1
|
Zulfiqar U, Khokhar A, Maqsood MF, Shahbaz M, Naz N, Sara M, Maqsood S, Sahar S, Hussain S, Ahmad M. Genetic biofortification: advancing crop nutrition to tackle hidden hunger. Funct Integr Genomics 2024; 24:34. [PMID: 38365972 DOI: 10.1007/s10142-024-01308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/18/2024]
Abstract
Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Amman Khokhar
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Muhammad Shahbaz
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Nargis Naz
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maheen Sara
- Department of Nutritional Sciences, Government College Women University, Faisalabad, Pakistan
| | - Sana Maqsood
- Department of Botany, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sajila Sahar
- Department of Plant Breeding & Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Sharma A, Sharma D, Verma SK. A systematic in silico report on iron and zinc proteome of Zea mays. FRONTIERS IN PLANT SCIENCE 2023; 14:1166720. [PMID: 37662157 PMCID: PMC10469895 DOI: 10.3389/fpls.2023.1166720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/10/2023] [Indexed: 09/05/2023]
Abstract
Zea mays is an essential staple food crop across the globe. Maize contains macro and micronutrients but is limited in essential mineral micronutrients such as Fe and Zn. Worldwide, serious health concerns have risen due to the deficiencies of essential nutrients in human diets, which rigorously jeopardizes economic development. In the present study, the systematic in silico approach has been used to predict Fe and Zn binding proteins from the whole proteome of maize. A total of 356 and 546 putative proteins have been predicted, which contain sequence and structural motifs for Fe and Zn ions, respectively. Furthermore, the functional annotation of these predicted proteins, based on their domains, subcellular localization, gene ontology, and literature support, showed their roles in distinct cellular and biological processes, such as metabolism, gene expression and regulation, transport, stress response, protein folding, and proteolysis. The versatile roles of these shortlisted putative Fe and Zn binding proteins of maize could be used to manipulate many facets of maize physiology. Moreover, in the future, the predicted Fe and Zn binding proteins may act as relevant, novel, and economical markers for various crop improvement programs.
Collapse
Affiliation(s)
- Ankita Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Dixit Sharma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
| | - Shailender Kumar Verma
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India
- Department of Environmental Studies, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Karnatam KS, Mythri B, Un Nisa W, Sharma H, Meena TK, Rana P, Vikal Y, Gowda M, Dhillon BS, Sandhu S. Silage maize as a potent candidate for sustainable animal husbandry development-perspectives and strategies for genetic enhancement. Front Genet 2023; 14:1150132. [PMID: 37303948 PMCID: PMC10250641 DOI: 10.3389/fgene.2023.1150132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Maize is recognized as the queen of cereals, with an ability to adapt to diverse agroecologies (from 58oN to 55oS latitude) and the highest genetic yield potential among cereals. Under contemporary conditions of global climate change, C4 maize crops offer resilience and sustainability to ensure food, nutritional security, and farmer livelihood. In the northwestern plains of India, maize is an important alternative to paddy for crop diversification in the wake of depleting water resources, reduced farm diversity, nutrient mining, and environmental pollution due to paddy straw burning. Owing to its quick growth, high biomass, good palatability, and absence of anti-nutritional components, maize is also one of the most nutritious non-legume green fodders. It is a high-energy, low-protein forage commonly used for dairy animals like cows and buffalos, often in combination with a complementary high-protein forage such as alfalfa. Maize is also preferred for silage over other fodders due to its softness, high starch content, and sufficient soluble sugars required for proper ensiling. With a rapid population increase in developing countries like China and India, there is an upsurge in meat consumption and, hence, the requirement for animal feed, which entails high usage of maize. The global maize silage market is projected to grow at a compound annual growth rate of 7.84% from 2021 to 2030. Factors such as increasing demand for sustainable and environment-friendly food sources coupled with rising health awareness are fueling this growth. With the dairy sector growing at about 4%-5% and the increasing shortage faced for fodder, demand for silage maize is expected to increase worldwide. The progress in improved mechanization for the provision of silage maize, reduced labor demand, lack of moisture-related marketing issues as associated with grain maize, early vacancy of farms for next crops, and easy and economical form of feed to sustain household dairy sector make maize silage a profitable venture. However, sustaining the profitability of this enterprise requires the development of hybrids specific for silage production. Little attention has yet been paid to breeding for a plant ideotype for silage with specific consideration of traits such as dry matter yield, nutrient yield, energy in organic matter, genetic architecture of cell wall components determining their digestibility, stalk standability, maturity span, and losses during ensiling. This review explores the available information on the underlying genetic mechanisms and gene/gene families impacting silage yield and quality. The trade-offs between yield and nutritive value in relation to crop duration are also discussed. Based on available genetic information on inheritance and molecular aspects, breeding strategies are proposed to develop maize ideotypes for silage for the development of sustainable animal husbandry.
Collapse
Affiliation(s)
- Krishna Sai Karnatam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Bikkasani Mythri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Wajhat Un Nisa
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Heena Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Tarun Kumar Meena
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Prabhat Rana
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - M. Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Baldev Singh Dhillon
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Surinder Sandhu
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
4
|
Duraiswamy A, Sneha A. NM, Jebakani K. S, Selvaraj S, Pramitha J. L, Selvaraj R, Petchiammal K. I, Kather Sheriff S, Thinakaran J, Rathinamoorthy S, Kumar P. R. Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future. FRONTIERS IN PLANT SCIENCE 2023; 13:1070398. [PMID: 36874916 PMCID: PMC9976781 DOI: 10.3389/fpls.2022.1070398] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
The consumption of healthy food, in order to strengthen the immune system, is now a major focus of people worldwide and is essential to tackle the emerging pandemic concerns. Moreover, research in this area paves the way for diversification of human diets by incorporating underutilized crops which are highly nutritious and climate-resilient in nature. However, although the consumption of healthy foods increases nutritional uptake, the bioavailability of nutrients and their absorption from foods also play an essential role in curbing malnutrition in developing countries. This has led to a focus on anti-nutrients that interfere with the digestion and absorption of nutrients and proteins from foods. Anti-nutritional factors in crops, such as phytic acid, gossypol, goitrogens, glucosinolates, lectins, oxalic acid, saponins, raffinose, tannins, enzyme inhibitors, alkaloids, β-N-oxalyl amino alanine (BOAA), and hydrogen cyanide (HCN), are synthesized in crop metabolic pathways and are interconnected with other essential growth regulation factors. Hence, breeding with the aim of completely eliminating anti-nutrition factors tends to compromise desirable features such as yield and seed size. However, advanced techniques, such as integrated multi-omics, RNAi, gene editing, and genomics-assisted breeding, aim to breed crops in which negative traits are minimized and to provide new strategies to handle these traits in crop improvement programs. There is also a need to emphasize individual crop-based approaches in upcoming research programs to achieve smart foods with minimum constraints in future. This review focuses on progress in molecular breeding and prospects for additional approaches to improve nutrient bioavailability in major crops.
Collapse
Affiliation(s)
- Aishwarya Duraiswamy
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Nancy Mano Sneha A.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sherina Jebakani K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sellakumar Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Lydia Pramitha J.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramchander Selvaraj
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Indira Petchiammal K.
- Genetics and Plant Breeding, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sharmili Kather Sheriff
- Agronomy, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jenita Thinakaran
- Horticulture, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Samundeswari Rathinamoorthy
- Crop Physiology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Ramesh Kumar P.
- Plant Biochemistry, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore, India
| |
Collapse
|
5
|
Moreno-Nombela S, Romero-Parra J, Ruiz-Ojeda FJ, Solis-Urra P, Baig AT, Plaza-Diaz J. Genome Editing and Protein Energy Malnutrition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1396:215-232. [DOI: 10.1007/978-981-19-5642-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Ofori KF, Antoniello S, English MM, Aryee ANA. Improving nutrition through biofortification-A systematic review. Front Nutr 2022; 9:1043655. [PMID: 36570169 PMCID: PMC9784929 DOI: 10.3389/fnut.2022.1043655] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 12/14/2022] Open
Abstract
Nutritious foods are essential for human health and development. However, malnutrition and hidden hunger continue to be a challenge globally. In most developing countries, access to adequate and nutritious food continues to be a challenge. Although hidden hunger is less prevalent in developed countries compared to developing countries where iron (Fe) and zinc (Zn) deficiencies are common. The United Nations (UN) 2nd Sustainable Development Goal was set to eradicate malnutrition and hidden hunger. Hidden hunger has led to numerous cases of infant and maternal mortalities, and has greatly impacted growth, development, cognitive ability, and physical working capacity. This has influenced several countries to develop interventions that could help combat malnutrition and hidden hunger. Interventions such as dietary diversification and food supplementation are being adopted. However, fortification but mainly biofortification has been projected to be the most sustainable solution to malnutrition and hidden hunger. Plant-based foods (PBFs) form a greater proportion of diets in certain populations; hence, fortification of PBFs is relevant in combating malnutrition and hidden hunger. Agronomic biofortification, plant breeding, and transgenic approaches are some currently used strategies in food crops. Crops such as cereals, legumes, oilseeds, vegetables, and fruits have been biofortified through all these three strategies. The transgenic approach is sustainable, efficient, and rapid, making it suitable for biofortification programs. Omics technology has also been introduced to improve the efficiency of the transgenic approach.
Collapse
Affiliation(s)
- Kelvin F. Ofori
- Department of Human Ecology, Delaware State University, Dover, DE, United States
| | - Sophia Antoniello
- Department Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Marcia M. English
- Department Human Nutrition, Saint Francis Xavier University, Antigonish, NS, Canada
| | - Alberta N. A. Aryee
- Department of Human Ecology, Delaware State University, Dover, DE, United States,*Correspondence: Alberta N. A. Aryee,
| |
Collapse
|
7
|
Van Migem S, Devresse A, Pichierri V, Georgery H, Duprez T, Hantson P. Rapidly Reversible Leukoencephalopathy After Acute Kidney Graft Rejection in a Patient With Systemic Lupus Erythematosus. EXP CLIN TRANSPLANT 2022; 20:1126-1130. [PMID: 36718011 DOI: 10.6002/ect.2022.0297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The finding of white matter damage on brain magnetic resonance imaging may correspond to a wide variety of etiologies. The differential diagnosis may be particularly difficultin immunocompromised patients with a specific autoimmune disease or who are receiving medications after a solid-organ transplant. Herein, we describe the case of a 22-year-old woman who developed serious neurological complications after an acute rejection of a kidney graft that she had received a few months previous to treat a systemic lupus erythematosus-related nephritis.We discuss the possible hypotheses underlying the development of acute leukoencephalopathy in this setting.
Collapse
Affiliation(s)
- Simon Van Migem
- From the Department of Intensive Care, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
8
|
Sapara KK, Agarwal P, Gupta K, Agarwal PK. Expression of B. subtilis Phytase gene driven by fruit specific E8 promoter for enhanced minerals, metabolites and phytonutrient in cucumber fruit. Food Res Int 2022; 156:111138. [PMID: 35651010 DOI: 10.1016/j.foodres.2022.111138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/15/2022]
Abstract
The fruit nutrigenomics is an interesting and important research area towards nutrition enhancement. The phytic acid is one of the major antinutrient compound, present in seeded fruits and crops. It hinders the absorption of iron (Fe), zinc (Zn), magnesium (Mg), potassium (K) and calcium (Ca), causing mineral deficiencies. In the present study, the BsPhy gene was overexpressed in the cucumber fruits using the tomato fruit specific E8 and constitutive CaMV 35S promoter. The E8 promoter imparted heterologous expression of GUS gene in cucumber fruits, furthermore, the fruit specific expression of E8 promoter with BsPhy gene was confirmed in transgenics (E8::BsPhy) using anti rabbit-phytase antibody. The physio-biochemical analysis of transgenics revealed, maximum phytase activity in E8::BsPhy cucumber fruits at 10 days after anthesis (DAA) compared to 35S::BsPhy and wild-type (WT) fruits. Consequently, E8::BsPhy fruits also showed increased amount of inorganic phosphorus (Pi), total phosphorus (P), minerals (Zn, Fe, Mg, K, Ca), total carotenoid and other macronutrients at 10 DAA compared to 35S::BsPhy fruits. The metabolite profiling of fruits (10 DAA) showed increased sugars, amino acids, sugar acids and polyols, in both E8::BsPhy and 35S::BsPhy transgenics suggesting higher phytate metabolism, compared to WT fruits. Interestingly, both the transgenic fruits showed higher fruit biomass and yield along with improved nutritional quality, which can be attributed to increased P and Zn contents in transgenic fruits, compared to WT fruits. Our findings reveal that the BsPhy gene enhances minerals and macronutrients in transgenic cucumber fruits making it nutritious and healthy.
Collapse
Affiliation(s)
- Komal K Sapara
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Kapil Gupta
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India
| | - Pradeep K Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar 364 002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
9
|
Sushree Shyamli P, Rana S, Suranjika S, Muthamilarasan M, Parida A, Prasad M. Genetic determinants of micronutrient traits in graminaceous crops to combat hidden hunger. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3147-3165. [PMID: 34091694 DOI: 10.1007/s00122-021-03878-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Improving the nutritional content of graminaceous crops is imperative to ensure nutritional security, wherein omics approaches play pivotal roles in dissecting this complex trait and contributing to trait improvement. Micronutrients regulate the metabolic processes to ensure the normal functioning of the biological system in all living organisms. Micronutrient deficiency, thereby, can be detrimental that can result in serious health issues. Grains of graminaceous crops serve as an important source of micronutrients to the human population; however, the rise in hidden hunger and malnutrition indicates an insufficiency in meeting the nutritional requirements. Improving the elemental composition and nutritional value of the graminaceous crops using conventional and biotechnological approaches is imperative to address this issue. Identifying the genetic determinants underlying the micronutrient biosynthesis and accumulation is the first step toward achieving this goal. Genetic and genomic dissection of this complex trait has been accomplished in major cereals, and several genes, alleles, and QTLs underlying grain micronutrient content were identified and characterized. However, no comprehensive study has been reported on minor cereals such as small millets, which are rich in micronutrients and other bioactive compounds. A comparative narrative on the reports available in major and minor Graminaceae species will illustrate the knowledge gained from studying the micronutrient traits in major cereals and provides a roadmap for dissecting this trait in other minor species, including millets. In this context, this review explains the progress made in studying micronutrient traits in major cereals and millets using omics approaches. Moreover, it provides insights into deploying integrated omics approaches and strategies for genetic improvement in micronutrient traits in graminaceous crops.
Collapse
Affiliation(s)
- P Sushree Shyamli
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Sumi Rana
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Sandhya Suranjika
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, 751024, India
| | - Mehanathan Muthamilarasan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Ajay Parida
- Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
10
|
Glahn RP, Noh H. Redefining Bean Iron Biofortification: A Review of the Evidence for Moving to a High Fe Bioavailability Approach. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.682130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iron biofortification of the common bean (Phaseolus vulgaris) commenced in earnest ~18 years ago. Based on knowledge at the time, the biofortification approach for beans was simply to breed for increased Fe concentration based on 3 major assumptions: (1) The average bean Fe concentration is ~50 μg/g; (2) Higher Fe concentration results in more bioavailable Fe delivered for absorption; (3) Breeding for high Fe concentration is a trait that can be achieved through traditional breeding and is sustainable once a high Fe bean sample is released to farmers. Current research indicates that the assumptions of the high Fe breeding approach are not met in countries of East Africa, a major focus area of bean Fe biofortification. Thus, there is a need to redefine bean Fe biofortification. For assumption 1, recent research indicates that the average bean Fe concentration in East Africa is 71 μg/g, thus about 20 μg/g higher than the assumed value. For assumption 2, recent studies demonstrate that for beans higher Fe concentration does not always equate to more Fe absorption. Finally, for assumption 3, studies show a strong environment and genotype by environment effect on Fe concentration, thus making it difficult to develop and sustain high Fe concentrations. This paper provides an examination of the available evidence related to the above assumptions, and offers an alternative approach utilizing tools that focus on Fe bioavailability to redefine Fe biofortification of the common bean.
Collapse
|
11
|
Singhal T, Satyavathi CT, Singh SP, Kumar A, Sankar SM, Bhardwaj C, Mallik M, Bhat J, Anuradha N, Singh N. Multi-Environment Quantitative Trait Loci Mapping for Grain Iron and Zinc Content Using Bi-parental Recombinant Inbred Line Mapping Population in Pearl Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:659789. [PMID: 34093617 PMCID: PMC8169987 DOI: 10.3389/fpls.2021.659789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/06/2021] [Indexed: 05/24/2023]
Abstract
Pearl millet is a climate-resilient, nutritious crop with low input requirements that could provide economic returns in marginal agro-ecologies. In this study, we report quantitative trait loci (QTLs) for iron (Fe) and zinc (Zn) content from three distinct production environments. We generated a genetic linkage map using 210 F6 recombinant inbred line (RIL) population derived from the (PPMI 683 × PPMI 627) cross using genome-wide simple sequence repeats (SSRs). The molecular linkage map (seven linkage groups) of 151 loci was 3,273.1 cM length (Kosambi). The content of grain Fe in the RIL population ranged between 36 and 114 mg/Kg, and that of Zn from 20 to 106 mg/Kg across the 3 years (2014-2016) at over the three locations (Delhi, Dharwad, and Jodhpur). QTL analysis revealed a total of 22 QTLs for grain Fe and Zn, of which 14 were for Fe and eight were for Zn on three consecutive years at all locations. The observed phenotypic variance (R 2) explained by different QTLs for grain Fe and Zn content ranged from 2.85 (QGFe.E3.2014-2016_Q3) to 19.66% (QGFe.E1.2014-2016_Q3) and from 2.93 (QGZn.E3.2014-2016_Q3) to 25. 95% (QGZn.E1.2014-2016_Q1), respectively. Two constitutive expressing QTLs for both Fe and Zn co-mapped in this population, one on LG 2 and second one on LG 3. Inside the QTLs candidate genes such as Ferritin gene, Al3+ Transporter, K+ Transporters, Zn2+ transporters and Mg2+ transporters were identified using bioinformatics approaches. The identified QTLs and candidate genes could be useful in pearl millet population improvement programs, seed, restorer parents, and marker-assisted selection programs.
Collapse
Affiliation(s)
- Tripti Singhal
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - C. Tara Satyavathi
- ICAR-All India Coordinated Research Project on Pearl Millet, Jodhpur, India
| | - S. P. Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aruna Kumar
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | | - C. Bhardwaj
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - M. Mallik
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jayant Bhat
- Regional Research Centre, ICAR-Indian Agricultural Research Institute, Dharwad, India
| | - N. Anuradha
- Acharya N. G. Ranga Agricultural University, Vizianagaram, India
| | - Nirupma Singh
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
12
|
|
13
|
Gupta PK, Balyan HS, Sharma S, Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1-35. [PMID: 33136168 DOI: 10.1007/s00122-020-03709-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 05/02/2023]
Abstract
Knowledge of genetic variation, genetics, physiology/molecular basis and breeding (including biotechnological approaches) for biofortification and bioavailability for Zn, Fe and Se will help in developing nutritionally improved wheat. Biofortification of wheat cultivars for micronutrients is a priority research area for wheat geneticists and breeders. It is known that during breeding of wheat cultivars for productivity and quality, a loss of grain micronutrient contents occurred, leading to decline in nutritional quality of wheat grain. Keeping this in view, major efforts have been made during the last two decades for achieving biofortification and bioavailability of wheat grain for micronutrients including Zn, Fe and Se. The studies conducted so far included evaluation of gene pools for contents of not only grain micronutrients as above, but also for phytic acid (PA) or phytate and phytase, so that, while breeding for the micronutrients, bioavailability is also improved. For this purpose, QTL interval mapping and GWAS were carried out to identify QTLs/genes and associated markers that were subsequently used for marker-assisted selection (MAS) during breeding for biofortification. Studies have also been conducted to understand the physiology and molecular basis of biofortification, which also allowed identification of genes for uptake, transport and storage of micronutrients. Transgenics using transgenes have also been produced. The breeding efforts led to the development of at least a dozen cultivars with improved contents of grain micronutrients, although land area occupied by these biofortified cultivars is still marginal. In this review, the available information on different aspects of biofortification and bioavailability of micronutrients including Zn, Fe and Se in wheat has been reviewed for the benefit of those, who plan to start work or already conducting research in this area.
Collapse
Affiliation(s)
- P K Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India.
| | - H S Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Shailendra Sharma
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| | - Rahul Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, U.P, 250004, India
| |
Collapse
|
14
|
Pramitha JL, Rana S, Aggarwal PR, Ravikesavan R, Joel AJ, Muthamilarasan M. Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients. ADVANCES IN GENETICS 2020; 107:89-120. [PMID: 33641749 DOI: 10.1016/bs.adgen.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural or synthetic compounds that interfere with the bioavailability of nutrients are called antinutrients. Phytic acid (PA) is one of the major antinutrients present in the grains and acts as a chelator of micronutrients. The presence of six reactive phosphate groups in PA hinders the absorption of micronutrients in the gut of non-ruminants. Consumption of PA-rich diet leads to deficiency of minerals such as iron and zinc among human population. On the contrary, PA is a natural antioxidant, and PA-derived molecules function in various signal transduction pathways. Therefore, optimal concentration of PA needs to be maintained in plants to avoid adverse pleiotropic effects, as well as to ensure micronutrient bioavailability in the diets. Given this, the chapter enumerates the structure, biosynthesis, and accumulation of PA in food grains followed by their roles in growth, development, and stress responses. Further, the chapter elaborates on the antinutritional properties of PA and explains the conventional breeding and transgene-based approaches deployed to develop low-PA varieties. Studies have shown that conventional breeding methods could develop low-PA lines; however, the pleiotropic effects of these methods viz. reduced yield, embryo abnormalities, and poor seed quality hinder the use of breeding strategies. Overexpression of phytase in the endosperm and RNAi-mediated silencing of genes involved in myo-inositol biosynthesis overcome these constraints. Next-generation genome editing approaches, including CRISPR-Cas9 enable the manipulation of more than one gene involved in PA biosynthesis pathway through multiplex editing, and scope exists to deploy such tools in developing varieties with optimal PA levels.
Collapse
Affiliation(s)
- J Lydia Pramitha
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Rajasekaran Ravikesavan
- Department of Millets, Center for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - A John Joel
- Tamil Nadu Rice Research Institute, Tamil Nadu Agricultural University, Aduthurai, Tamil Nadu, India
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India.
| |
Collapse
|
15
|
|
16
|
Woźniak E, Tyczewska A, Twardowski T. Bioeconomy development factors in the European Union and Poland. N Biotechnol 2020; 60:2-8. [PMID: 32835869 DOI: 10.1016/j.nbt.2020.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 10/23/2022]
Abstract
Bioeconomy is not an autonomous sector of the economy, but rather a complex mechanism involving agriculture, industry, biotechnology, service sectors and consumers. To measure the size of the bioeconomy in European Union (EU) countries, it is necessary to create appropriate indicators that allow it to be monitored with reference to its current state, growth rate and sector description. In many countries, including Poland, there is no complete information or data collection system to monitor bioeconomy development directly, e.g. in the Polish Central Statistical Office. In response to these needs, several groups of indicators related to the circular economy, sustainable development and Europe 2020 were created by the European Commission (EC) in the Eurostat database. These indicators can help monitoring of bioeconomy development in EU countries. The present study discusses factors for bioeconomy development through an analysis of their social, economic and environmental aspects, as well as showing the value of the selected indicators in the EU and Poland. In addition, a separate section is dedicated to public perception of bioeconomy and to legislation regarding genetically modified organisms (GMOs). To date, many research studies have been reported on the public acceptance of bioeconomy issues in the EU, including renewable resources, biofuels, GMOs, bio-based products, food security and climate change. The awareness and perception of society on the bioeconomy, bio-based products and processes, and the sustainable use of resources can contribute to environmental sustainability, but intensified efforts are required to increase public acceptance.
Collapse
Affiliation(s)
- Ewa Woźniak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Agata Tyczewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| | - Tomasz Twardowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
17
|
Sharma A, Ahluwalia O, Tripathi AD, Singh G, Arya SK. Phytases and their pharmaceutical applications: Mini-review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Akhtar M, Yousaf S, Sarwar N, Hussain S. Zinc biofortification of cereals-role of phosphorus and other impediments in alkaline calcareous soils. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2365-2379. [PMID: 30903431 DOI: 10.1007/s10653-019-00279-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 03/08/2019] [Indexed: 05/17/2023]
Abstract
Alkaline calcareous soils are deficient in plant nutrients; in particular, phosphorus (P) and zinc (Zn) are least available; their inorganic fertilizers are generally applied to meet the demand of crops. The applied nutrients react with soil constituents as well as with each other, resulting in lower plant uptake. Phosphorus availability is usually deterred due to lime content, while Zn availability is largely linked with alkalinity of the soil. The present manuscript critically discusses the factors associated with physicochemical properties of soil and other interactions in soil-plant system which contribute to the nutrients supply from soil, and affect productivity and quality attributes of cereals. Appropriate measures may possibly lessen the severity of nutritional disorder in cereal and optimize P and Zn concentrations in grain. Foliar Zn spray is found to escape most of the soil reactions; thus, Zn bioavailability is higher either through increase in grain Zn or through decrease in phytate content. The reactivity of nutrients prior to its uptake is deemed as major impediments in Zn biofortification of cereals. The article addresses physiological limitation of plants to accumulate grain Zn and the ways to achieve biofortification in cereals, while molecular mechanism explains how it affects nutritional quality of cereals. Moreover, it highlights the desirable measures for enhancing Zn bioavailability, e.g., manipulation of genetic makeup for efficient nutrient uptake/translocation, and also elucidates agronomic measures that help facilitate Zn supply in soil for plant accumulation.
Collapse
Affiliation(s)
- Muhammad Akhtar
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Sundas Yousaf
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan.
| | - Nadeem Sarwar
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan.
| |
Collapse
|
19
|
Prospects for the use of genetically modified crops with improved nutritional properties as feed materials in poultry nutrition. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933911000729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Connorton JM, Balk J. Iron Biofortification of Staple Crops: Lessons and Challenges in Plant Genetics. PLANT & CELL PHYSIOLOGY 2019; 60:1447-1456. [PMID: 31058958 PMCID: PMC6619672 DOI: 10.1093/pcp/pcz079] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/23/2019] [Indexed: 05/19/2023]
Abstract
Plants are the ultimate source of iron in our diet, either directly as staple crops and vegetables or indirectly via animal fodder. Increasing the iron concentration of edible parts of plants, known as biofortification, is seen as a sustainable approach to alleviate iron deficiency which is a major global health issue. Advances in sequencing and gene technology are accelerating both forward and reverse genetic approaches. In this review, we summarize recent progress in iron biofortification using conventional plant breeding or transgenics. Interestingly, some of the gene targets already used for transgenic approaches are also identified as genetic factors for high iron in genome-wide association studies. Several quantitative trait loci and transgenes increase both iron and zinc, due to overlap in transporters and chelators for these two mineral micronutrients. Research efforts are predominantly aimed at increasing the total concentration of iron but enhancing its bioavailability is also addressed. In particular, increased biosynthesis of the metal chelator nicotianamine increases iron and zinc levels and improves bioavailability. The achievements to date are very promising in being able to provide sufficient iron in diets with less reliance on meat to feed a growing world population.
Collapse
Affiliation(s)
- James M Connorton
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Janneke Balk
- Department of Biological Chemistry, John Innes Centre, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
| |
Collapse
|
21
|
Kumar S, Palve A, Joshi C, Srivastava RK, Rukhsar. Crop biofortification for iron (Fe), zinc (Zn) and vitamin A with transgenic approaches. Heliyon 2019; 5:e01914. [PMID: 31338452 PMCID: PMC6579847 DOI: 10.1016/j.heliyon.2019.e01914] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/07/2019] [Accepted: 06/03/2019] [Indexed: 11/20/2022] Open
Abstract
Micronutrient malnutrition is an important issue in the developing countries especially in Asia and Africa where millions of school-going children and pregnant women are affected. Poor people are more exposed to risks of malnutrition and hidden hunger due to intake of carbohydrate rich but micronutrient deficient plant based food. The expansion of high yielding but micronutrient poor cultivars further intensified the malnutrition. The existing approaches viz., supplementation and food fortification of staple food with minerals and vitamins can address the issue of adequate nutrition security. But supplementation and fortification is neither feasible for each nutrient specially iron nor viable due to recurrent cost. Recently, genetic bio-fortification of crops is emerged as self-targeted and non-recurrent approach to address the micronutrient malnutrition. Most of the traditional breeding approaches were limited due to non-availability of enough genetic variation in the crossable genepools. Additionally, it also lacks the modulation of target gene expression underlying the micronutrient accumulation. At this juncture, genetic engineering based food biofortification is promising way to address the hidden hunger especially, where breeding is not rewarding due to lack of genetic variability. Genetic modification through gene technology is swift and accurate method to develop nutrient denser crops without any recurrent investment as compared to different strategies.
Collapse
Affiliation(s)
- Sushil Kumar
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| | - Adinath Palve
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| | - Chitra Joshi
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| | - Rakesh K. Srivastava
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India
| | - Rukhsar
- Centre of Excellence in Agricultural Biotechnology, Anand Agricultural University, Anand, India
| |
Collapse
|
22
|
Geetha S, Joshi JB, Kumar KK, Arul L, Kokiladevi E, Balasubramanian P, Sudhakar D. Genetic transformation of tropical maize ( Zea mays L.) inbred line with a phytase gene from Aspergillus niger. 3 Biotech 2019; 9:208. [PMID: 31093478 DOI: 10.1007/s13205-019-1731-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 04/25/2019] [Indexed: 10/26/2022] Open
Abstract
A full-length cDNA of phyA gene of Aspergillus niger, encoding phytase enzyme, was cloned and expressed in E. coli BL21 cells and assayed for its activity. The phyA cDNA consisted of 1404 bp, which encoded 467 amino acid residues. The phytase activity of purified phytase was 826.33 U/mL. The phyA gene under the control of endosperm-specific promoters was transformed into an Indian maize inbred line, UMI29, using particle bombardment-mediated transformation method to generate transgenic maize plants over-expressing phytase in seeds. PCR and GUS analyses demonstrated the presence of transgenes in T0 transgenic plants and their stable inheritance in the T1 progenies. Three transgenic events expressing detectable level of A. niger phytase were characterized by western blot analysis. Phytase activity of 463.158 U/kg of seed was observed in one of the events, JB-UMI29-Z17/2. The phytase activity of transgenic maize seeds was 5.5- to 7-fold higher than the wild-type UMI29 seeds and, consequently, the seeds had 0.6- to 5-fold higher inorganic phosphorus content.
Collapse
|
23
|
Lombardo L, Grando MS. Genetically Modified Plants for Nutritionally Improved Food: A Promise Kept? FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1613664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Luca Lombardo
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Maria Stella Grando
- Center Agriculture Food Environment (C3A), University of Trento, Trento, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
24
|
Ekpa O, Palacios-Rojas N, Kruseman G, Fogliano V, Linnemann AR. Sub-Saharan African Maize-Based Foods - Processing Practices, Challenges and Opportunities. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1588290] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Onu Ekpa
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Natalia Palacios-Rojas
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Gideon Kruseman
- Socio-Economics Program, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Vincenzo Fogliano
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Anita R. Linnemann
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| |
Collapse
|
25
|
Towards Food Security: Current State and Future Prospects of Agrobiotechnology. Trends Biotechnol 2018; 36:1219-1229. [PMID: 30262405 DOI: 10.1016/j.tibtech.2018.07.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/03/2018] [Accepted: 07/12/2018] [Indexed: 11/20/2022]
Abstract
The consistent increase in the global population, estimated to reach 9 billion people by 2050, poses a serious challenge for the achievement of global food security. Therefore, the need to feed an increasing world population and to respond adequately to the effects of climate change must be urgently considered. Progress may be achieved by applying knowledge of molecular and genetic mechanisms to create and/or improve agricultural and industrial processes. We highlight the importance of crops (wheat, maize, rice, rapeseed, and soybean) to the development of sustainable agriculture and agrobiotechnology in the EU and discuss possible solutions for ensuring food security, while also considering their social acceptance.
Collapse
|
26
|
de Santis B, Stockhofe N, Wal JM, Weesendorp E, Lallès JP, van Dijk J, Kok E, De Giacomo M, Einspanier R, Onori R, Brera C, Bikker P, van der Meulen J, Kleter G. Case studies on genetically modified organisms (GMOs): Potential risk scenarios and associated health indicators. Food Chem Toxicol 2018; 117:36-65. [DOI: 10.1016/j.fct.2017.08.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 01/07/2023]
|
27
|
|
28
|
Ekpa O, Palacios-Rojas N, Kruseman G, Fogliano V, Linnemann AR. Sub-Saharan African maize-based foods: Technological perspectives to increase the food and nutrition security impacts of maize breeding programmes. GLOBAL FOOD SECURITY-AGRICULTURE POLICY ECONOMICS AND ENVIRONMENT 2018. [DOI: 10.1016/j.gfs.2018.03.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Yu X, Luo Q, Huang K, Yang G, He G. Prospecting for Microelement Function and Biosafety Assessment of Transgenic Cereal Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:326. [PMID: 29599791 PMCID: PMC5862831 DOI: 10.3389/fpls.2018.00326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/27/2018] [Indexed: 05/26/2023]
Abstract
Microelement contents and metabolism are vitally important for cereal plant growth and development as well as end-use properties. While minerals phytotoxicity harms plants, microelement deficiency also affects human health. Genetic engineering provides a promising way to solve these problems. As plants vary in abilities to uptake, transport, and accumulate minerals, and the key enzymes acting on that process is primarily presented in this review. Subsequently, microelement function and biosafety assessment of transgenic cereal plants have become a key issue to be addressed. Progress in genetic engineering of cereal plants has been made with the introduction of quality, high-yield, and resistant genes since the first transgenic rice, corn, and wheat were born in 1988, 1990, and 1992, respectively. As the biosafety issue of transgenic cereal plants has now risen to be a top concern, many studies on transgenic biosafety have been carried out. Transgenic cereal biosafety issues mainly include two subjects, environmental friendliness and end-use safety. Different levels of gene confirmation, genomics, proteomics, metabolomics and nutritiomics, absorption, metabolism, and function have been investigated. Also, the different levels of microelement contents have been measured in transgenic plants. Based on the motivation of the requested biosafety, systematic designs, and analysis of transgenic cereal are also presented in this review paper.
Collapse
Affiliation(s)
- Xiaofen Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Kaixun Huang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
30
|
Chan-Rodriguez D, Walker EL. Analysis of Yellow Striped Mutants of Zea mays Reveals Novel Loci Contributing to Iron Deficiency Chlorosis. FRONTIERS IN PLANT SCIENCE 2018; 9:157. [PMID: 29515599 PMCID: PMC5826256 DOI: 10.3389/fpls.2018.00157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/29/2018] [Indexed: 05/05/2023]
Abstract
The micronutrient iron (Fe) is essential for photosynthesis, respiration, and many other processes, but it is only sparingly soluble in aqueous solution, making adequate acquisition by plants a serious challenge. Fe is a limiting factor for plant growth on approximately 30% of the world's arable lands. Moreover, Fe deficiency in humans is a global health issue, affecting 1.62 billion people, or about 25% of the world's population. It is imperative that we gain a better understanding of the mechanisms that plants use to regulate iron homeostasis, since these will be important targets for future biofortification and crop improvement strategies. Grasses and non-grasses have evolved independent mechanisms for primary iron uptake from the soil. The grasses, which include most of the world's staple grains, have evolved a distinct 'chelation' mechanism to acquire iron from the soil. Strong iron chelators called phytosiderophores (PSs) are synthesized by grasses and secreted into the rhizosphere where they bind and solubilize Fe(III). The Fe(III)-PS complex is then taken up into root cells via transporters specific for the Fe(III)-PS complex. In this study, 31 novel, uncharacterized striped maize mutants available through the Maize Genetics Cooperation Stock Center (MGCSC) were analyzed to determine whether their mutant phenotypes are caused by decreased iron. Many of these proved to be either pale yellow or white striped mutants. Complementation tests were performed by crossing the MGCSC mutants to ys1 and ys3 reference mutants. This allowed assignment of 10 ys1 alleles and 4 ys3 alleles among the novel mutants. In addition, four ys∗ mutant lines were identified that are not allelic to either ys1 or ys3. Three of these were characterized as being non-allelic to each other and as having low iron in leaves. These represent new genes involved in iron acquisition by maize, and future cloning of these genes may reveal novel aspects of the grass iron acquisition mechanism.
Collapse
Affiliation(s)
- David Chan-Rodriguez
- Plant Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Elsbeth L. Walker
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
31
|
Garg M, Sharma N, Sharma S, Kapoor P, Kumar A, Chunduri V, Arora P. Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Front Nutr 2018; 5:12. [PMID: 29492405 PMCID: PMC5817065 DOI: 10.3389/fnut.2018.00012] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/29/2018] [Indexed: 11/21/2022] Open
Abstract
Biofortification is an upcoming, promising, cost-effective, and sustainable technique of delivering micronutrients to a population that has limited access to diverse diets and other micronutrient interventions. Unfortunately, major food crops are poor sources of micronutrients required for normal human growth. The manuscript deals in all aspects of crop biofortification which includes-breeding, agronomy, and genetic modification. It tries to summarize all the biofortification research that has been conducted on different crops. Success stories of biofortification include lysine and tryptophan rich quality protein maize (World food prize 2000), Vitamin A rich orange sweet potato (World food prize 2016); generated by crop breeding, oleic acid, and stearidonic acid soybean enrichment; through genetic transformation and selenium, iodine, and zinc supplementation. The biofortified food crops, especially cereals, legumes, vegetables, and fruits, are providing sufficient levels of micronutrients to targeted populations. Although a greater emphasis is being laid on transgenic research, the success rate and acceptability of breeding is much higher. Besides the challenges biofortified crops hold a bright future to address the malnutrition challenge.
Collapse
Affiliation(s)
- Monika Garg
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Natasha Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Saloni Sharma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Payal Kapoor
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Aman Kumar
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | | - Priya Arora
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
32
|
Abstract
Promoters regulate gene expression, and are essential biotechnology tools. Since its introduction in the mid-1990s, biotechnology has greatly enhanced maize productivity primarily through the development of insect control and herbicide tolerance traits. Additional biotechnology applications include improving seed nutrient composition, industrial protein production, therapeutic production, disease resistance, abiotic stress resistance, and yield enhancement. Biotechnology has also greatly expanded basic research into important mechanisms that govern plant growth and reproduction. Many novel promoters have been developed to facilitate this work, but only a few are widely used. Transgene optimization includes a variety of strategies some of which effect promoter structure. Recent reviews examine the state of the art with respect to transgene design for biotechnology applications. This chapter examines the use of transgene technology in maize, focusing on the way promoters are selected and used. The impact of new developments in genomic technology on promoter structure is also discussed.
Collapse
|
33
|
Yadav K, Patel P, Srivastava AK, Ganapathi TR. Overexpression of native ferritin gene MusaFer1 enhances iron content and oxidative stress tolerance in transgenic banana plants. PLoS One 2017; 12:e0188933. [PMID: 29190821 PMCID: PMC5708808 DOI: 10.1371/journal.pone.0188933] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 11/15/2017] [Indexed: 11/30/2022] Open
Abstract
Iron is an indispensable element for plant growth and defense and hence it is essential to improve the plant's ability to accumulate iron. Besides, it is also an important aspect for human health. In view of this, we attempted to increase the iron content in banana cultivar Rasthali using MusaFer1 as a candidate gene. Initially, the expression of all five genes of the MusaFer family (MusaFer1-5) was quantified under iron-excess and -deficient conditions. The supplementation of 250 and 350 μM iron enhanced expression of all MusaFer genes; however, MusaFer1 was increased maximally by 2- and 4- fold in leaves and roots respectively. Under iron deficient condition, all five MusaFer genes were downregulated, indicating their iron dependent regulation. In MusaFer1 overexpressing lines, iron content was increased by 2- and 3-fold in leaves and roots respectively, as compared with that of untransformed lines. The increased iron was mainly localized in the epidermal regions of petiole. The analysis of MusaFer1 promoter indicated that it might control the expression of iron metabolism related genes and also other genes of MusaFer family. MusaFer1 overexpression led to downregulated expression of MusaFer3, MusaFer4 and MusaFer5 in transgenic leaves which might be associated with the plant's compensatory mechanism in response to iron flux. Other iron metabolism genes like Ferric reductase (FRO), transporters (IRT, VIT and YSL) and chelators (NAS, DMAS and NAAT) were also differentially expressed in transgenic leaf and root, suggesting the multifaceted impact of MusaFer1 towards iron uptake and organ distribution. Additionally, MusaFer1 overexpression increased plant tolerance against methyl viologen and excess iron which was quantified in terms of photosynthetic efficiency and malondialdehyde content. Thus, the study not only broadens our understanding about iron metabolism but also highlights MusaFer1 as a suitable candidate gene for iron fortification in banana.
Collapse
Affiliation(s)
- Karuna Yadav
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Prashanti Patel
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - Ashish Kumar Srivastava
- Plant Stress Physiology and Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
34
|
Guleria P, Kumar V, Guleria S. Genetic Engineering: A Possible Strategy for Protein-Energy Malnutrition Regulation. Mol Biotechnol 2017; 59:499-517. [PMID: 28828714 DOI: 10.1007/s12033-017-0033-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Protein-energy malnutrition (PEM) has adversely affected the generations of developing countries. It is a syndrome that in severity causes death. PEM generally affects infants of 1-5 age group. This manifestation is maintained till adulthood in the form of poor brain and body development. The developing nations are continuously making an effort to curb PEM. However, it is still a prime concern as it was in its early years of occurrence. Transgenic crops with high protein and enhanced nutrient content have been successfully developed. Present article reviews the studies documenting genetic engineering-mediated improvement in the pulses, cereals, legumes, fruits and other crop plants in terms of nutritional value, stress tolerance, longevity and productivity. Such genetically engineered crops can be used as a possible remedial tool to eradicate PEM.
Collapse
Affiliation(s)
- Praveen Guleria
- Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.
| | - Vineet Kumar
- Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India.,Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Shiwani Guleria
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| |
Collapse
|
35
|
Reddy CS, Kim SC, Kaul T. Genetically modified phytase crops role in sustainable plant and animal nutrition and ecological development: a review. 3 Biotech 2017; 7:195. [PMID: 28667635 PMCID: PMC5493567 DOI: 10.1007/s13205-017-0797-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/06/2017] [Indexed: 10/19/2022] Open
Abstract
Globally, plant-derivatives especially cereals and legumes are the major staple food sources for animals. The seeds of these crops comprise of phytic acid, the major repository form of the phosphorus, which is not digestible by simple-stomached animals. However, it is the most important factor responsible for impeding the absorption of minerals by plants that eventually results in less use of fertilizers that ultimately cause eutrophication in water bodies. Although abundant phosphorus (P) exists in the soils, plants cannot absorb most of the P due to its conversion to unavailable forms. Hence, additional P supplementation is indispensable to the soil to promote crop yields which not only leads to soil infertility but also rapid depletion of non-renewable P reservoirs. Phytase/phosphatase enzyme is essential to liberate P from soils by plants and from seeds by monogastric animals. Phytases are kind of phosphatases which can hydrolyse the indigestible phytate into inorganic Phosphate (Pi) and lower myo-inositol. There are several approaches to mitigate the problems associated with phytate indigestibility. One of the best possible solutions is engineering crops to produce heterologous phytase to improve P utilization by monogastric animals, plant nutrition and sustainable ecological developments. Previously published reviews were focused on either soil phytate or seed-phytate, related issues, but this review will address both the problems as well as phytate related ecological problems. This review summarizes the overall view of engineered phytase crops and their role in sustainable agriculture, animal nutrition and ecological development.
Collapse
Affiliation(s)
- Chinreddy Subramanyam Reddy
- Medicinal Crops Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Korea.
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | - Seong-Cheol Kim
- Medicinal Crops Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong, 27709, Korea
| | - Tanushri Kaul
- Nutritional Improvement of Crops, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
36
|
Tan GZH, Das Bhowmik SS, Hoang TML, Karbaschi MR, Johnson AAT, Williams B, Mundree SG. Finger on the Pulse: Pumping Iron into Chickpea. FRONTIERS IN PLANT SCIENCE 2017; 8:1755. [PMID: 29081785 PMCID: PMC5646179 DOI: 10.3389/fpls.2017.01755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 09/25/2017] [Indexed: 05/21/2023]
Abstract
Iron deficiency is a major problem in both developing and developed countries, and much of this can be attributed to insufficient dietary intake. Over the past decades several measures, such as supplementation and food fortification, have helped to alleviate this problem. However, their associated costs limit their accessibility and effectiveness, particularly amongst the financially constrained. A more affordable and sustainable option that can be implemented alongside existing measures is biofortification. To date, much work has been invested into staples like cereals and root crops-this has culminated in the successful generation of high iron-accumulating lines in rice and pearl millet. More recently, pulses have gained attention as targets for biofortification. Being secondary staples rich in protein, they are a nutritional complement to the traditional starchy staples. Despite the relative youth of this interest, considerable advances have already been made concerning the biofortification of pulses. Several studies have been conducted in bean, chickpea, lentil, and pea to assess existing germplasm for high iron-accumulating traits. However, little is known about the molecular workings behind these traits, particularly in a leguminous context, and biofortification via genetic modification (GM) remains to be attempted. This review examines the current state of the iron biofortification in pulses, particularly chickpea. The challenges concerning biofortification in pulses are also discussed. Specifically, the potential application of transgenic technology is explored, with focus on the genes that have been successfully used in biofortification efforts in rice.
Collapse
Affiliation(s)
- Grace Z. H. Tan
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sudipta S. Das Bhowmik
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thi M. L. Hoang
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mohammad R. Karbaschi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | | | - Brett Williams
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Sagadevan G. Mundree
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Sagadevan G. Mundree
| |
Collapse
|
37
|
Vasconcelos MW, Gruissem W, Bhullar NK. Iron biofortification in the 21st century: setting realistic targets, overcoming obstacles, and new strategies for healthy nutrition. Curr Opin Biotechnol 2016; 44:8-15. [PMID: 27780080 DOI: 10.1016/j.copbio.2016.10.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/16/2022]
Abstract
Plant-based foods offer a wide range of nutrients that are essential for human and animal health. Among these nutrients, iron stands out as one of the most important micronutrients. Increasing the iron content in many staple and non-staple plant foods continues to be a goal of many scientists around the world. However, the success of such initiatives has sometimes fallen short of their expected targets. In this review we highlight the most recent and promising results that have contributed to increasing the iron content in different crops. We also discuss methods that to date have been used to reach iron biofortification goals and new strategies that we believe are most promising for crop biofortification in the future. Plant anatomical, physiological and metabolic hurdles still need to be tackled for making progress on further increasing currently reached levels of micronutrient improvements. New strategies need to take into account growing environmental challenges that may constrain biofortification efforts.
Collapse
Affiliation(s)
- Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal.
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Navreet K Bhullar
- Department of Biology, Plant Biotechnology, ETH Zurich, CH-8092 Zurich, Switzerland.
| |
Collapse
|
38
|
Abid N, Khatoon A, Maqbool A, Irfan M, Bashir A, Asif I, Shahid M, Saeed A, Brinch-Pedersen H, Malik KA. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains. Transgenic Res 2016; 26:109-122. [PMID: 27687031 DOI: 10.1007/s11248-016-9983-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/22/2016] [Indexed: 11/26/2022]
Abstract
Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.
Collapse
Affiliation(s)
- Nabeela Abid
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Asia Khatoon
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box No. 577, Faisalabad, Pakistan
| | - Asma Maqbool
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Muhammad Irfan
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Aftab Bashir
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box No. 577, Faisalabad, Pakistan
| | - Irsa Asif
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Muhammad Shahid
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan
| | - Asma Saeed
- Food and Biotechnology Research Centre, PCSIR Laboratories Complex, Ferozepur Road, Lahore, 54600, Pakistan
| | - Henrik Brinch-Pedersen
- Department of Plant Biology, Danish Institute of Agricultural Sciences, Research Centre Flakkebjerg, 4200, Slagelse, Denmark
| | - Kauser A Malik
- Department of Biological Sciences, Armacost Science Building, Forman Christian College (A Chartered University), Lahore, 54600, Pakistan.
| |
Collapse
|
39
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Genetically modified (GM) crops: milestones and new advances in crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1639-55. [PMID: 27381849 DOI: 10.1007/s00122-016-2747-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/25/2016] [Indexed: 05/22/2023]
Abstract
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
40
|
Ramzani PMA, Khalid M, Naveed M, Ahmad R, Shahid M. Iron biofortification of wheat grains through integrated use of organic and chemical fertilizers in pH affected calcareous soil. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:284-93. [PMID: 27179316 DOI: 10.1016/j.plaphy.2016.04.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/29/2016] [Accepted: 04/29/2016] [Indexed: 05/16/2023]
Abstract
Incidence of iron (Fe) deficiency in human populations is an emerging global challenge. This study was conducted to evaluate the potential of iron sulphate combined with biochar and poultry manure for Fe biofortification of wheat grains in pH affected calcareous soil. In first two incubation studies, rates of sulfur (S) and Fe combined with various organic amendments for lowering pH and Fe availability in calcareous soil were optimized. In pot experiment, best rate of Fe along with biochar (BC) and poultry manure (PM) was evaluated for Fe biofortification of wheat in normal and S treated low pH calcareous soil. Fe applied with BC provided fair increase in root-shoot biomass and photosynthesis up to 79, 53 and 67%, respectively in S treated low pH soil than control. Grain Fe and ferritin concentration was increased up to 1.4 and 1.2 fold, respectively while phytate and polyphenol was decreased 35 and 44%, respectively than control in treatment where Fe was applied with BC and S. In conclusion, combined use of Fe and BC could be an effective approach to improve growth and grain Fe biofortification of wheat in pH affected calcareous soil.
Collapse
Affiliation(s)
| | - Muhammad Khalid
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan.
| | - Rashid Ahmad
- Department of Agronomy, University of Agriculture Faisalabad, 38040, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad, 38040, Pakistan
| |
Collapse
|
41
|
de Llanos R, Martínez-Garay CA, Fita-Torró J, Romero AM, Martínez-Pastor MT, Puig S. Soybean Ferritin Expression in Saccharomyces cerevisiae Modulates Iron Accumulation and Resistance to Elevated Iron Concentrations. Appl Environ Microbiol 2016; 82:3052-3060. [PMID: 26969708 PMCID: PMC4959083 DOI: 10.1128/aem.00305-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Fungi, including the yeast Saccharomyces cerevisiae, lack ferritin and use vacuoles as iron storage organelles. This work explored how plant ferritin expression influenced baker's yeast iron metabolism. Soybean seed ferritin H1 (SFerH1) and SFerH2 genes were cloned and expressed in yeast cells. Both soybean ferritins assembled as multimeric complexes, which bound yeast intracellular iron in vivo and, consequently, induced the activation of the genes expressed during iron scarcity. Soybean ferritin protected yeast cells that lacked the Ccc1 vacuolar iron detoxification transporter from toxic iron levels by reducing cellular oxidation, thus allowing growth at high iron concentrations. Interestingly, when simultaneously expressed in ccc1Δ cells, SFerH1 and SFerH2 assembled as heteropolymers, which further increased iron resistance and reduced the oxidative stress produced by excess iron compared to ferritin homopolymer complexes. Finally, soybean ferritin expression led to increased iron accumulation in both wild-type and ccc1Δ yeast cells at certain environmental iron concentrations. IMPORTANCE Iron deficiency is a worldwide nutritional disorder to which women and children are especially vulnerable. A common strategy to combat iron deficiency consists of dietary supplementation with inorganic iron salts, whose bioavailability is very low. Iron-enriched yeasts and cereals are alternative strategies to diminish iron deficiency. Animals and plants possess large ferritin complexes that accumulate, detoxify, or buffer excess cellular iron. However, the yeast Saccharomyces cerevisiae lacks ferritin and uses vacuoles as iron storage organelles. Here, we explored how soybean ferritin expression influenced yeast iron metabolism, confirming that yeasts that express soybean seed ferritin could be explored as a novel strategy to increase dietary iron absorption.
Collapse
Affiliation(s)
- Rosa de Llanos
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Carlos Andrés Martínez-Garay
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Josep Fita-Torró
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | - Antonia María Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| | | | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Paterna, Valencia, Spain
| |
Collapse
|
42
|
Messias RDS, Galli V, Silva SDDAE, Schirmer MA, Rombaldi CV. Micronutrient and functional compounds biofortification of maize grains. Crit Rev Food Sci Nutr 2015; 55:123-39. [PMID: 24915397 DOI: 10.1080/10408398.2011.649314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maize, in addition to being the main staple food in many countries, is used in the production of hundreds of products. It is rich in compounds with potential benefits to health, such as carotenoids, phenolic compounds, vitamin E, and minerals that act as cofactors for antioxidant enzymes. Many of these compounds have been neglected thus far in the scientific literature. Nevertheless, deficiencies in the precursors of vitamin A and some minerals, such as iron and zinc, in maize, in association with the great genetic variability in its cultivars and our genomic, transcriptomic, and metabolomic knowledge of this species make targeted biofortification strategies for maize promising. This review discusses the potential of the main microconstituents found in maize with a focus on studies aimed at biofortification.
Collapse
Affiliation(s)
- Rafael da Silva Messias
- a EMBRAPA Clima Temperado, Rodovia BR 396 , Km 78 Caixa Postal 403, CEP 96001-970, Pelotas , RS , Brazil
| | | | | | | | | |
Collapse
|
43
|
Narayanan N, Beyene G, Chauhan RD, Gaitán-Solis E, Grusak MA, Taylor N, Anderson P. Overexpression of Arabidopsis VIT1 increases accumulation of iron in cassava roots and stems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:170-81. [PMID: 26475197 DOI: 10.1016/j.plantsci.2015.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 05/21/2023]
Abstract
Iron is extremely abundant in the soil, but its uptake in plants is limited due to low solubility in neutral or alkaline soils. Plants can rely on rhizosphere acidification to increase iron solubility. AtVIT1 was previously found to be involved in mediating vacuolar sequestration of iron, which indicates a potential application for iron biofortification in crop plants. Here, we have overexpressed AtVIT1 in the starchy root crop cassava using a patatin promoter. Under greenhouse conditions, iron levels in mature cassava storage roots showed 3-4 times higher values when compared with wild-type plants. Significantly, the expression of AtVIT1 showed a positive correlation with the increase in iron concentration of storage roots. Conversely, young leaves of AtVIT1 transgenic plants exhibit characteristics of iron deficiency such as interveinal chlorosis of leaves (yellowing) and lower iron concentration when compared with the wild type plants. Interestingly, the AtVIT1 transgenic plants showed 4 and 16 times higher values of iron concentration in the young stem and stem base tissues, respectively. AtVIT1 transgenic plants also showed 2-4 times higher values of iron content when compared with wild-type plants, with altered partitioning of iron between source and sink tissues. These results demonstrate vacuolar iron sequestration as a viable transgenic strategy to biofortify crops and to help eliminate micronutrient malnutrition in at-risk human populations.
Collapse
Affiliation(s)
- Narayanan Narayanan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA.
| | - Getu Beyene
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Raj Deepika Chauhan
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Eliana Gaitán-Solis
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Nigel Taylor
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| | - Paul Anderson
- Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, MO 63132, USA
| |
Collapse
|
44
|
Masuda T. Soybean Ferritin Forms an Iron-Containing Oligomer in Tofu Even after Heat Treatment. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:8890-5. [PMID: 26390371 DOI: 10.1021/acs.jafc.5b03080] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ferritin, a multimeric iron storage protein distributed in almost all living kingdoms, has been highlighted recently as a nutritional iron source in plant-derived foodstuffs, because ferritin iron is suggested to have high bioavailability. In soybean seeds, ferritin contributes largely to the net iron contents. Here, the oligomeric states and iron contents of soybean ferritin during food processing (especially tofu gel formation) were analyzed. Ferritin was purified from tofu gel as an iron-containing oligomer (approximately 1000 Fe atoms per oligomer), which was composed of two types of subunits similar to the native soybean seed ferritin. Circular dichroism spectra also showed no differences in α-helical structure between native soybean ferritin and tofu ferritin. The present data demonstrate that ferritin was stable during the heat treatment (boiling procedure) in food processing, although partial denaturation was observed at temperatures higher than 80 °C.
Collapse
Affiliation(s)
- Taro Masuda
- Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
45
|
Schubert M, Houdelet M, Kogel KH, Fischer R, Schillberg S, Nölke G. Thanatin confers partial resistance against aflatoxigenic fungi in maize (Zea mays). Transgenic Res 2015; 24:885-95. [PMID: 26071308 DOI: 10.1007/s11248-015-9888-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 06/06/2015] [Indexed: 11/28/2022]
Abstract
Aflatoxin-producing fungi can contaminate plants and plant-derived products with carcinogenic secondary metabolites that present a risk to human and animal health. In this study, we investigated the effect of antimicrobial peptides on the major aflatoxigenic fungi Aspergillus flavus and A. parasiticus. In vitro assays with different chemically-synthesized peptides demonstrated that the broad-spectrum peptide thanatin from the spined soldier bug (Podisus maculiventris) had the greatest potential to eliminate aflatoxigenic fungi. The minimal inhibitory concentrations of thanatin against A. flavus and A. parasiticus were 3.13 and 12.5 µM, respectively. A thanatin cDNA was subsequently cloned in a plant expression vector under the control of the ubiquitin-1 promoter allowing the recombinant peptide to be directed to the apoplast in transgenic maize plants. Successful integration of the thanatin expression cassette was confirmed by PCR and expression was demonstrated by semi-quantitative RT-PCR in transgenic maize kernels. Infection assays with maize kernels from T1 transgenic plants showed up to three-fold greater resistance against Aspergillus spp. infections compared to non-transgenic kernels. We demonstrated for the first time that heterologous expression of the antimicrobial peptide thanatin inhibits the growth of Aspergillus spp. in transgenic maize plants offering a solution to protect crops from aflatoxin-producing fungi and the resulting aflatoxin contamination in the field and under storage conditions.
Collapse
Affiliation(s)
- Max Schubert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany
| | - Marcel Houdelet
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany
| | - Karl-Heinz Kogel
- Institute of Phytopathology and Applied Zoology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.,Institute for Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.,Institute of Phytopathology and Applied Zoology, Justus-Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074, Aachen, Germany.
| |
Collapse
|
46
|
Zielińska-Dawidziak M. Plant ferritin--a source of iron to prevent its deficiency. Nutrients 2015; 7:1184-201. [PMID: 25685985 PMCID: PMC4344583 DOI: 10.3390/nu7021184] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/03/2015] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency anemia affects a significant part of the human population. Due to the unique properties of plant ferritin, food enrichment with ferritin iron seems to be a promising strategy to prevent this malnutrition problem. This protein captures huge amounts of iron ions inside the apoferritin shell and isolates them from the environment. Thus, this iron form does not induce oxidative change in food and reduces the risk of gastric problems in consumers. Bioavailability of ferritin in human and animal studies is high and the mechanism of absorption via endocytosis has been confirmed in cultured cells. Legume seeds are a traditional source of plant ferritin. However, even if the percentage of ferritin iron in these seeds is high, its concentration is not sufficient for food fortification. Thus, edible plants have been biofortified in iron for many years. Plants overexpressing ferritin may find applications in the development of bioactive food. A crucial achievement would be to develop technologies warranting stability of ferritin in food and the digestive tract.
Collapse
Affiliation(s)
- Magdalena Zielińska-Dawidziak
- Department of Food Biochemistry and Analysis, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, 60-623 Poznań, Poland.
| |
Collapse
|
47
|
Zhang S, Liao SA, Yu X, Lu H, Xian JA, Guo H, Wang A, Xie J. Microbial diversity of mangrove sediment in Shenzhen Bay and gene cloning, characterization of an isolated phytase-producing strain of SPC09 B. cereus. Appl Microbiol Biotechnol 2015; 99:5339-50. [DOI: 10.1007/s00253-015-6405-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 10/24/2022]
|
48
|
Briat JF, Dubos C, Gaymard F. Iron nutrition, biomass production, and plant product quality. TRENDS IN PLANT SCIENCE 2015; 20:33-40. [PMID: 25153038 DOI: 10.1016/j.tplants.2014.07.005] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/21/2014] [Accepted: 07/24/2014] [Indexed: 05/19/2023]
Abstract
One of the grand challenges in modern agriculture is increasing biomass production, while improving plant product quality, in a sustainable way. Of the minerals, iron (Fe) plays a major role in this process because it is essential both for plant productivity and for the quality of their products. Fe homeostasis is an important determinant of photosynthetic efficiency in algae and higher plants, and we review here the impact of Fe limitation or excess on the structure and function of the photosynthetic apparatus. We also discuss the agronomic, plant breeding, and transgenic approaches that are used to remediate Fe deficiency of plants on calcareous soils, and suggest ways to increase the Fe content and bioavailability of the edible parts of crops to improve human diet.
Collapse
Affiliation(s)
- Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro Bâtiment 7, 2 place Viala, 34060 Montpellier Cedex 1, France.
| | - Christian Dubos
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro Bâtiment 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro Bâtiment 7, 2 place Viala, 34060 Montpellier Cedex 1, France
| |
Collapse
|
49
|
Latunde-Dada GO, Li X, Parodi A, Edwards CH, Ellis PR, Sharp PA. Micromilling enhances iron bioaccessibility from wholegrain wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11222-11227. [PMID: 25380143 DOI: 10.1021/jf503474f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cereals constitute important sources of iron in human diet; however, much of the iron in wheat is lost during processing for the production of white flour. This study employed novel food processing techniques to increase the bioaccessibility of naturally occurring iron in wheat. Iron was localized in wheat by Perl's Prussian blue staining. Soluble iron from digested wheat flour was measured by a ferrozine spectrophotometric assay. Iron bioaccessibility was determined using an in vitro simulated peptic-pancreatic digestion, followed by measurement of ferritin (a surrogate marker for iron absorption) in Caco-2 cells. Light microscopy revealed that iron in wheat was encapsulated in cells of the aleurone layer and remained intact after in vivo digestion and passage through the gastrointestinal tract. The solubility of iron in wholegrain wheat and in purified wheat aleurone increased significantly after enzymatic digestion with Driselase, and following mechanical disruption using micromilling. Furthermore, following in vitro simulated peptic-pancreatic digestion, iron bioaccessibility, measured as ferritin formation in Caco-2 cells, from micromilled aleurone flour was significantly higher (52%) than from whole aleurone flour. Taken together our data show that disruption of aleurone cell walls could increase iron bioaccessibility. Micromilled aleurone could provide an alternative strategy for iron fortification of cereal products.
Collapse
Affiliation(s)
- G O Latunde-Dada
- Diabetes and Nutritional Sciences Division and ‡Biopolymers Group, Faculty of Life Sciences and Medicine, King's College London , Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom
| | | | | | | | | | | |
Collapse
|
50
|
Masuda T, Yamamoto A, Toyohara H. The iron content and ferritin contribution in fresh, dried, and toasted nori, Pyropia yezoensis. Biosci Biotechnol Biochem 2014; 79:74-81. [PMID: 25315337 DOI: 10.1080/09168451.2014.968087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Iron is one of the essential trace elements for humans. In this study, the iron contents in fresh, dried, and toasted nori (Pyropia yezoensis) were analyzed. The mean iron content of fresh, dried, and toasted nori were 19.0, 22.6, and 26.2 mg/100 g (dry weight), respectively. These values were superior to other food of plant origin. Furthermore, most of the iron in nori was maintained during processing, such as washing, drying, and toasting. Then, the form of iron in fresh, dried, and toasted nori was analyzed. As a result, an iron storage protein ferritin contributed to iron storage in raw and dried nori, although the precise rate of its contribution is yet to be determined, while ferritin protein cage was degraded in the toasted nori. It is the first report that verified the ferritin contribution to iron storage in such edible macroalgae with commercial importance.
Collapse
Affiliation(s)
- Taro Masuda
- a Laboratory of Food Quality Design and Development, Division of Agronomy and Horticultural Science, Graduate School of Agriculture , Kyoto University , Kyoto , Japan
| | | | | |
Collapse
|