1
|
Xu C, Wang JC, Sun L, Zhuang LH, Guo ZJ, Ding QS, Ma DN, Song LY, Li J, Tang HC, Zhu XY, Zheng HL. Genome-Wide Identification of Pentatricopeptide Repeat (PPR) Gene Family and Multi-Omics Analysis Provide New Insights Into the Albinism Mechanism of Kandelia obovata Propagule Leaves. PLANT, CELL & ENVIRONMENT 2024; 47:5498-5510. [PMID: 39222055 DOI: 10.1111/pce.15132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Pentatricopeptide repeat (PPR) gene family constitutes one of the largest gene families in plants, which mainly participate in RNA editing and RNA splicing of organellar RNAs, thereby affecting the organellar development. Recently, some evidence elucidated the important roles of PPR proteins in the albino process of plant leaves. However, the functions of PPR genes in the woody mangrove species have not been investigated. In this study, using a typical true mangrove Kandelia obovata, we systematically identified 298 PPR genes and characterized their general features and physicochemical properties, including evolutionary relationships, the subcellular localization, PPR motif type, the number of introns and PPR motifs, and isoelectric point, and so forth. Furthermore, we combined genome-wide association studies (GWAS) and transcriptome analysis to identify the genetic architecture and potential PPR genes associated with propagule leaves colour variations of K. obovata. As a result, we prioritized 16 PPR genes related to the albino phenotype using different strategies, including differentially expressed genes analysis and genetic diversity analysis. Further analysis discovered two genes of interest, namely Maker00002998 (PLS-type) and Maker00003187 (P-type), which were differentially expressed genes and causal genes detected by GWAS analysis. Moreover, we successfully predicted downstream target chloroplast genes (rps14, rpoC1 and rpoC2) bound by Maker00002998 PPR proteins. The experimental verification of RNA editing sites of rps14, rpoC1, and rpoC2 in our previous study and the verification of interaction between Maker00002998 and rps14 transcript using in vitro RNA pull-down assays revealed that Maker00002998 PPR protein might be involved in the post-transcriptional process of chloroplast genes. Our result provides new insights into the roles of PPR genes in the albinism mechanism of K. obovata propagule leaves.
Collapse
Affiliation(s)
- Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ji-Cheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ling Sun
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Li-Han Zhuang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Ze-Jun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Coral Reef Research Center of China, Guangxi University, Nanning, China
| | - Qian-Su Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Dong-Na Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ling-Yu Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Jing Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Han-Chen Tang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Xue-Yi Zhu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Fan J, Sah SK, Lemes Jorge G, Blanford J, Xie D, Yu L, Thelen J, Shanklin J, Xu C. Arabidopsis trigalactosyldiacylglycerol1 mutants reveal a critical role for phosphtidylcholine remodeling in lipid homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:788-798. [PMID: 39276345 DOI: 10.1111/tpj.17020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024]
Abstract
Lipid remodeling plays a critical role in plant response to abiotic stress and metabolic perturbations. Key steps in this process involve modifications of phosphatidylcholine (PC) acyl chains mediated by lysophosphatidylcholine: acyl-CoA acyltransferases (LPCATs) and phosphatidylcholine: diacylglycerol cholinephosphotransferase (ROD1). To assess their importance in lipid homeostasis, we took advantage of the trigalactosyldiacylglycerol1 (tgd1) mutant that exhibits marked increases in fatty acid synthesis and fatty acid flux through PC due to a block in inter-organelle lipid trafficking. Here, we showed that the increased fatty acid synthesis in tgd1 is due to posttranslational activation of the plastidic acetyl-coenzyme A carboxylase. Genetic analysis showed that knockout of LPCAT1 and 2 resulted in a lethal phenotype in tgd1. In addition, plants homozygous for lpcat2 and heterozygous for lpcat1 in the tgd1 background showed reduced levels of PC and triacylglycerols (TAG) and alterations in their fatty acid profiles. We further showed that disruption of ROD1 in tgd1 resulted in changes in fatty acid composition of PC and TAG, decreased leaf TAG content and reduced seedling growth. Together, our results reveal a critical role of LPCATs and ROD1 in maintaining cellular lipid homeostasis under conditions, in which fatty acid production largely exceeds the cellular demand for membrane lipid synthesis.
Collapse
Affiliation(s)
- Jilian Fan
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Saroj Kumar Sah
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Gabriel Lemes Jorge
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - Jantana Blanford
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Dongling Xie
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Linhui Yu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Jay Thelen
- Department of Biochemistry, Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, 1201 E Rollins, Columbia, Missouri, 65211, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Changcheng Xu
- Biology Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| |
Collapse
|
3
|
Tian Y, Liu X, Xu Y, Yu B, Wang L, Qu X. Comparative and phylogenetic analysis of Asparagus meioclados Levl. and Asparagus munitus Wang et S. C. Chen plastomes and utility of plastomes mutational hotspots. Sci Rep 2023; 13:15622. [PMID: 37730791 PMCID: PMC10511529 DOI: 10.1038/s41598-023-42945-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023] Open
Abstract
Tiandong is a vital traditional Chinese herbal medicine. It is derived from the tuber root of the Asparagus cochinchinensis according to the Pharmacopoeia of the people's republic of China (2020 Edition). On account of the similar morphology, Asparagus meioclados and Asparagus munitus were used as Tian-Dong in southwest China. Chloroplast (cp) genomes are highly active genetic components of plants and play an extremely important role in improving the efficiency of the identification of plant species. To differentiate the medicinal plants belonging to the genus Asparagus, we sequenced and analyzed the complete plastomes (plastid genomes) of A. meioclados and A. munitus and obtained two plastomes whose length changed to 156,515 bp and 156,381 bp, respectively. A total of 111 unique genes have been detected in plastome, which included 78 protein-coding genes, 29 tRNA genes and 4 rRNA genes. In plastomes of A. meioclados and A. munitus, 14,685 and 14,987 codons were detected, among which 9942 and 10,207 had the relative synonymous codon usage (RSCU) values higher than 1, respectively. A. meioclados and A. munitus have 26 SSRs patterns, among which A. meioclados was 25 and A. munitus 21. The average Ka/Ks value was 0.36, and positive selection was detected in genes of the photosynthetic system (ndhF and rbcL) in Asparagus species. To perform the comparative analysis of plastomes, the two newly sequenced plastomes of the A. meioclados and A. munitus species were compared with that of A. cochinchinensis, and 12 hotspots, including 5 coding regions and 7 inter-genomic regions, were identified. Based on the whole plastome of Asparagus, 2 divergent hotspots (accD and rpl32-trnL-UAG) and 1 international barcode fragment (rbcL) were screened, which may be used as particular molecular markers for the identification of Asparagus species. In addition, we determined the phylogenetic relationship between A. meioclados and A. munitus in the genus Asparagus. This study enriches our knowledge of the molecular evolutionary relationships of the Asparagus genus and provides treasured data records for species identification, molecular breeding, and evolutionary analysis of this genus.
Collapse
Affiliation(s)
- Yulu Tian
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, China
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China
| | - Xue Liu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China.
| | - Yuanjiang Xu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China
| | - Benxia Yu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China
| | - Le Wang
- College of Life Science and Food Engineering, Chongqing Three Gorges University, 666 Tianxing Road, Wanzhou District, Chongqing, 404100, China
| | - Xianyou Qu
- Chongqing Academy of Chinese Materia Medica, 34 Nanshan Road, Huangjueya, Nanan District, Chongqing, 400065, China.
| |
Collapse
|
4
|
Liu D, Li ZA, Li Y, Molloy DP, Huang C. The DYW domain of RARE1 plays an indispensable role in regulating accD-C794 RNA editing in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111751. [PMID: 37263527 DOI: 10.1016/j.plantsci.2023.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
The Arabidopsis pentatricopeptide repeat (PPR) proteins, required for accD RNA editing 1 (RARE1) and early chloroplast biogenesis 2 (AtECB2), each contain a DYW domain deemed essential for cytosine deamination at the accD-C794 RNA editing site in chloroplasts. Complementation assays using the rare1 mutant investigate the correlation between these PPRs and their respective DYW domain functions in RNA editing of accD-C794. The results demonstrate that the coding sequence of AtECB2 cannot replace that of RARE1. Moreover, rare1 mutants complemented with DYW-deleted RARE1 failed to recover the RNA editing of accD-C794 even in the presence of the highly similar DYW domain of the AtECB2 protein. These findings indicate that RARE1 and AtECB2 possess divergent roles in RNA editing, with specificity for accD-C794 directly attributable to DYW domain within RARE1. Structural modeling data suggest this functioning pertains to a local α-helical motif that residues slightly N-terminal to the consensus glutamate and CXXCH motif in the DYW domain for cytidine deamination during C-to-U editing by RARE1 that is absent within AtECB2.
Collapse
Affiliation(s)
- Dan Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Zi-Ang Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - David P Molloy
- Department of Biochemistry and Molecular Biology, Basic Medical College, Chongqing Medical University, Chongqing 400016, China; Center for Molecular Medicine and Cancer Research, Basic Medical College, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
5
|
Zhao Y, Gao R, Zhao Z, Hu S, Han R, Jeyaraj A, Arkorful E, Li X, Chen X. Genome-wide identification of RNA editing sites in chloroplast transcripts and multiple organellar RNA editing factors in tea plant (Camellia sinensis L.): Insights into the albinism mechanism of tea leaves. Gene X 2023; 848:146898. [DOI: 10.1016/j.gene.2022.146898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/18/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
|
6
|
Loiacono FV, Walther D, Seeger S, Thiele W, Gerlach I, Karcher D, Schöttler MA, Zoschke R, Bock R. Emergence of Novel RNA-Editing Sites by Changes in the Binding Affinity of a Conserved PPR Protein. Mol Biol Evol 2022; 39:6760358. [PMID: 36227729 PMCID: PMC9750133 DOI: 10.1093/molbev/msac222] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023] Open
Abstract
RNA editing converts cytidines to uridines in plant organellar transcripts. Editing typically restores codons for conserved amino acids. During evolution, specific C-to-U editing sites can be lost from some plant lineages by genomic C-to-T mutations. By contrast, the emergence of novel editing sites is less well documented. Editing sites are recognized by pentatricopeptide repeat (PPR) proteins with high specificity. RNA recognition by PPR proteins is partially predictable, but prediction is often inadequate for PPRs involved in RNA editing. Here we have characterized evolution and recognition of a recently gained editing site. We demonstrate that changes in the RNA recognition motifs that are not explainable with the current PPR code allow an ancient PPR protein, QED1, to uniquely target the ndhB-291 site in Brassicaceae. When expressed in tobacco, the Arabidopsis QED1 edits 33 high-confident off-target sites in chloroplasts and mitochondria causing a spectrum of mutant phenotypes. By manipulating the relative expression levels of QED1 and ndhB-291, we show that the target specificity of the PPR protein depends on the RNA:protein ratio. Finally, our data suggest that the low expression levels of PPR proteins are necessary to ensure the specificity of editing site selection and prevent deleterious off-target editing.
Collapse
Affiliation(s)
- F Vanessa Loiacono
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Dirk Walther
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stefanie Seeger
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Wolfram Thiele
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ines Gerlach
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Reimo Zoschke
- Department of Organelle Biology, Biotechnology and Molecular Ecophysiology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | | |
Collapse
|
7
|
Liu XY, Jiang RC, Wang Y, Tang JJ, Sun F, Yang YZ, Tan BC. ZmPPR26, a DYW-type pentatricopeptide repeat protein, is required for C-to-U RNA editing at atpA-1148 in maize chloroplasts. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4809-4821. [PMID: 33929512 DOI: 10.1093/jxb/erab185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are involved in the C-to-U RNA editing of organellar transcripts. The maize genome contains over 600 PPR proteins and few have been found to function in the C-to-U RNA editing in chloroplasts. Here, we report the function of ZmPPR26 in the C-to-U RNA editing and chloroplast biogenesis in maize. ZmPPR26 encodes a DYW-type PPR protein targeted to chloroplasts. The zmppr26 mutant exhibits albino seedling-lethal phenotype. Loss of function of ZmPPR26 abolishes the editing at atpA-1148 site, and decreases the editing at ndhF-62, rpl20-308, rpl2-2, rpoC2-2774, petB-668, rps8-182, and ndhA-50 sites. Overexpression of ZmPPR26 in zmppr26 restores the editing efficiency and rescues the albino seedling-lethal phenotype. Abolished editing at atpA-1148 causes a Leu to Ser change at AtpA-383 that leads to a reduction in the abundance of chloroplast ATP synthase in zmppr26. The accumulation of photosynthetic complexes are also markedly reduced in zmppr26, providing an explanation for the albino seedling-lethal phenotype. These results indicate that ZmPPR26 is required for the editing at atpA-1148 and is important for editing at the other seven sites in maize chloroplasts. The editing at atpA-1148 is critical for AtpA function, assembly of ATP synthase complex, and chloroplast biogenesis in maize.
Collapse
Affiliation(s)
- Xin-Yuan Liu
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Rui-Cheng Jiang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yong Wang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jiao-Jiao Tang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Sun
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Zhuo Yang
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Bao-Cai Tan
- Key Lab of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| |
Collapse
|
8
|
GUN1 and Plastid RNA Metabolism: Learning from Genetics. Cells 2020; 9:cells9102307. [PMID: 33081381 PMCID: PMC7602965 DOI: 10.3390/cells9102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
GUN1 (genomes uncoupled 1), a chloroplast-localized pentatricopeptide repeat (PPR) protein with a C-terminal small mutS-related (SMR) domain, plays a central role in the retrograde communication of chloroplasts with the nucleus. This flow of information is required for the coordinated expression of plastid and nuclear genes, and it is essential for the correct development and functioning of chloroplasts. Multiple genetic and biochemical findings indicate that GUN1 is important for protein homeostasis in the chloroplast; however, a clear and unified view of GUN1′s role in the chloroplast is still missing. Recently, GUN1 has been reported to modulate the activity of the nucleus-encoded plastid RNA polymerase (NEP) and modulate editing of plastid RNAs upon activation of retrograde communication, revealing a major role of GUN1 in plastid RNA metabolism. In this opinion article, we discuss the recently identified links between plastid RNA metabolism and retrograde signaling by providing a new and extended concept of GUN1 activity, which integrates the multitude of functional genetic interactions reported over the last decade with its primary role in plastid transcription and transcript editing.
Collapse
|
9
|
Shi H, Yang M, Mo C, Xie W, Liu C, Wu B, Ma X. Complete chloroplast genomes of two Siraitia Merrill species: Comparative analysis, positive selection and novel molecular marker development. PLoS One 2019; 14:e0226865. [PMID: 31860647 PMCID: PMC6924677 DOI: 10.1371/journal.pone.0226865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 12/05/2019] [Indexed: 11/18/2022] Open
Abstract
Siraitia grosvenorii fruit, known as Luo-Han-Guo, has been used as a traditional Chinese medicine for many years, and mogrosides are its primary active ingredients. Unfortunately, Siraitia siamensis, its wild relative, might be misused due to its indistinguishable appearance, not only threatening the reliability of the medication but also partly exacerbating wild resource scarcity. Therefore, high-resolution genetic markers must be developed to discriminate between these species. Here, the complete chloroplast genomes of S. grosvenorii and S. siamensis were assembled and analyzed for the first time; they were 158,757 and 159,190 bp in length, respectively, and possessed conserved quadripartite circular structures. Both contained 134 annotated genes, including 8 rRNA, 37 tRNA and 89 protein-coding genes. Twenty divergences (Pi > 0.03) were found in the intergenic regions. Nine protein-coding genes, accD, atpA, atpE, atpF, clpP, ndhF, psbH, rbcL, and rpoC2, underwent selection within Cucurbitaceae. Phylogenetic relationship analysis indicated that these two species originated from the same ancestor. Finally, four pairs of molecular markers were developed to distinguish the two species. The results of this study will be beneficial for taxonomic research, identification and conservation of Siraitia Merrill wild resources in the future.
Collapse
Affiliation(s)
- Hongwu Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Changming Mo
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, China
| | | | - Chang Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (BW); (XM)
| |
Collapse
|
10
|
Rovira AG, Smith AG. PPR proteins - orchestrators of organelle RNA metabolism. PHYSIOLOGIA PLANTARUM 2019; 166:451-459. [PMID: 30809817 DOI: 10.1111/ppl.12950] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are important RNA regulators in chloroplasts and mitochondria, aiding in RNA editing, maturation, stabilisation or intron splicing, and in transcription and translation of organellar genes. In this review, we summarise all PPR proteins documented so far in plants and the green alga Chlamydomonas. By further analysis of the known target RNAs from Arabidopsis thaliana PPR proteins, we find that all organellar-encoded complexes are regulated by these proteins, although to differing extents. In particular, the orthologous complexes of NADH dehydrogenase (Complex I) in the mitochondria and NADH dehydrogenase-like (NDH) complex in the chloroplast were the most regulated, with respectively 60 and 28% of all characterised A. thaliana PPR proteins targeting their genes.
Collapse
Affiliation(s)
- Aleix Gorchs Rovira
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
11
|
Ebihara T, Matsuda T, Sugita C, Ichinose M, Yamamoto H, Shikanai T, Sugita M. The P-class pentatricopeptide repeat protein PpPPR_21 is needed for accumulation of the psbI-ycf12 dicistronic mRNA in Physcomitrella chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1120-1131. [PMID: 30536655 DOI: 10.1111/tpj.14187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 06/09/2023]
Abstract
Chloroplast gene expression is controlled by numerous nuclear-encoded RNA-binding proteins. Among these, pentatricopeptide repeat (PPR) proteins are known to be key players in post-transcriptional regulation in chloroplasts. However, the functions of many PPR proteins remain unknown. In this study, we characterized the function of a chloroplast-localized P-class PPR protein PpPPR_21 in Physcomitrella patens. Knockout (KO) mutants of PpPPR_21 exhibited reduced protonemata growth and lower photosynthetic activity. Immunoblot analysis and blue-native gel analysis showed a remarkable reduction of the photosystem II (PSII) reaction center protein and poor formation of the PSII supercomplexes in the KO mutants. To assess whether PpPPR_21 is involved in chloroplast gene expression, chloroplast genome-wide microarray analysis and Northern blot hybridization were performed. These analyses indicated that the psbI-ycf12 transcript encoding the low molecular weight subunits of PSII did not accumulate in the KO mutants while other psb transcripts accumulated at similar levels in wild-type and KO mutants. A complemented PpPPR_21KO moss transformed with the cognate full-length PpPPR_21cDNA rescued the level of accumulation of psbI-ycf12 transcript. RNA-binding experiments showed that the recombinant PpPPR_21 bound efficiently to the 5' untranslated and translated regions of psbImRNA. The present study suggests that PpPPR_21 may be essential for the accumulation of a stable psbI-ycf12mRNA.
Collapse
Affiliation(s)
- Tetsuo Ebihara
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Takuya Matsuda
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Hiroshi Yamamoto
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Toshiharu Shikanai
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto, 606-0076, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
12
|
Abstract
RNA editing is a fundamental biochemical process relating to the modification of nucleotides in messenger RNAs of functional genes in cells. RNA editing leads to re-establishment of conserved amino acid residues for functional proteins in nuclei, chloroplasts, and mitochondria. Identification of RNA editing factors that contributes to target site recognition increases our understanding of RNA editing mechanisms. Significant progress has been made in recent years in RNA editing studies for both animal and plant cells. RNA editing in nuclei and mitochondria of animal cells and in chloroplast of plant cells has been extensively documented and reviewed. RNA editing has been also extensively documented on plant mitochondria. However, functional diversity of RNA editing factors in plant mitochondria is not overviewed. Here, we review the biological significance of RNA editing, recent progress on the molecular mechanisms of RNA editing process, and function diversity of editing factors in plant mitochondrial research. We will focus on: (1) pentatricopeptide repeat proteins in Arabidopsis and in crop plants; (2) the progress of RNA editing process in plant mitochondria; (3) RNA editing-related RNA splicing; (4) RNA editing associated flower development; (5) RNA editing modulated male sterile; (6) RNA editing-regulated cell signaling; and (7) RNA editing involving abiotic stress. Advances described in this review will be valuable in expanding our understanding in RNA editing. The diverse functions of RNA editing in plant mitochondria will shed light on the investigation of molecular mechanisms that underlies plant development and abiotic stress tolerance.
Collapse
|
13
|
Zhang X, Zhou T, Yang J, Sun J, Ju M, Zhao Y, Zhao G. Comparative Analyses of Chloroplast Genomes of Cucurbitaceae Species: Lights into Selective Pressures and Phylogenetic Relationships. Molecules 2018; 23:E2165. [PMID: 30154353 PMCID: PMC6225112 DOI: 10.3390/molecules23092165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 01/20/2023] Open
Abstract
Cucurbitaceae is the fourth most important economic plant family with creeping herbaceous species mainly distributed in tropical and subtropical regions. Here, we described and compared the complete chloroplast genome sequences of ten representative species from Cucurbitaceae. The lengths of the ten complete chloroplast genomes ranged from 155,293 bp (C. sativus) to 158,844 bp (M. charantia), and they shared the most common genomic features. 618 repeats of three categories and 813 microsatellites were found. Sequence divergence analysis showed that the coding and IR regions were highly conserved. Three protein-coding genes (accD, clpP, and matK) were under selection and their coding proteins often have functions in chloroplast protein synthesis, gene transcription, energy transformation, and plant development. An unconventional translation initiation codon of psbL gene was found and provided evidence for RNA editing. Applying BI and ML methods, phylogenetic analysis strongly supported the position of Gomphogyne, Hemsleya, and Gynostemma as the relatively original lineage in Cucurbitaceae. This study suggested that the complete chloroplast genome sequences were useful for phylogenetic studies. It would also determine potential molecular markers and candidate DNA barcodes for coming studies and enrich the valuable complete chloroplast genome resources of Cucurbitaceae.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Tao Zhou
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jia Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Jingjing Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Miaomiao Ju
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Yuemei Zhao
- College of Biopharmaceutical and Food Engineering, Shangluo University, Shangluo 726000, China.
| | - Guifang Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
14
|
Hein A, Knoop V. Expected and unexpected evolution of plant RNA editing factors CLB19, CRR28 and RARE1: retention of CLB19 despite a phylogenetically deep loss of its two known editing targets in Poaceae. BMC Evol Biol 2018; 18:85. [PMID: 29879897 PMCID: PMC5992886 DOI: 10.1186/s12862-018-1203-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/24/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND C-to-U RNA editing in mitochondria and chloroplasts and the nuclear-encoded, RNA-binding PPR proteins acting as editing factors present a wide field of co-evolution between the different genetic systems in a plant cell. Recent studies on chloroplast editing factors RARE1 and CRR28 addressing one or two chloroplast editing sites, respectively, found them strictly conserved among 65 flowering plants as long as one of their RNA editing targets remained present. RESULTS Extending the earlier sampling to 117 angiosperms with high-quality genome or transcriptome data, we find more evidence confirming previous conclusions but now also identify cases for expected evolutionary transition states such as retention of RARE1 despite loss of its editing target or the degeneration of CRR28 truncating its carboxyterminal DYW domain. The extended angiosperm set was now used to explore CLB19, an "E+"-type PPR editing factor targeting two chloroplast editing sites, rpoAeU200SF and clpPeU559HY, in Arabidopsis thaliana. We found CLB19 consistently conserved if one of the two targets was retained and three independent losses of CLB19 after elimination of both targets. The Ericales show independent regains of the ancestrally lost clpPeU559HY editing, further explaining why multiple-target editing factors are lost much more rarely than single target factors like RARE1. The retention of CLB19 despite loss of both editing targets in some Ericaceae, Apocynaceae and in Camptotheca (Nyssaceae) likely represents evolutionary transitions. However, the retention of CLB19 after a phylogenetic deep loss in the Poaceae rather suggests a yet unrecognized further editing target, for which we suggest editing event ndhAeU473SL. CONCLUSION Extending the scope of studies on plant organelle RNA editing to further taxa and additional nuclear cofactors reveals expected evolutionary transitions, strikingly different evolutionary dynamics for multiple-target editing factors like CLB19 and CRR28 and suggests additional functions for editing factor CLB19 among the Poaceae.
Collapse
Affiliation(s)
- Anke Hein
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| | - Volker Knoop
- IZMB – Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115 Bonn, Germany
| |
Collapse
|
15
|
Mirzaei S, Mansouri M, Mohammadi-Nejad G, Sablok G. Comparative assessment of chloroplast transcriptional responses highlights conserved and unique patterns across Triticeae members under salt stress. PHOTOSYNTHESIS RESEARCH 2018; 136:357-369. [PMID: 29230609 DOI: 10.1007/s11120-017-0469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF0CF1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.
Collapse
Affiliation(s)
- Saeid Mirzaei
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gaurav Sablok
- Finnish Museum of Natural History (Botany), PO Box 7, 00014, Helsinki, Finland
- Department of Bioscience, Viikki Plant Science Center, PO Box 7, 00014, Helsinki, Finland
| |
Collapse
|
16
|
Huang C, Yu QB, Li ZR, Ye LS, Xu L, Yang ZN. Porphobilinogen deaminase HEMC interacts with the PPR-protein AtECB2 for chloroplast RNA editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:546-556. [PMID: 28850756 DOI: 10.1111/tpj.13672] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 05/10/2023]
Abstract
The pentatricopeptide repeat-DYW protein AtECB2 affects plastid RNA editing at seven sites, including accD-794, accD-1568, ndhF-290, ndhG-50, petL-5, rpoA-200 and rpoC1-488. To understand the mechanism of its involvement in RNA editing, a transgenic line was constructed with AtECB2 fused to a 4xMYC tag that could complement the atecb2 phenotype. RNA immunoprecipitation analysis indicated that AtECB2 is associated with the transcripts of accD, ndhF, ndhG and petL. Co-immunoprecipitation and mass spectrometry experiments showed that multiple organelle RNA editing factor 2 (MORF2) and porphobilinogen deaminase HEMC are associated with AtECB2. Biochemical analysis showed that AtECB2 directly interacts with HEMC through its E domain, while HEMC interacts with MORF8/RIP1. Deletion analysis showed that the E domain is essential for RNA editing. The hemc-1 mutant showed an albino and seedling-lethal phenotype. Of the seven editing sites affected in atecb2, the editing of accD-794 and ndhF-290 was also reduced in hemc-1. RNA immunoprecipitation analysis suggested that HEMC is associated with the editing sites of ndhF transcripts. These results showed that both HEMC and multiple organellar RNA editing factor (MORF) proteins are associated with AtECB2 for RNA editing in plastids.
Collapse
Affiliation(s)
- Chao Huang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan, Changsha, 410128, China
- Department of Biology, East China Normal University, Shanghai, 200241, China
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zi-Ran Li
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Lin-Shan Ye
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ling Xu
- Department of Biology, East China Normal University, Shanghai, 200241, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
- CAS Center for Excellence of Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200233, China
| |
Collapse
|
17
|
Tang J, Zhang W, Wen K, Chen G, Sun J, Tian Y, Tang W, Yu J, An H, Wu T, Kong F, Terzaghi W, Wang C, Wan J. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. PLANT MOLECULAR BIOLOGY 2017; 95:345-357. [PMID: 28856519 DOI: 10.1007/s11103-017-0654-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/18/2017] [Indexed: 05/10/2023]
Abstract
OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice. The chloroplast has its own genetic material and genetic system, but it is also regulated by nuclear-encoded genes. However, little is known about nuclear-plastid regulatory mechanisms underlying early chloroplast biogenesis in rice. In this study, we isolated and characterized a mutant, osppr6, that showed early chloroplast developmental defects leading to albino leaves and seedling death. We found that the osppr6 mutant failed to form thylakoid membranes. Using map-based cloning and complementation tests, we determined that OsPPR6 encoded a new Pentatricopeptide Repeat (PPR) protein localized in plastids. In the osppr6 mutants, mRNA levels of plastidic genes transcribed by the plastid-encoded RNA polymerase decreased, while those of genes transcribed by the nuclear-encoded RNA polymerase increased. Western blot analyses validated these expression results. We further investigated plastidic RNA editing and splicing in the osppr6 mutants and found that the ndhB transcript was mis-edited and the ycf3 transcript was mis-spliced. Therefore, we demonstrate that OsPPR6, a PPR protein, regulates early chloroplast biogenesis and participates in editing of ndhB and splicing of ycf3 transcripts in rice.
Collapse
Affiliation(s)
- Jianpeng Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Wen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gaoming Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juan Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijie Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongzhou An
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fei Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA, 18766, USA
| | - Chunming Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
18
|
Hsieh WY, Liao JC, Wang HT, Hung TH, Tseng CC, Chung TY, Hsieh MH. The Arabidopsis thiamin-deficient mutant pale green1 lacks thiamin monophosphate phosphatase of the vitamin B 1 biosynthesis pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:145-157. [PMID: 28346710 DOI: 10.1111/tpj.13552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Thiamin diphosphate (TPP, vitamin B1 ) is an essential coenzyme present in all organisms. Animals obtain TPP from their diets, but plants synthesize TPPde novo. We isolated and characterized an Arabidopsis pale green1 (pale1) mutant that contained higher concentrations of thiamin monophosphate (TMP) and less thiamin and TPP than the wild type. Supplementation with thiamin, but not the thiazole and pyrimidine precursors, rescued the mutant phenotype, indicating that the pale1 mutant is a thiamin-deficient mutant. Map-based cloning and whole-genome sequencing revealed that the pale1 mutant has a mutation in At5g32470 encoding a TMP phosphatase of the TPP biosynthesis pathway. We further confirmed that the mutation of At5g32470 is responsible for the mutant phenotypes by complementing the pale1 mutant with constructs overexpressing full-length At5g32470. Most plant TPP biosynthetic enzymes are located in the chloroplasts and cytosol, but At5g32470-GFP localized to the mitochondrion of the root, hypocotyl, mesophyll and guard cells of the 35S:At5g32470-GFP complemented plants. The subcellular localization of a functional TMP phosphatase suggests that the complete vitamin B1 biosynthesis pathway may involve the chloroplasts, mitochondria and cytosol in plants. Analysis of PALE1 promoter-uidA activity revealed that PALE1 is mainly expressed in vascular tissues of Arabidopsis seedlings. Quantitative RT-PCR analysis of TPP biosynthesis genes and genes encoding the TPP-dependent enzymes pyruvate dehydrogenase, α-ketoglutarate dehydrogenase and transketolase revealed that the transcript levels of these genes were upregulated in the pale1 mutant. These results suggest that endogenous levels of TPP may affect the expression of genes involved in TPP biosynthesis and TPP-dependent enzymes.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Jo-Chien Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Tzu Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tzu-Huan Hung
- Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Tsui-Yun Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
19
|
Bobik K, McCray TN, Ernest B, Fernandez JC, Howell KA, Lane T, Staton M, Burch-Smith TM. The chloroplast RNA helicase ISE2 is required for multiple chloroplast RNA processing steps in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:114-131. [PMID: 28346704 DOI: 10.1111/tpj.13550] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/14/2017] [Accepted: 03/21/2017] [Indexed: 05/06/2023]
Abstract
INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is a chloroplast-localized RNA helicase that is indispensable for proper plant development. Chloroplasts in leaves with reduced ISE2 expression have previously been shown to exhibit reduced thylakoid contents and increased stromal volume, indicative of defective development. It has recently been reported that ISE2 is required for the splicing of group II introns from chloroplast transcripts. The current study extends these findings, and presents evidence for ISE2's role in multiple aspects of chloroplast RNA processing beyond group II intron splicing. Loss of ISE2 from Arabidopsis thaliana leaves resulted in defects in C-to-U RNA editing, altered accumulation of chloroplast transcripts and chloroplast-encoded proteins, and defective processing of chloroplast ribosomal RNAs. Potential ISE2 substrates were identified by RNA immunoprecipitation followed by next-generation sequencing (RIP-seq), and the diversity of RNA species identified supports ISE2's involvement in multiple aspects of chloroplast RNA metabolism. Comprehensive phylogenetic analyses revealed that ISE2 is a non-canonical Ski2-like RNA helicase that represents a separate sub-clade unique to green photosynthetic organisms, consistent with its function as an essential protein. Thus ISE2's evolutionary conservation may be explained by its numerous roles in regulating chloroplast gene expression.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Tyra N McCray
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Katharine A Howell
- Plant Energy Biology, ARC Center of Excellence, University of Western Australia, Perth, Australia
| | - Thomas Lane
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Margaret Staton
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
20
|
Bayer-Császár E, Haag S, Jörg A, Glass F, Härtel B, Obata T, Meyer EH, Brennicke A, Takenaka M. The conserved domain in MORF proteins has distinct affinities to the PPR and E elements in PPR RNA editing factors. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:813-828. [PMID: 28549935 DOI: 10.1016/j.bbagrm.2017.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/11/2017] [Accepted: 05/14/2017] [Indexed: 11/15/2022]
Abstract
In plant organelles specific nucleotide motifs at C to U RNA editing sites are recognized by the PLS-class of pentatricopeptide repeat (PPR) proteins, which are additionally characterized by a C-terminal E domain. The PPR elements bind the nucleotides in the target RNA, while the function of the E domain has remained unknown. At most sites RNA editing also requires multiple organellar RNA editing factor (MORF) proteins. To understand how these two types of proteins are involved in RNA editing complexes, we systematically analyzed their protein-protein interactions. In vivo pull-down and yeast two-hybrid assays show that MORF proteins connect with selected PPR proteins. In a loss of function mutant of MORF1, a single amino acid alteration in the conserved MORF domain abrogates interactions with many PLS-class PPR proteins, implying the requirement of direct interaction to PPR proteins for the RNA editing function of MORF1. Subfragment analyses show that predominantly the N-terminal/central regions of the MORF domain in MORF1 and MORF3 bind the PPR proteins. Within the PPR proteins, the E domains in addition to PPR elements contact MORF proteins. In chimeric PPR proteins, different E domains alter the specificity of the interaction with MORF proteins. The selective interactions between E domain containing PPR and MORF proteins suggest that the E domains and MORF proteins play a key role for specific protein complexes to assemble at different RNA editing sites.
Collapse
Affiliation(s)
| | - Sascha Haag
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | - Anja Jörg
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany
| | | | | | - Toshihiro Obata
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Golm, Germany
| | - Etienne H Meyer
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam, Golm, Germany
| | | | | |
Collapse
|
21
|
Du L, Zhang J, Qu S, Zhao Y, Su B, Lv X, Li R, Wan Y, Xiao J. The Pentratricopeptide Repeat Protein Pigment-Defective Mutant2 is Involved in the Regulation of Chloroplast Development and Chloroplast Gene Expression in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:747-759. [PMID: 28158776 DOI: 10.1093/pcp/pcx004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 01/08/2017] [Indexed: 05/10/2023]
Abstract
The development of functional chloroplasts, which is assisted by a series of nuclear-encoded auxiliary protein factors, is essential for plant autotrophic growth and development. To understand the molecular mechanisms underlying chloroplast development, we isolated and characterized a pigment-defective mutant, pdm2, and its corresponding variegated RNA interference (RNAi) lines in Arabidopsis. Sequence analysis revealed that PDM2 encodes a pentatricopeptide repeat protein that belongs to the P subgroup. Confocal microscopic analysis and immunoblotting of the chloroplast protein fraction showed that PDM2 was located in the stroma. In RNAi plants, protein-related photosynthesis was severely compromised. Furthermore, analysis of the transcript profile of chloroplast genes revealed that plastid-encoded polymerase-dependent transcript levels were markedly reduced, while nuclear-encoded polymerase-dependent transcript levels were increased, in RNAi plants. In addition, PDM2 affects plastid RNA editing efficiency in most editing sites, apparently by directly interacting with multiple organellar RNA editing factor 2 (MORF2) and MORF9. Thus, our results demonstrate that PDM2 is probably involved in the regulation of plastid gene expression required for normal chloroplast development.
Collapse
Affiliation(s)
- Liang Du
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jian Zhang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Shaofeng Qu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yuanyuan Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Bodan Su
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xueqin Lv
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Ruili Li
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yinglang Wan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
22
|
Rodrigues NF, Christoff AP, da Fonseca GC, Kulcheski FR, Margis R. Unveiling Chloroplast RNA Editing Events Using Next Generation Small RNA Sequencing Data. FRONTIERS IN PLANT SCIENCE 2017; 8:1686. [PMID: 29033962 PMCID: PMC5626879 DOI: 10.3389/fpls.2017.01686] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/13/2017] [Indexed: 05/21/2023]
Abstract
Organellar RNA editing involves the modification of nucleotide sequences to maintain conserved protein functions, mainly by reverting non-neutral codon mutations. The loss of plastid editing events, resulting from mutations in RNA editing factors or through stress interference, leads to developmental, physiological and photosynthetic alterations. Recently, next generation sequencing technology has generated the massive discovery of sRNA sequences and expanded the number of sRNA data. Here, we present a method to screen chloroplast RNA editing using public sRNA libraries from Arabidopsis, soybean and rice. We mapped the sRNAs against the nuclear, mitochondrial and plastid genomes to confirm predicted cytosine to uracil (C-to-U) editing events and identify new editing sites in plastids. Among the predicted editing sites, 40.57, 34.78, and 25.31% were confirmed using sRNAs from Arabidopsis, soybean and rice, respectively. SNP analysis revealed 58.2, 43.9, and 37.5% new C-to-U changes in the respective species and identified known and new putative adenosine to inosine (A-to-I) RNA editing in tRNAs. The present method and data reveal the potential of sRNA as a reliable source to identify new and confirm known editing sites.
Collapse
Affiliation(s)
- Nureyev F. Rodrigues
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ana P. Christoff
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Guilherme C. da Fonseca
- Programa de Posgraduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Franceli R. Kulcheski
- Programa de Pósgraduação em Biologia Celular e do Desenvolvimento, Departamento de Biologia Celular, Genética e Embriologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Rogerio Margis
- Programa de Posgraduação em Genética e Biologia Molecular, Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Programa de Posgraduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- *Correspondence: Rogerio Margis
| |
Collapse
|
23
|
Ichinose M, Sugita M. RNA Editing and Its Molecular Mechanism in Plant Organelles. Genes (Basel) 2016; 8:genes8010005. [PMID: 28025543 PMCID: PMC5295000 DOI: 10.3390/genes8010005] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/23/2016] [Accepted: 12/20/2016] [Indexed: 12/03/2022] Open
Abstract
RNA editing by cytidine (C) to uridine (U) conversions is widespread in plant mitochondria and chloroplasts. In some plant taxa, “reverse” U-to-C editing also occurs. However, to date, no instance of RNA editing has yet been reported in green algae and the complex thalloid liverworts. RNA editing may have evolved in early land plants 450 million years ago. However, in some plant species, including the liverwort, Marchantia polymorpha, editing may have been lost during evolution. Most RNA editing events can restore the evolutionarily conserved amino acid residues in mRNAs or create translation start and stop codons. Therefore, RNA editing is an essential process to maintain genetic information at the RNA level. Individual RNA editing sites are recognized by plant-specific pentatricopeptide repeat (PPR) proteins that are encoded in the nuclear genome. These PPR proteins are characterized by repeat elements that bind specifically to RNA sequences upstream of target editing sites. In flowering plants, non-PPR proteins also participate in multiple RNA editing events as auxiliary factors. C-to-U editing can be explained by cytidine deamination. The proteins discovered to date are important factors for RNA editing but a bona fide RNA editing enzyme has yet to be identified.
Collapse
Affiliation(s)
- Mizuho Ichinose
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
- Institute of Transformative Bio-Molecules, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| |
Collapse
|
24
|
Wu L, Wu J, Liu Y, Gong X, Xu J, Lin D, Dong Y. The Rice Pentatricopeptide Repeat Gene TCD10 is Needed for Chloroplast Development under Cold Stress. RICE (NEW YORK, N.Y.) 2016; 9:67. [PMID: 27910002 PMCID: PMC5133210 DOI: 10.1186/s12284-016-0134-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/15/2016] [Indexed: 05/03/2023]
Abstract
BACKGROUND Chloroplast plays a vital role in plant development and growth. The pentatricopeptide repeat (PPR) gene family is one of the largest gene families in plants. In addition, cold stress affects a broad spectrum of cellular components, e.g. chloroplast, and metabolism in plants. However, the regulatory mechanism for rice PPR genes on chloroplast development still remains elusive under cold stress. RESULT In this paper, we characterized a new rice PPR gene mutant tcd10 (thermo-sensitive chlorophyll-deficient mutant 10) that exhibits the albino phenotype, malformed chloroplast and could not survive after the 5-leaf stage when grown at 20 °C, but does the normal phenotype at 32 °C. Map-based cloning, followed by RNA interference and CRISPR/Cas9 genome editing techniques, revealed that TCD10 encoding a novel PPR protein, mainly localized to the chloroplasts, with 27 PPR motifs, is responsible for the mutant phenotype. In addition, TCD10 is specific expression in tissues. The disruption of TCD10 resulted in an evidently reduced expression of chloroplast-associated genes under cold stress (20 °C), whereas they did recovered to normal levels at high temperature (32 °C). These results showed an important role of TCD10 for chloroplast development under cold stress. CONCLUSIONS The TCD10 encodes a novel rice PPR protein, mainly located in chloroplasts, which is important for chloroplast development, growth and the maintenance of photosynthetic electron transport and its disorder would lead to an aberrant chloroplast and abnormal expressions in these genes for chloroplast development and photosynthesis in rice under cold stress.
Collapse
Affiliation(s)
- Lanlan Wu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Wu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yanxia Liu
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiaodi Gong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China
| | - Jianlong Xu
- The Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 South Zhong-Guan Cun Street, Beijing, 100081, China
| | - Dongzhi Lin
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Yanjun Dong
- Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
25
|
Goto S, Kawaguchi Y, Sugita C, Ichinose M, Sugita M. P-class pentatricopeptide repeat protein PTSF1 is required for splicing of the plastid pre-tRNA(I) (le) in Physcomitrella patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:493-503. [PMID: 27117879 DOI: 10.1111/tpj.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/31/2016] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins are widely distributed in eukaryotes and are mostly localized in mitochondria or plastids. PPR proteins play essential roles in various RNA processing steps in organelles; however, the function of the majority of PPR proteins remains unknown. To examine the function of plastid PPR proteins, PpPPR_4 gene knock-out mutants were characterized in Physcomitrella patens. The knock-out mosses displayed severe growth retardation and reduced effective quantum yield of photosystem II. Immunoblot analysis showed that knock-out of PpPPR_4 resulted in a strongly reduced level of plastid-encoded proteins, such as photosystem II reaction center protein D1, the β subunit of ATP synthase, and the stromal enzyme, Rubisco. To further investigate whether knock-out of the PpPPR_4 gene affects plastid gene expression, we analyzed steady-state transcript levels of protein- and rRNA-coding genes by quantitative RT-PCR. This analysis showed that the level of many protein-coding transcripts increased in the mutants. In contrast, splicing of a spacer tRNA(I) (le) precursor encoded by the rrn operon was specifically impaired in the mutants, whereas the accumulation of other plastid tRNAs and rRNAs was not largely affected. Thus, the defect in tRNA(I) (le) splicing leads to a considerable reduction of mature tRNA(I) (le) , which may be accountable for the reduced protein level. An RNA mobility shift assay showed that the recombinant PpPPR_4 bound preferentially to domain III of the tRNA(I) (le) group-II intron. These results provide evidence that PpPPR_4 functions in RNA splicing of the tRNA(I) (le) intron, and hence PpPPR_4 was named plastid tRNA splicing factor 1 (PTSF1).
Collapse
Affiliation(s)
- Seiya Goto
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | | | - Chieko Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| | - Mizuho Ichinose
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya, 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Nagoya, 464-8602, Japan
| |
Collapse
|
26
|
Salie MJ, Thelen JJ. Regulation and structure of the heteromeric acetyl-CoA carboxylase. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1207-1213. [PMID: 27091637 DOI: 10.1016/j.bbalip.2016.04.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/16/2022]
Abstract
The enzyme acetyl-CoA carboxylase (ACCase) catalyzes the committed step of the de novo fatty acid biosynthesis (FAS) pathway by converting acetyl-CoA to malonyl-CoA. Two forms of ACCase exist in nature, a homomeric and heteromic form. The heteromeric form of this enzyme requires four different subunits for activity: biotin carboxylase; biotin carboxyl carrier protein; and α- and β-carboxyltransferases. Heteromeric ACCases (htACCase) can be found in prokaryotes and the plastids of most plants. The plant htACCase is regulated by diverse mechanisms reflected by the biochemical and genetic complexity of this multienzyme complex and the plastid stroma where it resides. In this review we summarize the regulation of the plant htACCase and also describe the structural characteristics of this complex from both prokaryotes and plants. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner.
Collapse
Affiliation(s)
- Matthew J Salie
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA.
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri-Columbia, Christopher S. Bond Life Sciences Center, 1201 E. Rollins, Columbia, MO 65201, USA.
| |
Collapse
|
27
|
Hein A, Polsakiewicz M, Knoop V. Frequent chloroplast RNA editing in early-branching flowering plants: pilot studies on angiosperm-wide coexistence of editing sites and their nuclear specificity factors. BMC Evol Biol 2016; 16:23. [PMID: 26809609 PMCID: PMC4727281 DOI: 10.1186/s12862-016-0589-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 01/12/2016] [Indexed: 11/11/2022] Open
Abstract
Background RNA editing by cytidine-to-uridine conversions is an essential step of RNA maturation in plant organelles. Some 30–50 sites of C-to-U RNA editing exist in chloroplasts of flowering plant models like Arabidopsis, rice or tobacco. We now predicted significantly more RNA editing in chloroplasts of early-branching angiosperm genera like Amborella, Calycanthus, Ceratophyllum, Chloranthus, Illicium, Liriodendron, Magnolia, Nuphar and Zingiber. Nuclear-encoded RNA-binding pentatricopeptide repeat (PPR) proteins are key editing factors expected to coevolve with their cognate RNA editing sites in the organelles. Results With an extensive chloroplast transcriptome study we identified 138 sites of RNA editing in Amborella trichopoda, approximately the 3- to 4-fold of cp editing in Arabidopsis thaliana or Oryza sativa. Selected cDNA studies in the other early-branching flowering plant taxa furthermore reveal a high diversity of early angiosperm RNA editomes. Many of the now identified editing sites in Amborella have orthologues in ferns, lycophytes or hornworts. We investigated the evolution of CRR28 and RARE1, two known Arabidopsis RNA editing factors responsible for cp editing events ndhBeU467PL, ndhDeU878SL and accDeU794SL, respectively, all of which we now found conserved in Amborella. In a phylogenetically wide sampling of 65 angiosperm genomes we find evidence for only one single loss of CRR28 in chickpea but several independent losses of RARE1, perfectly congruent with the presence of their cognate editing sites in the respective cpDNAs. Conclusion Chloroplast RNA editing is much more abundant in early-branching than in widely investigated model flowering plants. RNA editing specificity factors can be traced back for more than 120 million years of angiosperm evolution and show highly divergent patterns of evolutionary losses, matching the presence of their target editing events. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0589-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anke Hein
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Monika Polsakiewicz
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, D-53115, Bonn, Germany.
| |
Collapse
|
28
|
Yan L, Lai X, Li X, Wei C, Tan X, Zhang Y. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata]. PLoS One 2015; 10:e0124083. [PMID: 25874767 PMCID: PMC4398329 DOI: 10.1371/journal.pone.0124083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 03/05/2015] [Indexed: 12/31/2022] Open
Abstract
Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression.
Collapse
Affiliation(s)
- Lang Yan
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
| | - Xianjun Lai
- Maize Research Institute of Sichuan Agriculture University, Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education, Wenjiang, Chengdu, People's Republic of China
| | - Xuedan Li
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
| | - Changhe Wei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
| | - Xuemei Tan
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
- * E-mail: (YZ); (XT)
| | - Yizheng Zhang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, Center for Functional Genomics and Bioinformatics, Chengdu, Sichuan, People's Republic of China
- * E-mail: (YZ); (XT)
| |
Collapse
|
29
|
Scotti N, Sannino L, Idoine A, Hamman P, De Stradis A, Giorio P, Maréchal-Drouard L, Bock R, Cardi T. The HIV-1 Pr55 gag polyprotein binds to plastidial membranes and leads to severe impairment of chloroplast biogenesis and seedling lethality in transplastomic tobacco plants. Transgenic Res 2015; 24:319-31. [PMID: 25348481 DOI: 10.1007/s11248-014-9845-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/21/2014] [Indexed: 11/25/2022]
Abstract
Chloroplast genetic engineering has long been recognised as a powerful technology to produce recombinant proteins. To date, however, little attention has been given to the causes of pleiotropic effects reported, in some cases, as consequence of the expression of foreign proteins in transgenic plastids. In this study, we investigated the phenotypic alterations observed in transplastomic tobacco plants accumulating the Pr55(gag) polyprotein of human immunodeficiency virus (HIV-1). The expression of Pr55(gag) at high levels in the tobacco plastome leads to a lethal phenotype of seedlings grown in soil, severe impairment of plastid development and photosynthetic activity, with chloroplasts largely resembling undeveloped proplastids. These alterations are associated to the binding of Pr55(gag) to thylakoids. During particle assembly in HIV-1 infected human cells, the binding of Pr55(gag) to a specific lipid [phosphatidylinositol-(4-5) bisphosphate] in the plasma membrane is mediated by myristoylation at the amino-terminus and the so-called highly basic region (HBR). Surprisingly, the non-myristoylated Pr55(gag) expressed in tobacco plastids was likely able, through the HBR motif, to bind to nonphosphorous glycerogalactolipids or other classes of lipids present in plastidial membranes. Although secondary consequences of disturbed chloroplast biogenesis on expression of nuclear-encoded plastid proteins cannot be ruled out, results of proteomic analyses suggest that their altered accumulation could be due to retrograde control in which chloroplasts relay their status to the nucleus for fine-tuning of gene expression.
Collapse
Affiliation(s)
- N Scotti
- CNR-IBBR, Institute of Biosciences and BioResources, National Research Council of Italy, Via Università 133, 80055, Portici, NA, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hayes ML, Dang KN, Diaz MF, Mulligan RM. A conserved glutamate residue in the C-terminal deaminase domain of pentatricopeptide repeat proteins is required for RNA editing activity. J Biol Chem 2015; 290:10136-42. [PMID: 25739442 DOI: 10.1074/jbc.m114.631630] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Indexed: 11/06/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins include an RNA binding domain that provides site specificity. In addition, many PPR proteins include a C-terminal DYW deaminase domain with characteristic zinc binding motifs (CXXC, HXE) and has recently been shown to bind zinc ions. The glutamate residue of the HXE motif is catalytically required in the reaction catalyzed by cytidine deaminase. In this work, we examine the activity of the DYW deaminase domain through truncation or mutagenesis of the HXE motif. OTP84 is required for editing three chloroplast sites, and transgenes expressing OTP84 with C-terminal truncations were capable of editing only one of the three cognate sites at high efficiency. These results suggest that the deaminase domain of OTP84 is required for editing two of the sites, but another deaminase is able to supply the deamination activity for the third site. OTP84 and CREF7 transgenes were mutagenized to replace the glutamate residue of the HXE motif, and transgenic plants expressing OTP84-E824A and CREF7-E554A were unable to efficiently edit the cognate editing sites for these genes. In addition, plants expressing CREF7-E554A exhibited substantially reduced capacity to edit a non-cognate site, rpoA C200. These results indicate that the DYW deaminase domains of PPR proteins are involved in editing their cognate editing sites, and in some cases may participate in editing additional sites in the chloroplast.
Collapse
Affiliation(s)
- Michael L Hayes
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Kim N Dang
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| | - Michael F Diaz
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| | - R Michael Mulligan
- From the Developmental and Cell Biology, University of California, Irvine, California 92697
| |
Collapse
|
31
|
Lin D, Gong X, Jiang Q, Zheng K, Zhou H, Xu J, Teng S, Dong Y. The rice ALS3 encoding a novel pentatricopeptide repeat protein is required for chloroplast development and seedling growth. RICE (NEW YORK, N.Y.) 2015; 8:17. [PMID: 25859292 PMCID: PMC4390607 DOI: 10.1186/s12284-015-0050-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/24/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Pentatricopeptide repeat (PPR) proteins play essential roles in modulating the expression of organelle genes and have expanded greatly in higher plants. However, molecular mechanisms of most rice PPR genes remain unclear. RESULTS In this study, a new rice PPR mutant, asl3 (albino seedling lethality3) exhibits an albino lethal phenotype at the seedling stage. This albino phenotype was associated with altered photosynthetic-pigment and chloroplast development. Map-based cloning showed that ASL3 encodes a novel rice PPR protein with 10 tandem PPR motifs, which localizes to the chloroplast. ASL3 showed tissue-specific expression, as it was highly expressed in the chlorenchyma, but expressed at much lower levels in roots and panicles. RNAi of ASL3 confirmed that ASL3 plays an essential role in the early development and chloroplast development in rice. Moreover, expression analysis revealed that the asl3 mutation severely affected the transcriptional levels of important genes associated with plastid translation machinery and photosynthesis, which may impair photosynthesis and finally led to the seedling death in asl3 mutant. These results evidenced the important role of ASL3 in the early development of rice, especially chloroplast development. CONCLUSIONS The ASL3 gene encoded a novel chloroplast-targeted PPR protein with 10 tandem PPR motifs in rice. Disruption of the ASL3 would lead to a defective chloroplast and seedling lethality, and affected expression levels of genes associated with chloroplast development and photosynthesis at early leaf stage of rice.
Collapse
Affiliation(s)
- Dongzhi Lin
- />Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Xiaodi Gong
- />Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Present address: Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Quan Jiang
- />Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Kailun Zheng
- />Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234 China
| | - Hua Zhou
- />Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234 China
- />Present address: Agricultural Faculty, Hokkaido University, Sappro, 060-0817 Japan
| | - Jianlong Xu
- />Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, 10081 China
| | - Sheng Teng
- />Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032 China
| | - Yanjun Dong
- />Development Center of Plant Germplasm Resources, College of Life and Environment Sciences, Shanghai Normal University, Shanghai, 200234 China
| |
Collapse
|
32
|
Arenas-M A, Zehrmann A, Moreno S, Takenaka M, Jordana X. The pentatricopeptide repeat protein MEF26 participates in RNA editing in mitochondrial cox3 and nad4 transcripts. Mitochondrion 2014; 19 Pt B:126-34. [PMID: 25173472 DOI: 10.1016/j.mito.2014.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/16/2014] [Accepted: 08/20/2014] [Indexed: 11/15/2022]
Abstract
In angiosperms most members of the large nuclear-encoded family of pentatricopeptide repeat (PPR) proteins are predicted to play relevant roles in the maturation of organellar RNAs. Here we report the novel Mitochondrial Editing Factor 26, a DYW-PPR protein involved in RNA editing at two sites. While at one site, cox3-311, editing is abolished in the absence of MEF26, the other site, nad4-166, is still partially edited. These sites share similar cis-elements and application of the recently proposed amino acid code for RNA recognition by PPR proteins ranks them at first and second positions of the most probable targets.
Collapse
Affiliation(s)
- Anita Arenas-M
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | - Anja Zehrmann
- Molekulare Botanik, Universität Ulm, 89069 Ulm, Germany.
| | - Sebastian Moreno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| | | | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile.
| |
Collapse
|
33
|
Gong X, Su Q, Lin D, Jiang Q, Xu J, Zhang J, Teng S, Dong Y. The rice OsV4 encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:400-10. [PMID: 24289830 DOI: 10.1111/jipb.12138] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/27/2013] [Indexed: 05/04/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins, characterized by tandem arrays of a 35 amino acid motif, have been suggested to play central and broad roles in modulating the expression of organelle genes in plants. However, the molecular mechanisms of most rice PPR genes remains unclear. In this paper, we isolated and characterized a temperature-conditional virescent mutant, OsV4, in rice (Oryza sativa cultivar Jiahua1 (WT, japonica rice variety)). The mutant displays albino phenotype and abnormal chloroplasts at the three leaf stage, which gradually turns green after the four leaf stage at a low temperature (20 °C). But the mutant always develops green leaves and well-developed chloroplasts at a high temperature (32 °C). Genetic and molecular analyses uncovered that OsV4 encodes a novel chloroplast-targeted PPR protein including four PPR motifs. Further investigations show that the mutant phenotype is associated with changes in chlorophyll content and chloroplast development. The OsV4 transcripts only accumulate to high levels in young leaves, indicating that its expression is tissue-specific. In addition, transcript levels of some ribosomal components and plastid-encoded polymerase-dependent genes are dramatically reduced in the albino mutants grown at 20 °C. These findings suggest that OsV4 plays an important role during early chloroplast development under cold stress in rice.
Collapse
Affiliation(s)
- Xiaodi Gong
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Pentatricopeptide repeat (PPR) proteins constitute one of the largest protein families in land plants, with more than 400 members in most species. Over the past decade, much has been learned about the molecular functions of these proteins, where they act in the cell, and what physiological roles they play during plant growth and development. A typical PPR protein is targeted to mitochondria or chloroplasts, binds one or several organellar transcripts, and influences their expression by altering RNA sequence, turnover, processing, or translation. Their combined action has profound effects on organelle biogenesis and function and, consequently, on photosynthesis, respiration, plant development, and environmental responses. Recent breakthroughs in understanding how PPR proteins recognize RNA sequences through modular base-specific contacts will help match proteins to potential binding sites and provide a pathway toward designing synthetic RNA-binding proteins aimed at desired targets.
Collapse
Affiliation(s)
- Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97405;
| | | |
Collapse
|
35
|
Yua QB, Ma Q, Kong MM, Zhao TT, Zhang XL, Zhou Q, Huang C, Chong K, Yang ZN. AtECB1/MRL7, a thioredoxin-like fold protein with disulfide reductase activity, regulates chloroplast gene expression and chloroplast biogenesis in Arabidopsis thaliana. MOLECULAR PLANT 2014; 7:206-17. [PMID: 23956074 DOI: 10.1093/mp/sst092] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Plastid-encoded RNA polymerase (PEP) is closely associated with numerous factors to form PEP complex for plastid gene expression and chloroplast development. However, it is not clear how PEP complex are regulated in chloroplast. Here, one thioredoxin-like fold protein, Arabidopsis early chloroplast biogenesis 1 (AtECB1), an allele of MRL7, was identified to regulate PEP function and chloroplast biogenesis. The knockout lines for AtECB1 displayed albino phenotype and impaired chloroplast development. The transcripts of PEP-dependent plastid genes were barely detected, suggesting that the PEP activity is almost lost in atecb1-1. Although AtECB1 was not identified in PEP complex, a yeast two-hybrid assay and pull-down experiments demonstrated that it can interact with Trx Z and FSD3, two intrinsic subunits of PEP complex, respectively. This indicates that AtECB1 may play a regulatory role for PEP-dependent plastid gene expression through these two subunits. AtECB1 contains a βαβαββα structure in the thioredoxin-like fold domain and lacks the typical C-X-X-C active site motif. Insulin assay demonstrated that AtECB1 harbors disulfide reductase activity in vitro using the purified recombinant AtECB1 protein. This showed that this thioredoxin-like fold protein, AtECB1 also has the thioredoxin activity. AtECB1 may play a role in thioredoxin signaling to regulate plastid gene expression and chloroplast development.
Collapse
Affiliation(s)
- Qing-Bo Yua
- Biology Department, Life and Environmental College, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yu QB, Huang C, Yang ZN. Nuclear-encoded factors associated with the chloroplast transcription machinery of higher plants. FRONTIERS IN PLANT SCIENCE 2014; 5:316. [PMID: 25071799 PMCID: PMC4080259 DOI: 10.3389/fpls.2014.00316] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/14/2014] [Indexed: 05/02/2023]
Abstract
Plastid transcription is crucial for plant growth and development. There exist two types of RNA polymerases in plastids: a nuclear-encoded RNA polymerase (NEP) and plastid-encoded RNA polymerase (PEP). PEP is the major RNA polymerase activity in chloroplast. Its core subunits are encoded by the plastid genome, and these are embedded into a larger complex of nuclear-encoded subunits. Biochemical and genetics analysis identified at least 12 proteins are tightly associated with the core subunit, while about 34 further proteins are associated more loosely generating larger complexes such as the transcriptionally active chromosome (TAC) or a part of the nucleoid. Domain analyses and functional investigations suggested that these nuclear-encoded factors may form several functional modules that mediate regulation of plastid gene expression by light, redox, phosphorylation, and heat stress. Genetic analyses also identified that some nuclear-encoded proteins in the chloroplast that are important for plastid gene expression, although a physical association with the transcriptional machinery is not observed. This covers several PPR proteins including CLB19, PDM1/SEL1, OTP70, and YS1 which are involved in the processing of transcripts for PEP core subunit as well as AtECB2, Prin2, SVR4-Like, and NARA5 that are also important for plastid gene expression, although their functions are unclear.
Collapse
Affiliation(s)
- Qing-Bo Yu
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
- Institute for Plant Gene Function, Department of Biology, Shanghai Normal UniversityShanghai, China
| | - Chao Huang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
- Institute for Plant Gene Function, Department of Biology, Shanghai Normal UniversityShanghai, China
| | - Zhong-Nan Yang
- Department of Biology, College of Life and Environmental Sciences, Shanghai Normal UniversityShanghai, China
- Institute for Plant Gene Function, Department of Biology, Shanghai Normal UniversityShanghai, China
- *Correspondence: Zhong-Nan Yang, Department of Biology, College of Life and Environmental Sciences, Shanghai Normal University, No.100, Rd. GuiLin, Shanghai 200234, China e-mail:
| |
Collapse
|
37
|
Zhang J, Ruhlman TA, Mower JP, Jansen RK. Comparative analyses of two Geraniaceae transcriptomes using next-generation sequencing. BMC PLANT BIOLOGY 2013; 13:228. [PMID: 24373163 PMCID: PMC3880972 DOI: 10.1186/1471-2229-13-228] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 12/20/2013] [Indexed: 05/24/2023]
Abstract
BACKGROUND Organelle genomes of Geraniaceae exhibit several unusual evolutionary phenomena compared to other angiosperm families including accelerated nucleotide substitution rates, widespread gene loss, reduced RNA editing, and extensive genomic rearrangements. Since most organelle-encoded proteins function in multi-subunit complexes that also contain nuclear-encoded proteins, it is likely that the atypical organellar phenomena affect the evolution of nuclear genes encoding organellar proteins. To begin to unravel the complex co-evolutionary interplay between organellar and nuclear genomes in this family, we sequenced nuclear transcriptomes of two species, Geranium maderense and Pelargonium x hortorum. RESULTS Normalized cDNA libraries of G. maderense and P. x hortorum were used for transcriptome sequencing. Five assemblers (MIRA, Newbler, SOAPdenovo, SOAPdenovo-trans [SOAPtrans], Trinity) and two next-generation technologies (454 and Illumina) were compared to determine the optimal transcriptome sequencing approach. Trinity provided the highest quality assembly of Illumina data with the deepest transcriptome coverage. An analysis to determine the amount of sequencing needed for de novo assembly revealed diminishing returns of coverage and quality with data sets larger than sixty million Illumina paired end reads for both species. The G. maderense and P. x hortorum transcriptomes contained fewer transcripts encoding the PLS subclass of PPR proteins relative to other angiosperms, consistent with reduced mitochondrial RNA editing activity in Geraniaceae. In addition, transcripts for all six plastid targeted sigma factors were identified in both transcriptomes, suggesting that one of the highly divergent rpoA-like ORFs in the P. x hortorum plastid genome is functional. CONCLUSIONS The findings support the use of the Illumina platform and assemblers optimized for transcriptome assembly, such as Trinity or SOAPtrans, to generate high-quality de novo transcriptomes with broad coverage. In addition, results indicated no major improvements in breadth of coverage with data sets larger than six billion nucleotides or when sampling RNA from four tissue types rather than from a single tissue. Finally, this work demonstrates the power of cross-compartmental genomic analyses to deepen our understanding of the correlated evolution of the nuclear, plastid, and mitochondrial genomes in plants.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Tracey A Ruhlman
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Robert K Jansen
- Department of Integrative Biology and Institute of Cellular and Molecular Biology, The University of Texas at Austin, 205 W. 24th St. Stop C0930, Austin, TX 78712, USA
- Genomics and Biotechnology Section, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
38
|
Hayes ML, Giang K, Berhane B, Mulligan RM. Identification of two pentatricopeptide repeat genes required for RNA editing and zinc binding by C-terminal cytidine deaminase-like domains. J Biol Chem 2013; 288:36519-29. [PMID: 24194514 DOI: 10.1074/jbc.m113.485755] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many transcripts expressed from plant organelle genomes are modified by C-to-U RNA editing. Nuclear encoded pentatricopeptide repeat (PPR) proteins are required as RNA binding specificity determinants in the RNA editing mechanism. Bioinformatic analysis has shown that most of the Arabidopsis PPR proteins necessary for RNA editing events include a C-terminal portion that shares structural characteristics with a superfamily of deaminases. The DYW deaminase domain includes a highly conserved zinc binding motif that shares characteristics with cytidine deaminases. The Arabidopsis PPR genes, ELI1 and DOT4, both have DYW deaminase domains and are required for single RNA editing events in chloroplasts. The ELI1 DYW deaminase domain was expressed as a recombinant protein in Escherichia coli and was shown to bind two zinc atoms per polypeptide. Thus, the DYW deaminase domain binds a zinc metal ion, as expected for a cytidine deaminase, and is potentially the catalytic component of an editing complex. Genetic complementation experiments demonstrate that large portions of the DYW deaminase domain of ELI1 may be eliminated, but the truncated genes retain the ability to restore editing site conversion in a mutant plant. These results suggest that the catalytic activity can be supplied in trans by uncharacterized protein(s) of the editosome.
Collapse
|
39
|
Ichinose M, Sugita C, Yagi Y, Nakamura T, Sugita M. Two DYW Subclass PPR Proteins are Involved in RNA Editing of ccmFc and atp9 Transcripts in the Moss Physcomitrella patens: First Complete Set of PPR Editing Factors in Plant Mitochondria. ACTA ACUST UNITED AC 2013; 54:1907-16. [DOI: 10.1093/pcp/pct132] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
40
|
Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of Arabidopsis plastid gene expression and RNA editing in non-photosynthetic tissues. PLANT MOLECULAR BIOLOGY 2013; 82:375-92. [PMID: 23645360 DOI: 10.1007/s11103-013-0069-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/27/2013] [Indexed: 05/17/2023]
Abstract
RNA editing is one of the post-transcriptional processes that commonly occur in plant plastids and mitochondria. In Arabidopsis, 34 C-to-U RNA editing events, affecting transcripts of 18 plastid genes, have been identified. Here, we examined the editing and expression of these transcripts in different organs, and in green and non-green seedlings (etiolated, cia5-2, ispF and ispG albino mutants, lincomycin-, and norflurazon-treated). The editing efficiency of Arabidopsis plastid transcripts varies from site to site, and may be specifically regulated in different tissues. Steady state levels of plastid transcripts are low or undetectable in etiolated seedlings, but most editing sites are edited with efficiencies similar to those observed in green seedlings. By contrast, the editing of some sites is completely lost or significantly reduced in other non-green tissues; for instance, the editing of ndhB-149, ndhB-1255, and ndhD-2 is completely lost in roots and in lincomycin-treated seedlings. The editing of ndhD-2 is also completely lost in albino mutants and norflurazon-treated seedlings. However, matK-640 is completely edited, and accD-794, atpF-92, psbE-214, psbF-77, psbZ-50, and rps14-50 are completely or highly edited in both green and non-green tissues. In addition, the expression of nucleus-encoded RNA polymerase dependent transcripts is specifically induced by lincomycin, and the splicing of ndhB transcripts is significantly reduced in the albino mutants and inhibitor-treated seedlings. Our results indicate that plastid gene expression, and the splicing and editing of plastid transcripts are specifically and differentially regulated in various types of non-green tissues.
Collapse
Affiliation(s)
- Ching-Chih Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Yagi Y, Tachikawa M, Noguchi H, Satoh S, Obokata J, Nakamura T. Pentatricopeptide repeat proteins involved in plant organellar RNA editing. RNA Biol 2013; 10:1419-25. [PMID: 23669716 PMCID: PMC3858424 DOI: 10.4161/rna.24908] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
C-to-U RNA editing has been widely observed in organellar RNAs in terrestrial plants. Recent research has revealed the significance of a large, plant-specific family of pentatricopeptide repeat (PPR) proteins for RNA editing and other RNA processing events in plant mitochondria and chloroplasts. PPR protein is a sequence-specific RNA-binding protein that identifies specific C residues for editing. Discovery of the RNA recognition code for PPR motifs, including verification and prediction of the individual RNA editing site and its corresponding PPR protein, expanded our understanding of the molecular function of PPR proteins in plant organellar RNA editing. Using this knowledge and the co-expression database, we have identified two new PPR proteins that mediate chloroplast RNA editing. Further, computational target assignment using the PPR RNA recognition codes suggests a distinct, unknown mode-of-action, by which PPR proteins serve a function beyond site recognition in RNA editing.
Collapse
Affiliation(s)
- Yusuke Yagi
- Faculty of Agriculture; Kyushu University; Fukuoka, Japan
| | - Makoto Tachikawa
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
| | - Hisayo Noguchi
- Faculty of Agriculture; Kyushu University; Fukuoka, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
| | - Junichi Obokata
- Graduate School of Life and Environmental Sciences; Kyoto Prefectural University; Kyoto, Japan
| | - Takahiro Nakamura
- Faculty of Agriculture; Kyushu University; Fukuoka, Japan; Biotron Application Center; Kyushu University; Fukuoka, Japan
| |
Collapse
|
42
|
Ruwe H, Castandet B, Schmitz-Linneweber C, Stern DB. Arabidopsis
chloroplast quantitative editotype. FEBS Lett 2013; 587:1429-33. [DOI: 10.1016/j.febslet.2013.03.022] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
43
|
Okuda K, Shikanai T. A pentatricopeptide repeat protein acts as a site-specificity factor at multiple RNA editing sites with unrelated cis-acting elements in plastids. Nucleic Acids Res 2012; 40:5052-64. [PMID: 22362750 PMCID: PMC3367199 DOI: 10.1093/nar/gks164] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In plant organelles, RNA editing alters specific cytidine residues to uridine in transcripts. All of the site-specificity factors of RNA editing identified so far are pentatricopeptide repeat (PPR) proteins. A defect in a specific PPR protein often impairs RNA editing at multiple sites, at which the cis-acting elements are not highly conserved. The molecular mechanism for sharing a single PPR protein over multiple sites is still unclear. We focused here on the PPR proteins OTP82 and CRR22, the putative target elements of which are, respectively, partially and barely conserved. Recombinant OTP82 specifically bound to the −15 to 0 regions of its target sites. Recombinant CRR22 specifically bound to the −20 to 0 regions of the ndhB-7 and ndhD-5 sites and to the −17 to 0 region of the rpoB-3 site. Taking this information together with the genetic data, we conclude that OTP82 and CRR22 act as site-specificity factors at multiple sites in plastids. In addition, the high-affinity binding of CRR22 to unrelated cis-acting elements suggests that only certain specific nucleotides in a cis-acting element are sufficient for high-affinity binding of a PPR protein. The cis-acting elements can therefore be rather divergent and still be recognized by a single PPR protein.
Collapse
Affiliation(s)
- Kenji Okuda
- Department of Life Science, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551, Japan.
| | | |
Collapse
|
44
|
|
45
|
Kakizaki T, Yazu F, Nakayama K, Ito-Inaba Y, Inaba T. Plastid signalling under multiple conditions is accompanied by a common defect in RNA editing in plastids. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:251-60. [PMID: 21926093 PMCID: PMC3245456 DOI: 10.1093/jxb/err257] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/02/2011] [Indexed: 05/02/2023]
Abstract
Retrograde signalling from the plastid to the nucleus, also known as plastid signalling, plays a key role in coordinating nuclear gene expression with the functional state of plastids. Inhibitors that cause plastid dysfunction have been suggested to generate specific plastid signals related to their modes of action. However, the molecules involved in plastid signalling remain to be identified. Genetic studies indicate that the plastid-localized pentatricopeptide repeat protein GUN1 mediates signalling under several plastid signalling-related conditions. To elucidate further the nature of plastid signals, investigations were carried out to determine whether different plastid signal-inducing treatments had similar effects on plastids and on nuclear gene expression. It is demonstrated that norflurazon and lincomycin treatments and the plastid protein import2-2 (ppi2-2) mutation, which causes a defect in plastid protein import, all resulted in similar changes at the gene expression level. Furthermore, it was observed that these three treatments resulted in defective RNA editing in plastids. This defect in RNA editing was not a secondary effect of down-regulation of pentatricopeptide repeat protein gene expression in the nucleus. The results indicate that these three treatments, which are known to induce plastid signals, affect RNA editing in plastids, suggesting an unprecedented link between plastid signalling and RNA editing.
Collapse
Affiliation(s)
- Tomohiro Kakizaki
- National Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Fumiko Yazu
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Katsuhiro Nakayama
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Yasuko Ito-Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| | - Takehito Inaba
- Interdisciplinary Research Organization, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki 889-2192, Japan
| |
Collapse
|
46
|
Castandet B, Araya A. RNA editing in plant organelles. Why make it easy? BIOCHEMISTRY (MOSCOW) 2011; 76:924-31. [DOI: 10.1134/s0006297911080086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Rüdinger M, Szövényi P, Rensing SA, Knoop V. Assigning DYW-type PPR proteins to RNA editing sites in the funariid mosses Physcomitrella patens and Funaria hygrometrica. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:370-380. [PMID: 21466601 DOI: 10.1111/j.1365-313x.2011.04600.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The plant-specific pentatricopeptide repeat (PPR) proteins with variable PPR repeat lengths (PLS-type) and protein extensions up to the carboxyterminal DYW domain have received attention as specific recognition factors for the C-to-U type of RNA editing events in plant organelles. Here, we report a DYW-protein knockout in the model plant Physcomitrella patens specifically affecting mitochondrial RNA editing positions cox1eU755SL and rps14eU137SL. Assignment of DYW proteins and RNA editing sites might best be corroborated by data from a taxon with a slightly different, yet similarly manageable low number of editing sites and DYW proteins. To this end we investigated the mitochondrial editing status of the related funariid moss Funaria hygrometrica. We find that: (i) Funaria lacks three mitochondrial RNA editing positions present in Physcomitrella, (ii) that F. hygrometrica cDNA sequence data identify nine DYW proteins as clear orthologues of their P. patens counterparts, and (iii) that the 'missing' 10th DYW protein in F. hygrometrica is responsible for two mitochondrial editing sites in P. patens lacking in F. hygrometrica (nad3eU230SL, nad4eU272SL). Interestingly, the third site of RNA editing missing in F. hygrometrica (rps14eU137SL) is addressed by the DYW protein characterized here and the presence of its orthologue in F. hygrometrica is explained through its simultaneous action on site cox1eU755SL conserved in both mosses.
Collapse
Affiliation(s)
- Mareike Rüdinger
- IZMB-Institut für Zelluläre und Molekulare Botanik, Abteilung Molekulare Evolution, Universität Bonn, Kirschallee 1, Bonn, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
The pentatricopeptide repeat (PPR) is a degenerate 35-amino-acid structural motif identified from analysis of the sequenced genome of the model plant Arabidopsis thaliana. From the wealth of sequence information now available from plant genomes, the PPR protein family is now known to be one of the largest families in angiosperm species, as most genomes encode 400-600 members. As the number of PPR genes is generally only c. 10-20 in other eukaryotic organisms, including green algae, the family has obviously greatly expanded during land plant evolution. This provides a rare opportunity to study selection pressures driving a 50-fold expansion of a single gene family. PPR proteins are sequence-specific RNA-binding proteins involved in many aspects of RNA processing in organelles. In this review, we will summarize our current knowledge about the evolution of PPR genes, and will discuss the relevance of the dramatic expansion in the family to the functional diversification of plant organelles, focusing primarily on RNA editing.
Collapse
Affiliation(s)
- Sota Fujii
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| | - Ian Small
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia
| |
Collapse
|
49
|
Babiychuk E, Vandepoele K, Wissing J, Garcia-Diaz M, De Rycke R, Akbari H, Joubès J, Beeckman T, Jänsch L, Frentzen M, Van Montagu MCE, Kushnir S. Plastid gene expression and plant development require a plastidic protein of the mitochondrial transcription termination factor family. Proc Natl Acad Sci U S A 2011; 108:6674-9. [PMID: 21464319 PMCID: PMC3081001 DOI: 10.1073/pnas.1103442108] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plastids are DNA-containing organelles unique to plant cells. In Arabidopsis, one-third of the genes required for embryo development encode plastid-localized proteins. To help understand the role of plastids in embryogenesis and postembryonic development, we characterized proteins of the mitochondrial transcription termination factor (mTERF) family, which in animal models, comprises DNA-binding regulators of mitochondrial transcription. Of 35 Arabidopsis mTERF proteins, 11 are plastid-localized. Genetic complementation shows that at least one plastidic mTERF, BELAYA SMERT' (BSM), is required for embryogenesis. The main postembryonic phenotypes of genetic mosaics with the bsm mutation are severe abnormalities in leaf development. Mutant bsm cells are albino, are compromised in growth, and suffer defects in global plastidic gene expression. The bsm phenotype could be phenocopied by inhibition of plastid translation with spectinomycin. Plastid translation is essential for cell viability in dicotyledonous species such as tobacco but not in monocotyledonous maize. Here, genetic interactions between BSM and the gene encoding plastid homomeric acetyl-CoA carboxylase ACC2 suggest that there is a functional redundancy in malonyl-CoA biosynthesis that permits bsm cell survival in Arabidopsis. Overall, our results indicate that biosynthesis of malonyl-CoA and plastid-derived systemic growth-promoting compounds are the processes that link plant development and plastid gene expression.
Collapse
Affiliation(s)
- Elena Babiychuk
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Josef Wissing
- Abteilung Zellbiologie, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651
| | - Riet De Rycke
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Hana Akbari
- Institut für Biologie I, Spezielle Botanik, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany; and
| | - Jérôme Joubès
- Université Victor Ségalen Bordeaux 2, Laboratoire de Biogenèse Membranaire, Centre National de la Recherche Scientifique, 33076 Bordeaux Cedex, France
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| | - Lothar Jänsch
- Abteilung Zellbiologie, Helmholtz-Zentrum für Infektionsforschung GmbH, 38124 Braunschweig, Germany
| | - Margrit Frentzen
- Institut für Biologie I, Spezielle Botanik, Rheinisch-Westfälische Technische Hochschule Aachen, 52056 Aachen, Germany; and
| | | | - Sergei Kushnir
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
50
|
Cao ZL, Yu QB, Sun Y, Lu Y, Cui YL, Yang ZN. A point mutation in the pentatricopeptide repeat motif of the AtECB2 protein causes delayed chloroplast development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:258-69. [PMID: 21294841 DOI: 10.1111/j.1744-7909.2011.01030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
AtECB2 encodes a pentatricopeptide repeat (PPR) protein that regulates the editing of the plastid genes accD and ndhF. The ecb2-1 knockout shows an albino phenotype and is seedling lethal. In this study, we isolated an allelic mutant of the AtECB2 gene, ecb2-2, which showed delayed greening phenotype but could complete their life cycle. In this mutant, the Thr(500) is converted to Ile(500) in the 13(th) PPR motif of the AtECB2 protein. Transmission electron microscopy demonstrated that chloroplast development was delayed in both the cotyledons and leaves of the mutant. An investigation of the chloroplast gene expression profile indicated that PEP (plastid-encoded RNA polymerase) activity in ecb2-2 cotyledons was not obviously affected, whereas it was severely impaired in ecb2-1. This result suggests that the PEP activities cause the different phenotypes of the ecb2-1 and ecb2-2 mutants. The editing efficiency of the three editing sites of accD (C794 and C1568) and ndhF (C290) in the mutant was dynamically altered, which was in agreement with the phenotype. This result indicates that the editing efficiency of accD and ndhF in the ecb2-2 mutant is associated with a delayed greening phenotype. As ecb2-2 can survive and set seeds, this mutant can be used for further investigation of RNA editing and chloroplast development in arabidopsis.
Collapse
Affiliation(s)
- Zhi-Lin Cao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China
| | | | | | | | | | | |
Collapse
|