1
|
Clark G, Tripathy MK, Roux SJ. Growth regulation by apyrases: Insights from altering their expression level in different organisms. PLANT PHYSIOLOGY 2024; 194:1323-1335. [PMID: 37947023 PMCID: PMC10904326 DOI: 10.1093/plphys/kiad590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
Apyrase (APY) enzymes are nucleoside triphosphate (NTP) diphosphohydrolases that can remove the terminal phosphate from NTPs and nucleoside diphosphates but not from nucleoside monophosphates. They have conserved structures and functions in yeast, plants, and animals. Among the most studied APYs in plants are those in Arabidopsis (Arabidopsis thaliana; AtAPYs) and pea (Pisum sativum; PsAPYs), both of which have been shown to play major roles in regulating plant growth and development. Valuable insights on their functional roles have been gained by transgenically altering their transcript abundance, either by constitutively expressing or suppressing APY genes. This review focuses on recent studies that have provided insights on the mechanisms by which APY activity promotes growth in different organisms. Most of these studies have used transgenic lines that constitutively expressed APY in multiple different plants and in yeast. As APY enzymatic activity can also be changed post-translationally by chemical blockage, this review also briefly covers studies that used inhibitors to suppress APY activity in plants and fungi. It concludes by summarizing some of the main unanswered questions about how APYs regulate plant growth and proposes approaches to answering them.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| | | | - Stanley J Roux
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 100 E 24th Street, TX 78712, USA
| |
Collapse
|
2
|
Weeraratne G, Wang H, Weeraratne TP, Sabharwal T, Jiang HW, Cantero A, Clark G, Roux SJ. APYRASE1/2 mediate red light-induced de-etiolation growth in Arabidopsis seedlings. PLANT PHYSIOLOGY 2022; 189:1728-1740. [PMID: 35357495 PMCID: PMC9237676 DOI: 10.1093/plphys/kiac150] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 05/09/2023]
Abstract
In etiolated seedlings, red light (R) activates phytochrome and initiates signals that generate major changes at molecular and physiological levels. These changes include inhibition of hypocotyl growth and promotion of the growth of primary roots, apical hooks, and cotyledons. An earlier report showed that the sharp decrease in hypocotyl growth rapidly induced by R was accompanied by an equally rapid decrease in the transcript and protein levels of two closely related apyrases (APYs; nucleoside triphosphate-diphosphohydrolases) in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, enzymes whose expression alters auxin transport and growth in seedlings. Here, we report that single knockouts of either APY inhibit R-induced promotion of the growth of primary roots, apical hooks, and cotyledons, and RNAi-induced suppression of APY1 expression in the background of apy2 inhibits R-induced apical hook opening. When R-irradiated primary roots and apical hook-cotyledons began to show a gradual increase in their growth relative to dark controls, they concurrently showed increased levels of APY protein, but in hook-cotyledon tissue, this occurred without parallel increases in their transcripts. In wild-type seedlings whose root growth is suppressed by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, the R-induced increased APY expression in roots was also inhibited. In unirradiated plants, the constitutive expression of APY2 promoted both hook opening and changes in the transcript abundance of Small Auxin Upregulated RNA (SAUR), SAUR17 and SAUR50 that help mediate de-etiolation. These results provide evidence that the expression of APY1/APY2 is regulated by R and that APY1/APY2 participate in the signaling pathway by which phytochrome induces differential growth changes in different tissues of etiolated seedlings.
Collapse
Affiliation(s)
- Gayani Weeraratne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Huan Wang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tharindu P Weeraratne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya Sabharwal
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Han-Wei Jiang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Araceli Cantero
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Greg Clark
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
3
|
Klein H, Gallagher J, Demesa-Arevalo E, Abraham-Juárez MJ, Heeney M, Feil R, Lunn JE, Xiao Y, Chuck G, Whipple C, Jackson D, Bartlett M. Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022. [PMID: 34996873 DOI: 10.1101/2021.09.03.458935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
Affiliation(s)
- Harry Klein
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Joseph Gallagher
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | | | - María Jazmín Abraham-Juárez
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
- Laboratorio Nacional de Genómica para la Biodiversidad, Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Guanajuato 36821, Mexico
| | - Michelle Heeney
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Yuguo Xiao
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - George Chuck
- Plant Gene Expression Center, University of California, Berkeley, CA 94710
| | - Clinton Whipple
- Department of Biology, Brigham Young University, Provo, UT 84692
| | - David Jackson
- Plant Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Madelaine Bartlett
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003;
| |
Collapse
|
4
|
Recruitment of an ancient branching program to suppress carpel development in maize flowers. Proc Natl Acad Sci U S A 2022; 119:2115871119. [PMID: 34996873 PMCID: PMC8764674 DOI: 10.1073/pnas.2115871119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Floral morphology is immensely diverse. One developmental process acting to shape this diversity is growth suppression. For example, grass flowers exhibit extreme diversity in floral sexuality, arising through differential suppression of stamens or carpels. The genes regulating this growth suppression and how they have evolved remain largely unknown. We discovered that two classic developmental genes with ancient roles in controlling vegetative branching were recruited to suppress carpel development in maize. Our results highlight the power of forward genetics to reveal unpredictable genetic interactions and hidden pleiotropy of developmental genes. More broadly, our findings illustrate how ancient gene functions are recruited to new developmental contexts in the evolution of plant form. Carpels in maize undergo programmed cell death in half of the flowers initiated in ears and in all flowers in tassels. The HD-ZIP I transcription factor gene GRASSY TILLERS1 (GT1) is one of only a few genes known to regulate this process. To identify additional regulators of carpel suppression, we performed a gt1 enhancer screen and found a genetic interaction between gt1 and ramosa3 (ra3). RA3 is a classic inflorescence meristem determinacy gene that encodes a trehalose-6-phosphate (T6P) phosphatase (TPP). Dissection of floral development revealed that ra3 single mutants have partially derepressed carpels, whereas gt1;ra3 double mutants have completely derepressed carpels. Surprisingly, gt1 suppresses ra3 inflorescence branching, revealing a role for gt1 in meristem determinacy. Supporting these genetic interactions, GT1 and RA3 proteins colocalize to carpel nuclei in developing flowers. Global expression profiling revealed common genes misregulated in single and double mutant flowers, as well as in derepressed gt1 axillary meristems. Indeed, we found that ra3 enhances gt1 vegetative branching, similar to the roles for the trehalose pathway and GT1 homologs in the eudicots. This functional conservation over ∼160 million years of evolution reveals ancient roles for GT1-like genes and the trehalose pathway in regulating axillary meristem suppression, later recruited to mediate carpel suppression. Our findings expose hidden pleiotropy of classic maize genes and show how an ancient developmental program was redeployed to sculpt floral form.
Collapse
|
5
|
Zhu R, Dong X, Xue Y, Xu J, Zhang A, Feng M, Zhao Q, Xia S, Yin Y, He S, Li Y, Liu T, Kang E, Shang Z. Redox-Responsive Transcription Factor 1 (RRFT1) Is Involved in Extracellular ATP-Regulated Arabidopsis thaliana Seedling Growth. PLANT & CELL PHYSIOLOGY 2020; 61:685-698. [PMID: 32049334 DOI: 10.1093/pcp/pcaa014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/31/2020] [Indexed: 05/21/2023]
Abstract
Extracellular adenosine triphosphate (eATP) is an apoplastic signaling molecule that plays an essential role in the growth and development of plants. Arabidopsis seedlings have been reported to respond to eATP; however, the downstream signaling components are still not well understood. In this study, we report that an ethylene-responsive factor, Redox-Responsive Transcription Factor 1 (RRTF1), is involved in eATP-regulated Arabidopsis thaliana seedling growth. Exogenous adenosine triphosphate inhibited green seedling root growth and induced hypocotyl bending of etiolated seedlings. RRTF1 loss-of-function mutant (rrtf1) seedlings showed decreased responses to eATP, while its complementation or overexpression led to recovered or increased eATP responsiveness. RRTF1 was expressed rapidly after eATP stimulation and then migrated into the nuclei of root tip cells. eATP-induced auxin accumulation in root tip or hypocotyl cells was impaired in rrtf1. Chromatin immunoprecipitation and high-throughput sequencing results indicated that eATP induced some genes related to cell growth and development in wild type but not in rrtf1 cells. These results suggest that RRTF1 may be involved in eATP signaling by regulating functional gene expression and cell metabolism in Arabidopsis seedlings.
Collapse
Affiliation(s)
- Ruojia Zhu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Xiaoxia Dong
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai 054001, Hebei, China
| | - Yingying Xue
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Jiawei Xu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Aiqi Zhang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Meng Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Qing Zhao
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Shuyan Xia
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yahong Yin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Shihua He
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Yuke Li
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, Hebei, China
| |
Collapse
|
6
|
Wu Y, Qin B, Feng K, Yan R, Kang E, Liu T, Shang Z. Extracellular ATP promoted pollen germination and tube growth of Nicotiana tabacum through promoting K + and Ca 2+ absorption. PLANT REPRODUCTION 2018; 31:399-410. [PMID: 29934740 DOI: 10.1007/s00497-018-0341-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/15/2018] [Indexed: 05/15/2023]
Abstract
Extracellular ATP (eATP) plays an essential role in plant growth, development, and stress tolerance. Here, we report that eATP participated in Nicotiana tabacum pollen germination (PG) and pollen tube growth (PTG) by regulating K+ and Ca2+ influx. Exogenous ATP or ADP effectively promoted PG and PTG in a dose-dependent manner; weakly hydrolysable ATP analog (ATPγS) showed a similar effect. AMP, adenosine, adenine, and phosphate did not affect PG or PTG. Within a certain range, higher concentrations of K+ or Ca2+ in the medium increased the effect of ATP in promoting PG and PTG. However, in mediums containing K+ or Ca2+ concentrations above this range, the effect of ATP was reversed, resulting in PG and PTG inhibition. Ca2+ chelators (EGTA), Ca2+ channel blockers, and K+ channel blockers suppressed ATP-promoted PG and PTG. Results from a patch clamp showed that ATP activated a K+ and Ca2+ influx in pollen protoplasts. These results suggest that, as an apoplastic signal, eATP may be involved in PG and PTG via regulating Ca2+ and K+ absorption.
Collapse
Affiliation(s)
- Yansheng Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai, 054001, Hebei, China
| | - Baozhi Qin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Kaili Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruolin Yan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
7
|
Clark G, Roux SJ. Role of Ca 2+ in Mediating Plant Responses to Extracellular ATP and ADP. Int J Mol Sci 2018; 19:E3590. [PMID: 30441766 PMCID: PMC6274673 DOI: 10.3390/ijms19113590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Among the most recently discovered chemical regulators of plant growth and development are extracellular nucleotides, especially extracellular ATP (eATP) and extracellular ADP (eADP). Plant cells release ATP into their extracellular matrix under a variety of different circumstances, and this eATP can then function as an agonist that binds to a specific receptor and induces signaling changes, the earliest of which is an increase in the concentration of cytosolic calcium ([Ca2+]cyt). This initial change is then amplified into downstream-signaling changes that include increased levels of reactive oxygen species and nitric oxide, which ultimately lead to major changes in the growth rate, defense responses, and leaf stomatal apertures of plants. This review presents and discusses the evidence that links receptor activation to increased [Ca2+]cyt and, ultimately, to growth and diverse adaptive changes in plant development. It also discusses the evidence that increased [Ca2+]cyt also enhances the activity of apyrase (nucleoside triphosphate diphosphohydrolase) enzymes that function in multiple subcellular locales to hydrolyze ATP and ADP, and thus limit or terminate the effects of these potent regulators.
Collapse
Affiliation(s)
- Greg Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Zhu R, Dong X, Hao W, Gao W, Zhang W, Xia S, Liu T, Shang Z. Heterotrimeric G Protein-Regulated Ca 2+ Influx and PIN2 Asymmetric Distribution Are Involved in Arabidopsis thaliana Roots' Avoidance Response to Extracellular ATP. FRONTIERS IN PLANT SCIENCE 2017; 8:1522. [PMID: 28919907 PMCID: PMC5585194 DOI: 10.3389/fpls.2017.01522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/18/2017] [Indexed: 05/04/2023]
Abstract
Extracellular ATP (eATP) has been reported to be involved in plant growth as a primary messenger in the apoplast. Here, roots of Arabidopsis thaliana seedlings growing in jointed medium bent upon contact with ATP-containing medium to keep away from eATP, showing a marked avoidance response. Roots responded similarly to ADP and bz-ATP but did not respond to AMP and GTP. The eATP avoidance response was reduced in loss-of-function mutants of heterotrimeric G protein α subunit (Gα) (gpa1-1 and gpa1-2) and enhanced in Gα-over-expression (OE) lines (wGα and cGα). Ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) and Gd3+ remarkably suppressed eATP-induced root bending. ATP-stimulated Ca2+ influx was impaired in Gα null mutants and increased in its OE lines. DR5-GFP and PIN2 were asymmetrically distributed in ATP-stimulated root tips, this effect was strongly suppressed by EGTA and diminished in Gα null mutants. In addition, some eATP-induced genes' expression was also impaired in Gα null mutants. Based on these results, we propose that heterotrimeric Gα-regulated Ca2+ influx and PIN2 distribution may be key signaling events in eATP sensing and avoidance response in Arabidopsis thaliana roots.
Collapse
|
9
|
Guiguet A, Dubreuil G, Harris MO, Appel HM, Schultz JC, Pereira MH, Giron D. Shared weapons of blood- and plant-feeding insects: Surprising commonalities for manipulating hosts. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:4-21. [PMID: 26705897 DOI: 10.1016/j.jinsphys.2015.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 05/04/2023]
Abstract
Insects that reprogram host plants during colonization remind us that the insect side of plant-insect story is just as interesting as the plant side. Insect effectors secreted by the salivary glands play an important role in plant reprogramming. Recent discoveries point to large numbers of salivary effectors being produced by a single herbivore species. Since genetic and functional characterization of effectors is an arduous task, narrowing the field of candidates is useful. We present ideas about types and functions of effectors from research on blood-feeding parasites and their mammalian hosts. Because of their importance for human health, blood-feeding parasites have more tools from genomics and other - omics than plant-feeding parasites. Four themes have emerged: (1) mechanical damage resulting from attack by blood-feeding parasites triggers "early danger signals" in mammalian hosts, which are mediated by eATP, calcium, and hydrogen peroxide, (2) mammalian hosts need to modulate their immune responses to the three "early danger signals" and use apyrases, calreticulins, and peroxiredoxins, respectively, to achieve this, (3) blood-feeding parasites, like their mammalian hosts, rely on some of the same "early danger signals" and modulate their immune responses using the same proteins, and (4) blood-feeding parasites deploy apyrases, calreticulins, and peroxiredoxins in their saliva to manipulate the "danger signals" of their mammalian hosts. We review emerging evidence that plant-feeding insects also interfere with "early danger signals" of their hosts by deploying apyrases, calreticulins and peroxiredoxins in saliva. Given emerging links between these molecules, and plant growth and defense, we propose that these effectors interfere with phytohormone signaling, and therefore have a special importance for gall-inducing and leaf-mining insects, which manipulate host-plants to create better food and shelter.
Collapse
Affiliation(s)
- Antoine Guiguet
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France; Département de Biologie, École Normale Supérieure de Lyon, 69007 Lyon, France
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France
| | - Marion O Harris
- Department of Entomology, North Dakota State University, Fargo, ND 58105, USA; Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France
| | - Heidi M Appel
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Jack C Schultz
- Life Science Center, University of Missouri, Columbia, MO 65211, USA
| | - Marcos H Pereira
- Le Studium Loire Valley Institute for Advanced Studies, 45000 Orléans, France; Laboratório de Fisiologia de Insectos Hematófagos, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université François-Rabelais de Tours, 37200 Tours, France.
| |
Collapse
|
10
|
Radin I, Mansilla N, Rödel G, Steinebrunner I. The Arabidopsis COX11 Homolog is Essential for Cytochrome c Oxidase Activity. FRONTIERS IN PLANT SCIENCE 2015; 6:1091. [PMID: 26734017 PMCID: PMC4683207 DOI: 10.3389/fpls.2015.01091] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/20/2015] [Indexed: 05/19/2023]
Abstract
Members of the ubiquitous COX11 (cytochrome c oxidase 11) protein family are involved in copper delivery to the COX complex. In this work, we characterize the Arabidopsis thaliana COX11 homolog (encoded by locus At1g02410). Western blot analyses and confocal microscopy identified Arabidopsis COX11 as an integral mitochondrial protein. Despite sharing high sequence and structural similarities, the Arabidopsis COX11 is not able to functionally replace the Saccharomyces cerevisiae COX11 homolog. Nevertheless, further analysis confirmed the hypothesis that Arabidopsis COX11 is essential for COX activity. Disturbance of COX11 expression through knockdown (KD) or overexpression (OE) affected COX activity. In KD lines, the activity was reduced by ~50%, resulting in root growth inhibition, smaller rosettes and leaf curling. In OE lines, the reduction was less pronounced (~80% of the wild type), still resulting in root growth inhibition. Additionally, pollen germination was impaired in COX11 KD and OE plants. This effect on pollen germination can only partially be attributed to COX deficiency and may indicate a possible auxiliary role of COX11 in ROS metabolism. In agreement with its role in energy production, the COX11 promoter is highly active in cells and tissues with high-energy demand for example shoot and root meristems, or vascular tissues of source and sink organs. In COX11 KD lines, the expression of the plasma-membrane copper transporter COPT2 and of several copper chaperones was altered, indicative of a retrograde signaling pathway pertinent to copper homeostasis. Based on our data, we postulate that COX11 is a mitochondrial chaperone, which plays an important role for plant growth and pollen germination as an essential COX complex assembly factor.
Collapse
Affiliation(s)
- Ivan Radin
- Institute for Genetics, Department of Biology, Technische Universität DresdenDresden, Germany
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional del LitoralSanta Fe, Argentina
| | - Gerhard Rödel
- Institute for Genetics, Department of Biology, Technische Universität DresdenDresden, Germany
| | | |
Collapse
|
11
|
He X, Zeng J, Cao F, Ahmed IM, Zhang G, Vincze E, Wu F. HvEXPB7, a novel β-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7405-19. [PMID: 26417018 PMCID: PMC4765802 DOI: 10.1093/jxb/erv436] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Tibetan wild barley is a treasure trove of useful genes for crop improvement including abiotic stress tolerance, like drought. Root hair of single-celled structures plays an important role in water and nutrition uptake. Polyethylene-glycol-induced drought stress hydroponic/petri-dish experiments were performed, where root hair morphology and transcriptional characteristics of two contrasting Tibetan wild barley genotypes (drought-tolerant XZ5 and drought-sensitive XZ54) and drought-tolerant cv. Tadmor were compared. Drought-induced root hair growth was only observed in XZ5. Thirty-six drought tolerance-associated genes were identified in XZ5, including 16 genes specifically highly expressed in XZ5 but not Tadmor under drought. The full length cDNA of a novel β-expansin gene (HvEXPB7), being the unique root hair development related gene in the identified genes, was cloned. The sequence comparison indicated that HvEXPB7 carried both DPBB_1 and Pollon_allerg_1 domains. HvEXPB7 is predominantly expressed in roots. Subcellular localization verified that HvEXPB7 is located in the plasma membrane. Barley stripe mosaic virus induced gene silencing (BSMV-VIGS) of HvEXPB7 led to severely suppressed root hairs both under control and drought conditions, and significantly reduced K uptake. These findings highlight and confer the significance of HvEXPB7 in root hair growth under drought stress in XZ5, and provide a novel insight into the genetic basis for drought tolerance in Tibetan wild barley.
Collapse
Affiliation(s)
- Xiaoyan He
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Jianbin Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Imrul Mosaddek Ahmed
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| | - Eva Vincze
- Department of Molecular Biology and Genetics, University of Aarhus, Fosøgsvej 1, DK-4200 Slagelse, Denmark
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
12
|
Massalski C, Bloch J, Zebisch M, Steinebrunner I. The biochemical properties of the Arabidopsis ecto-nucleoside triphosphate diphosphohydrolase AtAPY1 contradict a direct role in purinergic signaling. PLoS One 2015; 10:e0115832. [PMID: 25822168 PMCID: PMC4379058 DOI: 10.1371/journal.pone.0115832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
The Arabidopsis E-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) AtAPY1 was previously shown to be involved in growth and development, pollen germination and stress responses. It was proposed to perform these functions through regulation of extracellular ATP signals. However, a GFP-tagged version was localized exclusively in the Golgi and did not hydrolyze ATP. In this study, AtAPY1 without the bulky GFP-tag was biochemically characterized with regard to its suggested role in purinergic signaling. Both the full-length protein and a soluble form without the transmembrane domain near the N-terminus were produced in HEK293 cells. Of the twelve nucleotide substrates tested, only three--GDP, IDP and UDP--were hydrolyzed, confirming that ATP was not a substrate of AtAPY1. In addition, the effects of pH, divalent metal ions, known E-NTPDase inhibitors and calmodulin on AtAPY1 activity were analyzed. AtAPY1-GFP extracted from transgenic Arabidopsis seedlings was included in the analyses. All three AtAPY1 versions exhibited very similar biochemical properties. Activity was detectable in a broad pH range, and Ca(2+), Mg(2+) and Mn(2+) were the three most efficient cofactors. Of the inhibitors tested, vanadate was the most potent one. Surprisingly, sulfonamide-based inhibitors shown to inhibit other E-NTPDases and presumed to inhibit AtAPY1 as well were not effective. Calmodulin stimulated the activity of the GFP-tagless membranous and soluble AtAPY1 forms about five-fold, but did not alter their substrate specificities. The apparent Km values obtained with AtAPY1-GFP indicate that AtAPY1 is primarily a GDPase. A putative three-dimensional structural model of the ecto-domain is presented, explaining the potent inhibitory potential of vanadate and predicting the binding mode of GDP. The found substrate specificity classifies AtAPY1 as a nucleoside diphosphatase typical of N-terminally anchored Golgi E-NTPDases and negates a direct function in purinergic signaling.
Collapse
Affiliation(s)
- Carolin Massalski
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Jeannine Bloch
- Department of Biology, Technische Universität Dresden, Dresden, Germany
| | - Matthias Zebisch
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
13
|
Clark GB, Morgan RO, Fernandez MP, Salmi ML, Roux SJ. Breakthroughs spotlighting roles for extracellular nucleotides and apyrases in stress responses and growth and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:107-116. [PMID: 25017166 DOI: 10.1016/j.plantsci.2014.06.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/31/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Animal and plant cells release nucleotides into their extracellular matrix when touched, wounded, and when their plasma membranes are stretched during delivery of secretory vesicles and growth. These released nucleotides then function as signaling agents that induce rapid increases in the concentration of cytosolic calcium, nitric oxide and superoxide. These, in turn, are transduced into downstream physiological changes. These changes in plants include changes in the growth of diverse tissues, in gravitropism, and in the opening and closing of stomates. The concentration of extracellular nucleotides is controlled by various phosphatases, prominent among which are apyrases EC 3.6.1.5 (nucleoside triphosphate diphosphohydrolases, NTPDases). This review provides phylogenetic and pHMM analyses of plant apyrases as well as analysis of predicted post-translational modifications for Arabidopsis apyrases. This review also summarizes and discusses recent advances in research on the roles of apyrases and extracellular nucleotides in controlling plant growth and development. These include new findings that document how apyrases and extracellular nucleotides control auxin transport, modulate stomatal aperture, and mediate biotic and abiotic stress responses, and on how apyrase suppression leads to growth inhibition.
Collapse
Affiliation(s)
- Greg B Clark
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA
| | - Reginald O Morgan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006 Oviedo, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and University Institute of Biotechnology of Asturias, University of Oviedo, E-33006 Oviedo, Spain
| | - Mari L Salmi
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, University of Texas, Austin, TX 78713, USA.
| |
Collapse
|
14
|
Nucleotides and Nucleosides: Transport, Metabolism, and Signaling Function of Extracellular ATP. PROGRESS IN BOTANY 2014. [DOI: 10.1007/978-3-642-38797-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Wujak M, Banach M, Porowińska D, Piskulak K, Komoszyński M. Isolation and bioinformatic analysis of seven genes encoding potato apyrase. Bacterial overexpresssion, refolding and initial kinetic studies on some recombinant potato apyrases. PHYTOCHEMISTRY 2013; 93:8-17. [PMID: 23663929 DOI: 10.1016/j.phytochem.2013.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 03/04/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Abstract
Here we have isolated seven apyrase encoding cDNA sequences (StAPY4-StAPY10) from the potato variety Saturna tuber cDNA library by affecting necessary modifications in the screening protocol. The cDNA sequences were identified with a pair of primers complementary to the most conserved sequences identified in potato variety Desiree apyrase genes. Our data strongly suggest the multigenic nature of potato apyrase. All deduced amino acid sequences contain a putative signal sequence, one transmembrane region at the amino terminus and five apyrase conserved regions (ACRs) (except StAPY6). Phylogenetic analysis revealed that encoded proteins shared high level of DNA sequence identity among themselves, representing a family of proteins markedly distinct from other eukaryotic as well as prokaryotic apyrases. Two cDNA sequences (StAPY4 and StAPY6) were overexpressed in bacteria and recombinant proteins were found accumulated in inclusion bodies, even thought they were fused with thioredoxin-tag. Additionally, we present the first successful in vitro attempt at reactivation and purification of recombinant potato apyrase StAPY6. The ratio of ATPase/ADPase hydrolysis of recombinant StAPY6 was determined as 1.5:1. Unlike other apyrases the enzyme lacked ACR5 and was endowed with lower molecular weight, high specificity for purine nucleotides and very low specificity for pyrimidine, suggesting that StAPY6 is a potato apyrase, not described so far.
Collapse
Affiliation(s)
- Magdalena Wujak
- Department of Biochemistry, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Lwowska 1 St, 87-100 Toruń, Poland
| | | | | | | | | |
Collapse
|
16
|
Yang J, Wu J, Romanovicz D, Clark G, Roux SJ. Co-regulation of exine wall patterning, pollen fertility and anther dehiscence by Arabidopsis apyrases 6 and 7. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 69:62-73. [PMID: 23728389 DOI: 10.1016/j.plaphy.2013.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/29/2013] [Indexed: 05/02/2023]
Abstract
An NCBI nucleotide blast keyed to apyrase (ATP-diphosphohydrolases, EC 3.6.1.5) conserved regions revealed five apyrases, AtAPYs (3-7), in addition to the previously identified AtAPY1 and 2. Here we report the functional analyses of two of the newly defined apyrases, AtAPY6 and AtAPY7. We analyzed tissue specificity of AtAPY6 and 7 expression by qRT-PCR and promoter:GUS fusion assays. We characterized the phenotypes of single and double knockout mutants for AtAPY6 and 7 in anther and pollen by light microscopy and electron microscopy. The transcripts of both AtAPY6 and 7 are expressed in mature pollen grains. Single knockout mutants of AtAPY6 and 7 displayed a minor change in pollen exine pattern under scanning electron microscopy without obvious change in fertility. Double knockout mutants of AtAPY6 and 7 (apy6apy7) displayed severe defects in pollen exine pattern, deformed pollen shape and reduced male fertility. An analysis of pollen from heterozygous apy6apy7 plants suggests that the defects in pollen exine wall are determined by the diploid genome. Our findings demonstrate that AtAPY6 and AtAPY7 are enzymes that play an important role in exine development of pollen grains, possibly through regulating the production of key polysaccharides needed for proper assembly of the exine layer.
Collapse
Affiliation(s)
- Jian Yang
- Section of Molecular Cell and Developmental Biology, University of Texas at Austin, 1 University Station A6700, Austin TX 78712, USA
| | | | | | | | | |
Collapse
|
17
|
Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday GK, Gardner G, Roux SJ. Role for apyrases in polar auxin transport in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1985-95. [PMID: 23071251 PMCID: PMC3510125 DOI: 10.1104/pp.112.202887] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/10/2012] [Indexed: 05/20/2023]
Abstract
Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [(3)H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport.
Collapse
|
18
|
Chiu TY, Christiansen K, Moreno I, Lao J, Loqué D, Orellana A, Heazlewood JL, Clark G, Roux SJ. AtAPY1 and AtAPY2 function as Golgi-localized nucleoside diphosphatases in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2012; 53:1913-25. [PMID: 23034877 DOI: 10.1093/pcp/pcs131] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases; apyrases) (EC 3.6.1.5) hydrolyze di- and triphosphate nucleotides, but not monophosphate nucleotides. They are categorized as E-type ATPases, have a broad divalent cation (Mg(2+), Ca(2+)) requirement for activation and are insensitive to inhibitors of F-type, P-type and V-type ATPases. Among the seven NTPDases identified in Arabidopsis, only APYRASE 1 (AtAPY1) and APYRASE 2 (AtAPY2) have been previously characterized. In this work, either AtAPY1 or AtAPY2 tagged with C-terminal green fluorescent protein (GFP) driven by their respective native promoter can rescue the apy1 apy2 double knockout (apy1 apy2 dKO) successfully, and confocal microscopy reveals that these two Arabidopsis apyrases reside in the Golgi apparatus. In Saccharomyces cerevisiae, both AtAPY1 and AtAPY2 can complement the Golgi-localized GDA1 mutant, rescuing its aberrant protein glycosylation phenotype. In Arabidopsis, microsomes of the wild type show higher substrate preferences toward UDP compared with other NDP substrates. Loss-of-function Arabidopsis AtAPY1 mutants exhibit reduced microsomal UDPase activity, and this activity is even more significantly reduced in the loss-of-function AtAPY2 mutant and in the AtAPY1/AtAPY2 RNA interference (RNAi) technology repressor lines. Microsomes from wild-type plants also have detectable GDPase activity, which is significantly reduced in apy2 but not apy1 mutants. The GFP-tagged AtAPY1 or AtAPY2 constructs in the apy1 apy2 dKO plants can restore microsomal UDP/GDPase activity, confirming that they both also have functional competency. The cell walls of apy1, apy2 and the RNAi-silenced lines all have an increased composition of galactose, but the transport efficiency of UDP-galactose across microsomal membranes was not altered. Taken together, these results reveal that AtAPY1 and AtAPY2 are Golgi-localized nucleotide diphosphatases and are likely to have roles in regulating UDP/GDP concentrations in the Golgi lumen.
Collapse
Affiliation(s)
- Tsan-Yu Chiu
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schiller M, Massalski C, Kurth T, Steinebrunner I. The Arabidopsis apyrase AtAPY1 is localized in the Golgi instead of the extracellular space. BMC PLANT BIOLOGY 2012; 12:123. [PMID: 22849572 PMCID: PMC3511161 DOI: 10.1186/1471-2229-12-123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 07/09/2012] [Indexed: 05/04/2023]
Abstract
BACKGROUND The two highly similar Arabidopsis apyrases AtAPY1 and AtAPY2 were previously shown to be involved in plant growth and development, evidently by regulating extracellular ATP signals. The subcellular localization of AtAPY1 was investigated to corroborate an extracellular function. RESULTS Transgenic Arabidopsis lines expressing AtAPY1 fused to the SNAP-(O(6)-alkylguanine-DNA alkyltransferase)-tag were used for indirect immunofluorescence and AtAPY1 was detected in punctate structures within the cell. The same signal pattern was found in seedlings stably overexpressing AtAPY1-GFP by indirect immunofluorescence and live imaging. In order to identify the nature of the AtAPY1-positive structures, AtAPY1-GFP expressing seedlings were treated with the endocytic marker stain FM4-64 (N-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-hexatrienyl)-pyridinium dibromide) and crossed with a transgenic line expressing the trans-Golgi marker Rab E1d. Neither FM4-64 nor Rab E1d co-localized with AtAPY1. However, live imaging of transgenic Arabidopsis lines expressing AtAPY1-GFP and either the fluorescent protein-tagged Golgi marker Membrin 12, Syntaxin of plants 32 or Golgi transport 1 protein homolog showed co-localization. The Golgi localization was confirmed by immunogold labeling of AtAPY1-GFP. There was no indication of extracellular AtAPY1 by indirect immunofluorescence using antibodies against SNAP and GFP, live imaging of AtAPY1-GFP and immunogold labeling of AtAPY1-GFP. Activity assays with AtAPY1-GFP revealed GDP, UDP and IDP as substrates, but neither ATP nor ADP. To determine if AtAPY1 is a soluble or membrane protein, microsomal membranes were isolated and treated with various solubilizing agents. Only SDS and urea (not alkaline or high salt conditions) were able to release the AtAPY1 protein from microsomal membranes. CONCLUSIONS AtAPY1 is an integral Golgi protein with the substrate specificity typical for Golgi apyrases. It is therefore not likely to regulate extracellular nucleotide signals as previously thought. We propose instead that AtAPY1 exerts its growth and developmental effects by possibly regulating glycosylation reactions in the Golgi.
Collapse
Affiliation(s)
- Madlen Schiller
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, Helmholtzstraße 10, Dresden 01069, Germany
| | - Carolin Massalski
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, Helmholtzstraße 10, Dresden 01069, Germany
| | - Thomas Kurth
- DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, Dresden 01307, Germany
| | - Iris Steinebrunner
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, Helmholtzstraße 10, Dresden 01069, Germany
| |
Collapse
|
20
|
Hao LH, Wang WX, Chen C, Wang YF, Liu T, Li X, Shang ZL. Extracellular ATP promotes stomatal opening of Arabidopsis thaliana through heterotrimeric G protein α subunit and reactive oxygen species. MOLECULAR PLANT 2012; 5:852-64. [PMID: 22138967 DOI: 10.1093/mp/ssr095] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In recent years, adenosine tri-phosphate (ATP) has been reported to exist in apoplasts of plant cells as a signal molecule. Extracellular ATP (eATP) plays important roles in plant growth, development, and stress tolerance. Here, extracellular ATP was found to promote stomatal opening of Arabidopsis thaliana in light and darkness. ADP, GTP, and weakly hydrolyzable ATP analogs (ATPγS, Bz-ATP, and 2meATP) showed similar effects, whereas AMP and adenosine did not affect stomatal movement. Apyrase inhibited stomatal opening. ATP-promoted stomatal opening was blocked by an NADPH oxidase inhibitor (diphenylene iodonium) or deoxidizer (dithiothreitol), and was impaired in null mutant of NADPH oxidase (atrbohD/F). Added ATP triggered ROS generation in guard cells via NADPH oxidase. ATP also induced Ca(2+) influx and H(+) efflux in guard cells. In atrbohD/F, ATP-induced ion flux was strongly suppressed. In null mutants of the heterotrimeric G protein α subunit, ATP-promoted stomatal opening, cytoplasmic ROS generation, Ca(2+) influx, and H(+) efflux were all suppressed. These results indicated that eATP-promoted stomatal opening possibly involves the heterotrimeric G protein, ROS, cytosolic Ca(2+), and plasma membrane H(+)-ATPase.
Collapse
Affiliation(s)
- Li-Hua Hao
- Key Laboratory of Molecular and Cell Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, PR China
| | | | | | | | | | | | | |
Collapse
|
21
|
Parsons HT, Christiansen K, Knierim B, Carroll A, Ito J, Batth TS, Smith-Moritz AM, Morrison S, McInerney P, Hadi MZ, Auer M, Mukhopadhyay A, Petzold CJ, Scheller HV, Loqué D, Heazlewood JL. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. PLANT PHYSIOLOGY 2012; 159:12-26. [PMID: 22430844 PMCID: PMC3375956 DOI: 10.1104/pp.111.193151] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/04/2012] [Indexed: 05/17/2023]
Abstract
The plant Golgi plays a pivotal role in the biosynthesis of cell wall matrix polysaccharides, protein glycosylation, and vesicle trafficking. Golgi-localized proteins have become prospective targets for reengineering cell wall biosynthetic pathways for the efficient production of biofuels from plant cell walls. However, proteomic characterization of the Golgi has so far been limited, owing to the technical challenges inherent in Golgi purification. In this study, a combination of density centrifugation and surface charge separation techniques have allowed the reproducible isolation of Golgi membranes from Arabidopsis (Arabidopsis thaliana) at sufficiently high purity levels for in-depth proteomic analysis. Quantitative proteomic analysis, immunoblotting, enzyme activity assays, and electron microscopy all confirm high purity levels. A composition analysis indicated that approximately 19% of proteins were likely derived from contaminating compartments and ribosomes. The localization of 13 newly assigned proteins to the Golgi using transient fluorescent markers further validated the proteome. A collection of 371 proteins consistently identified in all replicates has been proposed to represent the Golgi proteome, marking an appreciable advancement in numbers of Golgi-localized proteins. A significant proportion of proteins likely involved in matrix polysaccharide biosynthesis were identified. The potential within this proteome for advances in understanding Golgi processes has been demonstrated by the identification and functional characterization of the first plant Golgi-resident nucleoside diphosphatase, using a yeast complementation assay. Overall, these data show key proteins involved in primary cell wall synthesis and include a mixture of well-characterized and unknown proteins whose biological roles and importance as targets for future research can now be realized.
Collapse
|
22
|
Clark G, Roux SJ. Apyrases, extracellular ATP and the regulation of growth. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:700-6. [PMID: 21855397 DOI: 10.1016/j.pbi.2011.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/15/2011] [Accepted: 07/23/2011] [Indexed: 05/07/2023]
Abstract
Although no definitive receptor for extracellular ATP (eATP) has been identified in plants, there is now stronger physiological evidence that the effects of eATP on plant growth are mediated by a receptor, or, as in animals, by multiple receptors. Recent papers clarify how extracellular nucleotides induce changes in [Ca(2+)](cyt), and the production of nitric oxide (NO) and reactive oxygen species. They document links between eATP signaling and the synthesis or transport of hormones, and they reveal that applied nucleotides can regulate the aperture of stomates, which release ATP when stimulated by light and hormones. Ectoapyrases (ecto-nucleoside triphosphate-diphosphohydrolase) help control both the diverse signaling changes and downstream growth changes induced by extracellular nucleotides by limiting their concentration in the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Greg Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
23
|
Chivasa S, Slabas AR. Plant extracellular ATP signalling: new insight from proteomics. MOLECULAR BIOSYSTEMS 2011; 8:445-52. [PMID: 21979580 DOI: 10.1039/c1mb05278k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complex signalling systems have evolved in multicellular organisms to enable cell-to-cell communication during growth and development. In plants, cell communication via the extracellular matrix (apoplast) controls many processes vital for plant survival. Secretion of ATP into the extracellular matrix is now recognised as a previously unknown stimulus for cell signalling with a role in many aspects of plant physiology. In the last decade, the secondary messenger molecules in extracellular ATP signalling were identified, but the downstream gene and protein networks that underpin plant responses to extracellular ATP are only beginning to be characterised. Here we review the current status of our knowledge of plant extracellular signalling and demonstrate how applying state-of-the art proteomic technologies is rapidly bringing new discoveries in extracellular ATP research. We discuss how monitoring of the global proteomic profile during responses to modulation of extracellular ATP signalling has led to novel insight into pathogen defence systems and plant programmed cell death regulation. On the basis of extensive proteomic, pharmacological, and reverse genetics data, extracellular ATP has been confirmed to constitute an important molecular switch that tightly controls organellar energy metabolism, reprogramming of primary metabolic pathways, and redirection of resources to protein networks that support adaptation of plants to stress.
Collapse
Affiliation(s)
- Stephen Chivasa
- School of Biological & Biomedical Sciences, Durham University, Durham, United Kingdom.
| | | |
Collapse
|
24
|
Bernard C, Traub M, Kunz HH, Hach S, Trentmann O, Möhlmann T. Equilibrative nucleoside transporter 1 (ENT1) is critical for pollen germination and vegetative growth in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4627-37. [PMID: 21642237 PMCID: PMC3170557 DOI: 10.1093/jxb/err183] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/29/2011] [Accepted: 05/06/2011] [Indexed: 05/18/2023]
Abstract
ENT1 of Arabidopsis thaliana was the first member of the equilibrative nucleoside transporter (ENT) family to be identified in plants and characterized as a cellular, high-affinity nucleoside importer. Evidence is presented here for a tonoplast localization of ENT1 based on proteome data and Western blot analyses. Increased export of adenosine from reconstituted tonoplast preparations from 35S:ENT1 mutants compared with those from the wild type and ENT1-RNAi mutants support this view. Furthermore, increased vacuolar adenosine and vacuolar 2'3'-cAMP (an intermediate of RNA catabolism) contents in ENT1-RNAi mutants, but decreased contents of these metabolites in 35S:ENT1 over-expresser mutants, were observed. An up-regulation of the salvage pathway was detected in the latter mutants, leading to the conclusion that draining the vacuolar adenosine storage by ENT1 over-expression interferes with cellular nucleotide metabolism. As a consequence of the observed metabolic alterations 35S:ENT1 over-expresser mutants exhibited a smaller phenotypic appearance compared with wild-type plants. In addition, ENT1:RNAi mutants exhibited significantly lower in vitro germination of pollen and contained reduced internal and external ATP levels. This indicates that ENT1-mediated nucleosides, especially adenosine transport, is important for nucleotide metabolism, thus influencing growth and pollen germination.
Collapse
Affiliation(s)
- Carsten Bernard
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Michaela Traub
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | | | - Stefanie Hach
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Oliver Trentmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, Postfach 3049, D-67663 Kaiserslautern, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
25
|
Clark G, Fraley D, Steinebrunner I, Cervantes A, Onyirimba J, Liu A, Torres J, Tang W, Kim J, Roux SJ. Extracellular nucleotides and apyrases regulate stomatal aperture in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1740-53. [PMID: 21636723 PMCID: PMC3149927 DOI: 10.1104/pp.111.174466] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/31/2011] [Indexed: 05/19/2023]
Abstract
This study investigates the role of extracellular nucleotides and apyrase enzymes in regulating stomatal aperture. Prior data indicate that the expression of two apyrases in Arabidopsis (Arabidopsis thaliana), APY1 and APY2, is strongly correlated with cell growth and secretory activity. Both are expressed strongly in guard cell protoplasts, as determined by reverse transcription-polymerase chain reaction and immunoblot analyses. Promoter activity assays for APY1 and APY2 show that expression of both apyrases correlates with conditions that favor stomatal opening. Correspondingly, immunoblot data indicate that APY expression in guard cell protoplasts rises quickly when these cells are moved from darkness into light. Both short-term inhibition of ectoapyrase activity by polyclonal antibodies and long-term suppression of APY1 and APY2 transcript levels significantly disrupt normal stomatal behavior in light. Stomatal aperture shows a biphasic response to applied adenosine 5'-[γ-thio]triphosphate (ATPγS) or adenosine 5'-[β-thio] diphosphate, with lower concentrations inducing stomatal opening and higher concentrations inducing closure. Equivalent concentrations of adenosine 5'-O-thiomonophosphate have no effect on aperture. Two mammalian purinoceptor inhibitors block ATPγS- and adenosine 5'-[β-thio] diphosphate-induced opening and closing and also partially block the ability of abscisic acid to induce stomatal closure and of light to induce stomatal opening. Treatment of epidermal peels with ATPγS induces increased levels of nitric oxide and reactive oxygen species, and genetically suppressing the synthesis of these agents blocks the effects of nucleotides on stomatal aperture. A luciferase assay indicates that treatments that induce either the closing or opening of stomates also induce the release of ATP from guard cells. These data favor the novel conclusion that ectoapyrases and extracellular nucleotides play key roles in regulating stomatal functions.
Collapse
Affiliation(s)
- Greg Clark
- Section of Molecular, Cell, and Developmental Biology, University of Texas, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Adams JP, Adeli A, Hsu CY, Harkess RL, Page GP, dePamphilis CW, Schultz EB, Yuceer C. Poplar maintains zinc homeostasis with heavy metal genes HMA4 and PCS1. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3737-52. [PMID: 21504875 PMCID: PMC3134336 DOI: 10.1093/jxb/err025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 12/28/2010] [Accepted: 01/07/2011] [Indexed: 05/06/2023]
Abstract
Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.
Collapse
Affiliation(s)
- Joshua P Adams
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jung B, Hoffmann C, Möhlmann T. Arabidopsis nucleoside hydrolases involved in intracellular and extracellular degradation of purines. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:703-11. [PMID: 21235647 DOI: 10.1111/j.1365-313x.2010.04455.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Recently, the first plant nucleoside hydrolase, NSH1 (former designation URH1), was identified at the molecular level. This enzyme's highest hydrolysis capacity is for uridine, thereby balancing pyrimidine salvage and catabolism. NSH1 was found to be less efficient in the hydrolysis of further nucleosides. However, it remained unclear whether purine nucleosides are processed by NSH1. Moreover, the biochemical and physiological functions of further NSH isoforms in Arabidopsis has not been analyzed. Here we show that NSH1 is also able to hydrolyze xanthosine with high efficiency, and thus represents the leading activity in purine and pyrimidine breakdown in a cell. A knockout mutant for NSH1 showed symptoms of accelerated senescence, accompanied by marked accumulation of uridine and xanthosine under conditions of prolonged darkness. The closest, so far uncharacterized, homolog of NSH1, NSH2, was found to act during the late phase of senescence and may support inosine breakdown. NSH3, another NSH isoform, surprisingly functions as an extracellular, purine-specific hydrolase that is involved in degradation of extracellular nucleosides and may participate in wound and pathogen responses.
Collapse
Affiliation(s)
- Benjamin Jung
- Pflanzenphysiologie, Fachbereich Biologie, Universität Kaiserslautern, Erwin-Schrödinger-Straße, D-67663 Kaiserslautern, Germany
| | | | | |
Collapse
|
28
|
Steinebrunner I, Landschreiber M, Krause-Buchholz U, Teichmann J, Rödel G. HCC1, the Arabidopsis homologue of the yeast mitochondrial copper chaperone SCO1, is essential for embryonic development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:319-30. [PMID: 21041373 DOI: 10.1093/jxb/erq269] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Arabidopsis HCC1 gene is a homologue of the copper chaperone SCO1 from the yeast Saccharomyces cerevisiae. SCO1 (synthesis of cytochrome c oxidase 1) encodes a mitochondrial protein that is essential for the correct assembly of complex IV in the respiratory chain. GUS analyses showed HCC1 promoter activity in vascular tissue, guard cells, hydathodes, trichome support cells, and embryos. HCC1 function was studied in two hcc1 T-DNA insertion lines, hcc1-1 and hcc1-2. Gametophyte development was not affected by the disruption of HCC1, but homozygous hcc1-1 and hcc1-2 embryos became arrested at various developmental stages, mostly at the heart stage. Both the wild-type HCC1 gene and the modified gene coding for the C-terminally SNAP-tagged HCC1 were able to complement the embryo-lethal phenotype of the hcc1-1 line. Localization of the SNAP-tagged HCC1 in transgenic lines identified HCC1 as a mitochondrial protein. To determine if HCC1 is a functional homologue to Sco1p, the respiratory-deficient yeast sco1 mutant was transformed with chimeric constructs containing different combinations of HCC1 and SCO1 sequences. One of the resulting chimeric proteins restored respiration in the yeast mutant. This protein had the N-terminal mitochondrial targeting signal and the single transmembrane domain derived from Sco1p and the C-terminal half (including the copper-binding motif) derived from HCC1. Growth of the complemented yeast mutant was enhanced by the addition of copper to the medium. The data demonstrate that HCC1 is essential for embryo development in Arabidopsis, possibly due to its role in cytochrome c oxidase assembly.
Collapse
Affiliation(s)
- Iris Steinebrunner
- Department of Biology, Section of Molecular Biotechnology, Technische Universität Dresden, D-01062 Dresden, Germany.
| | | | | | | | | |
Collapse
|
29
|
Clark G, Wu M, Wat N, Onyirimba J, Pham T, Herz N, Ogoti J, Gomez D, Canales AA, Aranda G, Blizard M, Nyberg T, Terry A, Torres J, Wu J, Roux SJ. Both the stimulation and inhibition of root hair growth induced by extracellular nucleotides in Arabidopsis are mediated by nitric oxide and reactive oxygen species. PLANT MOLECULAR BIOLOGY 2010; 74:423-35. [PMID: 20820881 DOI: 10.1007/s11103-010-9683-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 08/24/2010] [Indexed: 05/20/2023]
Abstract
Root hairs secrete ATP as they grow, and extracellular ATP and ADP can trigger signaling pathways that regulate plant cell growth. In several plant tissues the level of extracellular nucleotides is limited in part by ectoapyrases (ecto-NTPDases), and the growth of these tissues is strongly influenced by their level of ectoapyrase expression. Both chemical inhibition of ectoapyrase activity and suppression of the expression of two ectoapyrase enzymes by RNAi in Arabidopsis resulted in inhibition of root hair growth. As assayed by a dose-response curve, different concentrations of the poorly hydrolysable nucleotides, ATPγS and ADPβS, could either stimulate (at 7.5-25 μM) or inhibit (at ≥ 150 μM) the growth rate of root hairs in less than an hour. Equal amounts of AMPS, used as a control, had no effect on root hair growth. Root hairs of nia1nia2 mutants, which are suppressed in nitric oxide (NO) production, and of atrbohD/F mutants, which are suppressed in the production of H(2)O(2), did not show growth responses to applied nucleotides, indicating that the growth changes induced by these nucleotides in wild-type plants were likely transduced via NO and H(2)O(2) signals. Consistent with this interpretation, treatment of root hairs with different concentrations of ATPγS induced different accumulations of NO and H(2)O(2) in root hair tips. Two mammalian purinoceptor antagonists also blocked the growth responses induced by extracellular nucleotides, suggesting that they were initiated by a receptor-based mechanism.
Collapse
Affiliation(s)
- Greg Clark
- Section of Molecular Cell and Developmental Biology, University of Texas, 78712, Austin, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tanaka K, Gilroy S, Jones AM, Stacey G. Extracellular ATP signaling in plants. Trends Cell Biol 2010; 20:601-8. [PMID: 20817461 DOI: 10.1016/j.tcb.2010.07.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 01/06/2023]
Abstract
Extracellular adenosine-5'-triphosphate (ATP) induces a number of cellular responses in plants and animals. Some of the molecular components for purinergic signaling in animal cells appear to be lacking in plant cells, although some cellular responses are similar in both systems [e.g. increased levels of cytosolic free calcium, nitric oxide (NO), and reactive oxygen species (ROS)]. The purpose of this review is to compare and contrast purinergic signaling mechanisms in animal and plant cells. This comparison will aid our overall understanding of plant physiology and also provide details of the general fundamentals of extracellular ATP signaling in eukaryotes.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | |
Collapse
|
31
|
Tanaka K, Swanson SJ, Gilroy S, Stacey G. Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. PLANT PHYSIOLOGY 2010; 154:705-19. [PMID: 20671112 PMCID: PMC2949047 DOI: 10.1104/pp.110.162503] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 07/28/2010] [Indexed: 05/19/2023]
Abstract
Extracellular ATP induces a rise in the level of cytosolic free calcium ([Ca(2+)](cyt)) in plant cells. To expand our knowledge about the function of extracellular nucleotides in plants, the effects of several nucleotide analogs and pharmacological agents on [Ca(2+)](cyt) changes were studied using transgenic Arabidopsis (Arabidopsis thaliana) expressing aequorin or the fluorescence resonance energy transfer-based Ca(2+) sensor Yellow Cameleon 3.6. Exogenously applied CTP caused elevations in [Ca(2+)](cyt) that displayed distinct time- and dose-dependent kinetics compared with the purine nucleotides ATP and GTP. The inhibitory effects of antagonists of mammalian P2 receptors and calcium influx inhibitors on nucleotide-induced [Ca(2+)](cyt) elevations were distinct between CTP and purine nucleotides. These results suggest that distinct recognition systems may exist for the respective types of nucleotides. Interestingly, a mutant lacking the heterotrimeric G protein Gβ-subunit exhibited a remarkably higher [Ca(2+)](cyt) elevation in response to all tested nucleotides in comparison with the wild type. These data suggest a role for Gβ in negatively regulating extracellular nucleotide signaling and point to an important role for heterotrimeric G proteins in modulating the cellular effects of extracellular nucleotides. The addition of extracellular nucleotides induced multiple temporal [Ca(2+)](cyt) oscillations, which could be localized to specific root cells. The oscillations were attenuated by a vesicle-trafficking inhibitor, indicating that the oscillations likely require ATP release via exocytotic secretion. The results reveal new molecular details concerning extracellular nucleotide signaling in plants and the importance of fine control of extracellular nucleotide levels to mediate specific plant cell responses.
Collapse
Affiliation(s)
| | | | | | - Gary Stacey
- National Center for Soybean Biotechnology, Division of Plant Sciences (K.T., G.S.), and Division of Biochemistry (G.S.), University of Missouri, Columbia, Missouri 65211; Botany Department, University of Wisconsin, Madison, Wisconsin 53706 (S.J.S., S.G.)
| |
Collapse
|
32
|
Möhlmann T, Bernard C, Hach S, Ekkehard Neuhaus H. Nucleoside transport and associated metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12 Suppl 1:26-34. [PMID: 20712618 DOI: 10.1111/j.1438-8677.2010.00351.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nucleosides are intermediates of nucleotide metabolism. Nucleotide de novo synthesis generates the nucleoside monophosphates AMP and UMP, which are further processed to all purine and pyrimidine nucleotides involved in multiple cellular reactions, including the synthesis of nucleic acids. Catabolism of these substances results in the formation of nucleosides, which are further degraded by nucleoside hydrolase to nucleobases. Both nucleosides and nucleobases can be exchanged between cells and tissues through multiple isoforms of corresponding transport proteins. After uptake into a cell, nucleosides and nucleobases can undergo salvage reactions or catabolism. Whereas energy is preserved by salvage pathway reactions, catabolism liberates ammonia, which is then incorporated into amino acids. Keeping the balance between nitrogen consumption during nucleotide de novo synthesis and ammonia liberation by nucleotide catabolism is essential for correct plant development. Senescence and seed germination represent situations in plant development where marked fluctuations in nucleotide pools occur. Furthermore, extracellular nucleotide metabolism has become an immensely interesting research topic. In addition, selected aspects of nucleoside transport in yeast, protists and humans are discussed.
Collapse
Affiliation(s)
- T Möhlmann
- Abteilung Pflanzenphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Germany.
| | | | | | | |
Collapse
|
33
|
Clark G, Torres J, Finlayson S, Guan X, Handley C, Lee J, Kays JE, Chen ZJ, Roux SJ. Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules. PLANT PHYSIOLOGY 2010; 152:1073-83. [PMID: 20018604 PMCID: PMC2815863 DOI: 10.1104/pp.109.147637] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/08/2009] [Indexed: 05/20/2023]
Abstract
Ectoapyrase enzymes remove the terminal phosphate from extracellular nucleoside tri- and diphosphates. In Arabidopsis (Arabidopsis thaliana), two ectoapyrases, AtAPY1 and AtAPY2, have been implicated as key modulators of growth. In fibers of cotton (Gossypium hirsutum), transcript levels for GhAPY1 and GhAPY2, two closely related ectoapyrases that have high sequence similarity to AtAPY1 and AtAPY2, are up-regulated when fibers enter their rapid growth phase. In an ovule culture system, fibers release ATP as they grow, and when their ectoapyrase activity is blocked by the addition of polyclonal anti-apyrase antibodies or by two different small molecule inhibitors, the medium ATP level rises and fiber growth is suppressed. High concentrations of the poorly hydrolyzable nucleotides ATPgammaS and ADPbetaS applied to the medium inhibit fiber growth, and low concentrations of them stimulate growth, but treatment with adenosine 5'-O-thiomonophosphate causes no change in the growth rate. Both the inhibition and stimulation of growth by applied nucleotides can be blocked by an antagonist that blocks purinoceptors in animal cells, and by adenosine. Treatment of cotton ovule cultures with ATPgammaS induces increased levels of ethylene, and two ethylene antagonists, aminovinylglycine and silver nitrate, block both the growth stimulatory and growth inhibitory effects of applied nucleotides. In addition, the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid, lowers the concentration of nucleotide needed to promote fiber growth. These data indicate that ectoapyrases and extracellular nucleotides play a significant role in regulating cotton fiber growth and that ethylene is a likely downstream component of the signaling pathway.
Collapse
|
34
|
Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ. Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2129-38. [PMID: 19363208 PMCID: PMC2682505 DOI: 10.1093/jxb/erp091] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 03/02/2009] [Accepted: 03/02/2009] [Indexed: 05/18/2023]
Abstract
Plant and animal cells release or secrete ATP by various mechanisms, and this activity allows extracellular ATP to serve as a signalling molecule. Recent reports suggest that extracellular ATP induces plant responses ranging from increased cytosolic calcium to changes in auxin transport, xenobiotic resistance, pollen germination, and growth. Although calcium has been identified as a secondary messenger for the extracellular ATP signal, other parts of this signal transduction chain remain unknown. Increasing the extracellular concentration of ATPgammaS, a poorly-hydrolysable ATP analogue, inhibited both pollen germination and pollen tube elongation, while the addition of AMPS had no effect. Because pollen tube elongation is also sensitive to nitric oxide, this raised the possibility that a connection exists between the two pathways. Four approaches were used to test whether the germination and growth effects of extracellular ATPgammaS were transduced via nitric oxide. The results showed that increases in extracellular ATPgammaS induced increases in cellular nitric oxide, chemical agonists of the nitric oxide signalling pathway lowered the threshold of extracellular ATPgammaS that inhibits pollen germination, an antagonist of guanylate cyclase, which can inhibit some nitric oxide signalling pathways, blocked the ATPgammaS-induced inhibition of both pollen germination and pollen tube elongation, and the effects of applied ATPgammaS were blocked in nia1nia2 mutants, which have diminished NO production. The concurrence of these four data sets support the conclusion that the suppression of pollen germination and pollen tube elongation by extracellular nucleotides is mediated in part via the nitric oxide signalling pathway.
Collapse
|
35
|
Riewe D, Grosman L, Fernie AR, Wucke C, Geigenberger P. The potato-specific apyrase is apoplastically localized and has influence on gene expression, growth, and development. PLANT PHYSIOLOGY 2008; 147:1092-109. [PMID: 18480378 PMCID: PMC2442552 DOI: 10.1104/pp.108.117564] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 05/12/2008] [Indexed: 05/18/2023]
Abstract
Apyrases hydrolyze nucleoside triphosphates and diphosphates and are found in all eukaryotes and a few prokaryotes. Although their enzymatic properties have been well characterized, relatively little is known regarding their subcellular localization and physiological function in plants. In this study, we used reverse genetic and biochemical approaches to investigate the role of potato (Solanum tuberosum)-specific apyrase. Silencing of the apyrase gene family with RNA interference constructs under the control of the constitutive 35S promoter led to a strong decrease in apyrase activity to below 10% of the wild-type level. This decreased activity led to phenotypic changes in the transgenic lines, including a general retardation in growth, an increase in tuber number per plant, and differences in tuber morphology. Silencing of apyrase under the control of a tuber-specific promoter led to similar changes in tuber morphology; however, there were no direct effects of apyrase inhibition on tuber metabolism. DNA microarrays revealed that decreased expression of apyrase leads to increased levels of transcripts coding for cell wall proteins involved in growth and genes involved in energy transfer and starch synthesis. To place these results in context, we determined the subcellular localization of the potato-specific apyrase. Using a combination of approaches, we were able to demonstrate that this enzyme is localized to the apoplast. We describe the evidence that underlies both this fact and that potato-specific apyrase has a crucial role in regulating growth and development.
Collapse
Affiliation(s)
- David Riewe
- Max-Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | |
Collapse
|
36
|
Roux SJ, Steinebrunner I. Extracellular ATP: an unexpected role as a signaler in plants. TRENDS IN PLANT SCIENCE 2007; 12:522-527. [PMID: 17928260 DOI: 10.1016/j.tplants.2007.09.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Revised: 08/14/2007] [Accepted: 09/25/2007] [Indexed: 05/04/2023]
Abstract
ATP and other nucleoside triphosphates not only drive energy-dependent reactions inside cells, but can also function outside the plasma membrane in the extracellular matrix, where they function as agonists that can induce diverse physiological responses without being hydrolyzed. This external role of ATP is well established in animal cells but only recently has it become apparent that extracellular ATP (eATP) can also function as a signaling agent in plants. Recent data have shown that eATP and other nucleotides can induce an increase in the cytosolic Ca(2+) concentration and diverse downstream changes that influence plant growth and defense responses. Ectoapyrase enzymes that regulate the eATP concentration also have an impact on plant growth. These results beg the question of whether there is a receptor that can bind to eATP and transduce this into signaling changes. Answering this will be key to understanding how eATP and ectoapyrases influence plant growth and development.
Collapse
Affiliation(s)
- Stanley J Roux
- Section of Molecular Cell & Developmental Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Iris Steinebrunner
- Section of Molecular Biotechnology, Technical University of Dresden, 01069 Dresden, Germany
| |
Collapse
|