode communities associated with native and range-expanding plant species differ between the original and the new range, but that range-expanding plant species do not accumulate fewer root-feeding nematodes in their new than in their original range.
Collapse
Affiliation(s)
- Rutger A. Wilschut
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
| | - Olga Kostenko
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
| | - Kadri Koorem
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Department of BotanyInstitute of Ecology and Earth SciencesUniversity of TartuTartuEstonia
| | - Wim H. van der Putten
- Department of Terrestrial EcologyNetherlands Institute of Ecology (NIOO‐KNAW)WageningenThe Netherlands
- Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
36
|
Pankoke H, Tewes LJ, Matties S, Hensen I, Schädler M, Ebeling S, Auge H, Müller C. Pre-adaptations and shifted chemical defences provide Buddleja davidii populations with high resistance against antagonists in the invasive range. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1825-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
A meta-analysis of the evolution of increased competitive ability hypothesis: genetic-based trait variation and herbivory resistance trade-offs. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1724-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Tewes LJ, Mueller C. Syndromes in suites of correlated traits suggest multiple mechanisms facilitating invasion in a plant range-expander. NEOBIOTA 2018. [DOI: 10.3897/neobiota.37.21470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Various mechanisms can facilitate the success of plant invasions simultaneously, but may be difficult to disentangle. In the present study, plants of the range-expanding species Bunias orientalis from native, invasive and naturalised, not yet invasive populations were compared in a field common garden over two years. Plants were grown under two nitrate-regimes and multiple traits regarding growth, defence, antagonist loads and reproduction were measured. A rank-based clustering approach was used to assign correlated traits to distinct suites. These suites were analysed for “syndromes” that are expressed as a function of population origin and/or fertilisation treatment and might represent different invasion mechanisms. Indeed, distinct suites of traits were differentially affected by these factors. The results suggest that several pre-adaptation properties, such as certain growth characteristics and intraspecific chemical variation, as well as post-introduction adaptations to antagonists and resource availability in novel habitats, are candidate mechanisms that facilitate the success of invasive B. orientalis in parallel. It was concluded that rank-based clustering is a robust and expedient approach to integrate multiple traits for elucidating invasion syndromes within individual species. Studying a multitude of traits at different life-history and establishment stages of plants grown under distinct resource treatments reveals species-specific trade-offs and resource sinks and simplifies the interpretation of trait functions for the potential invasive success of plants.
Collapse
|
39
|
Zhang Z, Pan X, Blumenthal D, van Kleunen M, Liu M, Li B. Contrasting effects of specialist and generalist herbivores on resistance evolution in invasive plants. Ecology 2018; 99:866-875. [PMID: 29352479 DOI: 10.1002/ecy.2155] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/18/2017] [Indexed: 01/22/2023]
Abstract
Invasive alien plants are likely to be released from specialist herbivores and at the same time encounter biotic resistance from resident generalist herbivores in their new ranges. The Shifting Defense hypothesis predicts that this will result in evolution of decreased defense against specialist herbivores and increased defense against generalist herbivores. To test this, we performed a comprehensive meta-analysis of 61 common garden studies that provide data on resistance and/or tolerance for both introduced and native populations of 32 invasive plant species. We demonstrate that introduced populations, relative to native populations, decreased their resistance against specialists, and increased their resistance against generalists. These differences were significant when resistance was measured in terms of damage caused by the herbivore, but not in terms of performance of the herbivore. Furthermore, we found the first evidence that the magnitude of resistance differences between introduced and native populations depended significantly on herbivore origin (i.e., whether the test herbivore was collected from the native or non-native range of the invasive plant). Finally, tolerance to generalists was found to be higher in introduced populations, while neither tolerance to specialists nor that to simulated herbivory differed between introduced and native plant populations. We conclude that enemy release from specialist herbivores and biotic resistance from generalist herbivores have contrasting effects on resistance evolution in invasive plants. Our results thus provide strong support for the Shifting Defense hypothesis.
Collapse
Affiliation(s)
- Zhijie Zhang
- Ministry of Education Key Laboratory for Biodiversity Science & Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China.,Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany
| | - Xiaoyun Pan
- Ministry of Education Key Laboratory for Biodiversity Science & Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Dana Blumenthal
- USDA-ARS Rangeland Resource Research Unit, Fort Collins, Colorado, 80526, USA
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Konstanz, 78464, Germany.,Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| | - Mu Liu
- Ministry of Education Key Laboratory for Biodiversity Science & Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| | - Bo Li
- Ministry of Education Key Laboratory for Biodiversity Science & Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai, 200438, China
| |
Collapse
|
40
|
Lustenhouwer N, Wilschut RA, Williams JL, van der Putten WH, Levine JM. Rapid evolution of phenology during range expansion with recent climate change. GLOBAL CHANGE BIOLOGY 2018; 24:e534-e544. [PMID: 29044944 DOI: 10.1111/gcb.13947] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/07/2023]
Abstract
Although climate warming is expected to make habitat beyond species' current cold range edge suitable for future colonization, this new habitat may present an array of biotic or abiotic conditions not experienced within the current range. Species' ability to shift their range with climate change may therefore depend on how populations evolve in response to such novel environmental conditions. However, due to the recent nature of thus far observed range expansions, the role of rapid adaptation during climate change migration is only beginning to be understood. Here, we evaluated evolution during the recent native range expansion of the annual plant Dittrichia graveolens, which is spreading northward in Europe from the Mediterranean region. We examined genetically based differentiation between core and edge populations in their phenology, a trait that is likely under selection with shorter growing seasons and greater seasonality at northern latitudes. In parallel common garden experiments at range edges in Switzerland and the Netherlands, we grew plants from Dutch, Swiss, and central and southern French populations. Population genetic analysis following RAD-sequencing of these populations supported the hypothesized central France origins of the Swiss and Dutch range edge populations. We found that in both common gardens, northern plants flowered up to 4 weeks earlier than southern plants. This differentiation in phenology extended from the core of the range to the Netherlands, a region only reached from central France over approximately the last 50 years. Fitness decreased as plants flowered later, supporting the hypothesized benefits of earlier flowering at the range edge. Our results suggest that native range expanding populations can rapidly adapt to novel environmental conditions in the expanded range, potentially promoting their ability to spread.
Collapse
Affiliation(s)
| | - Rutger A Wilschut
- Department of Terrestrial Ecology, NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Jennifer L Williams
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Wim H van der Putten
- Department of Terrestrial Ecology, NIOO-KNAW, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
41
|
Cheng D, Nguyen VT, Ndihokubwayo N, Ge J, Mulder PPJ. Pyrrolizidine alkaloid variation in Senecio vulgaris populations from native and invasive ranges. PeerJ 2017; 5:e3686. [PMID: 28828276 PMCID: PMC5560238 DOI: 10.7717/peerj.3686] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
Biological invasion is regarded as one of the greatest environmental problems facilitated by globalization. Some hypotheses about the invasive mechanisms of alien invasive plants consider the plant–herbivore interaction and the role of plant defense in this interaction. For example, the “Shift Defense Hypothesis” (SDH) argues that introduced plants evolve higher levels of qualitative defense chemicals and decreased levels of quantitative defense, as they are released of the selective pressures from specialist herbivores but still face attack from generalists. Common groundsel (Senecio vulgaris), originating from Europe, is a cosmopolitan invasive plant in temperate regions. As in other Senecio species, S. vulgaris contains pyrrolizidine alkaloids (PAs) as characteristic qualitative defense compounds. In this study, S. vulgaris plants originating from native and invasive ranges (Europe and China, respectively) were grown under identical conditions and harvested upon flowering. PA composition and concentration in shoot and root samples were determined using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). We investigated the differences between native and invasive S. vulgaris populations with regard to quantitative and qualitative variation of PAs. We identified 20 PAs, among which senecionine, senecionine N-oxide, integerrimine N-oxide and seneciphylline N-oxide were dominant in the roots. In the shoots, in addition to the 4 PAs dominant in roots, retrorsine N-oxide, spartioidine N-oxide and 2 non-identified PAs were also prevalent. The roots possessed a lower PA diversity but a higher total PA concentration than the shoots. Most individual PAs as well as the total PA concentration were strongly positively correlated between the roots and shoots. Both native and invasive S. vulgaris populations shared the pattern described above. However, there was a slight trend indicating lower PA diversity and lower total PA concentration in invasive S. vulgaris populations than native populations, which is not consistent with the prediction of SDH.
Collapse
Affiliation(s)
- Dandan Cheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China
| | - Viet-Thang Nguyen
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.,Faculity of Biology and Agriculture Engineering, Thai Nguyen University of Education, Thai Nguyen, Vietnam
| | - Noel Ndihokubwayo
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, China.,Département des Sciences Naturelles, Ecole Normale Supérieure, Bujumbura, Burundi
| | - Jiwen Ge
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, China University of Geosciences (Wuhan), Wuhan, China
| | | |
Collapse
|
42
|
Evolutionary responses to climate change in a range expanding plant. Oecologia 2017; 184:543-554. [PMID: 28409227 PMCID: PMC5487849 DOI: 10.1007/s00442-017-3864-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/04/2017] [Indexed: 12/22/2022]
Abstract
To understand the biological effects of climate change, it is essential to take into account species’ evolutionary responses to their changing environments. Ongoing climate change is resulting in species shifting their geographical distribution ranges poleward. We tested whether a successful range expanding plant has rapidly adapted to the regional conditions in its novel range, and whether adaptation could be driven by herbivores. Furthermore, we investigated if enemy release occurred in the newly colonized areas and whether plant origins differed in herbivore resistance. Plants were cloned and reciprocally transplanted between three experimental sites across the range. Effects of herbivores on plant performance were tested by individually caging plants with either open or closed cages. There was no indication of (regional) adaptation to abiotic conditions. Plants originating from the novel range were always larger than plants from the core distribution at all experimental sites, with or without herbivory. Herbivore damage was highest and not lowest at the experimental sites in the novel range, suggesting no release from enemy impact. Genotypes from the core were more damaged compared to genotypes from newly colonized areas at the most northern site in the novel range, which was dominated by generalist slug herbivory. We also detected subtle shifts in chemical defenses between the plant origins. Genotypes from the novel range had more inducible defenses. Our results suggest that plants that are expanding their range with climate change may evolve increased vigor and altered herbivore resistance in their new range, analogous to invasive plants.
Collapse
|
43
|
Shelby N, Hulme PE, van der Putten WH, McGinn KJ, Weser C, Duncan RP. No difference in the competitive ability of introduced and native Trifolium provenances when grown with soil biota from their introduced and native ranges. AOB PLANTS 2016; 8:plw016. [PMID: 26969431 PMCID: PMC4833883 DOI: 10.1093/aobpla/plw016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
The evolution of increased competitive ability (EICA) hypothesis could explain why some introduced plant species perform better outside their native ranges. The EICA hypothesis proposes that introduced plants escape specialist pathogens or herbivores leading to selection for resources to be reallocated away from defence and towards greater competitive ability. We tested the hypothesis that escape from soil-borne enemies has led to increased competitive ability in three non-agriculturalTrifolium(Fabaceae) species native to Europe that were introduced to New Zealand in the 19th century.Trifoliumperformance is intimately tied to rhizosphere biota. Thus, we grew plants from one introduced (New Zealand) and two native (Spain and the UK) provenances for each of three species in pots inoculated with soil microbiota collected from the rhizosphere beneath conspecifics in the introduced and native ranges. Plants were grown singly and in competition with conspecifics from a different provenance in order to compare competitive ability in the presence of different microbial communities. In contrast to the predictions of the EICA hypothesis, we found no difference in the competitive ability of introduced and native provenances when grown with soil microbiota from either the native or introduced range. Although plants from introduced provenances of two species grew more slowly than native provenances in native-range soils, as predicted by the EICA hypothesis, plants from the introduced provenance were no less competitive than native conspecifics. Overall, the growth rate of plants grown singly was a poor predictor of their competitive ability, highlighting the importance of directly quantifying plant performance in competitive scenarios, rather than relying on surrogate measures such as growth rate.
Collapse
Affiliation(s)
- Natasha Shelby
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Philip E Hulme
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands Laboratory of Nematology, Wageningen University, PO Box 8123, 6700 ES Wageningen, The Netherlands
| | - Kevin J McGinn
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand
| | - Carolin Weser
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln 7647, New Zealand Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Richard P Duncan
- Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Fukano Y, Doi H, Thomas CE, Takata M, Koyama S, Satoh T. Contemporary evolution of host plant range expansion in an introduced herbivorous beetle Ophraella communa. J Evol Biol 2016; 29:757-65. [PMID: 26728888 DOI: 10.1111/jeb.12824] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 11/22/2015] [Accepted: 12/28/2015] [Indexed: 11/27/2022]
Abstract
Host range expansion of herbivorous insects is a key event in ecological speciation and insect pest management. However, the mechanistic processes are relatively unknown because it is difficult to observe the ongoing host range expansion in natural population. In this study, we focused on the ongoing host range expansion in introduced populations of the ragweed leaf beetle, Ophraella communa, to estimate the evolutionary process of host plant range expansion of a herbivorous insect. In the native range of North America, O. communa does not utilize Ambrosia trifida, as a host plant, but this plant is extensively utilized in the beetle's introduced range. Larval performance and adult preference experiments demonstrated that native O. communa beetles show better survival on host plant individuals from introduced plant populations than those from native plant populations and they also oviposit on the introduced plant, but not on the native plant. Introduced O. communa beetles showed significantly higher performance on and preference for both introduced and native A. trifida plants, when compared with native O. communa. These results indicate the contemporary evolution of host plant range expansion of introduced O. communa and suggest that the evolutionary change of both the host plant and the herbivorous insect involved in the host range expansion.
Collapse
Affiliation(s)
- Y Fukano
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - H Doi
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - C E Thomas
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
| | - M Takata
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - S Koyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - T Satoh
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
45
|
Hammann M, Rempt M, Pohnert G, Wang G, Boo SM, Weinberger F. Increased potential for wound activated production of Prostaglandin E 2 and related toxic compounds in non-native populations of Gracilaria vermiculophylla. HARMFUL ALGAE 2016; 51:81-88. [PMID: 28003063 DOI: 10.1016/j.hal.2015.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/15/2015] [Accepted: 11/21/2015] [Indexed: 06/06/2023]
Abstract
The capacity of the East Asian seaweed Gracilaria vermiculophylla ("Ogonori") for production of prostaglandin E2 from arachidonic acid occasionally causes food poisoning after ingestion. During the last two decades the alga has been introduced to Europe and North America. Non-native populations have been shown to be generally less palatable to marine herbivores than native populations. We hypothesized that the difference in palatability among populations could be due to differences in the algal content of prostaglandins. We therefore compared the capacity for wound-activated production of prostaglandins and other eicosatetraenoid oxylipins among five native populations in East Asia and seven non-native populations in Europe and NW Mexico, using a targeted metabolomics approach. In two independent experiments non-native populations exhibited a significant tendency to produce more eicosatetraenoids than native populations after acclimation to identical conditions and subsequent artificial wounding. Fourteen out of 15 eicosatetraenoids that were detected in experiment I and all 19 eicosatetraenoids that were detected in experiment II reached higher mean concentrations in non-native than in native specimens. Wounding of non-native specimens resulted on average in 390% more 15-keto-PGE2, in 90% more PGE2, in 37% more PGA2 and in 96% more 7,8-di-hydroxy-eicosatetraenoic acid than wounding of native specimens. Not only PGE2, but also PGA2 and dihydroxylated eicosatetraenoic acid are known to deter various biological enemies of G. vermiculophylla that cause tissue or cell wounding, and in the present study the latter two compounds also repelled the mesograzer Littorina brevicula. Non-native populations of G. vermiculophylla are thus more defended against herbivory than native populations. This increased capacity for activated chemical defense may have contributed to their invasion success and at the same time it poses an elevated risk for human food safety.
Collapse
Affiliation(s)
- Mareike Hammann
- Helmholtz-Zentrum für Ozeanforschung GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany
| | - Martin Rempt
- Institute for Inorganic and Analytical Chemistry, Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University, Lessingstraße 8, D-07743 Jena, Germany
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Instrumental Analytics/Bioorganic Analytics, Friedrich Schiller University, Lessingstraße 8, D-07743 Jena, Germany
| | - Gaoge Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, 266003 Qingdao, China
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Florian Weinberger
- Helmholtz-Zentrum für Ozeanforschung GEOMAR, Düsternbrooker Weg 20, D-24105 Kiel, Germany.
| |
Collapse
|
46
|
Oduor AMO, Stift M, van Kleunen M. The Interaction between Root Herbivory and Competitive Ability of Native and Invasive-Range Populations of Brassica nigra. PLoS One 2015; 10:e0141857. [PMID: 26517125 PMCID: PMC4627727 DOI: 10.1371/journal.pone.0141857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/14/2015] [Indexed: 11/18/2022] Open
Abstract
The evolution of increased competitive ability (EICA) hypothesis predicts that escape from intense herbivore damage may enable invasive plants to evolve higher competitive ability in the invasive range. Below-ground root herbivory can have a strong impact on plant performance, and invasive plants often compete with multiple species simultaneously, but experimental approaches in which EICA predictions are tested with root herbivores and in a community setting are rare. Here, we used Brassica nigra plants from eight invasive- and seven native-range populations to test whether the invasive-range plants have evolved increased competitive ability when competing with Achillea millefolium and with a community (both with and without A. millefolium). Further, we tested whether competitive interactions depend on root herbivory on B. nigra by the specialist Delia radicum. Without the community, competition with A. millefolium reduced biomass of invasive- but not of native-range B. nigra. With the community, invasive-range B. nigra suffered less than native-range B. nigra. Although the overall effect of root herbivory was not significant, it reduced the negative effect of the presence of the community. The community produced significantly less biomass when competing with B. nigra, irrespective of the range of origin, and independent of the presence of A. millefolium. Taken together, these results offer no clear support for the EICA hypothesis. While native-range B. nigra plants appear to be better in dealing with a single competitor, the invasive-range plants appear to be better in dealing with a more realistic multi-species community. Possibly, this ability of tolerating multiple competitors simultaneously has contributed to the invasion success of B. nigra in North America.
Collapse
Affiliation(s)
- Ayub M. O. Oduor
- Ecology, Department of Biology, University of Konstanz. Universitätsstrasse 10, D-78457 Konstanz, Germany
- * E-mail:
| | - Marc Stift
- Ecology, Department of Biology, University of Konstanz. Universitätsstrasse 10, D-78457 Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz. Universitätsstrasse 10, D-78457 Konstanz, Germany
| |
Collapse
|
47
|
Sotes GJ, Cavieres LA, Montesinos D, Pereira Coutinho AX, Peláez WJ, Lopes SM, Pinho e Melo TM. Inter-regional variation on leaf surface defenses in native and non-native Centaurea solstitialis plants. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
48
|
Lin T, Klinkhamer PGL, Vrieling K. Parallel evolution in an invasive plant: effect of herbivores on competitive ability and regrowth of Jacobaea vulgaris. Ecol Lett 2015; 18:668-76. [PMID: 25958781 DOI: 10.1111/ele.12445] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/12/2015] [Accepted: 04/04/2015] [Indexed: 11/30/2022]
Abstract
A shift in the composition of the herbivore guild in the invasive range is expected to select for plants with a higher competitive ability, a lower regrowth capacity and a lower investment in defence. We show here that parallel evolution took place in three geographically distinct invasive regions that differed significantly in climatic conditions. This makes it most likely that indeed the shifts in herbivore guilds were causal to the evolutionary changes. We studied competitive ability and regrowth of invasive and native Jacobaea vulgaris using an intraspecific competition set-up with and without herbivory. Without herbivores invasive genotypes have a higher competitive ability than native genotypes. The invasive genotypes were less preferred by the generalist Mamestra brassicae but more preferred by the specialist Tyria jacobaeae, consequently their competitive ability was significantly increased by the first and reduced by the latter. Invasive genotypes showed a lower regrowth ability in both herbivore treatments.
Collapse
Affiliation(s)
- Tiantian Lin
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | - Peter G L Klinkhamer
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| | - Klaas Vrieling
- Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
49
|
Boppré M, Colegate SM. Recognition of pyrrolizidine alkaloid esters in the invasive aquatic plant Gymnocoronis spilanthoides (Asteraceae). PHYTOCHEMICAL ANALYSIS : PCA 2015; 26:215-225. [PMID: 25645745 DOI: 10.1002/pca.2555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/01/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
INTRODUCTION The freshwater aquatic plant Gymnocoronis spilanthoides (Senegal tea plant, jazmín del bañado, Falscher Wasserfreund) is an invasive plant in many countries. Behavioural observations of pyrrolizidine alkaloid-pharmacophagous butterflies suggested the presence of pyrrolizidine alkaloids in the plant. OBJECTIVE To determine whether the attraction of the butterflies to the plant is an accurate indicator of pyrrolizidine alkaloids in G. spilanthoides. METHODS The alkaloid fraction of a methanolic extract of G. spilanthoides was analysed using HPLC with electrospray ionisation MS and MS/MS. Two HPLC approaches were used, that is, a C18 reversed-phase column with an acidic mobile phase, and a porous graphitic carbon column with a basic mobile phase. RESULTS Pyrrolizidine alkaloids were confirmed, with the free base forms more prevalent than the N-oxides. The major alkaloids detected were lycopsamine and intermedine. The porous graphitic carbon HPLC column, with basic mobile phase conditions, resulted in better resolution of more pyrrolizidine alkaloids including rinderine, the heliotridine-based epimer of intermedine. Based on the MS/MS and high-resolution MS data, gymnocoronine was tentatively identified as an unusual C9 retronecine ester with 2,3-dihydroxy-2-propenylbutanoic acid. Among several minor-abundance monoester pyrrolizidines recognised, spilanthine was tentatively identified as an ester of isoretronecanol with the unusual 2-acetoxymethylbutanoic acid. CONCLUSIONS The butterflies proved to be reliable indicators for the presence of pro-toxic 1,2-dehydropyrrolizidine alkaloids in G. spilanthoides, the first aquatic plant shown to produce these alkaloids. The presence of the anti-herbivory alkaloids may contribute to the plant's invasive capabilities and would certainly be a consideration in any risk assessment of deliberate utilisation of the plant. The prolific growth of the plant and the structural diversity of its pyrrolizidine alkaloids may make it ideal for investigating biosynthetic pathways or for large-scale production of specific alkaloids.
Collapse
Affiliation(s)
- Michael Boppré
- Forstzoologie und Entomologie, Albert-Ludwigs-Universität, D-79085, Freiburg, Germany
| | | |
Collapse
|
50
|
Gruntman M, Zieger S, Tielbörger K. Invasive success and the evolution of enhanced weaponry. OIKOS 2015. [DOI: 10.1111/oik.02109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michal Gruntman
- Plant Ecology Group, Inst. of Evolution and Ecology, Univ. of Tübingen; Auf der Morgenstelle 5 DE-72076 Tübingen Germany
| | - Sinja Zieger
- Plant Ecology Group, Inst. of Evolution and Ecology, Univ. of Tübingen; Auf der Morgenstelle 5 DE-72076 Tübingen Germany
| | - Katja Tielbörger
- Plant Ecology Group, Inst. of Evolution and Ecology, Univ. of Tübingen; Auf der Morgenstelle 5 DE-72076 Tübingen Germany
| |
Collapse
|