1
|
Sun L, Li D, Ma C, Jiao B, Wang J, Zhao P, Dong F, Zhou S. Transcriptomic Analysis of Wheat Under Multi LED Light Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 14:46. [PMID: 39795306 PMCID: PMC11723344 DOI: 10.3390/plants14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
Light is a vital environmental cue that profoundly influences the development of plants. LED lighting offers significant advantages in controlled growth environments over fluorescent lighting. Under monochromatic blue LED light, wheat plants exhibited reduced stature, accelerated spike development, and a shortened flowering period with increased blue light intensity promoting an earlier heading date. In this study, we conducted a comprehensive transcriptome analysis to investigate the molecular mechanisms underlying wheat plants' response to varying light conditions. We identified 34 types of transcription factors (TFs) and highlighted the dynamic changes of key families such as WRKY, AP2/ERF, MYB, bHLH, and NAC, which play crucial roles in light-induced gene regulation. Additionally, this study revealed differential effects of blue and red light on the expression levels of genes related to hormones such as cytokinin (CK) and salicylic acid (SA) synthesis as well as significant changes in pathways such as flavonoid biosynthesis, circadian rhythms, chlorophyll synthesis, and flowering. Particularly, blue light upregulated genes involved in chlorophyll synthesis, contrasting with the downregulation observed under red light. Furthermore, blue light enhanced the expression of anthocyanin synthesis-related genes, such as CHS, underscoring its role in promoting anthocyanin accumulation. These findings provide valuable insights into how light quality impacts crop growth and development.
Collapse
Affiliation(s)
- Lei Sun
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Ding Li
- Dry-Land Farming Institute, Hebei Academy of Agricultural and Forestry Sciences, Hengshui 053000, China
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jiao Wang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Fushuang Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| |
Collapse
|
2
|
Paglialunga G, Moscatello S, Battistelli A, Mattioni M, Del Bianco M, Proietti S. Continuous Blue Light Treatment Enhances the Nutritional Value of Hydroponically Grown Eruca vesicaria L. by Improving Ascorbic Acid Biosynthesis. Foods 2024; 13:2141. [PMID: 38998646 PMCID: PMC11241139 DOI: 10.3390/foods13132141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
This study investigates the effect of continuous blue light (CBL) treatment on quality-related metabolites, focusing on ascorbic acid (AsA) accumulation in hydroponically grown Eruca vesicaria (L.). Plants were subjected to CBL treatment, consisting of 24-h exposure to constant-intensity blue light (48 μmol m-2 s-1) and 12-h exposure to the remaining spectrum (192 μmol m-2 s-1). The activities of key enzymes in AsA biosynthesis and recycling were analyzed, including L-galactono-1,4-lactone dehydrogenase (GalLDh), monodehydroascorbate reductase (MDhAR), dehydroascorbate reductase (DhAR), and ascorbate peroxidase (APX). The results showed a significant increase in AsA accumulation of 65.9% during the "day" and 69.1% during the "night" phases under CBL compared to controls. GalLDh activity increased by 20% during the "day phase" in CBL-treated plants. APX activity also rose significantly under CBL conditions, by 101% during the "day" and 75.6% during the "night". However, this did not affect dehydroascorbic acid levels or the activities of MDhAR and DhAR. These findings highlight the potential of tailored light treatments to enhance the nutraceutical content of horticultural species, offering valuable insights for sustainably improving food quality in controlled-environment agriculture (CEA) systems and understanding the roles of blue light in ascorbic acid biosynthesis.
Collapse
Affiliation(s)
- Gabriele Paglialunga
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | - Stefano Moscatello
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | - Alberto Battistelli
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | - Michele Mattioni
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| | | | - Simona Proietti
- Research Institute on Terrestrial Ecosystems, National Research Council, 05010 Porano, Italy
| |
Collapse
|
3
|
Biswal AK, Pattanayak GK, Ruhil K, Kandoi D, Mohanty SS, Leelavati S, Reddy VS, Govindjee G, Tripathy BC. Reduced expression of chlorophyllide a oxygenase (CAO) decreases the metabolic flux for chlorophyll synthesis and downregulates photosynthesis in tobacco plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1-16. [PMID: 38435853 PMCID: PMC10901765 DOI: 10.1007/s12298-023-01395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 03/05/2024]
Abstract
Chlorophyll b is synthesized from chlorophyllide a, catalyzed by chlorophyllide a oxygenase (CAO). To examine whether reduced chlorophyll b content regulates chlorophyll (Chl) synthesis and photosynthesis, we raised CAO transgenic tobacco plants with antisense CAO expression, which had lower chlorophyll b content and, thus, higher Chl a/b ratio. Further, these plants had (i) lower chlorophyll b and total Chl content, whether they were grown under low or high light; (ii) decreased steady-state levels of chlorophyll biosynthetic intermediates, due, perhaps, to a feedback-controlled reduction in enzyme expressions/activities; (iii) reduced electron transport rates in their intact leaves, and reduced Photosystem (PS) I, PS II and whole chain electron transport activities in their isolated thylakoids; (iv) decreased carbon assimilation in plants grown under low or high light. We suggest that reduced synthesis of chlorophyll b by antisense expression of CAO, acting at the end of Chl biosynthesis pathway, downregulates the chlorophyll b biosynthesis, resulting in decreased Chl b, total chlorophylls and increased Chl a/b. We have previously shown that the controlled up-regulation of chlorophyll b biosynthesis and decreased Chl a/b ratio by over expression of CAO enhance the rates of electron transport and CO2 assimilation in tobacco. Conversely, our data, presented here, demonstrate that-antisense expression of CAO in tobacco, which decreases Chl b biosynthesis and increases Chl a/b ratio, leads to reduced photosynthetic electron transport and carbon assimilation rates, both under low and high light. We conclude that Chl b modulates photosynthesis; its controlled down regulation/ up regulation decreases/ increases light-harvesting, rates of electron transport, and carbon assimilation. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01395-5.
Collapse
Affiliation(s)
- Ajaya K. Biswal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Gopal K. Pattanayak
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Kamal Ruhil
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Life Sciences, Sharda University, Greater Noida, UP, India
| | - Sushree S. Mohanty
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sadhu Leelavati
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Vanga S. Reddy
- International Center for Genetic Engineering and Biotechnology, New Delhi, 110067 India
| | - Govindjee Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- Department of Biotechnology, Sharda University, Greater Noida, UP 201310 India
| |
Collapse
|
4
|
Veremeichik GN, Grigorchuk VP, Makhazen DS, Subbotin EP, Kholin AS, Subbotina NI, Bulgakov DV, Kulchin YN, Bulgakov VP. High production of flavonols and anthocyanins in Eruca sativa (Mill) Thell plants at high artificial LED light intensities. Food Chem 2023; 408:135216. [PMID: 36566545 DOI: 10.1016/j.foodchem.2022.135216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Eruca sativa (arugula) is a food crop containing valuable bioactive flavonoids. Plants growing with monochrome light-emitting diodes (LED) and "binary" light sources, including red/blue (RB), were tested using HPLC-DAD-ESI-MS/MS. Most artificial lighting options with a high intensity of 1000 μmol m-2s-1 (except for warm white light) resulted in an almost 20-fold increase in flavonol productivity. Monochromatic sources had no advantage over white light in terms of increasing anthocyanin productivity. However, RB light increased the anthocyanin content and productivity of E. sativa plants by more than ten times compared to white light. Plant growth on monochromatic and binary sources at high intensities was comparable to that on white light. Measurement of the content of chlorophyll and its degradation product, phyllobilins, showed that plants are not under stressful conditions. Overall, our data show that a significant increase in flavonoid content can be achieved without a loss of arugula plant biomass.
Collapse
Affiliation(s)
- G N Veremeichik
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia.
| | - V P Grigorchuk
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - D S Makhazen
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - E P Subbotin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - A S Kholin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - N I Subbotina
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - D V Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| | - Y N Kulchin
- Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences (IACP FEB RAS), 5 Radio str., Vladivostok 690041, Russia
| | - V P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity of the Far East Branch of the Russian Academy of Sciences, Vladivostok 690022, Russia
| |
Collapse
|
5
|
Moosavi-Nezhad M, Alibeigi B, Estaji A, Gruda NS, Aliniaeifard S. Growth, Biomass Partitioning, and Photosynthetic Performance of Chrysanthemum Cuttings in Response to Different Light Spectra. PLANTS (BASEL, SWITZERLAND) 2022; 11:3337. [PMID: 36501376 PMCID: PMC9735900 DOI: 10.3390/plants11233337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium) is among the most popular ornamental plants, propagated mainly through stem cuttings. There is a lack of information regarding the impact of the lighting environment on the successful production of cuttings and underlying mechanisms. The light spectrum affects plant morphology, growth, and photosynthesis. In the present study, chrysanthemum, cv. 'Katinka' cuttings, were exposed to five lighting spectra, including monochromatic red (R), blue (B) lights, and multichromatic lights, including a combination of R and B (R:B), a combination of R, B, and far red (R:B:FR) and white (W), for 30 days. B light enhanced areal growth, as indicated by a higher shoot mass ratio, while R light directed the biomass towards the underground parts of the cuttings. Monochromatic R and B lights promoted the emergence of new leaves. In contrast, individual leaf area was largest under multichromatic lights. Exposing the cuttings to R light led to the accumulation of carbohydrates in the leaves. Cuttings exposed to multichromatic lights showed higher chlorophyll content than monochromatic R- and B-exposed cuttings. Conversely, carotenoid and anthocyanin contents were the highest in monochromatic R- and B-exposed plants. B-exposed cuttings showed higher photosynthetic performance, exhibited by the highest performance index on the basis of light absorption, and maximal quantum yield of PSII efficiency. Although R light increased biomass toward roots, B light improved above-ground growth, photosynthetic functionality, and the visual performance of Chrysanthemum cuttings.
Collapse
Affiliation(s)
- Moein Moosavi-Nezhad
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht P.O. Box 33916-53755, Iran
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Boshra Alibeigi
- Department of Horticultural Sciences, Campus of Agriculture and Natural Resources, University of Tehran, Karaj P.O. Box 31587-77871, Iran
| | - Ahmad Estaji
- Department of Horticultural Sciences, Faculty of Agriculture, Vali-E-Asr University of Rafsanjan, Rafsanjan P.O. Box 77188-97111, Iran
| | - Nazim S. Gruda
- Department of Horticultural Science, INRES–Institute of Crop Science and Resource Conservation, University of Bonn, 53121 Bonn, Germany
| | - Sasan Aliniaeifard
- Photosynthesis Laboratory, Department of Horticulture, Aburaihan Campus, University of Tehran, Pakdasht P.O. Box 33916-53755, Iran
| |
Collapse
|
6
|
Zhang S, Guo X, Li J, Zhang Y, Yang Y, Zheng W, Xue X. Effects of light-emitting diode spectral combinations on growth and quality of pea sprouts under long photoperiod. FRONTIERS IN PLANT SCIENCE 2022; 13:978462. [PMID: 36161035 PMCID: PMC9490185 DOI: 10.3389/fpls.2022.978462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Pea sprouts have rich nutrition and are considered good for heart health. In this study, the kaspa peas and black-eyed peas were chosen to clarify the effect of different LED spectral combinations on the growth, yield, and nutritional quality of pea sprouts under long photoperiod (22 h light/2 h dark). The results showed that the two pea varieties responded differently to light spectral combinations. Black-eyed pea sprouts had higher plant height, fresh weight per plant, dry weight per plant, soluble sugar content, and lower malondialdehyde (MDA) content than kaspa peas under the same light treatment. Compared with white light, red-to-blue ratio of 2:1 significantly increased peroxidase (POD) and superoxide dismutase (SOD) activity, soluble sugar and soluble protein content of kaspa pea sprouts, and decreased MDA content of black-eyed pea sprouts. Blue light was negatively correlated with the plant height of pea sprouts and positively correlated with SOD activity, vitamin C, soluble sugar, and soluble protein content. Antioxidant capacity, yield, and nutritional quality of black-eyed pea sprouts were higher than those of kaspa pea sprouts under the same light treatment. Blue light improved the nutritional quality of pea sprouts. Compared with other light treatments, the red-to-blue ratio of 2:1 was more conducive to improving the antioxidant capacity and nutritional quality of pea sprouts under long photoperiod.
Collapse
Affiliation(s)
- Siqi Zhang
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaolei Guo
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Junyan Li
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yinghua Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Youming Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Wengang Zheng
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| | - Xuzhang Xue
- National Research Center of Intelligent Equipment for Agriculture, Beijing, China
| |
Collapse
|
7
|
Huang H, Gao X, Gao X, Zhang S, Zheng Y, Zhang N, Hong B, Zhao X, Gu Z. Flower color mutation, pink to orange, through CmGATA4 - CCD4a-5 module regulates carotenoids degradation in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111290. [PMID: 35753140 DOI: 10.1016/j.plantsci.2022.111290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023]
Abstract
The carotenoids biosynthesis pathway in plants has been studied extensively, yet little is known about the regulatory mechanisms underlying this process, especially for ornamental horticulture plants. In this study, a natural variation of chrysanthemum with orange coloration was identified and compared with the wild type with pink coloration; the content and component of carotenoids were largely enriched in the mutant with orange coloration. CmCCD4a-5, the DNA sequence in both 'Pink yan' and the mutant, was identified and shown to function as a carotenoid degradation enzyme. Compared with 'Pink yan', the mutant shows lower expression level of CmCCD4a-5. Furthermore, CmGATA4 was found to have an opposite expression trend to CmCCD4a-5, and it could directly bind with the CmCCD4a-5 promoter. Taken together, this study demonstrates that CmGATA4 acts as a negative regulator of CmCCD4a-5 and, furthermore, low expression of CmCCD4a-5 resulted in carotenoid accumulation in the mutant.
Collapse
Affiliation(s)
- Hongfeng Huang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xuekai Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics & Cytology, Northeast Normal University, Changchun 130024, China.
| | - Shiqi Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ying Zheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Ning Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| | - Xin Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhaoyu Gu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Vitale E, Izzo LG, Amitrano C, Velikova V, Tsonev T, Simoniello P, De Micco V, Arena C. Light Quality Modulates Photosynthesis and Antioxidant Properties of B. vulgaris L. Plants from Seeds Irradiated with High-Energy Heavy Ions: Implications for Cultivation in Space. PLANTS (BASEL, SWITZERLAND) 2022; 11:1816. [PMID: 35890451 PMCID: PMC9316636 DOI: 10.3390/plants11141816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022]
Abstract
Beta vulgaris L. is a crop selected for cultivation in Space for its nutritional properties. However, exposure to ionizing radiation (IR) can alter plant photosynthetic performance and phytochemical production in the extraterrestrial environment. This study investigated if plant growth under different light quality regimes (FL-white fluorescent; RGB-red-green-blue; RB-red-blue) modifies the photosynthetic behavior and bioactive compound synthesis of plants sprouted by dry seeds irradiated with carbon or titanium high-energy ions. The study evidenced that: (i) the plant response depends on the type of heavyion; (ii) control and C-ion-irradiated plants were similar for photosynthetic pigment content and PSII photochemical efficiency, regardless of the LQ regime; (iii) under FL, net photosynthesis (AN) and water use efficiency (iWUE) declined in C- and Ti-ion plants compared to control, while the growth of irradiated plants under RGB and RB regimes offset these differences; (iv) the interaction Ti-ion× RB improved iWUE, and stimulated the production of pigments, carbohydrates, and antioxidants. The overall results highlighted that the cultivation of irradiated plants under specific LQ regimes effectively regulates photosynthesis and bioactive compound amounts in leaf edible tissues. In particular, the interaction Ti-ion × RB improved iWUE and increased pigments, carbohydrates, and antioxidant content.
Collapse
Affiliation(s)
- Ermenegilda Vitale
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Chiara Amitrano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (V.V.); (T.T.)
| | - Tsonko Tsonev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (V.V.); (T.T.)
| | - Palma Simoniello
- Department of Science and Technology, Parthenope University of Naples, Via Acton 38, 80133 Naples, Italy;
| | - Veronica De Micco
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (L.G.I.); (C.A.); (V.D.M.)
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
- BAT Center—Center for Studies on Bioinspired Agro-Environmental Technology, 80055 Portici, Italy
| |
Collapse
|
9
|
Gao S, Kong Y, Lv Y, Cao B, Chen Z, Xu K. Effect of different LED light quality combination on the content of vitamin C, soluble sugar, organic acids, amino acids, antioxidant capacity and mineral elements in green onion (Allium fistulosum L.). Food Res Int 2022; 156:111329. [PMID: 35651079 DOI: 10.1016/j.foodres.2022.111329] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/04/2022]
Abstract
The effects of blue-white, green-white, yellow-white, and red-white light combinations on the nutrient composition and antioxidant capacity of pseudo-stems and leaves of 'Yuanzang' green onion were investigated using light-emitting diodes (LEDs) with precise modulation of light quality, using white light as the control. The results showed that the leaf pigment, vitamin C, soluble sugar, organic acids, free amino acids, mineral elements, and antioxidant levels were significantly higher in green onion under blue-white combined light treatment, followed by white and red-white combined light, while green-white and yellow-white combined light significantly reduced fruit quality and antioxidant capacity. In conclusion, supplementation with blue LED light was the most effective light condition to improve palatability, nutritional value, and storage resistance of green onion by enhancing various nutrients in the plants, increasing antioxidant levels, and delaying plant aging.
Collapse
Affiliation(s)
- Song Gao
- College of Horticulture Science and Engineering, Shandong Agricultural University, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Crop Biology, Tai'an 271018, PR China.
| | - Yuwen Kong
- College of Horticulture Science and Engineering, Shandong Agricultural University, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Crop Biology, Tai'an 271018, PR China.
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Crop Biology, Tai'an 271018, PR China.
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Crop Biology, Tai'an 271018, PR China.
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Crop Biology, Tai'an 271018, PR China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, PR China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, PR China; Key Laboratory of Crop Biology, Tai'an 271018, PR China.
| |
Collapse
|
10
|
Hornyák M, Dziurka M, Kula-Maximenko M, Pastuszak J, Szczerba A, Szklarczyk M, Płażek A. Photosynthetic efficiency, growth and secondary metabolism of common buckwheat (Fagopyrum esculentum Moench) in different controlled-environment production systems. Sci Rep 2022; 12:257. [PMID: 34997114 PMCID: PMC8741924 DOI: 10.1038/s41598-021-04134-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.
Collapse
Affiliation(s)
- Marta Hornyák
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland. .,W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512, Kraków, Poland.
| | - Michał Dziurka
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Monika Kula-Maximenko
- Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Jakub Pastuszak
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Anna Szczerba
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Marek Szklarczyk
- Faculty of Biotechnology and Horticulture, University of Agriculture, 29 Listopada 54, 31-425, Kraków, Poland
| | - Agnieszka Płażek
- Department of Physiology, Plant Breeding and Seed Production, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| |
Collapse
|
11
|
Kang JH, Yoon HI, Lee JM, Kim JP, Son JE. Electron transport and photosynthetic performance in Fragaria × ananassa Duch. acclimated to the solar spectrum modified by a spectrum conversion film. PHOTOSYNTHESIS RESEARCH 2022; 151:31-46. [PMID: 34499317 DOI: 10.1007/s11120-021-00875-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Functional films have been used in greenhouses to improve the light environment for plant growth. Among them, a spectrum conversion film converting the green light of incident sunlight into red light has been reported to increase the crop productivity. However, the results are not always consistent, and the reasons for the improvement are not fully understood. The objectives of this study were to reveal the cumulative effects of a green-to-red spectrum conversion film (SCF) on the electron transport and photosynthetic performance of Fragaria × ananassa Duch. The photosynthetic efficiency, leaf optical properties, chlorophyll content, chlorophyll fluorescence, growth, and fruit qualities when the plant was grown under a transparent polyethylene film (PE) and SCF were evaluated. The sunlight modified by SCF did not change the leaf optical properties and chlorophyll content but significantly increased the chlorophyll fluorescence parameters related to reduction end electron acceptors at PSI acceptor side and the efficiency of electron transport. Without an increase in nonphotochemical quenching, the effective quantum yields of PSII and PSI of leaves grown under SCF were significantly higher than those parameters when grown under PE. Forty eight days after transplanting, the photosynthetic efficiency and photosynthetic rates of leaves and whole plants increased significantly under SCF compared to PE. The vegetative growth was not affected by SCF, but the fruit weight, sweetness, acidity, and firmness under SCF were significantly improved. These results indicated that sunlight modified by SCF stimulates electron flow and improves photosynthetic capacity and fruit quality of Fragaria × ananassa Duch.
Collapse
Affiliation(s)
- Jun Hyeun Kang
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyo In Yoon
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Moon Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Pil Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Eek Son
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Optimization of Photosynthetic Photon Flux Density and Light Quality for Increasing Radiation-Use Efficiency in Dwarf Tomato under LED Light at the Vegetative Growth Stage. PLANTS 2021; 11:plants11010121. [PMID: 35009123 PMCID: PMC8796024 DOI: 10.3390/plants11010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 11/28/2022]
Abstract
Dwarf tomatoes are advantageous when cultivated in a plant factory with artificial light because they can grow well in a small volume. However, few studies have been reported on cultivation in a controlled environment for improving productivity. We performed two experiments to investigate the effects of photosynthetic photon flux density (PPFD; 300, 500, and 700 μmol m−2 s−1) with white light and light quality (white, R3B1 (red:blue = 3:1), and R9B1) with a PPFD of 300 μmol m−2 s−1 on plant growth and radiation-use efficiency (RUE) of a dwarf tomato cultivar (‘Micro-Tom’) at the vegetative growth stage. The results clearly demonstrated that higher PPFD leads to higher dry mass and lower specific leaf area, but it does not affect the stem length. Furthermore, high PPFD increased the photosynthetic rate (Pn) of individual leaves but decreased RUE. A higher blue light proportion inhibited dry mass production with the same intercepted light because the leaves under high blue light proportion had low Pn and photosynthetic light-use efficiency. In conclusion, 300 μmol m−2 s−1 PPFD and R9B1 are the recommended proper PPFD and light quality, respectively, for ‘Micro-Tom’ cultivation at the vegetative growth stage to increase the RUE.
Collapse
|
13
|
Comparative Growth, Photosynthetic Pigments, and Osmolytes Analysis of Hemp (Cannabis sativa L.) Seedlings under an Aeroponics System with Different LED Light Sources. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7080239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The performance of hemp seedlings was evaluated through morphological traits, photosynthetic pigments, and osmolytes under 11 light treatments (10 LED light compositions + natural light) in an aeroponics system. The seedlings were brought under treatment at 25 days of age, where the light intensity was 300 µmol m−2s−1 and duration was 20 days. A higher leaf number and node number were observed in L10 (R4:B2:W2:FR1:UV1) and L11 (R2:B2:G2:W2:FR1:UV1), and a higher leaf length and leaf width were recorded in the L2 (white), L3 (R8:B2), and L5 (R7:B2:FR1) treatments. Furthermore, a higher shoot length was recorded in L3 (R8:B2), L6 (R6:B2:G1:FR1), and L9 (R6:B2:FR1:UV1) while roots developed more in the L1 (natural light), L5 (R7:B2:FR1), and L9 (R6:B2:FR1:UV1) treatments. On the other hand, the L3 (R8:B2) treatment manifested higher chlorophyll a, chlorophyll b, and photosynthetic quantum yield (Fv/Fm). The hierarchical clustering and heatmap analysis revealed that higher leaf numbers and node numbers resulted in bushy plants with shorter shoots and longer roots. A negative correlation was also observed in photosynthetic traits (pigments and fluorescence) with osmolytes and root length. Importantly, the treatments L4 (R7:B2:G1), L6 (R6:B2:G1:FR1), L8 (R5:B2:G1:FR1:UV1), and L11 (R2:B2:G2:W2:FR1:UV1) manifested higher nodes with a higher osmolyte content, such as proline, ascorbic acid, total soluble carbohydrate, and sucrose, which may be a helpful indicator for higher branches and inflorescences, and ultimately higher cannabinoids accumulation in the plants. The approach and findings of this study could provide future research with the baseline information on optimizing the light composition to produce hemp plants with ideal phenotypes.
Collapse
|
14
|
Kumari K, Samantaray S, Sahoo D, Tripathy BC. Nitrogen, phosphorus and high CO 2 modulate photosynthesis, biomass and lipid production in the green alga Chlorella vulgaris. PHOTOSYNTHESIS RESEARCH 2021; 148:17-32. [PMID: 33813714 DOI: 10.1007/s11120-021-00828-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 02/26/2021] [Indexed: 05/28/2023]
Abstract
Climate change could impact nutrient bioavailability in aquatic environment. To understand the interaction of nutrient bioavailability and elevated CO2, Chlorella vulgaris cells were grown in ambient air or 5% CO2 in different concentrations of nitrogen and phosphorus in a photobioreactor. The chlorophyll content, photosynthesis and respiration rates increased in 5% CO2 to support higher biomass production. The nutrient limitation in the growth media resulted in reduced photosynthetic rates of the algal cells and their PSI, PSII, and whole chain electron transport rates and biomass production. Conversely, their lipid content increased partly due to upregulation of expression of several lipid biosynthesis genes. The order of downregulation of photosynthesis and upregulation in lipid production due to nutrient limitation was in the order of N > P. The N-50 and 5% CO2 culture had only 10% reduction in biomass and 32% increase in lipids having 85% saturated fat required for efficient biofuel production. This growth condition is ideal for generation of biodiesel required to reduce the consumption of fossil fuel and combat global warming.
Collapse
Affiliation(s)
- Kanchan Kumari
- Department of Botany, University of Delhi, Delhi, 110007, India
| | | | - Dinabandhu Sahoo
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
- Department of Biotechnology, Sharda University, Knowledge Park 3, Greater Noida, 201306, Uttar Pradesh, India.
| |
Collapse
|
15
|
Light Emitting Diodes (LEDs) as Agricultural Lighting: Impact and Its Potential on Improving Physiology, Flowering, and Secondary Metabolites of Crops. SUSTAINABILITY 2021. [DOI: 10.3390/su13041985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A reduction in crop productivity in cultivable land and challenging environmental factors have directed advancement in indoor cultivation systems, such that the yield parameters are higher in outdoor cultivation systems. In wake of this situation, light emitting diode (LED) lighting has proved to be promising in the field of agricultural lighting. Properties such as energy efficiency, long lifetime, photon flux efficacy and flexibility in application make LEDs better suited for future agricultural lighting systems over traditional lighting systems. Different LED spectrums have varied effects on the morphogenesis and photosynthetic responses in plants. LEDs have a profound effect on plant growth and development and also control key physiological processes such as phototropism, the immigration of chloroplasts, day/night period control and the opening/closing of stomata. Moreover, the synthesis of bioactive compounds and antioxidants on exposure to LED spectrum also provides information on the possible regulation of antioxidative defense genes to protect the cells from oxidative damage. Similarly, LEDs are also seen to escalate the nutrient metabolism in plants and flower initiation, thus improving the quality of the crops as well. However, the complete management of the irradiance and wavelength is the key to maximize the economic efficacy of crop production, quality, and the nutrition potential of plants grown in controlled environments. This review aims to summarize the various advancements made in the area of LED technology in agriculture, focusing on key processes such as morphological changes, photosynthetic activity, nutrient metabolism, antioxidant capacity and flowering in plants. Emphasis is also made on the variation in activities of different LED spectra between different plant species. In addition, research gaps and future perspectives are also discussed of this emerging multidisciplinary field of research and its development.
Collapse
|
16
|
Chen S, Chen X, Fan J, Liu H, Zhou J, Chang X. iTRAQ proteomics reveals changes in the lettuce (Lactuca sativa L. Grand Rapid) proteome related to colour and senescence under modified atmosphere packaging. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1908-1918. [PMID: 30267422 DOI: 10.1002/jsfa.9386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study used the isobaric tags for relative and absolute quantitation (iTRAQ) technique to determine the effects of active modified atmosphere packaging (MAP) on the modulation of lettuce (Lactuca sativa L. Grand Rapid) colour and senescence. Lettuces, treated or not treated (control) with MAP, were placed in a refrigerator (4 °C, 90-95% relative humidity) for analysis at 3-day intervals until the ninth day. RESULTS MAP treatment could suppress weight loss, loss of green colour and brittleness, and browning of lettuce; at the same time, MAP preserved the green colour of lettuce by inhibiting chlorophyll degradation and chloroplast disruption, and delayed lettuce senescence by inhibiting malondialdehyde (MDA) generation and increasing antioxidant enzyme activity. In total, 285 differentially abundant proteins (144 upregulated proteins and 141 downregulated proteins) were identified in MAP-treated and non-treated lettuce. Further analysis revealed that MAP regulated the expression of proteins involved in photosynthesis (e.g. pheophorbide a oxygenase, PaO; porphobilinogen deaminase, PBGD), and thus preserved lettuce colour. The iTRAQ analysis also showed that MAP regulated the expression of antioxidant enzymes and reduced the accumulation of reactive oxygen species, and thus delayed lettuce senescence. CONCLUSION MAP can maintain vegetable quality by inhibiting chlorophyll degradation, delaying vegetable senescence. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Si Chen
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Xiangning Chen
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Junfeng Fan
- Department of Food Science and Engineering, College of Bioscience and Biotechnology, Beijing Forestry University, Beijing, China
| | - Huijun Liu
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Jing Zhou
- Beijing Key Laboratory of Agricultural Product Detection and Control for Spoilage Organisms and Pesticides, Food Science and Engineering College, Beijing University of Agriculture, Beijing, China
| | - Xiguang Chang
- Beijing Yunong High Quality Cultivation of Agricultural Products Company, Beijing, China
| |
Collapse
|
17
|
Growth, Water-Use Efficiency, Stomatal Conductance, and Nitrogen Uptake of Two Lettuce Cultivars Grown under Different Percentages of Blue and Red Light. HORTICULTURAE 2018. [DOI: 10.3390/horticulturae4030016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The objective of this study was to characterize growth, water-use efficiency (WUE), stomatal conductance (gs), SPAD index values, and shoot nitrogen uptake of two lettuce cultivars grown under different percentages of blue and red light. The treatments evaluated were 100% red; 7% blue + 93% red; 26% blue + 74% red; 42% blue + 58% red; 66% blue + 34% red; and 100% blue. Broad-spectrum (19% blue, 43% green, and 38% red) light was used to observe the effects of wavelength interactions. All of the treatments provided an average daily light integral (DLI) of 17.5 mol·m‒2·d‒1 (270 ± 5 µmol·m‒2·s‒1 over an 18-h photoperiod). The experiment was replicated three times over time; each terminated 21 days after treatment initiation. Leaf area, specific leaf area (SLA), and SPAD index had a similar response in that all of the parameters increased with up to 66% blue light, and slightly decreased or remained constant with 100% blue light. In contrast, leaf number, shoot dry mass, and WUE generally decreased in response to blue light. Conversely, for every 10% increase in blue light, gs increased by 10 mmol·m‒2·s‒1. Nitrogen uptake was unaffected by light quality. Our findings indicate that when grown under different blue and red photon flux ratios, the WUE of lettuce significantly decreases under higher blue light, which could be attributed to a reduction in plant growth (leaf number and dry mass), and an increase in gs. However, green light within broad-spectrum lamps might counteract blue-light mediated effects on gs and WUE in lettuce.
Collapse
|
18
|
Chen Y, Zhou B, Li J, Tang H, Tang J, Yang Z. Formation and Change of Chloroplast-Located Plant Metabolites in Response to Light Conditions. Int J Mol Sci 2018; 19:E654. [PMID: 29495387 PMCID: PMC5877515 DOI: 10.3390/ijms19030654] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/16/2022] Open
Abstract
Photosynthesis is the central energy conversion process for plant metabolism and occurs within mature chloroplasts. Chloroplasts are also the site of various metabolic reactions involving amino acids, lipids, starch, and sulfur, as well as where the production of some hormones takes place. Light is one of the most important environmental factors, acting as an essential energy source for plants, but also as an external signal influencing their growth and development. Plants experience large fluctuations in the intensity and spectral quality of light, and many attempts have been made to improve or modify plant metabolites by treating them with different light qualities (artificial lighting) or intensities. In this review, we discuss how changes in light intensity and wavelength affect the formation of chloroplast-located metabolites in plants.
Collapse
Affiliation(s)
- Yiyong Chen
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Bo Zhou
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jianlong Li
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Hao Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Jinchi Tang
- Tea Research Institute, Guangdong Academy of Agricultural Sciences & Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation and Utilization, Guangzhou 510640, China.
| | - Ziyin Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
19
|
Garai S, Tripathy BC. Alleviation of Nitrogen and Sulfur Deficiency and Enhancement of Photosynthesis in Arabidopsis thaliana by Overexpression of Uroporphyrinogen III Methyltransferase ( UPM1). FRONTIERS IN PLANT SCIENCE 2017; 8:2265. [PMID: 29472934 PMCID: PMC5810253 DOI: 10.3389/fpls.2017.02265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 12/27/2017] [Indexed: 05/12/2023]
Abstract
Siroheme, an iron-containing tetrapyrrole, is the prosthetic group of nitrite reductase (NiR) and sulfite reductase (SiR); it is synthesized from uroporphyrinogen III, an intermediate of chlorophyll biosynthesis, and is required for nitrogen (N) and sulfur (S) assimilation. Further, uroporphyrinogen III methyltransferase (UPM1), responsible for two methylation reactions to form dihydrosirohydrochlorin, diverts uroporphyrinogen III from the chlorophyll biosynthesis pathway toward siroheme synthesis. AtUPM1 [At5g40850] was used to produce both sense and antisense plants of Arabidopsis thaliana in order to modulate siroheme biosynthesis. In our experiments, overexpression of AtUPM1 signaled higher NiR (NII) and SiR gene and gene product expression. Increased NII expression was found to regulate and enhance the transcript and protein abundance of nitrate reductase (NR). We suggest that elevated NiR, NR, and SiR expression must have contributed to the increased synthesis of S containing amino acids in AtUPM1overexpressors, observed in our studies. We note that due to higher N and S assimilation in these plants, total protein content had increased in these plants. Consequently, chlorophyll biosynthesis increased in these sense plants. Higher chlorophyll and protein content of plants upregulated photosynthetic electron transport and carbon assimilation in the sense plants. Further, we have observed increased plant biomass in these plants, and this must have been due to increased N, S, and C assimilation. On the other hand, in the antisense plants, the transcript abundance, and protein content of NiR, and SiR was shown to decrease, resulting in reduced total protein and chlorophyll content. This led to a decrease in photosynthetic electron transport rate, carbon assimilation and plant biomass in these antisense plants. Under nitrogen or sulfur starvation conditions, the overexpressors had higher protein content and photosynthetic electron transport rate than the wild type (WT). Conversely, the antisense plants had lower protein content and photosynthetic efficiency in N-deficient environment. Our results clearly demonstrate that upregulation of siroheme biosynthesis leads to increased nitrogen and sulfur assimilation, and this imparts tolerance to nitrogen and sulfur deficiency in Arabidopsis thaliana plants.
Collapse
|
20
|
Zheng L, Van Labeke MC. Long-Term Effects of Red- and Blue-Light Emitting Diodes on Leaf Anatomy and Photosynthetic Efficiency of Three Ornamental Pot Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:917. [PMID: 28611818 PMCID: PMC5447751 DOI: 10.3389/fpls.2017.00917] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/20/2023]
Abstract
Light quality critically affects plant development and growth. Development of light-emitting diodes (LEDs) enables the use of narrow band red and/or blue wavelengths as supplementary lighting in ornamental production. Yet, long periods under these wavelengths will affect leaf morphology and physiology. Leaf anatomy, stomatal traits, and stomatal conductance, leaf hydraulic conductance (Kleaf), and photosynthetic efficiency were investigated in three ornamental pot plants, namely Cordyline australis (monocot), Ficus benjamina (dicot, evergreen leaves), and Sinningia speciosa (dicot, deciduous leaves) after 8 weeks under LED light. Four light treatments were applied at 100 μmol m-2 s-1 and a photoperiod of 16 h using 100% red (R), 100% blue (B), 75% red with 25% blue (RB), and full spectrum white light (W), respectively. B and RB resulted in a greater maximum quantum yield (Fv/Fm) and quantum efficiency (ΦPSII) in all species compared to R and W and this correlated with a lower biomass under R. B increased the stomatal conductance compared with R. This increase was linked to an increasing stomatal index and/or stomatal density but the stomatal aperture area was unaffected by the applied light quality. Leaf hydraulic conductance (Kleaf) was not significantly affected by the applied light qualities. Blue light increased the leaf thickness of F. benjamina, and a relative higher increase in palisade parenchyma was observed. Also in S. speciosa, increase in palisade parenchyma was found under B and RB, though total leaf thickness was not affected. Palisade parenchyma tissue thickness was correlated to the leaf photosynthetic quantum efficiency (ΦPSII). In conclusion, the role of blue light addition in the spectrum is essential for the normal anatomical leaf development which also impacts the photosynthetic efficiency in the three studied species.
Collapse
|
21
|
Roy A, Sahoo D, Tripathy BC. Light-hormone interaction in the red-light-induced suppression of photomorphogenesis in rice seedlings. PROTOPLASMA 2016; 253:393-402. [PMID: 25902895 DOI: 10.1007/s00709-015-0818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Red light perceived by the shoot bottom suppresses photomorphogenesis in rice seedlings mediated by phytochrome A. Shoots of these seedlings grown in red light having their shoot bottom exposed were deficient in chlorophyll and accumulated high concentration of trans-zeatin riboside. However, reduced presence of isopentynyl adenosine, dihydrozeatin riboside was observed in shoots of red-light-grown non-green seedlings in comparison to green seedling. The message abundance of cytokinin receptor (OsHK5), transporters (OsENT1, OsENT2), and response regulators (OsRR4, OsRR10) was downregulated in these red-light-grown non-green seedlings. Attenuation of greening process was reversed by application of exogenous cytokinin analogue, benzyladenine, or supplementing red light with blue light. In the same vein, the suppression of gene expression of cytokinin receptor, transporters, and type-A response regulators was reversed in red-light-grown seedlings treated with benzyladenine suggesting that the disarrayed cytokinin (CK) signaling cascade is responsible for non-greening of seedlings grown in red light. The reversal of red-light-induced suppression of photomorphogenesis by blue light and benzyladenine demonstrates the interaction of light and cytokinin signaling cascades in the regulation of photomorphogenesis. Partial reversal of greening process by exogenous application of benzyladenine suggests, apart from CKs perception, transportation and responsiveness, other factors are also involved in modulation of suppression of photomorphogenesis by red light.
Collapse
Affiliation(s)
- Ansuman Roy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Bian ZH, Yang QC, Liu WK. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:869-77. [PMID: 24930957 DOI: 10.1002/jsfa.6789] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 06/02/2014] [Accepted: 06/10/2014] [Indexed: 05/05/2023]
Abstract
Phytochemicals in vegetables are important for human health, and their biosynthesis, metabolism and accumulation are affected by environmental factors. Light condition (light quality, light intensity and photoperiod) is one of the most important environmental variables in regulating vegetable growth, development and phytochemical accumulation, particularly for vegetables produced in controlled environments. With the development of light-emitting diode (LED) technology, the regulation of light environments has become increasingly feasible for the provision of ideal light quality, intensity and photoperiod for protected facilities. In this review, the effects of light quality regulation on phytochemical accumulation in vegetables produced in controlled environments are identified, highlighting the research progress and advantages of LED technology as a light environment regulation tool for modifying phytochemical accumulation in vegetables.
Collapse
Affiliation(s)
- Zhong Hua Bian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Science, 100081, Beijing, P.R. China; Key Lab. of Energy Conservation and Waste Management of Agricultural Structures, Ministry of Agriculture, 100081, Beijing, P.R China
| | | | | |
Collapse
|
23
|
Turan S, Tripathy BC. Salt-stress induced modulation of chlorophyll biosynthesis during de-etiolation of rice seedlings. PHYSIOLOGIA PLANTARUM 2015; 153:477-91. [PMID: 25132047 DOI: 10.1111/ppl.12250] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/19/2014] [Indexed: 05/08/2023]
Abstract
Chlorophyll biosynthesis in plants is subjected to modulation by various environmental factors. To understand the modulation of the chlorophyll (Chl) biosynthesis during greening process by salt, 100-200 mM NaCl was applied to the roots of etiolated rice seedlings 12 h prior to the transfer to light. Application of 200 mM NaCl to rice seedlings that were grown in light for further 72 h resulted in reduced dry matter production (-58%) and Chl accumulation (-66%). Ionic imbalance due to salinity stress resulted in additional downregulation (41-45%) of seedling dry weight, Chl and carotenoid contents over and above that of similar osmotic stress induced by polyethylene glycol. Downregulation of Chl biosynthesis may be attributed to decreased activities of Chl biosynthetic pathway enzymes, i.e. 5-aminolevulinic acid (ALA) dehydratase (EC-2.4.1.24), porphobilinogen deaminase (EC-4.3.1.8), coproporphyrinogen III oxidase (EC-1.3.3.3), protoporphyrinogen IX oxidase (EC-1.3.3.4), Mg-protoporphyrin IX chelatase (EC-6.6.1.1) and protochlorophyllide oxidoreductase (EC-1.3.33.1). Reduced enzymatic activities were due to downregulation of their protein abundance and/or gene expression in salt-stressed seedlings. The extent of downregulation of ALA biosynthesis nearly matched with that of protochlorophyllide and Chl to prevent the accumulation of highly photosensitive photodynamic tetrapyrroles that generates singlet oxygen under stress conditions. Although, ALA synthesis decreased, the gene/protein expression of glutamyl-tRNA reductase (EC-1.2.1.70) increased suggesting it may play a role in acclimation to salt stress. The similar downregulation of both early and late Chl biosynthesis intermediates in salt-stressed seedlings suggests a regulatory network of genes involved in tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Satpal Turan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | |
Collapse
|
24
|
Roy A, Sahoo D, Tripathy BC. Involvement of phytochrome A in suppression of photomorphogenesis in rice seedling grown in red light. PLANT, CELL & ENVIRONMENT 2013; 36:2120-2134. [PMID: 23495675 DOI: 10.1111/pce.12099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2010] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 06/01/2023]
Abstract
Plants have evolved a remarkable capacity to track and respond to fluctuations of light quality and intensity that influence photomorphogenesis facilitated through several photoreceptors, which include a small family of phytochromes. Rice seedlings grown on germination paper in red light for 48 h having their shoot bottom exposed had suppressed photomorphogenesis and were deficient in chlorophyll. Seedlings grown under identical light regime having their shoot bottom covered were green and accumulated chlorophyll. Further, etiolated seedlings with their shoot bottom exposed, when grown in 4 min red/far-red cycles for 48 h, accumulated chlorophyll demonstrating the reversal of suppression of photomorphogenesis by far-red light. It implicates the involvement of phytochrome. Immunoblot analysis showed the persistence of photolabile phytochrome A protein for 48 h in seedlings grown in red light with their shoot bottom exposed, suggesting its involvement in suppression of photomorphogenesis. This was further corroborated in phyA seedlings that turned green when grown in red light having their shoot bottom exposed. Calmodulin (CaM) antagonist N-(6-aminohexyl)-5-chloro-1-napthalene sulphonamide or trifluoperazine substantially restored photomorphogenesis both in the wild type (WT) and phyA demonstrating the involvement of CaM-dependent kinases in the down-regulation of the greening process. Results demonstrate that red light-induced suppression of photomorphogenesis, perceived in the shoot bottom, is a red high irradiance response of PhyA.
Collapse
Affiliation(s)
- Ansuman Roy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, Delhi, India
| | | | | |
Collapse
|
25
|
Sakuraba Y, Rahman ML, Cho SH, Kim YS, Koh HJ, Yoo SC, Paek NC. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:122-33. [PMID: 23289852 DOI: 10.1111/tpj.12110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/18/2012] [Accepted: 12/20/2012] [Indexed: 05/20/2023]
Abstract
NADPH:protochlorophyllide oxidoreductase (POR) catalyzes photoreduction of protochlorophyllide (Pchlide) to chlorophyllide in chlorophyll (Chl) synthesis, and is required for prolamellar body (PLB) formation in etioplasts. Rice faded green leaf (fgl) mutants develop yellow/white leaf variegation and necrotic lesions during leaf elongation in field-grown plants. Map-based cloning revealed that FGL encodes OsPORB, one of two rice POR isoforms. In fgl, etiolated seedlings contained smaller PLBs in etioplasts, and lower levels of total and photoactive Pchlide. Under constant or high light (HL) conditions, newly emerging green leaves rapidly turned yellow and formed lesions. Increased levels of non-photoactive Pchlide, which acts as a photosensitizer, may cause reactive oxygen accumulation and lesion formation. OsPORA expression is repressed by light and OsPORB expression is regulated in a circadian rhythm in short-day conditions. OsPORA was expressed at high levels in developing leaves and decreased dramatically in fully mature leaves, whereas OsPORB expression was relatively constant throughout leaf development, similar to expression patterns of AtPORA and AtPORB in Arabidopsis. However, OsPORB expression is rapidly upregulated by HL treatment, similar to the fluence rate-dependent regulation of AtPORC. This suggests that OsPORB function is equivalent to both AtPORB and AtPORC functions. Our results demonstrate that OsPORB is essential for maintaining light-dependent Chl synthesis throughout leaf development, especially under HL conditions, whereas OsPORA mainly functions in the early stages of leaf development. Developmentally and physiologically distinct roles of monocot OsPORs are discussed by comparing with those of dicot AtPORs.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Dalal VK, Tripathy BC. Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. PLANT, CELL & ENVIRONMENT 2012; 35:1685-703. [PMID: 22494411 DOI: 10.1111/j.1365-3040.2012.02520.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
To understand the impact of water stress on the greening process, water stress was applied to 6-day-old etiolated seedlings of a drought-sensitive cultivar of rice (Oryza sativa), Pusa Basmati-1 by immersing their roots in 40 mm polyethylene glycol (PEG) 6000 (-0.69 MPa) or 50 mm PEG 6000 (-1.03 MPa) dissolved in half-strength Murashige and Skoog (MS)-nutrient-solution, 16 h prior to transfer to cool-white-fluorescent + incandescent light. Chlorophyll (Chl) accumulation substantially declined in developing water-stressed seedlings. Reduced Chl synthesis was due to decreased accumulation of chlorophyll biosynthetic intermediates, that is, glutamate-1-semialdehyde (GSA), 5-aminolevulinic acid, Mg-protoporphyrin IX monomethylester and protochlorophyllide. Although 5-aminolevulinic acid synthesis decreased, the gene expression and protein abundance of the enzyme responsible for its synthesis, GSA aminotransferase, increased, suggesting its crucial role in the greening process in stressful environment. The biochemical activities of Chl biosynthetic enzymes, that is, 5-aminolevulinic acid dehydratase, porphobilinogen deaminase, coproporphyrinogen III oxidase, porphyrinogen IX oxidase, Mg-chelatase and protochlorophyllide oxidoreductase, were down-regulated due to their reduced protein abundance/gene expression in water-stressed seedlings. Down-regulation of protochlorophyllide oxidoreductase resulted in impaired Shibata shift. Our results demonstrate that reduced synthesis of early intermediates, that is, GSA and 5-aminolevulinic acid, could modulate the gene expression of later enzymes of Chl biosynthesis pathway.
Collapse
Affiliation(s)
- Vijay K Dalal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
27
|
Biswal AK, Pattanayak GK, Pandey SS, Leelavathi S, Reddy VS, Govindjee, Tripathy BC. Light intensity-dependent modulation of chlorophyll b biosynthesis and photosynthesis by overexpression of chlorophyllide a oxygenase in tobacco. PLANT PHYSIOLOGY 2012; 159:433-49. [PMID: 22419827 PMCID: PMC3375976 DOI: 10.1104/pp.112.195859] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 03/13/2012] [Indexed: 05/19/2023]
Abstract
Chlorophyll b is synthesized by the oxidation of a methyl group on the B ring of a tetrapyrrole molecule to a formyl group by chlorophyllide a oxygenase (CAO). The full-length CAO from Arabidopsis (Arabidopsis thaliana) was overexpressed in tobacco (Nicotiana tabacum) that grows well at light intensities much higher than those tolerated by Arabidopsis. This resulted in an increased synthesis of glutamate semialdehyde, 5-aminolevulinic acid, magnesium-porphyrins, and chlorophylls. Overexpression of CAO resulted in increased chlorophyll b synthesis and a decreased chlorophyll a/b ratio in low light-grown as well as high light-grown tobacco plants; this effect, however, was more pronounced in high light. The increased potential of the protochlorophyllide oxidoreductase activity and chlorophyll biosynthesis compensated for the usual loss of chlorophylls in high light. Increased chlorophyll b synthesis in CAO-overexpressed plants was accompanied not only by an increased abundance of light-harvesting chlorophyll proteins but also of other proteins of the electron transport chain, which led to an increase in the capture of light as well as enhanced (40%-80%) electron transport rates of photosystems I and II at both limiting and saturating light intensities. Although the quantum yield of carbon dioxide fixation remained unchanged, the light-saturated photosynthetic carbon assimilation, starch content, and dry matter accumulation increased in CAO-overexpressed plants grown in both low- and high-light regimes. These results demonstrate that controlled up-regulation of chlorophyll b biosynthesis comodulates the expression of several thylakoid membrane proteins that increase both the antenna size and the electron transport rates and enhance carbon dioxide assimilation, starch content, and dry matter accumulation.
Collapse
Affiliation(s)
| | | | - Shiv S. Pandey
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Sadhu Leelavathi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Vanga S. Reddy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Govindjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| | - Baishnab C. Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India (A.K.B., G.K.P., S.S.P., G., B.C.T.); International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India (S.L., V.S.R.); and Department of Plant Biology, Department of Biochemistry and Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (G.)
| |
Collapse
|
28
|
Gupta V, Roy A, Tripathy BC. Signaling events leading to red-light-induced suppression of photomorphogenesis in wheat (Triticum aestivum). PLANT & CELL PHYSIOLOGY 2010; 51:1788-1799. [PMID: 20823341 DOI: 10.1093/pcp/pcq139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Perception of red light (400 μmol photon m²/s) by the shoot bottom turned off the greening process in wheat. To understand the signaling cascade leading to this photomorphogenic response, certain signaling components were probed in seedlings grown in different light regimes. Upon analysis the gene expression of heterotrimeric Gα and Gβ were severely down-regulated in seedlings grown without vermiculite and having their shoot bottom exposed to red light (R/V-) and was similar to that of dark-grown seedlings. Supplementing the red-light-grown V- seedlings with blue light resulted in up-regulation of both Gα and Gβ expression, suggesting that blue light is able to modulate G protein expression. Treatment of cytokinin analog benzyladenine to cytokinin-deficient red-light-grown R/V- seedlings resulted in up-regulation of gene expression of both Gα and Gβ. To probe further, modulators of signal transduction pathway--AlF₃ (G protein activator), LaCl₃ (Ca(2+) channel blocker), NaF (nonspecific phosphatase inhibitor), or calmodulin (CaM) antagonists trifluoperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-nafthalene-sulfonamide (W-7)--were added along with Hoagland solution to the roots of 4-day-old etiolated seedlings, grown on germination paper and transferred to red light. AlF₃, LaCl₃, NaF failed to elicit any photomorphogenic response. However, CaM antagonists TFP and W-7 significantly reversed the red-light-induced suppression of photomorphogenesis. Phosphorylation of proteins assayed in the absence or presence of CaM antagonist TFP revealed respective up-regulation or down-regulation of phosphorylation of several plastidic proteins in R/V- seedlings. These suggest that signal transduction of red light perceived by the shoot bottom to suppress photomorphogenesis is mediated by CaM-dependent protein kinases.
Collapse
Affiliation(s)
- Varsha Gupta
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
29
|
Grimm B. Chapter 3 Control of the Metabolic Flow in Tetrapyrrole Biosynthesis: Regulation of Expression and Activity of Enzymes in the Mg Branch of Tetrapyrrole Biosynthesis. THE CHLOROPLAST 2010. [DOI: 10.1007/978-90-481-8531-3_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|