1
|
Du Z, Jin Y, Yang X, Xia K, Chen Z. Multi-omics analyses and botanical perfumer hypothesis provide insights into the formation and maintenance of aromatic characteristics of Dendrobium loddigesii flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108891. [PMID: 38959568 DOI: 10.1016/j.plaphy.2024.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/28/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Dendrobium loddigesii, a member of the Orchidaceae family, is a valuable horticultural crop known for its aromatic qualities. However, the mechanisms responsible for the development of its aromatic characteristics remain poorly understood. To elucidate these underlying mechanisms, we assembled the first chromosome-level reference genome of D. loddigesii using PacBio HiFi-reads, Illumina short-reads, and Hi-C data. The assembly comprises 19 pseudochromosomes with N50 contig and N50 scaffold sizes of 55.15 and 89.94 Mb, respectively, estimating the genome size to be 1.68 Gb, larger than that of other sequenced Dendrobium species. During the flowering stages, we conducted a comprehensive analysis combining volatilomics and transcriptomics to understand the characteristics and biosynthetic mechanisms pathways of the floral scent. Our findings emphasize the significant contribution of aromatic terpenoids, especially monoterpenoids, in defining the floral aroma. Furthermore, we identified two crucial terpene synthase (TPS) genes that play a key role in maintaining the aroma during flowering. Through the integration volatilomics data with catalytic assays of DlTPSbs proteins, we identified specific compounds responsible for the aromatic characteristics of D. loddigesii. This integrated analysis of the genome, transcriptome, and volatilome, offers valuable insights into the development and preservation of D. loddigesii's aromatic characteristics, setting the stage for further exploration of the botanical perfumer hypothesis.
Collapse
Affiliation(s)
- Zhihui Du
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Yuxuan Jin
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Xiyu Yang
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
| | - Zhilin Chen
- Guizhou Horticulture Institute/Horticultural Engineering Technology Research Center of Guizhou, Guizhou Academy of Agricultural Sciences, Guiyang, 550000, China.
| |
Collapse
|
2
|
Xie C, Tian Q, Qiu H, Wang R, Wang L, Yue Y, Yang X. Methylation Modification in Ornamental Plants: Impact on Floral Aroma and Color. Int J Mol Sci 2024; 25:8267. [PMID: 39125834 PMCID: PMC11311783 DOI: 10.3390/ijms25158267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Methylation represents a crucial class of modification that orchestrates a spectrum of regulatory roles in plants, impacting ornamental characteristics, growth, development, and responses to abiotic stress. The establishment and maintenance of methylation involve the coordinated actions of multiple regulatory factors. Methyltransferases play a pivotal role by specifically recognizing and methylating targeted sites, which induces alterations in chromatin structure and gene expression, subsequently influencing the release of volatile aromatic substances and the accumulation of pigments in plant petals. In this paper, we review the regulatory mechanisms of methylation modification reactions and their effects on the changes in aromatic substances and pigments in plant petals. We also explore the potential of methylation modifications to unravel the regulatory mechanisms underlying aroma and color in plant petals. This aims to further elucidate the synthesis, metabolism, and regulatory mechanisms of various methylation modifications related to the aroma and color substances in plant petals, thereby providing a theoretical reference for improving the aroma and color of plant petals.
Collapse
Affiliation(s)
- Chenchen Xie
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Qingyin Tian
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hanruo Qiu
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Rui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China; (C.X.); (Q.T.); (H.Q.); (R.W.); (L.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N. Plant terpenoid biosynthetic network and its multiple layers of regulation. Prog Lipid Res 2024; 95:101287. [PMID: 38906423 DOI: 10.1016/j.plipres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Terpenoids constitute one of the largest and most chemically diverse classes of primary and secondary metabolites in nature with an exceptional breadth of functional roles in plants. Biosynthesis of all terpenoids begins with the universal five‑carbon building blocks, isopentenyl diphosphate (IPP) and its allylic isomer dimethylallyl diphosphate (DMAPP), which in plants are derived from two compartmentally separated but metabolically crosstalking routes, the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. Here, we review the current knowledge on the terpenoid precursor pathways and highlight the critical hidden constraints as well as multiple regulatory mechanisms that coordinate and homeostatically govern carbon flux through the terpenoid biosynthetic network in plants.
Collapse
Affiliation(s)
- Matthew E Bergman
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Ruy W J Kortbeek
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Michael Gutensohn
- Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV, United States
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States; Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, United States; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, United States.
| |
Collapse
|
4
|
Hu Q, Zhang Y, Tu Z, Wen S, Wang J, Wang M, Li H. The identification and functional characterization of the LcMCT gene from Liriodendron chinense reveals its potenatial role in carotenoids biosyanthesis. Gene 2024; 902:148180. [PMID: 38253298 DOI: 10.1016/j.gene.2024.148180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Terpenoids are not only important component of plant floral scent, but also indispensable elements in the formation of floral color. The petals of Liriodendron chinense are rich in tetraterpene carotenoids and release large amounts of volatile monoterpene and sesquiterpene compounds during full blooming stage. However, the mechanism of terpenoid synthesis is not clear in L. chinense. In this study, we identified a LcMCT gene and characterized its potential function in carotenoids biosynthesis. A total of 2947 up-regulated differentially expressed genes (DEGs) were discerned from the transcriptomic data of L. chinense petals, with a significant enrichment of DEGs related to plant hormone signal transduction and terpenoid backbone biosynthesis. After comprehensive analysis on these DEGs, the LcMCT gene was selected for subsequent function characterization. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) results showed that LcMCT was expressed at the highest level in the petals during full blooming stage, suggesting a possible role in carotenoids biosynthesis and volatile terpenoid biosynthesis. Subcellular localization showed that the LcMCT protein was localized in the chloroplast. Overexpression of LcMCT in Arabidopsis thaliana affected the expression levels of MEP pathway genes. Moreover, the MCT enzyme activity and carotenoids contents in transgenic A. thaliana were increased by 69.27% and 15.57%, respectively. These results suggest that LcMCT promotes the biosynthesis of terpenoid precursors via the MEP pathway. Our work lays a foundation for exploring the mechanism of terpenoid synthesis in L. chinense.
Collapse
Affiliation(s)
- Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoying Wen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Minxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Chen W, Tang L, Li Q, Cai Y, Ahmad S, Wang Y, Tang S, Guo N, Wei X, Tang S, Shao G, Jiao G, Xie L, Hu S, Sheng Z, Hu P. YGL3 Encoding an IPP and DMAPP Synthase Interacts with OsPIL11 to Regulate Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2024; 17:8. [PMID: 38228921 DOI: 10.1186/s12284-024-00687-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/10/2024] [Indexed: 01/18/2024]
Abstract
As the source of isoprenoid precursors, the plastidial methylerythritol phosphate (MEP) pathway plays an essential role in plant development. Here, we report a novel rice (Oryza sativa L.) mutant ygl3 (yellow-green leaf3) that exhibits yellow-green leaves and lower photosynthetic efficiency compared to the wild type due to abnormal chloroplast ultrastructure and reduced chlorophyll content. Map-based cloning showed that YGL3, one of the major genes involved in the MEP pathway, encodes 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, which is localized in the thylakoid membrane. A single base substitution in ygl3 plants resulted in lower 4-hydroxy-3-methylbut-2-enyl diphosphate reductase activity and lower contents of isopentenyl diphosphate (IPP) compared to the wild type. The transcript levels of genes involved in the syntheses of chlorophyll and thylakoid membrane proteins were significantly reduced in the ygl3 mutant compared to the wild type. The phytochrome interacting factor-like gene OsPIL11 regulated chlorophyll synthesis during the de-etiolation process by directly binding to the promoter of YGL3 to activate its expression. The findings provides a theoretical basis for understanding the molecular mechanisms by which the MEP pathway regulate chloroplast development in rice.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
- Jiangxi Super-Rice Research and Development Center, Jiangxi Academy of Agricultural Sciences, National Engineering Center for Rice, Nanchang, P. R. China
| | - Liqun Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Qianlong Li
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yicong Cai
- Key Labora tory of Crop Physiology, Ecology and Genetic Breeding, Research Center of Super Rice Engineering and Technology, Ministry of Education/Collaboration Center for Double-season Rice Modernization Production, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, P. R. China
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Yakun Wang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shengjia Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Naihui Guo
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Lihong Xie
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Shikai Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology/Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture/China National Rice improvement Centre, National Rice Research Institute, Hangzhou, 310006, P. R. China.
| |
Collapse
|
6
|
Jiang F, Liu D, Dai J, Yang T, Zhang J, Che D, Fan J. Cloning and Functional Characterization of 2-C-methyl-D-erythritol-4-phosphate cytidylyltransferase (LiMCT) Gene in Oriental Lily (Lilium 'Sorbonne'). Mol Biotechnol 2024; 66:56-67. [PMID: 37014586 DOI: 10.1007/s12033-023-00729-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
Abstract
2-C-methyl-D-erythritol-phosphate cytidylyltransferase (MCT) is a key enzyme in the MEP pathway of monoterpene synthesis, catalyzing the generation of 4- (5'-pyrophosphate cytidine)-2-C-methyl-D-erythritol from 2-C-methyl-D-erythritol-4-phosphate. We used homologous cloning strategy to clone gene, LiMCT, in the MEP pathway that may be involved in the regulation of floral fragrance synthesis in the Lilium oriental hybrid 'Sorbonne.' The full-length ORF sequence was 837 bp, encoding 278 amino acids. Bioinformatics analysis showed that the relative molecular weight of LiMCT protein is 68.56 kD and the isoelectric point (pI) is 5.12. The expression pattern of LiMCT gene was found to be consistent with the accumulation sites and emission patterns of floral fragrance monoterpenes in transcriptome data (unpublished). Subcellular localization indicated that the LiMCT protein is located in chloroplasts, which is consistent with the location of MEP pathway genes functioning in plastids to produce isoprene precursors. Overexpression of LiMCT in Arabidopsis thaliana affected the expression levels of MEP and MVA pathway genes, suggesting that overexpression of the LiMCT in A. thaliana affected the metabolic flow of C5 precursors of two different terpene synthesis pathways. The expression of the monoterpene synthase AtTPS14 was elevated nearly fourfold in transgenic A. thaliana compared with the control, and the levels of carotenoids and chlorophylls, the end products of the MEP pathway, were significantly increased in the leaves at full bloom, indicating that LiMCT plays an important role in regulating monoterpene synthesis and in the synthesis of other isoprene-like precursors in transgenic A. thaliana flowers. However, the specific mechanism of LiMCT in promoting the accumulation of isoprene products of the MEP pathway and the biosynthesis of floral monoterpene volatile components needs further investigation.
Collapse
Affiliation(s)
- Fan Jiang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Dongying Liu
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jingqi Dai
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Tao Yang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinzhu Zhang
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Daidi Che
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China
| | - Jinping Fan
- College of Horticulture and Landscape, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
7
|
Du Z, Yang X, Zhou S, Jin Y, Wang W, Xia K, Chen Z. Aromatic Terpenes and Their Biosynthesis in Dendrobium, and Conjecture on the Botanical Perfumer Mechanism. Curr Issues Mol Biol 2023; 45:5305-5316. [PMID: 37504253 PMCID: PMC10378317 DOI: 10.3390/cimb45070337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
This review presents a systematic analysis of the studies on volatiles in Dendrobium. Among the various components, aromatic terpenes are a crucial component in the development of the aromatic characteristics of Dendrobium and other plants. Recent advancements in detection and sequencing technology have resulted in a considerable rise in research on the biosynthetic processes of aromatic terpenes in Dendrobium and other flowering plants. Nevertheless, the inquiry into the precise means by which plants regulate the proportion of diverse aromatic terpenes in their floral scent, thereby preserving their olfactory traits, requires further investigation. A conjecture on the botanical perfumer mechanism, which condensed the findings of earlier studies, was put forward to address this area of interest. Specific transcription factors likely govern the coordinated expression of multiple key terpene synthase (TPS) genes during the flowering stage of plants, thereby regulating the proportional biosynthesis of diverse aromatic terpenes and sustaining the distinctive aromatic properties of individual plants. This review serves as a significant theoretical reference for further investigations into aromatic volatile compounds in Dendrobium.
Collapse
Affiliation(s)
- Zhihui Du
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
| | - Xiyu Yang
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
| | - Shuting Zhou
- Natural Products Research Center of Guizhou Province, Guiyang 550000, China
| | - Yuxuan Jin
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
| | - Weize Wang
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
| | - Kuaifei Xia
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhilin Chen
- Guizhou Horticulture Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550000, China
| |
Collapse
|
8
|
Voronezhskaya V, Volkova P, Bitarishvili S, Shesterikova E, Podlutskii M, Clement G, Meyer C, Duarte GT, Kudin M, Garbaruk D, Turchin L, Kazakova E. Multi-Omics Analysis of Vicia cracca Responses to Chronic Radiation Exposure in the Chernobyl Exclusion Zone. PLANTS (BASEL, SWITZERLAND) 2023; 12:2318. [PMID: 37375943 DOI: 10.3390/plants12122318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Our understanding of the long-term consequences of chronic ionising radiation for living organisms remains scarce. Modern molecular biology techniques are helpful tools for researching pollutant effects on biota. To reveal the molecular phenotype of plants growing under chronic radiation exposure, we sampled Vicia cracca L. plants in the Chernobyl exclusion zone and areas with normal radiation backgrounds. We performed a detailed analysis of soil and gene expression patterns and conducted coordinated multi-omics analyses of plant samples, including transcriptomics, proteomics, and metabolomics. Plants growing under chronic radiation exposure showed complex and multidirectional biological effects, including significant alterations in the metabolism and gene expression patterns of irradiated plants. We revealed profound changes in carbon metabolism, nitrogen reallocation, and photosynthesis. These plants showed signs of DNA damage, redox imbalance, and stress responses. The upregulation of histones, chaperones, peroxidases, and secondary metabolism was noted.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilles Clement
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Christian Meyer
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | | | - Maksim Kudin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Dmitrii Garbaruk
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | - Larisa Turchin
- Polesye State Radiation-Ecological Reserve, 247618 Khoiniki, Belarus
| | | |
Collapse
|
9
|
Zhang P, Ni Y, Jiao Z, Li J, Wang T, Yao Z, Jiang Y, Yang X, Sun Y, Li H, He D, Niu J. The wheat leaf delayed virescence of mutant dv4 is associated with the abnormal photosynthetic and antioxidant systems. Gene X 2023; 856:147134. [PMID: 36586497 DOI: 10.1016/j.gene.2022.147134] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Chlorophyll (Chl) is a key pigment for wheat (Triticum aestivum L.) photosynthesis, consequently impacts grain yield. A wheat mutant named as delayed virescence 4 (dv4) was obtained from cultivar Guomai 301 (wild type, WT) treated with ethyl methane sulfonate (EMS). The seedling leaves of dv4 were shallow yellow, apparently were chlorophyll deficient. They started to turn green at the jointing stage and returned to almost ordinary green at the heading stage. Leaf transcriptome comparison of Guomai 301 and dv4 at the jointing stage showed that most differentially expressed genes (DEGs) of transcription and translation were highly expressed in dv4, one key gene nicotianamine aminotransferase A (NAAT-A) involved in the synthesis and metabolism pathways of tyrosine, methionine and phenylalanine was significantly lowly expressed. The expression levels of the most photosynthesis related genes, such as photosystem I (PS I), ATPase and light-harvesting chlorophyll protein complex-related homeotypic genes, and protochlorophyllide reductase A (PORA) were lower; but macromolecule degradation and hypersensitivity response (HR) related gene heat shock protein 82 (HSP82) was highly expressed. Compared to WT, the contents of macromolecules such as proteins and sugars were reduced; the contents of Chl a, Chl b, total Chl, and carotenoids in leaves of dv4 were significantly less at the jointing stage, while the ratio of Chl a / Chl b was the same as that of WT. The net photosynthetic rate, stomatal conductance and transpiration rate of dv4 were significantly lower. The H2O2 content were higher, while the contents of total phenol and malondialdehyde (MDA), antioxidant enzyme activities were lower in leaves of dv4. In conclusion, the reduced contents of macromolecules and photosynthetic pigments, the abnormal photosynthetic and antioxidant systems were closely related to the phenotype of dv4.
Collapse
Affiliation(s)
- Peipei Zhang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, Henan, China
| | - Zhixin Jiao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Junchang Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ting Wang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Ziping Yao
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yumei Jiang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Xiwen Yang
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Yulong Sun
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Huijuan Li
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China
| | - Dexian He
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| | - Jishan Niu
- Henan Technology Innovation Centre of Wheat / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046, Henan, China.
| |
Collapse
|
10
|
Xu T, Zhang J, Liu Y, Zhang Q, Li W, Zhang Y, Wu M, Chen T, Ding D, Wang W, Zhang Z. Exon skipping in IspE Gene is associated with abnormal chloroplast development in rice albino leaf 4 mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:986678. [PMID: 36426160 PMCID: PMC9678938 DOI: 10.3389/fpls.2022.986678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The formation of leaf color largely depends on the components of pigment accumulation in plastids, which are involved in chloroplast development and division. Here, we isolated and characterized the rice albino leaf 4 (al4) mutant, which exhibited an albino phenotype and eventually died at the three-leaf stage. The chloroplasts in al4 mutant were severely damaged and unable to form intact thylakoid structure. Further analysis revealed that the candidate gene encodes 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase (IspE), which participates in the methylerythritol phosphate (MEP) pathway of isoprenoid biosynthesis. We further demonstrated that the mutation at the exon-intron junction site cause alternative splicing factors fail to distinguish the origin of the GT-AG intron, leading to exon skipping and producing a truncated OsIspE in the al4 mutant. Notably, disruption of OsIspE led to the reduced expression of chloroplast-associated genes, including chloroplast biosynthetic and translation related genes and photosynthetic associated nuclear genes (PhANGs). In summary, these findings reveal that OsIspE plays a crucial role in chloroplast biogenesis and provides novel insights into the function of CMK during chloroplast development in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Wenyi Wang
- *Correspondence: Zemin Zhang, ; Wenyi Wang,
| | | |
Collapse
|
11
|
Yan J, Liu B, Cao Z, Chen L, Liang Z, Wang M, Liu W, Lin Y, Jiang B. Cytological, genetic and transcriptomic characterization of a cucumber albino mutant. FRONTIERS IN PLANT SCIENCE 2022; 13:1047090. [PMID: 36340338 PMCID: PMC9630852 DOI: 10.3389/fpls.2022.1047090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Photosynthesis, a fundamental process for plant growth and development, is dependent on chloroplast formation and chlorophyll synthesis. Severe disruption of chloroplast structure results in albinism of higher plants. In the present study, we report a cucumber albino alc mutant that presented white cotyledons under normal light conditions and was unable to produce first true leaf. Meanwhile, alc mutant could grow creamy green cotyledons under dim light conditions but died after exposure to normal light irradiation. No chlorophyll and carotenoid were detected in the alc mutant grown under normal light conditions. Using transmission electron microscopy, impaired chloroplasts were observed in this mutant. The genetic analysis indicated that the albino phenotype was recessively controlled by a single locus. Comparative transcriptomic analysis between the alc mutant and wild type revealed that genes involved in chlorophyll metabolism and the methylerythritol 4-phosphate pathway were affected in the alc mutant. In addition, three genes involved in chloroplast development, including two FtsH genes and one PPR gene, were found to have negligible expression in this mutant. The quality of RNA sequencing results was further confirmed by real-time quantitative PCR analysis. We also examined 12 homologous genes from alc mutant in other plant species, but no genetic variation in the coding sequences of these genes was found between alc mutant and wild type. Taken together, we characterized a cucumber albino mutant with albinism phenotype caused by chloroplast development deficiency and this mutant can pave way for future studies on plastid development.
Collapse
Affiliation(s)
- Jinqiang Yan
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zhenqiang Cao
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Lin Chen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhaojun Liang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Min Wang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenrui Liu
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu'e Lin
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Genetic and Biochemical Aspects of Floral Scents in Roses. Int J Mol Sci 2022; 23:ijms23148014. [PMID: 35887360 PMCID: PMC9321236 DOI: 10.3390/ijms23148014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.
Collapse
|
13
|
Paudel L, Kerr S, Prentis P, Tanurdžić M, Papanicolaou A, Plett JM, Cazzonelli CI. Horticultural innovation by viral-induced gene regulation of carotenogenesis. HORTICULTURE RESEARCH 2022; 9:uhab008. [PMID: 35043183 PMCID: PMC8769041 DOI: 10.1093/hr/uhab008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 09/24/2021] [Indexed: 06/14/2023]
Abstract
Multipartite viral vectors provide a simple, inexpensive and effective biotechnological tool to transiently manipulate (i.e. reduce or increase) gene expression in planta and characterise the function of genetic traits. The development of virus-induced gene regulation (VIGR) systems usually involve the targeted silencing or overexpression of genes involved in pigment biosynthesis or degradation in plastids, thereby providing rapid visual assessment of success in establishing RNA- or DNA-based VIGR systems in planta. Carotenoids pigments provide plant tissues with an array of yellow, orange, and pinkish-red colours. VIGR-induced transient manipulation of carotenoid-related gene expression has advanced our understanding of carotenoid biosynthesis, regulation, accumulation and degradation, as well as plastid signalling processes. In this review, we describe mechanisms of VIGR, the importance of carotenoids as visual markers of technology development, and knowledge gained through manipulating carotenogenesis in model plants as well as horticultural crops not always amenable to transgenic approaches. We outline how VIGR can be utilised in plants to fast-track the characterisation of gene function(s), accelerate fruit tree breeding programs, edit genomes, and biofortify plant products enriched in carotenoid micronutrients for horticultural innovation.
Collapse
Affiliation(s)
- Lucky Paudel
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Stephanie Kerr
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Peter Prentis
- Centre for Agriculture and the Bioeconomy (CAB), Queensland University of Technology, 2 George Street, Brisbane City, QLD 4000, Australia
- School of Biology and Environmental Sciences, Faculty of Science,
Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Miloš Tanurdžić
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
14
|
Gupta P, Hirschberg J. The Genetic Components of a Natural Color Palette: A Comprehensive List of Carotenoid Pathway Mutations in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:806184. [PMID: 35069664 PMCID: PMC8770946 DOI: 10.3389/fpls.2021.806184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/08/2021] [Indexed: 05/16/2023]
Abstract
Carotenoids comprise the most widely distributed natural pigments. In plants, they play indispensable roles in photosynthesis, furnish colors to flowers and fruit and serve as precursor molecules for the synthesis of apocarotenoids, including aroma and scent, phytohormones and other signaling molecules. Dietary carotenoids are vital to human health as a source of provitamin A and antioxidants. Hence, the enormous interest in carotenoids of crop plants. Over the past three decades, the carotenoid biosynthesis pathway has been mainly deciphered due to the characterization of natural and induced mutations that impair this process. Over the year, numerous mutations have been studied in dozens of plant species. Their phenotypes have significantly expanded our understanding of the biochemical and molecular processes underlying carotenoid accumulation in crops. Several of them were employed in the breeding of crops with higher nutritional value. This compendium of all known random and targeted mutants available in the carotenoid metabolic pathway in plants provides a valuable resource for future research on carotenoid biosynthesis in plant species.
Collapse
Affiliation(s)
| | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
15
|
Yu Y, Kou X, Gao R, Chen X, Zhao Z, Mei H, Li J, Jeyaraj A, Thangaraj K, Periakaruppan R, Zhuang J, Chen X, Arkorful E, Li X. Glutamine Synthetases Play a Vital Role in High Accumulation of Theanine in Tender Shoots of Albino Tea Germplasm "Huabai 1". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13904-13915. [PMID: 34775761 DOI: 10.1021/acs.jafc.1c04567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Theanine (N-ethyl-γ-l-glutamine) is a special nonprotein amino acid that contributes to the umami taste and health function of tea. Although recent studies on tea breeding have focused on albino tea because of its umami taste, a factor of higher theanine concentration, the mechanism of biosynthesis of l-theanine is still unclear. In this study, four glutamine synthetase genes (CsGSs) were obtained and functionally characterized by overexpressing them in Arabidopsis. The enzyme activities of the purified CsGS proteins from Escherichia coli were detected. The results showed that CsGSs have a dual function in the synthesis of glutamine and theanine in vivo and in vitro. Interestingly, l-theanine was abundantly synthesized in the tender shoots of "Huabai 1". In the white tender shoots, the cytosol CsGS1.2 might exhibit increased expression to compensate for decreasing levels of chloroplast CsGS2, which plays a vital role in high accumulation of theanine in "Huabai 1". In addition, CsGS2 was most likely the key l-theanine synthases in green tissues of tea. The present findings will provide basis for and considerably broaden the scope of understanding the function of CsGSs and the mechanism of l-theanine accumulation in the tender shoots of "Huabai 1", and will be useful for breeding and screening tea with high l-theanine content.
Collapse
Affiliation(s)
- Ying Yu
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xiaobing Kou
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Ruoshi Gao
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xuefei Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Zhen Zhao
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Huiling Mei
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjie Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Anburaj Jeyaraj
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Kuberan Thangaraj
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Rajiv Periakaruppan
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Jing Zhuang
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Xuan Chen
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| | - Emmanuel Arkorful
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural University, Weigang No.1, Nanjing 210095, China
| |
Collapse
|
16
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
17
|
Complexity of gene paralogues resolved in biosynthetic pathway of hepatoprotective iridoid glycosides in a medicinal herb, Picrorhiza kurroa through differential NGS transcriptomes. Mol Genet Genomics 2021; 296:863-876. [PMID: 33899140 DOI: 10.1007/s00438-021-01787-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/13/2021] [Indexed: 10/21/2022]
Abstract
Picrorhiza kurroa is a medicinal herb with diverse pharmacological applications due to the presence of iridoid glycosides, picroside-I (P-I), and picroside-II (P-II), among others. Any genetic improvement in this medicinal herb can only be undertaken if the biosynthetic pathway genes are correctly identified. Our previous studies have deciphered biosynthetic pathways for P-I and P-II, however, the occurrence of multiple copies of genes has been a stumbling block in their usage. Therefore, a methodological strategy was designed to identify and prioritize paralogues of pathway genes associated with contents of P-I and P-II. We used differential transcriptomes varying for P-I and P-II contents in different tissues of P. kurroa. All transcripts for a particular pathway gene were identified, clustered based on multiple sequence alignment to notify as a representative of the same gene (≥ 99% sequence identity) or a paralogue of the same gene. Further, individual paralogues were tested for their expression level via qRT-PCR in tissue-specific manner. In total 44 paralogues in 14 key genes have been identified out of which 19 gene paralogues showed the highest expression pattern via qRT-PCR. Overall analysis shortlisted 6 gene paralogues, PKHMGR3, PKPAL2, PKDXPS1, PK4CL2, PKG10H2 and PKIS2 that might be playing role in the biosynthesis of P-I and P-II, however, their functional analysis need to be further validated either through gene silencing or over-expression. The usefulness of this approach can be expanded to other non-model plant species for which transcriptome resources have been generated.
Collapse
|
18
|
Oultram JMJ, Pegler JL, Bowser TA, Ney LJ, Eamens AL, Grof CPL. Cannabis sativa: Interdisciplinary Strategies and Avenues for Medical and Commercial Progression Outside of CBD and THC. Biomedicines 2021; 9:biomedicines9030234. [PMID: 33652704 PMCID: PMC7996784 DOI: 10.3390/biomedicines9030234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cannabis sativa (Cannabis) is one of the world’s most well-known, yet maligned plant species. However, significant recent research is starting to unveil the potential of Cannabis to produce secondary compounds that may offer a suite of medical benefits, elevating this unique plant species from its illicit narcotic status into a genuine biopharmaceutical. This review summarises the lengthy history of Cannabis and details the molecular pathways that underpin the production of key secondary metabolites that may confer medical efficacy. We also provide an up-to-date summary of the molecular targets and potential of the relatively unknown minor compounds offered by the Cannabis plant. Furthermore, we detail the recent advances in plant science, as well as synthetic biology, and the pharmacology surrounding Cannabis. Given the relative infancy of Cannabis research, we go on to highlight the parallels to previous research conducted in another medically relevant and versatile plant, Papaver somniferum (opium poppy), as an indicator of the possible future direction of Cannabis plant biology. Overall, this review highlights the future directions of cannabis research outside of the medical biology aspects of its well-characterised constituents and explores additional avenues for the potential improvement of the medical potential of the Cannabis plant.
Collapse
Affiliation(s)
- Jackson M. J. Oultram
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Joseph L. Pegler
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Timothy A. Bowser
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
| | - Luke J. Ney
- School of Psychological Sciences, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Andrew L. Eamens
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
| | - Christopher P. L. Grof
- Centre for Plant Science, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; (J.M.J.O.); (J.L.P.); (A.L.E.)
- CannaPacific Pty Ltd., 109 Ocean Street, Dudley, NSW 2290, Australia;
- Correspondence: ; Tel.: +612-4921-5858
| |
Collapse
|
19
|
Plant Volatile Organic Compounds Evolution: Transcriptional Regulation, Epigenetics and Polyploidy. Int J Mol Sci 2020; 21:ijms21238956. [PMID: 33255749 PMCID: PMC7728353 DOI: 10.3390/ijms21238956] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
Volatile organic compounds (VOCs) are emitted by plants as a consequence of their interaction with biotic and abiotic factors, and have a very important role in plant evolution. Floral VOCs are often involved in defense and pollinator attraction. These interactions often change rapidly over time, so a quick response to those changes is required. Epigenetic factors, such as DNA methylation and histone modification, which regulate both genes and transcription factors, might trigger adaptive responses to these evolutionary pressures as well as regulating the rhythmic emission of VOCs through circadian clock regulation. In addition, transgenerational epigenetic effects and whole genome polyploidy could modify the generation of VOCs’ profiles of offspring, contributing to long-term evolutionary shifts. In this article, we review the available knowledge about the mechanisms that may act as epigenetic regulators of the main VOC biosynthetic pathways, and their importance in plant evolution.
Collapse
|
20
|
Zhang T, Guo Y, Shi X, Yang Y, Chen J, Zhang Q, Sun M. Overexpression of LiTPS2 from a cultivar of lily (Lilium 'Siberia') enhances the monoterpenoids content in tobacco flowers. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 151:391-399. [PMID: 32278293 DOI: 10.1016/j.plaphy.2020.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/10/2020] [Accepted: 03/28/2020] [Indexed: 05/17/2023]
Abstract
Lily, a famous cut flower with highly fragrance, has high ornamental and economic values. Monoterpenes are the main components contributing to its fragrance, and terpene synthase (TPS) genes play critical roles in the biosynthesis of monoterpenoids. To understand the function of TPS and to explore the molecular mechanism of floral scent in cultivar Lilium 'Siberia', transcriptomes of petal at different flowering stages and leaf were obtained by RNA sequencing and three unigenes related to TPS genes were selected for further validation. Quantitative real-time PCR showed that the expression level of LiTPS2 was greater than that of the other two TPS genes. Phylogenetic analysis indicated that LiTPS2 belonged to the TPSb subfamily, which was responsible for monoterpenes synthesis. Subcellular localization demonstrated that LiTPS2 was located in the chloroplasts. Furthermore, functional characterization showed that LiTPS2 utilized both geranyl pyrophosphate (GPP) and farnesyl pyrophosphate (FPP) to produce monoterpenoids such as linalool and sesquiterpenes like trans-nerolidol, respectively. Ectopic expression in transgenic tobacco plants suggested that the amount of linalool from the flowers of transgenic plants was 2-3 fold higher than that of wild-type plants. And the emissions of myrcene and (E)-β-ocimene were also accumulated from the flowers of LiTPS2 transgenic lines. Surprisingly, these three compounds were the main fragrance components of oriental lily hybrids. Our results indicated that LiTPS2 contributed to the production of monoterpenes and could effectively regulate the aroma of Lilium cultivars, laying the foundation for biotechnological modification of floral scent profiles.
Collapse
Affiliation(s)
- Tengxun Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yanhong Guo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Xuejun Shi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Yongjuan Yang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Juntong Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
| | - Ming Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
21
|
Alejandro S, Höller S, Meier B, Peiter E. Manganese in Plants: From Acquisition to Subcellular Allocation. FRONTIERS IN PLANT SCIENCE 2020; 11:300. [PMID: 32273877 PMCID: PMC7113377 DOI: 10.3389/fpls.2020.00300] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/02/2020] [Indexed: 05/02/2023]
Abstract
Manganese (Mn) is an important micronutrient for plant growth and development and sustains metabolic roles within different plant cell compartments. The metal is an essential cofactor for the oxygen-evolving complex (OEC) of the photosynthetic machinery, catalyzing the water-splitting reaction in photosystem II (PSII). Despite the importance of Mn for photosynthesis and other processes, the physiological relevance of Mn uptake and compartmentation in plants has been underrated. The subcellular Mn homeostasis to maintain compartmented Mn-dependent metabolic processes like glycosylation, ROS scavenging, and photosynthesis is mediated by a multitude of transport proteins from diverse gene families. However, Mn homeostasis may be disturbed under suboptimal or excessive Mn availability. Mn deficiency is a serious, widespread plant nutritional disorder in dry, well-aerated and calcareous soils, as well as in soils containing high amounts of organic matter, where bio-availability of Mn can decrease far below the level that is required for normal plant growth. By contrast, Mn toxicity occurs on poorly drained and acidic soils in which high amounts of Mn are rendered available. Consequently, plants have evolved mechanisms to tightly regulate Mn uptake, trafficking, and storage. This review provides a comprehensive overview, with a focus on recent advances, on the multiple functions of transporters involved in Mn homeostasis, as well as their regulatory mechanisms in the plant's response to different conditions of Mn availability.
Collapse
Affiliation(s)
- Santiago Alejandro
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| | | | | | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle (Salle), Germany
| |
Collapse
|
22
|
Vranová E, Kopcsayová D, Košuth J, Colinas M. Mutant-Based Model of Two Independent Pathways for Carotenoid-Mediated Chloroplast Biogenesis in Arabidopsis Embryos. FRONTIERS IN PLANT SCIENCE 2019; 10:1034. [PMID: 31507624 PMCID: PMC6718698 DOI: 10.3389/fpls.2019.01034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/24/2019] [Indexed: 06/01/2023]
Abstract
Chloroplasts are essential for autonomous plant growth, and their biogenesis is a complex process requiring both plastid and nuclear genome. One of the essential factors required for chloroplast biogenesis are carotenoids. Carotenoids are synthesized in plastids, and it was shown that plastid localized methylerythritol 4-phosphate (MEP) pathway provides substrates for their biosynthesis. Here, we propose a model, using results of our own mutant analysis combined with the results of others, that a MEP-independent pathway, likely a mevalonate (MVA)-dependent pathway, provides intermediates for chloroplast biogenesis in Arabidopsis embryos. The pattern of this chloroplast biogenesis differs from the MEP-dependent chloroplast biogenesis. In MEP-dependent chloroplast biogenesis, chloroplasts are formed rather uniformly in the whole embryo, with stronger chlorophyll accumulation in cotyledons. In a MEP-independent pathway, chloroplasts are formed predominantly in the hypocotyl and in the embryonic root. We also show that this pattern of chlorophyll accumulation is common to MEP pathway mutants as well as to the mutant lacking geranylgeranyl diphosphate synthase 11 (GGPPS11) activity in plastids but expressing it in the cytosol (GGPPS11cyt). It was recently described that shorter GGPPS11 transcripts are present in Arabidopsis, and they can be translated into active cytosolic proteins. We therefore propose that the MEP-independent pathway for chloroplast biogenesis in Arabidopsis embryos is an MVA pathway that provides substrates for the synthesis of GGPP via GGPPS11cyt and this is then transported to plastids, where it is used for carotenoid biosynthesis and subsequently for chloroplast biogenesis mainly in the hypocotyl and in the embryonic root.
Collapse
Affiliation(s)
- Eva Vranová
- Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Diana Kopcsayová
- Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Ján Košuth
- Institute of Biology and Ecology, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Maite Colinas
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
23
|
Abstract
Phytol, the prenyl side chain of chlorophyll, is derived from geranylgeraniol by reduction of three double bonds. Recent results demonstrated that the conversion of geranylgeraniol to phytol is linked to chlorophyll synthesis, which is catalyzed by protein complexes associated with the thylakoid membranes. One of these complexes contains light harvesting chlorophyll binding like proteins (LIL3), enzymes of chlorophyll synthesis (protoporphyrinogen oxidoreductase, POR; chlorophyll synthase, CHLG) and geranylgeranyl reductase (GGR). Phytol is not only employed for the synthesis of chlorophyll, but also for tocopherol (vitamin E), phylloquinol (vitamin K) and fatty acid phytyl ester production. Previously, it was believed that phytol is derived from reduction of geranylgeranyl-diphosphate originating from the 4-methylerythritol-5-phosphate (MEP) pathway. The identification and characterization of two kinases, VTE5 and VTE6, involved in phytol and phytyl-phosphate phosphorylation, respectively, indicated that most phytol employed for tocopherol synthesis is derived from reduction of geranylgeranylated chlorophyll to (phytol-) chlorophyll. After hydrolysis from chlorophyll, free phytol is phosphorylated by the two kinases, and phytyl-diphosphate employed for the synthesis of tocopherol and phylloquinol. The reason why some chloroplast lipids, i.e. chlorophyll, tocopherol and phylloquinol, are derived from phytol, while others, i.e. carotenoids and tocotrienols (in some plant species) are synthesized from geranylgeraniol, remains unclear.
Collapse
|
24
|
Abbas F, Ke Y, Yu R, Fan Y. Functional characterization and expression analysis of two terpene synthases involved in floral scent formation in Lilium 'Siberia'. PLANTA 2019; 249:71-93. [PMID: 30218384 DOI: 10.1007/s00425-018-3006-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/06/2018] [Indexed: 05/22/2023]
Abstract
Floral scent formation in Lilium 'Siberia' is mainly due to monoterpene presence in the floral profile. LoTPS1 and LoTPS3 are responsible for the formation of (±)-linalool and β-ocimene in Lilium 'Siberia'. Lilium 'Siberia' is a perennial herbaceous plant belonging to Liliaceae family, cultivated both as a cut flower and garden plant. The snowy white flower emits a pleasant aroma which is mainly caused by monoterpenes present in the floral volatile profile. Previously terpene synthase (TPS) genes have been isolated and characterized from various plant species but less have been identified from Liliaceae family. Here, two terpene synthase genes (LoTPS1 and LoTPS3), which are highly expressed in sepals and petals of Lilium 'Siberia' flower were functionally characterized recombinant LoTPS1 specifically catalyzes the formation of (Z)-β-ocimene and (±)-linalool as its main volatile compounds from geranyl pyrophosphate (GPP), whereas LoTPS3 is a promiscuous monoterpene synthase which utilizes both GPP and farnesyl pyrophosphate (FPP) as a substrate to generate (±)-linalool and cis-nerolidol, respectively. Transcript levels of both genes were prominent in flowering parts, especially in sepals and petals which are the main source of floral scent production. The gas chromatography-mass spectrometry (GC-MS) and quantitative real-time PCR analysis revealed that the compounds were emitted throughout the day, prominently during the daytime and lower levels at night following a strong circadian rhythm in their emission pattern. Regarding mechanical wounding, both genes showed considerable involvement in floral defense by inducing the emission of (Z)-β-ocimene and (±)-linalool, elevating the transcript accumulation of LoTPS1 and LoTPS3. Furthermore, the subcellular localization experiment revealed that LoTPS1 was localized in plastids, whilst LoTPS3 in mitochondria. Our findings on these two TPSs characterized from Lilium 'Siberia' provide new insights into molecular mechanisms of terpene biosynthesis in this species and also provide an opportunity for biotechnological modification of floral scent profile of Lilium.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
- Department of Horticulture, College of Agriculture, University of Sargodha, Punjab, Pakistan
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
25
|
Yao L, Yu Q, Huang M, Hung W, Grosser J, Chen S, Wang Y, Gmitter FG. Proteomic and metabolomic analyses provide insight into the off-flavour of fruits from citrus trees infected with ' Candidatus Liberibacter asiaticus'. HORTICULTURE RESEARCH 2019; 6:31. [PMID: 30792870 PMCID: PMC6375920 DOI: 10.1038/s41438-018-0109-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 05/18/2023]
Abstract
Orange fruit from trees infected by 'Candidatus Liberibacter asiaticus' (CaLas) often do not look fully mature and exhibit off-flavours described as bitter, harsh, and metallic rather than juicy and fruity. Although previous studies have been carried out to understand the effect of CaLas on the flavour of orange juice using metabolomic methods, the mechanisms leading to the off-flavour that occurs in Huanglongbing (HLB)-symptomatic fruit are not well understood. In this study, fruits were collected from symptomatic and healthy Valencia sweet orange (Citrus sinensis) trees grafted on Swingle (C. paradisi X Poncirus trifoliata) rootstock. Isobaric tags for relative and absolute quantification (iTRAQ) and gas chromatography-mass spectrometry (GC-MS) were used to measure the proteins, sugars, organic acids, amino acids, and volatile terpenoids. The results showed that most of the differentially expressed proteins involved in glycolysis, the tricarboxylic acid (TCA) cycle and amino-acid biosynthesis were degraded, and terpenoid metabolism was significantly downregulated in the symptomatic fruit. Valencene, limonene, 3-carene, linalool, myrcene, and α-terpineol levels were significantly lower in fruit from CaLas-infected trees than from healthy trees. Similar phenomena were observed for sucrose and glucose. Our study indicated that off-flavour of symptomatic fruit was associated with a reduction in the levels of terpenoid products and the downregulation of proteins in glycolysis, the TCA cycle, and the terpenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Lixiao Yao
- Citrus Research Institute, Southwest University, Chongqing, China
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Ming Huang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Weilun Hung
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Jude Grosser
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Shanchun Chen
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yu Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| | - Frederick G. Gmitter
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850 USA
| |
Collapse
|
26
|
Zhang J, Li Q, Qi YP, Huang WL, Yang LT, Lai NW, Ye X, Chen LS. Low pH-responsive proteins revealed by a 2-DE based MS approach and related physiological responses in Citrus leaves. BMC PLANT BIOLOGY 2018; 18:188. [PMID: 30208853 PMCID: PMC6134590 DOI: 10.1186/s12870-018-1413-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/31/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Rare data are available on the molecular responses of higher plants to low pH. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were treated daily with nutrient solution at a pH of 2.5, 3, or 6 (control) for nine months. Thereafter, we first used 2-dimensional electrophoresis (2-DE) to investigate low pH-responsive proteins in Citrus leaves. Meanwhile, we examined low pH-effects on leaf gas exchange, carbohydrates, ascorbate, dehydroascorbate and malondialdehyde. The objectives were to understand the adaptive mechanisms of Citrus to low pH and to identify the possible candidate proteins for low pH-tolerance. RESULTS Our results demonstrated that Citrus were tolerant to low pH, with a slightly higher low pH-tolerance in the C. sinensis than in the C. grandis. Using 2-DE, we identified more pH 2.5-responsive proteins than pH 3-responsive proteins in leaves. This paper discussed mainly on the pH 2.5-responsive proteins. pH 2.5 decreased the abundances of proteins involved in ribulose bisphosphate carboxylase/oxygenase activation, Calvin cycle, carbon fixation, chlorophyll biosynthesis and electron transport, hence lowering chlorophyll level, electron transport rate and photosynthesis. The higher oxidative damage in the pH 2.5-treated C. grandis leaves might be due to a combination of factors including higher production of reactive oxygen species, more proteins decreased in abundance involved in antioxidation and detoxification, and lower ascorbate level. Protein and amino acid metabolisms were less affected in the C. sinensis leaves than those in the C. grandis leaves when exposed to pH 2.5. The abundances of proteins related to jasmonic acid biosynthesis and signal transduction were increased and decreased in the pH 2.5-treated C. sinensis and C. grandis leaves, respectively. CONCLUSIONS This is the first report on low pH-responsive proteins in higher plants. Thus, our results provide some novel information on low pH-toxicity and -tolerance in higher plants.
Collapse
Affiliation(s)
- Jiang Zhang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Qiang Li
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Wei-Lin Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Ning-Wei Lai
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, College of Resources and Environment, Fujian Agriculture and Forestry University (FAFU), Fuzhou, 350002 China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, College of Resources and Environment, FAFU, Fuzhou, 350002 China
| |
Collapse
|
27
|
Chen N, Wang P, Li C, Wang Q, Pan J, Xiao F, Wang Y, Zhang K, Li C, Yang B, Sun C, Deng X. A Single Nucleotide Mutation of the IspE Gene Participating in the MEP Pathway for Isoprenoid Biosynthesis Causes a Green-Revertible Yellow Leaf Phenotype in Rice. PLANT & CELL PHYSIOLOGY 2018; 59:1905-1917. [PMID: 29893915 DOI: 10.1093/pcp/pcy108] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/03/2018] [Indexed: 05/28/2023]
Abstract
Plant isoprenoids are dependent on two independent pathways, the cytosolic mevalonate (MVA) pathway and the plastidic methylerythritol phosphate (MEP) pathway. IspE is one of seven known enzymes in the MEP pathway. Currently, no IspE gene has been identified in rice. In addition, no virescent mutants have been reported to result from a gene mutation affecting the MEP pathway. In this study, we isolated a green-revertible yellow leaf mutant gry340 in rice. The mutant exhibited a reduced level of photosynthetic pigments, and an arrested development of chloroplasts and mitochondria in its yellow leaves. Map-based cloning revealed a missense mutation in OsIspE (LOC_Os01g58790) in gry340 mutant plants. OsIspE is constitutively expressed in all tissues, and its encoded protein is targeted to the chloroplast. Further, the mutant phenotype of gry340 was rescued by introduction of the wild-type gene. Therefore, we have successfully identified an IspE gene in monocotyledons via map-based cloning, and confirmed that the green-revertible yellow leaf phenotype of gry340 does result from a single nucleotide mutation in the IspE gene. In addition, the ispE ispF double mutant displayed an etiolation lethal phenotype, indicating that the isoprenoid precursors from the cytosol cannot efficiently compensate for the deficiency of the MEP pathway in rice chloroplasts. Furthermore, real-time quantitative reverse transcription-PCR suggested that this functional defect in OsIspE affected the expression of not only other MEP pathway genes but also that of MVA pathway genes, photosynthetic genes and mitochondrial genes.
Collapse
Affiliation(s)
- Nenggang Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qian Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jihong Pan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kuan Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Caixia Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
28
|
Zhang T, Sun M, Guo Y, Shi X, Yang Y, Chen J, Zheng T, Han Y, Bao F, Ahmad S. Overexpression of LiDXS and LiDXR From Lily ( Lilium 'Siberia') Enhances the Terpenoid Content in Tobacco Flowers. FRONTIERS IN PLANT SCIENCE 2018; 9:909. [PMID: 30038631 PMCID: PMC6046550 DOI: 10.3389/fpls.2018.00909] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/08/2018] [Indexed: 05/24/2023]
Abstract
Lilium, the famous and significant cut flower, emits a variety of volatile organic compounds, which mainly contain monoterpenes, such as myrcene, (E)-β-ocimene, and linalool. To understand the molecular mechanism of monoterpene synthesis in Lilium, we cloned two potential genes in the methylerythritol 4-phosphate pathway, namely LiDXS and LiDXR, from the strong-flavored oriental Lilium 'Siberia' using a homology-based PCR strategy. The expression levels of LiDXS and LiDXR were consistent with the emission and accumulation of monoterpenes in different floral organs and during the floral development, indicating that these two genes may play key roles in monoterpene synthesis. Subcellular localization demonstrated that LiDXS and LiDXR are expressed in the chloroplasts. Ectopic expression in transgenic tobacco suggested that the flowers of LiDXS and LiDXR transgenic lines accumulated substantially more diterpene, sclareol, compared to the plants transformed with empty vector. Surprisingly, increased content of the monoterpene, linalool and sesquiterpene, caryophyllene, were detected in the LiDXR transgenic lines, whereas the emission of caryophyllene, increased in one of the LiDXS transgenic tobacco lines, indicating that these two genes play significant roles in the synthesis of floral volatiles in the transgenic plants. These results demonstrate that LiDXR can contribute to monoterpene biosynthesis in Lilium 'Siberia'; however, the role of LiDXS in the biosynthesis of monoterpenes needs further study.
Collapse
|
29
|
Shi S, Duan G, Li D, Wu J, Liu X, Hong B, Yi M, Zhang Z. Two-dimensional analysis provides molecular insight into flower scent of Lilium 'Siberia'. Sci Rep 2018; 8:5352. [PMID: 29599431 PMCID: PMC5876372 DOI: 10.1038/s41598-018-23588-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/10/2022] Open
Abstract
Lily is a popular flower around the world not only because of its elegant appearance, but also due to its appealing scent. Little is known about the regulation of the volatile compound biosynthesis in lily flower scent. Here, we conducted an approach combining two-dimensional analysis and weighted gene co-expression network analysis (WGCNA) to explore candidate genes regulating flower scent production. In the approach, changes of flower volatile emissions and corresponding gene expression profiles at four flower developmental stages and four circadian times were both captured by GC-MS and RNA-seq methods. By overlapping differentially-expressed genes (DEGs) that responded to flower scent changes in flower development and circadian rhythm, 3,426 DEGs were initially identified to be candidates for flower scent production, of which 1,270 were predicted as transcriptional factors (TFs). The DEGs were further correlated to individual flower volatiles by WGCNA. Finally, 37, 41 and 90 genes were identified as candidate TFs likely regulating terpenoids, phenylpropanoids and fatty acid derivatives productions, respectively. Moreover, by WGCNA several genes related to auxin, gibberellins and ABC transporter were revealed to be responsible for flower scent production. Thus, this strategy provides an important foundation for future studies on the molecular mechanisms involved in floral scent production.
Collapse
Affiliation(s)
- Shaochuan Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Guangyou Duan
- Energy Plant Research Center, School of Life Sciences, Qilu Normal University, Jinan, China
| | - Dandan Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Jie Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Xintong Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, Beijing, China.
| |
Collapse
|
30
|
Huang R, Wang Y, Wang P, Li C, Xiao F, Chen N, Li N, Li C, Sun C, Li L, Chen R, Xu Z, Zhu J, Deng X. A single nucleotide mutation of IspF gene involved in the MEP pathway for isoprenoid biosynthesis causes yellow-green leaf phenotype in rice. PLANT MOLECULAR BIOLOGY 2018; 96:5-16. [PMID: 29143298 DOI: 10.1007/s11103-017-0668-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
We identified IspF gene through yellow-green leaf mutant 505ys in rice. OsIspF was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. On expression levels of genes in this mutant, OsIspF itself and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase were all up-regulated, however, among eight genes associated with photosynthesis, only psaA, psaN and psbA genes for three reaction center subunits of photosystem obviously changed. Isoprenoids are the most abundant natural compounds in all organisms, which originate from the basic five-carbon units isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). In plants, IPP and DMAPP are synthesized through two independent pathways, the mevalonic acid pathway in cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. The MEP pathway comprises seven enzymatic steps, in which IspF is the fifth enzyme. So far, no IspF gene has been identified in monocotyledonous plants. In this study, we isolated a leaf-color mutant, 505ys, in rice (Oryza sativa). The mutant displayed yellow-green leaf phenotype, reduced level of photosynthetic pigments, and arrested development of chloroplasts. By map-based cloning of this mutant, we identified OsIspF gene (LOC_Os02g45660) showing significant similarity to IspF gene of Arabidopsis, in which a missense mutation occurred in the mutant, resulting in an amino acid change in the encoded protein. OsIspF gene was expressed in all tissues detected, and its encoded protein was targeted to the chloroplast. Further, the mutant phenotype of 505ys was complemented by transformation with the wild-type OsIspF gene. Therefore, we successfully identified an IspF gene in monocotyledonous plants. In addition, real-time quantitative RT-PCR implied that a positive regulation could exist between the OsIspF gene and the genes encoding other enzymes of the MEP pathway and chlorophyll synthase. At the same time, it also implied that the individual genes involved in the MEP pathway might differentially regulated expression levels of the genes associated with photosynthesis.
Collapse
Affiliation(s)
- Rui Huang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Pingrong Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| | - Chunmei Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fuliang Xiao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Nenggang Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Na Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Caixia Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Changhui Sun
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lihua Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Rongjun Chen
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Zhengjun Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jianqing Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaojian Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
31
|
He Y, Yan Z, Du Y, Ma Y, Shen S. Molecular cloning and expression analysis of two key genes, HDS and HDR, in the MEP pathway in Pyropia haitanensis. Sci Rep 2017; 7:17499. [PMID: 29235494 PMCID: PMC5727536 DOI: 10.1038/s41598-017-17521-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/27/2017] [Indexed: 11/09/2022] Open
Abstract
The 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate synthase (HDS) gene and the 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase (HDR) gene are two important genes in the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. In this study, we reported the isolation and characterization of full-length HDS (MF101802) and HDR (MF159558) from Pyropia haitanensis. Characteristics of 3-D structures of the PhHDS and PhHDR proteins were analysed respectively. The results showed that the full-length cDNA of PhHDS, which is 1801 bp long, contained a 1455 bp open reading frame (ORF) encoding a putative 484 amino acid residue protein with a predicted molecular mass of 51.60 kDa. Meanwhile, the full-length cDNA of PhHDR was 1668 bp and contained a 1434 bp ORF encoding a putative 477 amino acid 2 residue protein with a predicted molecular mass of 51.49 kDa. The expression levels of the two genes were higher in conchocelis than that in leafy thallus. Additionally, the expression levels could be influenced by light, temperature and salinity and induced by methyl jasmonate (MJ) and salicylic acid (SA). This study contributed to our in-depth understanding of the roles of PhHDS and PhHDR in terpenoid biosynthesis in Pyropia haitanensis and the regulation of the two genes by external environments.
Collapse
Affiliation(s)
- Yuan He
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, No. 199 Renai Road, Suzhou, China
| | - Zhihong Yan
- Aquaculture technology extending station of Xiuyu District, Putian, China
| | - Yu Du
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, No. 199 Renai Road, Suzhou, China
| | - Yafeng Ma
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, No. 199 Renai Road, Suzhou, China
| | - Songdong Shen
- Department of cell Biology, School of Biology and Basic Medical, Soochow University, No. 199 Renai Road, Suzhou, China.
| |
Collapse
|
32
|
Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, Fan Y. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. PLANTA 2017; 246:803-816. [PMID: 28803364 DOI: 10.1007/s00425-017-2749-x] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/22/2017] [Indexed: 05/18/2023]
Abstract
Terpenoids play several physiological and ecological functions in plant life through direct and indirect plant defenses and also in human society because of their enormous applications in the pharmaceutical, food and cosmetics industries. Through the aid of genetic engineering its role can by magnified to broad spectrum by improving genetic ability of crop plants, enhancing the aroma quality of fruits and flowers and the production of pharmaceutical terpenoids contents in medicinal plants. Terpenoids are structurally diverse and the most abundant plant secondary metabolites, playing an important role in plant life through direct and indirect plant defenses, by attracting pollinators and through different interactions between the plants and their environment. Terpenoids are also significant because of their enormous applications in the pharmaceutical, food and cosmetics industries. Due to their broad distribution and functional versatility, efforts are being made to decode the biosynthetic pathways and comprehend the regulatory mechanisms of terpenoids. This review summarizes the recent advances in biosynthetic pathways, including the spatiotemporal, transcriptional and post-transcriptional regulatory mechanisms. Moreover, we discuss the multiple functions of the terpene synthase genes (TPS), their interaction with the surrounding environment and the use of genetic engineering for terpenoid production in model plants. Here, we also provide an overview of the significance of terpenoid metabolic engineering in crop protection, plant reproduction and plant metabolic engineering approaches for pharmaceutical terpenoids production and future scenarios in agriculture, which call for sustainable production platforms by improving different plant traits.
Collapse
Affiliation(s)
- Farhat Abbas
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yanguo Ke
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Sikandar Amanullah
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | | | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
33
|
Hsieh WY, Liao JC, Wang HT, Hung TH, Tseng CC, Chung TY, Hsieh MH. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B 1 biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:145-157. [PMID: 28346710 DOI: 10.1111/tpj.13552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
34
|
Leng X, Wang P, Wang C, Zhu X, Li X, Li H, Mu Q, Li A, Liu Z, Fang J. Genome-wide identification and characterization of genes involved in carotenoid metabolic in three stages of grapevine fruit development. Sci Rep 2017; 7:4216. [PMID: 28652583 PMCID: PMC5484692 DOI: 10.1038/s41598-017-04004-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Carotenoids not only play indispensable roles in plant growth and development but also enhance nutritional value and health benefits for humans. In this study, total carotenoids progressively decreased during fruit ripening. Fifty-four genes involving in mevalonate (MVA), 2-C-methyl-D-erythritol 4-phosphate (MEP), carotenoid biosynthesis and catabolism pathway were identified. The expression levels of most of the carotenoid metabolism related genes kept changing during fruit ripening generating a metabolic flux toward carotenoid synthesis. Down regulation of VvDXS, VvDXR, VvGGPPS and VvPSY and a dramatic increase in the transcription levels of VvCCD might be responsible for the reduction of carotenoids content. The visible correlation between carotenoid content and gene expression profiles suggested that transcriptional regulation of carotenoid biosynthesis pathway genes is a key mechanism of carotenoid accumulation. In addition, the decline of carotenoids was also accompanied with the reduction of chlorophyll content. The reduction of chlorophyll content might be due to the obstruction in chlorophyll synthesis and acceleration of chlorophyll degradation. These results will be helpful for better understanding of carotenoid biosynthesis in grapevine fruit and contribute to the development of conventional and transgenic grapevine cultivars for further enrichment of carotenoid content.
Collapse
Affiliation(s)
- Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Hongyan Li
- Grape and Wine Research Institute, Guangxi Academy of Agricultural Sciences, Daxuedong Road 174, Nanning, 530007, P.R. China
| | - Qian Mu
- Shandong Aacademy of Grape, Gongyenan Road 103, Jinan, 250110, P.R. China
| | - Ao Li
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Tongwei Road 6, Nanjing, 210095, P.R. China.
| |
Collapse
|
35
|
Jadaun JS, Sangwan NS, Narnoliya LK, Singh N, Bansal S, Mishra B, Sangwan RS. Over-expression of DXS gene enhances terpenoidal secondary metabolite accumulation in rose-scented geranium and Withania somnifera: active involvement of plastid isoprenogenic pathway in their biosynthesis. PHYSIOLOGIA PLANTARUM 2017; 159:381-400. [PMID: 27580641 DOI: 10.1111/ppl.12507] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/18/2016] [Accepted: 08/05/2016] [Indexed: 05/08/2023]
Abstract
Rose-scented geranium (Pelargonium spp.) is one of the most important aromatic plants and is well known for its diverse perfumery uses. Its economic importance is due to presence of fragrance rich essential oil in its foliage. The essential oil is a mixture of various volatile phytochemicals which are mainly terpenes (isoprenoids) in nature. In this study, on the geranium foliage genes related to isoprenoid biosynthesis (DXS, DXR and HMGR) were isolated, cloned and confirmed by sequencing. Further, the first gene of 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, 1-deoxy-d-xylulose-5-phosphate synthase (GrDXS), was made full length by using rapid amplification of cDNA ends strategy. GrDXS contained a 2157 bp open reading frame that encoded a polypeptide of 792 amino acids having calculated molecular weight 77.5 kDa. This study is first report on heterologous expression and kinetic characterization of any gene from this economically important plant. Expression analysis of these genes was performed in different tissues as well as at different developmental stages of leaves. In response to external elicitors, such as methyl jasmonate, salicylic acid, light and wounding, all the three genes showed differential expression profiles. Further GrDXS was over expressed in the homologous (rose-scented geranium) as well as in heterologous (Withania somnifera) plant systems through genetic transformation approach. The over-expression of GrDXS led to enhanced secondary metabolites production (i.e. essential oil in rose-scented geranium and withanolides in W. somnifera). To the best of our knowledge, this is the first report showing the expression profile of the three genes related to isoprenoid biosynthesis pathways operated in rose-scented geranium as well as functional characterization study of any gene from rose-scented geranium through a genetic transformation system.
Collapse
Affiliation(s)
- Jyoti Singh Jadaun
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Neelam S Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Lokesh K Narnoliya
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Neha Singh
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Shilpi Bansal
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Bhawana Mishra
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
| | - Rajender Singh Sangwan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow 226015, India
- Center of Innovative and Applied Bioprocessing (A National Institute under Department of Biotechnology, Govt. of India), C-127, Phase-8, Industrial Area, S.A.S. Nagar, Mohali - 160071, Punjab, India
| |
Collapse
|
36
|
Yan N, Zhang H, Zhang Z, Shi J, Timko MP, Du Y, Liu X, Liu Y. Organ- and Growing Stage-Specific Expression of Solanesol Biosynthesis Genes in Nicotiana tabacum Reveals Their Association with Solanesol Content. Molecules 2016; 21:E1536. [PMID: 27854285 PMCID: PMC6273945 DOI: 10.3390/molecules21111536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 11/16/2022] Open
Abstract
Solanesol is a noncyclic terpene alcohol that is composed of nine isoprene units and mainly accumulates in solanaceous plants, especially tobacco (Nicotiana tabacum L.). In the present study, RNA-seq analyses of tobacco leaves, stems, and roots were used to identify putative solanesol biosynthesis genes. Six 1-deoxy-d-xylulose 5-phosphate synthase (DXS), two 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), two 2-C-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD), four 4-diphosphocytidyl-2-C-methyl-d-erythritol kinase (IspE), two 2-C-methyl-d-erythritol 2,4-cyclo-diphosphate synthase (IspF), four 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (IspG), two 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase (IspH), six isopentenyl diphosphate isomerase (IPI), and two solanesyl diphosphate synthase (SPS) candidate genes were identified in the solanesol biosynthetic pathway. Furthermore, the two N. tabacum SPS proteins (NtSPS1 and NtSPS2), which possessed two conserved aspartate-rich DDxxD domains, were highly homologous with SPS enzymes from other solanaceous plant species. In addition, the solanesol contents of three organs and of leaves from four growing stages of tobacco plants corresponded with the distribution of chlorophyll. Our findings provide a comprehensive evaluation of the correlation between the expression of different biosynthesis genes and the accumulation of solanesol, thus providing valuable insight into the regulation of solanesol biosynthesis in tobacco.
Collapse
Affiliation(s)
- Ning Yan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Hongbo Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Zhongfeng Zhang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - John Shi
- Guelph Food Research Center, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada.
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA.
| | - Yongmei Du
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Xinmin Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yanhua Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
37
|
Perello C, Llamas E, Burlat V, Ortiz-Alcaide M, Phillips MA, Pulido P, Rodriguez-Concepcion M. Differential Subplastidial Localization and Turnover of Enzymes Involved in Isoprenoid Biosynthesis in Chloroplasts. PLoS One 2016; 11:e0150539. [PMID: 26919668 PMCID: PMC4769067 DOI: 10.1371/journal.pone.0150539] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/15/2016] [Indexed: 11/23/2022] Open
Abstract
Plastidial isoprenoids are a diverse group of metabolites with roles in photosynthesis, growth regulation, and interaction with the environment. The methylerythritol 4-phosphate (MEP) pathway produces the metabolic precursors of all types of plastidial isoprenoids. Proteomics studies in Arabidopsis thaliana have shown that all the enzymes of the MEP pathway are localized in the plastid stroma. However, immunoblot analysis of chloroplast subfractions showed that the first two enzymes of the pathway, deoxyxylulose 5-phosphate synthase (DXS) and reductoisomerase (DXR), can also be found in non-stromal fractions. Both transient and stable expression of GFP-tagged DXS and DXR proteins confirmed the presence of the fusion proteins in distinct subplastidial compartments. In particular, DXR-GFP was found to accumulate in relatively large vesicles that could eventually be released from chloroplasts, presumably to be degraded by an autophagy-independent process. Together, we propose that protein-specific mechanisms control the localization and turnover of the first two enzymes of the MEP pathway in Arabidopsis chloroplasts.
Collapse
Affiliation(s)
- Catalina Perello
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Ernesto Llamas
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Vincent Burlat
- Université de Toulouse, CNRS, UMR 5546, BP 42617 Auzeville, 31326 Castanet-Tolosan, France
| | - Miriam Ortiz-Alcaide
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Michael A. Phillips
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Pablo Pulido
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| | - Manuel Rodriguez-Concepcion
- Program of Plant Metabolism and Metabolic Engineering, Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
| |
Collapse
|
38
|
Liao JC, Hsieh WY, Tseng CC, Hsieh MH. Dysfunctional chloroplasts up-regulate the expression of mitochondrial genes in Arabidopsis seedlings. PHOTOSYNTHESIS RESEARCH 2016; 127:151-9. [PMID: 26008795 DOI: 10.1007/s11120-015-0161-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 05/20/2015] [Indexed: 05/22/2023]
Abstract
Chloroplasts and mitochondria play important roles in maintaining metabolic and energy homeostasis in the plant cell. The interactions between these two organelles, especially photosynthesis and respiration, have been intensively studied. Still, little is known about the regulation of mitochondrial gene expression by chloroplasts and vice versa. The gene expression machineries in chloroplasts and mitochondria rely heavily on the nuclear genome. Thus, the interactions between nucleus and these organelles, including anterograde and retrograde regulation, have been actively investigated in the last two decades. Norflurazon (NF) and lincomycin (Lin) are two commonly used inhibitors to study chloroplast-to-nucleus retrograde signaling in plants. We used NF and Lin to block the development and functions of chloroplasts and examined their effects on mitochondrial gene expression, RNA editing and splicing. The editing of most mitochondrial transcripts was not affected, but the editing extents of nad4-107, nad6-103, and ccmFc-1172 decreased slightly in NF- and Lin-treated seedlings. While the splicing of mitochondrial transcripts was not significantly affected, steady-state mRNA levels of several mitochondrial genes increased significantly in NF- and Lin-treated seedlings. Moreover, Lin seemed to have more profound effects than NF on the expression of mitochondrial genes, indicating that signals derived from these two inhibitors might be distinct. NF and Lin also significantly induced the expression of nuclear genes encoding subunits of mitochondrial electron transport chain complexes. Thus, dysfunctional chloroplasts may coordinately up-regulate the expression of nuclear and mitochondrial genes encoding subunits of respiratory complexes.
Collapse
Affiliation(s)
- Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
39
|
Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling. BMC Genomics 2015; 16:492. [PMID: 26138916 PMCID: PMC4490644 DOI: 10.1186/s12864-015-1655-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 05/22/2015] [Indexed: 11/19/2022] Open
Abstract
Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway. Conclusions This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Yue Y, Yu R, Fan Y. Transcriptome profiling provides new insights into the formation of floral scent in Hedychium coronarium. BMC Genomics 2015; 16:470. [PMID: 26084652 PMCID: PMC4472261 DOI: 10.1186/s12864-015-1653-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/20/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hedychium coronarium is a popular ornamental plant in tropical and subtropical regions because its flowers not only possess intense and inviting fragrance but also enjoy elegant shape. The fragrance results from volatile terpenes and benzenoids presented in the floral scent profile. However, in this species, even in monocots, little is known about the underlying molecular mechanism of floral scent production. RESULTS Using Illumina platform, approximately 81 million high-quality reads were obtained from a pooled cDNA library. The de novo assembly resulted in a transcriptome with 65,591 unigenes, 50.90% of which were annotated using public databases. Digital gene expression (DGE) profiling analysis revealed 7,796 differential expression genes (DEGs) during petal development. GO term classification and KEGG pathway analysis indicated that the levels of transcripts changed significantly in "metabolic process", including "terpenoid biosynthetic process". Through a systematic analysis, 35 and 33 candidate genes might be involved in the biosynthesis of floral volatile terpenes and benzenoids, respectively. Among them, flower-specific HcDXS2A, HcGPPS, HcTPSs, HcCNL and HcBCMT1 might play critical roles in regulating the formation of floral fragrance through DGE profiling coupled with floral volatile profiling analyses. In vitro characterization showed that HcTPS6 was capable of generating β-farnesene as its main product. In the transcriptome, 1,741 transcription factors (TFs) were identified and 474 TFs showed differential expression during petal development. It is supposed that two R2R3-MYBs with flower-specific and developmental expression might be involved in the scent production. CONCLUSIONS The novel transcriptome and DGE profiling provide an important resource for functional genomics studies and give us a dynamic view of biological process during petal development in H. coronarium. These data lay the basis for elucidating the molecular mechanism of floral scent formation and regulation in monocot. The results also provide the opportunities for genetic modification of floral scent profile in Hedychium.
Collapse
Affiliation(s)
- Yuechong Yue
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| | - Rangcai Yu
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yanping Fan
- The Research Center for Ornamental Plants, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
41
|
Singh B, Sharma RA. Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech 2015; 5:129-151. [PMID: 28324581 PMCID: PMC4362742 DOI: 10.1007/s13205-014-0220-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 12/11/2022] Open
Abstract
The terpenoids constitute the largest class of natural products and many interesting products are extensively applied in the industrial sector as flavors, fragrances, spices and are also used in perfumery and cosmetics. Many terpenoids have biological activities and also used for medical purposes. In higher plants, the conventional acetate-mevalonic acid pathway operates mainly in the cytosol and mitochondria and synthesizes sterols, sesquiterpenes and ubiquinones mainly. In the plastid, the non-mevalonic acid pathway takes place and synthesizes hemi-, mono-, sesqui-, and diterpenes along with carotenoids and phytol tail of chlorophyll. In this review paper, recent developments in the biosynthesis of terpenoids, indepth description of terpene synthases and their phylogenetic analysis, regulation of terpene biosynthesis as well as updates of terpenes which have entered in the clinical studies are reviewed thoroughly.
Collapse
Affiliation(s)
- Bharat Singh
- AIB, Amity University Rajasthan, NH-11C, Kant Kalwar, Jaipur, 303 002, India.
| | - Ram A Sharma
- Department of Botany, University of Rajasthan, Jaipur, 302 055, India
| |
Collapse
|
42
|
Tholl D. Biosynthesis and biological functions of terpenoids in plants. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:63-106. [PMID: 25583224 DOI: 10.1007/10_2014_295] [Citation(s) in RCA: 271] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Terpenoids (isoprenoids) represent the largest and most diverse class of chemicals among the myriad compounds produced by plants. Plants employ terpenoid metabolites for a variety of basic functions in growth and development but use the majority of terpenoids for more specialized chemical interactions and protection in the abiotic and biotic environment. Traditionally, plant-based terpenoids have been used by humans in the food, pharmaceutical, and chemical industries, and more recently have been exploited in the development of biofuel products. Genomic resources and emerging tools in synthetic biology facilitate the metabolic engineering of high-value terpenoid products in plants and microbes. Moreover, the ecological importance of terpenoids has gained increased attention to develop strategies for sustainable pest control and abiotic stress protection. Together, these efforts require a continuous growth in knowledge of the complex metabolic and molecular regulatory networks in terpenoid biosynthesis. This chapter gives an overview and highlights recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways, and addresses the most important functions of volatile and nonvolatile terpenoid specialized metabolites in plants.
Collapse
Affiliation(s)
- Dorothea Tholl
- Department of Biological Sciences, Virginia Tech, 409 Latham Hall, 24061, Blacksburg, VA, USA,
| |
Collapse
|
43
|
Hsieh WY, Hsieh MH. The amino-terminal conserved domain of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase is critical for its function in oxygen-evolving photosynthetic organisms. PLANT SIGNALING & BEHAVIOR 2015; 10:e988072. [PMID: 25723575 PMCID: PMC4622703 DOI: 10.4161/15592324.2014.988072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 05/22/2023]
Abstract
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR), also known as isoprenoid synthesis H (IspH) or lysis-tolerant B (LytB), catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and dimethylallyl diphosphate. The structure and reaction mechanism of IspH have been actively investigated in Escherichia coli but little is known in plants. Compared with the bacterial IspH, cyanobacterial and plant HDRs all contain an extra N-terminal conserved domain (NCD) that is essential for their function. Tyr72 in the NCD and several plant-specific residues around the central active site are critical for Arabidopsis HDR function. These results suggest that the structure and reaction mechanism of HDR/IspH may be different between plants and bacteria. The E. coli IspH is an iron-sulfur protein that is sensitive to oxygen. It is possible that the cyanobacterial HDR may independently evolve from the common ancestor of prokaryotes to obtain the NCD, which may protect the enzyme from high concentration of oxygen during photosynthesis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology; Academia Sinica; Taipei, Taiwan
- Correspondence to: Ming-Hsiun Hsieh;
| |
Collapse
|
44
|
Mendoza-Poudereux I, Muñoz-Bertomeu J, Arrillaga I, Segura J. Deoxyxylulose 5-phosphate reductoisomerase is not a rate-determining enzyme for essential oil production in spike lavender. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1564-70. [PMID: 25151124 DOI: 10.1016/j.jplph.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/08/2014] [Accepted: 07/23/2014] [Indexed: 05/23/2023]
Abstract
Spike lavender (Lavandula latifolia) is an economically important aromatic plant producing essential oils, whose components (mostly monoterpenes) are mainly synthesized through the plastidial methylerythritol 4-phosphate (MEP) pathway. 1-Deoxy-D-xylulose-5-phosphate (DXP) synthase (DXS), that catalyzes the first step of the MEP pathway, plays a crucial role in monoterpene precursors biosynthesis in spike lavender. To date, however, it is not known whether the DXP reductoisomerase (DXR), that catalyzes the conversion of DXP into MEP, is also a rate-limiting enzyme for the biosynthesis of monoterpenes in spike lavender. To investigate it, we generated transgenic spike lavender plants constitutively expressing the Arabidopsis thaliana DXR gene. Although two out of the seven transgenic T0 plants analyzed accumulated more essential oils than the controls, this is hardly imputable to the DXR transgene effect since a clear correlation between transcript accumulation and monoterpene production could not be established. Furthermore, these increased essential oil phenotypes were not maintained in their respective T1 progenies. Similar results were obtained when total chlorophyll and carotenoid content in both T0 transgenic plants and their progenies were analyzed. Our results then demonstrate that DXR enzyme does not play a crucial role in the synthesis of plastidial monoterpene precursors, suggesting that the control flux of the MEP pathway in spike lavender is primarily exerted by the DXS enzyme.
Collapse
Affiliation(s)
- Isabel Mendoza-Poudereux
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - Jesús Muñoz-Bertomeu
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - Isabel Arrillaga
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain
| | - Juan Segura
- Departamento de Biología Vegetal, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain; ISIC/ERI de Biotecnología y Biomedicina, Universidad de Valencia, Av. Vicent Andrés Estellés s/n, 46100 Burjasot, Valencia, Spain.
| |
Collapse
|
45
|
Hsieh WY, Sung TY, Wang HT, Hsieh MH. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE. PLANT PHYSIOLOGY 2014; 166:57-69. [PMID: 25037211 PMCID: PMC4149731 DOI: 10.1104/pp.114.243642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Ying Sung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
46
|
Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function. PLANT, CELL & ENVIRONMENT 2014; 37:1936-49. [PMID: 24588567 DOI: 10.1111/pce.12314] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 02/18/2014] [Indexed: 05/20/2023]
Abstract
Floral volatiles have attracted humans' attention since antiquity and have since then permeated many aspects of our lives. Indeed, they are heavily used in perfumes, cosmetics, flavourings and medicinal applications. However, their primary function is to mediate ecological interactions between flowers and a diverse array of visitors, including pollinators, florivores and pathogens. As such, they ultimately ensure the plants' reproductive and evolutionary success. To date, over 1700 floral volatile organic compounds (VOCs) have been identified. Interestingly, they are derived from only a few biochemical networks, which include the terpenoid, phenylpropanoid/benzenoid and fatty acid biosynthetic pathways. These pathways are intricately regulated by endogenous and external factors to enable spatially and temporally controlled emission of floral volatiles, thereby fine-tuning the ecological interactions facilitated by floral volatiles. In this review, we will focus on describing the biosynthetic pathways leading to floral VOCs, the regulation of floral volatile emission, as well as biological functions of emitted volatiles.
Collapse
Affiliation(s)
- Joëlle K Muhlemann
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | | |
Collapse
|
47
|
Zubo YO, Potapova TV, Yamburenko MV, Tarasenko VI, Konstantinov YM, Börner T. Inhibition of the electron transport strongly affects transcription and transcript levels in Arabidopsis mitochondria. Mitochondrion 2014; 19 Pt B:222-30. [PMID: 24699356 DOI: 10.1016/j.mito.2014.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/14/2022]
Abstract
Mitochondrial transcription rate and RNA steady-state levels were examined in shoots of Arabidopsis seedlings. The shoots were treated with inhibitors of complex III and IV of the cytochrome pathway (CP) and with an inhibitor of the alternative oxidase (AOX) of the mitochondrial electron transport chain. The inhibition of AOX and CP complexes III and IV affected transcription and transcript levels in different ways. CP and AOX inhibitors had opposite effects. Our data support the idea that the redox state of the electron transport chain is involved in the regulation of mitochondrial gene expression at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Yan O Zubo
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany
| | - Tatyana V Potapova
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany; The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia
| | - Maria V Yamburenko
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany
| | - Vladislav I Tarasenko
- The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia
| | - Yuri M Konstantinov
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany; The Siberian Institute of Plant Physiology and Biochemistry SB RAS, Lermontova St., 132, Irkutsk 664033, Russia; The Irkutsk State University, Sukhe-Batar St., 5, Irkutsk 664033, Russia
| | - Thomas Börner
- Institute of Biology-Genetics, Humboldt University, Chaussestr. 117, 10115 Berlin, Germany.
| |
Collapse
|
48
|
Dellas N, Thomas ST, Manning G, Noel JP. Discovery of a metabolic alternative to the classical mevalonate pathway. eLife 2013; 2:e00672. [PMID: 24327557 PMCID: PMC3857490 DOI: 10.7554/elife.00672] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Eukarya, Archaea, and some Bacteria encode all or part of the essential mevalonate (MVA) metabolic pathway clinically modulated using statins. Curiously, two components of the MVA pathway are often absent from archaeal genomes. The search for these missing elements led to the discovery of isopentenyl phosphate kinase (IPK), one of two activities necessary to furnish the universal five-carbon isoprenoid building block, isopentenyl diphosphate (IPP). Unexpectedly, we now report functional IPKs also exist in Bacteria and Eukarya. Furthermore, amongst a subset of species within the bacterial phylum Chloroflexi, we identified a new enzyme catalyzing the missing decarboxylative step of the putative alternative MVA pathway. These results demonstrate, for the first time, a functioning alternative MVA pathway. Key to this pathway is the catalytic actions of a newly uncovered enzyme, mevalonate phosphate decarboxylase (MPD) and IPK. Together, these two discoveries suggest that unforeseen variation in isoprenoid metabolism may be widespread in nature. DOI: http://dx.doi.org/10.7554/eLife.00672.001.
Collapse
Affiliation(s)
- Nikki Dellas
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, United States
| | | | | | | |
Collapse
|
49
|
Kim S, Schlicke H, Van Ree K, Karvonen K, Subramaniam A, Richter A, Grimm B, Braam J. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways. THE PLANT CELL 2013; 25:4984-93. [PMID: 24363312 PMCID: PMC3904000 DOI: 10.1105/tpc.113.119172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/16/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.
Collapse
Affiliation(s)
- Se Kim
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Hagen Schlicke
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Kalie Van Ree
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Kristine Karvonen
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Anant Subramaniam
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
| | - Andreas Richter
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology, Department of Plant Physiology, Humboldt University, 10115 Berlin, Germany
| | - Janet Braam
- Biochemistry and Cell Biology, Rice University, Houston, Texas 77005-1892
- Address correspondence to
| |
Collapse
|
50
|
Sunil B, Talla SK, Aswani V, Raghavendra AS. Optimization of photosynthesis by multiple metabolic pathways involving interorganelle interactions: resource sharing and ROS maintenance as the bases. PHOTOSYNTHESIS RESEARCH 2013; 117:61-71. [PMID: 23881384 DOI: 10.1007/s11120-013-9889-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 07/08/2013] [Indexed: 05/21/2023]
Abstract
The bioenergetic processes of photosynthesis and respiration are mutually beneficial. Their interaction extends to photorespiration, which is linked to optimize photosynthesis. The interplay of these three pathways is facilitated by two major phenomena: sharing of energy/metabolite resources and maintenance of optimal levels of reactive oxygen species (ROS). The resource sharing among different compartments of plant cells is based on the production/utilization of reducing equivalents (NADPH, NADH) and ATP as well as on the metabolite exchange. The responsibility of generating the cellular requirements of ATP and NAD(P)H is mostly by the chloroplasts and mitochondria. In turn, besides the chloroplasts, the mitochondria, cytosol and peroxisomes are common sinks for reduced equivalents. Transporters located in membranes ensure the coordinated movement of metabolites across the cellular compartments. The present review emphasizes the beneficial interactions among photosynthesis, dark respiration and photorespiration, in relation to metabolism of C, N and S. Since the bioenergetic reactions tend to generate ROS, the cells modulate chloroplast and mitochondrial reactions, so as to ensure that the ROS levels do not rise to toxic levels. The patterns of minimization of ROS production and scavenging of excess ROS in intracellular compartments are highlighted. Some of the emerging developments are pointed out, such as model plants, orientation/movement of organelles and metabolomics.
Collapse
Affiliation(s)
- Bobba Sunil
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | | | | | | |
Collapse
|