1
|
Wang Q, Wang DR, Liu X, Chen GL, Li HD, Ji WL, Qu MS, Yang R, You CX. Trimeric tetrapeptide repeat protein TPR16 positively regulates salt stress in apple. JOURNAL OF PLANT PHYSIOLOGY 2024; 305:154415. [PMID: 39793382 DOI: 10.1016/j.jplph.2024.154415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 12/09/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Plants are vulnerable to various abiotic stresses in the natural growing environment, among which salt stress can seriously affect plant growth, development and yield. Protein families containing trimeric tetrapeptide repeat sequences have a crucial function in plant resilience to non-living factors and participate in multiple aspects of plant growth and development. For this investigation, we acquired the apple MdTPR16 gene. The research demonstrated that ectopic expression of MdTPR16 in Arabidopsis resulted in increased resistance to salt stress. This was observed by a drop in malondialdehyde (MDA) levels and a reduction in the buildup of reactive oxygen species (ROS) under salt stress conditions. Meanwhile, apple calli, apple seedlings and apple rooting seedlings overexpressing MdTPR16 showed reduced sensitivity to salt stress. The results indicate that MdTPR16 has a critical positive regulatory function under salt stress, which may lay the foundation for a deeper understanding of the molecular pathways of salt tolerance in apple.
Collapse
Affiliation(s)
- Qing Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xin Liu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Guo-Lin Chen
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - He-Dan Li
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wen-Long Ji
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Man-Shu Qu
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Rui Yang
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- Apple technology innovation center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
2
|
Li N, Cui Y, Zhang Z, Wang S, Sun Y, Zhang S, Li G. Overexpression of vacuolar H +-pyrophosphatase from a recretohalophyte Reaumuria trigyna enhances vegetative growth and salt tolerance in transgenic Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1435799. [PMID: 39606672 PMCID: PMC11598511 DOI: 10.3389/fpls.2024.1435799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024]
Abstract
Reaumuria trigyna, a wild and endangered salt-secreting small shrub, is distributed in arid and semi-arid areas of Inner Mongolia, China. An H+-pyrophosphatase gene (RtVP1) was isolated from R. trigyna according to transcriptomic data, which encoded a plasma membrane and tonoplast-localized protein. RtVP1 was quickly upregulated by NaCl and exogenous abscisic acid treatment and rescued the sucrose deficiency sensitive phenotype of the AtVP1 mutant (avp1). Transgenic Arabidopsis overexpressing RtVP1 exhibited a higher leaf area, plant height, fresh weight, root length, and soluble carbohydrate accumulation compared to the wild type (WT) under normal conditions. RtVP1 overexpression increased the seed germination rate and decreased the reduction rate of fresh weight, root length, and chlorophyll content in transgenic plants under salt stress. Catalase enzyme activity, proline content, relative water content, and soluble sugar content were significantly increased in transgenic Arabidopsis under salt stresses, but the malondialdehyde content was dramatically decreased. More K+ and less Na+ were accumulated in transgenic Arabidopsis leaves, resulting in a relatively lower Na+/K+ ratio. In transgenic Arabidopsis roots, K+ was unchanged, but Na+ and the Na+/K+ ratios were reduced compared to those in WT. More Na+ and K+ were accumulated in the intracellular of transgenic yeast, and the Na+/K+ ratio was significantly reduced compared to the control. These results showed that R. trigyna RtVP1 promotes the vegetative growth of plants, mainly by regulating carbohydrate metabolism, and confers salt tolerance in transgenic Arabidopsis by maintaining Na+/K+ homeostasis and enhancing the antioxidant and osmotic regulatory capacity. These results indicated that RtVP1 can serve as an important candidate gene for genetic improvement of crop yield and salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Guolong Li
- College of Agronomy, Inner Mongolia Agricultural University,
Hohhot, China
| |
Collapse
|
3
|
Chen GL, Wang DR, Liu X, Wang X, Liu HF, Zhang CL, Zhang ZL, Li LG, You CX. The apple lipoxygenase MdLOX3 positively regulates zinc tolerance. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132553. [PMID: 37722326 DOI: 10.1016/j.jhazmat.2023.132553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Various abiotic stresses, especially heavy metals near factories around the world, limit plant growth and productivity worldwide. Zinc is a light gray transition metal, and excessive zinc will inactivate enzymes in the soil, weaken the biological function of microorganisms, and enter the food chain through enrichment, thus affecting human health. Lipoxygenase (LOX) can catalyze the production of fatty acid derivatives from phenolic triglycerides in plants and is an important pathway of fatty acid oxidation in plants, which usually begins under unfavorable conditions, especially under biotic and abiotic stresses. Lipoxygenase can be divided into 9-LOX and 13-LOX. MdLOX3 is a homolog of AtLOX3 and has been identified in apples (housefly apples). MdLOX3 has a typical conserved lipoxygenase domain, and promoter analysis shows that it contains multiple stress response elements. In addition, different abiotic stresses and hormonal treatments induced the MdLOX3 response. In order to explore the inherent anti-heavy metal mechanism of MdLOX3, this study verified the properties of MdLOX3 based on genetic analysis and overexpression experiments, including plant taproots length, plant fresh weight, chlorophyll, anthocyanins, MDA, relative electrical conductivity, hydrogen peroxide and superoxide anion, NBT\DAB staining, etc. In the experiment, overexpression of MdLOX3 in apple callus and Arabidopsis effectively enhanced the tolerance to zinc stress by improving the ability to clear ROS. Meanwhile, tomato materials with overexpression of ectopia grew better under excessive zinc ion stress. These results indicated that MdLOX3 had a good tolerance to heavy metal zinc. Homologous mutants are more sensitive to zinc, which proves that MdLOX3 plays an important positive role in zinc stressed apples, which broadens the range of action of LOX3 in different plants.
Collapse
Affiliation(s)
- Guo-Lin Chen
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Da-Ru Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Xun Wang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Hao-Feng Liu
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | | | - Zhen-Lu Zhang
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| | - Lin-Guang Li
- Shandong Institute of Pomology, Taian, Shandong 271000, China.
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
4
|
Spatola Rossi T, Fricker M, Kriechbaumer V. Gene Stacking and Stoichiometric Expression of ER-Targeted Constructs Using "2A" Self-Cleaving Peptides. Methods Mol Biol 2024; 2772:337-351. [PMID: 38411827 DOI: 10.1007/978-1-0716-3710-4_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Simultaneous stoichiometric expression of multiple genes plays a major part in modern research and biotechnology. Traditional methods for incorporating multiple transgenes (or "gene stacking") have drawbacks such as long time frames, uneven gene expression, gene silencing, and segregation derived from the use of multiple promoters. 2A self-cleaving peptides have emerged over the last two decades as a functional gene stacking method and have been used in plants for the co-expression of multiple genes under a single promoter. Here we describe design features of multicistronic polyproteins using 2A peptides for co-expression in plant cells and targeting to the endoplasmic reticulum (ER). We designed up to quad-cistronic vectors that could target proteins in tandem to the ER. We also exemplify the incorporation of self-excising intein domains within 2A polypeptides, to remove residue additions. These features could aid in the design of stoichiometric protein co-expression strategies in plants in combination with targeting to different subcellular compartments.
Collapse
Affiliation(s)
- Tatiana Spatola Rossi
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Mark Fricker
- Department of Biology, University of Oxford, Oxford, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
5
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
6
|
Solebo O, Ling L, Nwankwo I, Zhou J, Fu TM, Ke H. Plasmodium falciparum utilizes pyrophosphate to fuel an essential proton pump in the ring stage and the transition to trophozoite stage. PLoS Pathog 2023; 19:e1011818. [PMID: 38048362 PMCID: PMC10732439 DOI: 10.1371/journal.ppat.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/20/2023] [Accepted: 11/10/2023] [Indexed: 12/06/2023] Open
Abstract
During asexual growth and replication cycles inside red blood cells, the malaria parasite Plasmodium falciparum primarily relies on glycolysis for energy supply, as its single mitochondrion performs little or no oxidative phosphorylation. Post merozoite invasion of a host red blood cell, the ring stage lasts approximately 20 hours and was traditionally thought to be metabolically quiescent. However, recent studies have shown that the ring stage is active in several energy-costly processes, including gene transcription, protein translation, protein export, and movement inside the host cell. It has remained unclear whether a low glycolytic flux alone can meet the energy demand of the ring stage over a long period post invasion. Here, we demonstrate that the metabolic by-product pyrophosphate (PPi) is a critical energy source for the development of the ring stage and its transition to the trophozoite stage. During early phases of the asexual development, the parasite utilizes Plasmodium falciparum vacuolar pyrophosphatase 1 (PfVP1), an ancient pyrophosphate-driven proton pump, to export protons across the parasite plasma membrane. Conditional deletion of PfVP1 leads to a delayed ring stage that lasts nearly 48 hours and a complete blockage of the ring-to-trophozoite transition before the onset of parasite death. This developmental arrest can be partially rescued by an orthologous vacuolar pyrophosphatase from Arabidopsis thaliana, but not by the soluble pyrophosphatase from Saccharomyces cerevisiae, which lacks proton pumping activities. Since proton-pumping pyrophosphatases have been evolutionarily lost in human hosts, the essentiality of PfVP1 suggests its potential as an antimalarial drug target. A drug target of the ring stage is highly desired, as current antimalarials have limited efficacy against this stage.
Collapse
Affiliation(s)
- Omobukola Solebo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Liqin Ling
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ikechukwu Nwankwo
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Jing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, Ohio, United States of America
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, United States of America
| | - Hangjun Ke
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
7
|
Ahmad I, Zhu G, Zhou G, Younas MU, Suliman MSE, Liu J, Zhu YM, Salih EGI. Integrated approaches for increasing plant yield under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1215343. [PMID: 37534293 PMCID: PMC10393426 DOI: 10.3389/fpls.2023.1215343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Salt stress affects large cultivated areas worldwide, thus causing remarkable reductions in plant growth and yield. To reduce the negative effects of salt stress on plant growth and yield, plant hormones, nutrient absorption, and utilization, as well as developing salt-tolerant varieties and enhancing their morpho-physiological activities, are some integrative approaches to coping with the increasing incidence of salt stress. Numerous studies have been conducted to investigate the critical impacts of these integrative approaches on plant growth and yield. However, a comprehensive review of these integrative approaches, that regulate plant growth and yield under salt stress, is still in its early stages. The review focused on the major issues of nutrient absorption and utilization by plants, as well as the development of salt tolerance varieties under salt stress. In addition, we explained the effects of these integrative approaches on the crop's growth and yield, illustrated the roles that phytohormones play in improving morpho-physiological activities, and identified some relevant genes involve in these integrative approaches when the plant is subjected to salt stress. The current review demonstrated that HA with K enhance plant morpho-physiological activities and soil properties. In addition, NRT and NPF genes family enhance nutrients uptake, NHX1, SOS1, TaNHX, AtNHX1, KDML, RD6, and SKC1, maintain ion homeostasis and membrane integrity to cope with the adverse effects of salt stress, and sd1/Rht1, AtNHX1, BnaMAX1s, ipal-1D, and sft improve the plant growth and yield in different plants. The primary purpose of this investigation is to provide a comprehensive review of the performance of various strategies under salt stress, which might assist in further interpreting the mechanisms that plants use to regulate plant growth and yield under salt stress.
Collapse
Affiliation(s)
- Irshad Ahmad
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guanglong Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guisheng Zhou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Key Lab of Crop Genetics & Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Muhammad Usama Younas
- Department of Crop Genetics and Breeding, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Mohamed Suliman Eltyeb Suliman
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
| | - Jiao Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yi ming Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Ebtehal Gabralla Ibrahim Salih
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Alavilli H, Yolcu S, Skorupa M, Aciksoz SB, Asif M. Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. PLANTA 2023; 258:30. [PMID: 37358618 DOI: 10.1007/s00425-023-04189-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023]
Abstract
MAIN CONCLUSION Although sugar beet is a salt- and drought-tolerant crop, high salinity, and water deprivation significantly reduce its yield and growth. Several reports have demonstrated stress tolerance enhancement through stress-mitigating strategies including the exogenous application of osmolytes or metabolites, nanoparticles, seed treatments, breeding salt/drought-tolerant varieties. These approaches would assist in achieving sustainable yields despite global climatic changes. Sugar beet (Beta vulgaris L.) is an economically vital crop for ~ 30% of world sugar production. They also provide essential raw materials for bioethanol, animal fodder, pulp, pectin, and functional food-related industries. Due to fewer irrigation water requirements and shorter regeneration time than sugarcane, beet cultivation is spreading to subtropical climates from temperate climates. However, beet varieties from different geographical locations display different stress tolerance levels. Although sugar beet can endure moderate exposure to various abiotic stresses, including high salinity and drought, prolonged exposure to salt and drought stress causes a significant decrease in crop yield and production. Hence, plant biologists and agronomists have devised several strategies to mitigate the stress-induced damage to sugar beet cultivation. Recently, several studies substantiated that the exogenous application of osmolytes or metabolite substances can help plants overcome injuries induced by salt or drought stress. Furthermore, these compounds likely elicit different physio-biochemical impacts, including improving nutrient/ionic homeostasis, photosynthetic efficiency, strengthening defense response, and water status improvement under various abiotic stress conditions. In the current review, we compiled different stress-mitigating agricultural strategies, prospects, and future experiments that can secure sustainable yields for sugar beets despite high saline or drought conditions.
Collapse
Affiliation(s)
- Hemasundar Alavilli
- Department of Biotechnology, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Seher Yolcu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Monika Skorupa
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87-100, Torun, Poland
| | - Seher Bahar Aciksoz
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Muhammad Asif
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey
| |
Collapse
|
9
|
Dual inoculation with rhizosphere-promoting bacterium Bacillus cereus and beneficial fungus Peniophora cinerea improves salt stress tolerance and productivity in willow. Microbiol Res 2023; 268:127280. [PMID: 36563631 DOI: 10.1016/j.micres.2022.127280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Utilization of rhizosphere microorganisms to improve plant growth and salt tolerance has recently attracted widespread attention. The growth and salt tolerance of willows inoculated with Bacillus cereus JYZ-SD2 and Peniophora cinerea XC were studied under different salt stress conditions. The results showed that the chlorophyll content of willow cuttings inoculated with the XC strain increased significantly by 51.27%. After salt stress of willow cuttings inoculated with B. cereus JYZ-SD2 and P. cinerea XC (solely or in combination), the amount of sodium in the roots from the epidermis to the pericycle decreased and the content of sodium in the pericycle was significantly lower than that of the uninoculated willow, while the proportion of potassium increased. Willow cuttings inoculated with microorganisms showed increased activity of SOD and POD. At the salt concentration of 100 mmol/L, the highest SOD activity was found in B. cereus JYZ-SD2-inoculated willows, with 59.88% increase compared to uninoculated willows; the highest POD activity was found in P. cinerea XC and B. cereus JYZ-SD2 co-inoculated willows, with 51.05% increase compared to uninoculated willows. The Na-K-ATPase and Ca-Mg-ATPase activities of inoculated P. cinerea XC willow cuttings were also 59.38% and 60% higher than that of uninoculated willows, respectively. The qPCR analysis showed that the expression of vp2 gene in the microorganism-inoculated willow leaves was always higher than that in willow alone. The expression of vp2 gene in P. cinerea XC-inoculated willow cuttings was 270.81% higher than that in uninoculated willows. Further observation of the ultrastructure of root cells under salt stress revealed that most of the vesicles in the root tip cells of willow were intact and secreted phagocytic vesicles to absorb sodium ions in the cytoplasm. This study shows that the combined beneficial fungi and rhizosphere-promoting bacteria inoculation technology as a practical biotechnological approach to enhance the growth of willows in salt-affected soils.
Collapse
|
10
|
Liu HF, Zhang TT, Liu YQ, Kang H, Rui L, Wang DR, You CX, Xue XM, Wang XF. Genome-wide analysis of the 6B-INTERACTING PROTEIN1 gene family with functional characterization of MdSIP1-2 in Malus domestica. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:89-100. [PMID: 36621305 DOI: 10.1016/j.plaphy.2022.12.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Trihelix transcription factors consist of five subfamilies, including GT-1, GT-2, SH4, GTγ, and SIP1, which play important roles in the responses to biotic and abiotic stresses, however, seldom is known about the role of the SIP1 genes in apples. In this study, 12 MdSIP1 genes were first identified in apples by genome-wide analysis, and contained conserved MYB/SANT-like domains. Expression patterns analyses showed that the MdSIP1 genes had different tissue expression patterns, and different transcription levels in response to abiotic stresses, indicating that MdSIP1s may play multiple roles under various abiotic stresses. Among them, the MdSIP1-2 gene was cloned and ectopic transformed into Arabidopsis, and its biology function was identified. The subcellular localization showed that MdSIP1-2 protein was specifically localized in the nucleus, and that overexpression of MdSIP1-2 promoted the development of lateral roots, increased abscisic acid (ABA) sensitivity, and improved salt and drought tolerance. These findings suggested that MdSIP1-2 plays an important role in root development, ABA synthesis, and salt and drought stress tolerance. In conclusion, these results lay a solid foundation for determining the role of MdSIP1 in the growth and development and abiotic stress tolerance of apples.
Collapse
Affiliation(s)
- Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ting-Ting Zhang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Ya-Qi Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Min Xue
- Shandong Institute of Pomology, Taian, Shandong, 271000, China.
| | - Xiao-Fei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
11
|
H +-Translocating Membrane-Bound Pyrophosphatase from Rhodospirillum rubrum Fuels Escherichia coli Cells via an Alternative Pathway for Energy Generation. Microorganisms 2023; 11:microorganisms11020294. [PMID: 36838259 PMCID: PMC9959109 DOI: 10.3390/microorganisms11020294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/24/2023] Open
Abstract
Inorganic pyrophosphatases (PPases) catalyze an essential reaction, namely, the hydrolysis of PPi, which is formed in large quantities as a side product of numerous cellular reactions. In the majority of living species, PPi hydrolysis is carried out by soluble cytoplasmic PPase (S-PPases) with the released energy dissipated in the form of heat. In Rhodospirillum rubrum, part of this energy can be conserved by proton-pumping pyrophosphatase (H+-PPaseRru) in the form of a proton electrochemical gradient for further ATP synthesis. Here, the codon-harmonized gene hppaRru encoding H+-PPaseRru was expressed in the Escherichia coli chromosome. We demonstrate, for the first time, that H+-PPaseRru complements the essential native S-PPase in E. coli cells. 13C-MFA confirmed that replacing native PPase to H+-PPaseRru leads to the re-distribution of carbon fluxes; a statistically significant 36% decrease in tricarboxylic acid (TCA) cycle fluxes was found compared with wild-type E. coli MG1655. Such a flux re-distribution can indicate the presence of an additional method for energy generation (e.g., ATP), which can be useful for the microbiological production of a number of compounds, the biosynthesis of which requires the consumption of ATP.
Collapse
|
12
|
Ortega-Albero N, González-Orenga S, Vicente O, Rodríguez-Burruezo A, Fita A. Responses to Salt Stress of the Interspecific Hybrid Solanum insanum × Solanum melongena and Its Parental Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12020295. [PMID: 36679008 PMCID: PMC9867010 DOI: 10.3390/plants12020295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 05/14/2023]
Abstract
Soil salinity is becoming one of the most critical problems for agriculture in the current climate change scenario. Growth parameters, such as plant height, root length and fresh weight, and several biochemical stress markers (chlorophylls, total flavonoids and proline), have been determined in young plants of Solanum melongena, its wild relative Solanum insanum, and their interspecific hybrid, grown in the presence of 200 and 400 mM of NaCl, and in adult plants in the long-term presence of 80 mM of NaCl, in order to assess their responses to salt stress. Cultivated eggplant showed a relatively high salt tolerance, compared to most common crops, primarily based on the control of ion transport and osmolyte biosynthesis. S. insanum exhibited some specific responses, such as the salt-induced increase in leaf K+ contents (653.8 μmol g-1 dry weight) compared to S. melongena (403 μmol g-1 dry weight) at 400 mM of NaCl. Although there were no substantial differences in growth in the presence of salt, biochemical evidence of a better response to salt stress of the wild relative was detected, such as a higher proline content. The hybrid showed higher tolerance than either of the parents with better growth parameters, such as plant height increment (7.3 cm) and fresh weight (240.4% root fresh weight and 113.3% shoot fresh weight) at intermediate levels of salt stress. For most biochemical variables, the hybrid showed an intermediate behaviour between the two parent species, but for proline it was closer to S. insanum (ca. 2200 μmol g-1 dry weight at 200 mM NaCl). These results show the possibility of developing new salt tolerance varieties in eggplant by introducing genes from S. insanum.
Collapse
Affiliation(s)
- Neus Ortega-Albero
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Sara González-Orenga
- Department of Plant Biology and Soil Science, Faculty of Biology, Universidad de Vigo, Campus Lagoas-Marcosendre, 36310 Vigo, Spain
| | - Oscar Vicente
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Adrián Rodríguez-Burruezo
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Ana Fita
- Institute for the Conservation and Improvement of Valencian Agrodiversity (COMAV), Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
- Correspondence:
| |
Collapse
|
13
|
Li Z, Zhong F, Guo J, Chen Z, Song J, Zhang Y. Improving Wheat Salt Tolerance for Saline Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14989-15006. [PMID: 36442507 DOI: 10.1021/acs.jafc.2c06381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Salinity is a major abiotic stress that threatens crop yield and food supply in saline soil areas. Crops have evolved various strategies to facilitate survival and production of harvestable yield under salinity stress. Wheat (Triticum aestivum L.) is the main crop in arid and semiarid land areas, which are often affected by soil salinity. In this review, we summarize the conventional approaches to enhance wheat salt tolerance, including cross-breeding, exogenous application of chemical compounds, beneficial soil microorganisms, and transgenic engineering. We also propose several new breeding techniques for increasing salt tolerance in wheat, such as identifying new quantitative trait loci or genes related to salt tolerance, gene stacking and multiple genome editing, and wheat wild relatives and orphan crops domestication. The challenges and possible countermeasures in enhancing wheat salinity tolerance are also discussed.
Collapse
Affiliation(s)
- Zihan Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fan Zhong
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhuo Chen
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
14
|
Biotechnological Interventions in Tomato ( Solanum lycopersicum) for Drought Stress Tolerance: Achievements and Future Prospects. BIOTECH (BASEL (SWITZERLAND)) 2022; 11:biotech11040048. [PMID: 36278560 PMCID: PMC9624322 DOI: 10.3390/biotech11040048] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
Abstract
Tomato production is severely affected by abiotic stresses (drought, flood, heat, and salt) and causes approximately 70% loss in yield depending on severity and duration of the stress. Drought is the most destructive abiotic stress and tomato is very sensitive to the drought stress, as cultivated tomato lack novel gene(s) for drought stress tolerance. Only 20% of agricultural land worldwide is irrigated, and only 14.51% of that is well-irrigated, while the rest is rain fed. This scenario makes drought very frequent, which restricts the genetically predetermined yield. Primarily, drought disturbs tomato plant physiology by altering plant–water relation and reactive oxygen species (ROS) generation. Many wild tomato species have drought tolerance gene(s); however, their exploitation is very difficult because of high genetic distance and pre- and post-transcriptional barriers for embryo development. To overcome these issues, biotechnological methods, including transgenic technology and CRISPR-Cas, are used to enhance drought tolerance in tomato. Transgenic technology permitted the exploitation of non-host gene/s. On the other hand, CRISPR-Cas9 technology facilitated the editing of host tomato gene(s) for drought stress tolerance. The present review provides updated information on biotechnological intervention in tomato for drought stress management and sustainable agriculture.
Collapse
|
15
|
Ayadi M, Chiab N, Charfeddine S, Abdelhedi R, Dabous A, Talbi O, Mieulet D, Guiderdoni E, Aifa S, Gargouri-Bouzid R, Hanana M. Improved growth and tuber quality of transgenic potato plants overexpressing either NHX antiporter, CLC chloride channel, or both. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:46-58. [PMID: 36044822 DOI: 10.1016/j.plaphy.2022.07.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The nutritional enhancement of potato plants (Solanum tuberosum L.,) is highly critical. As it is considered a worldwide basic vegetarian nutrition to maintain health. S. tuberosum is one of the foremost staples and the world's fourth-largest food crop. In advance, its need is increasing because of its high-industrial value and population blast. To improve both potato growth and behavior under harsh environmental conditions, we produced transgenic potato plants overexpressing either VvNHX (a sodium proton antiporter from Vitis vinifera), VvCLC (a chloride channel from Vitis vinifera), or both. Control and transgenic plants were grown in greenhouse and field under non-stressed conditions for 85 days in order to characterize their phenotype and evaluate their agronomical performance. To this aim, the evaluation of plant growth parameters, tuber yields and characteristics (calibers, eye number and color), the chemical composition of tubers, was conducted and compared between the different lines. The obtained results showed that transgenic plants displayed an improved growth (flowering precocity, gain of vigor and better vegetative growth) along with enhanced tuber yields and quality (increased protein and starch contents). Our findings provide then insight into the role played by the VvNHX antiport and the VvCLC channel and a greater understanding of the effect of their overexpression in potato plants.
Collapse
Affiliation(s)
- Mariem Ayadi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia; Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Nour Chiab
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Safa Charfeddine
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Rania Abdelhedi
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Amira Dabous
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Ons Talbi
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia
| | - Delphine Mieulet
- Cirad, UMR AGAP, Montpellier, France; Université de Montpellier, Cirad-Inra-Montpellier SupAgro, Montpellier, France
| | - Emmanuel Guiderdoni
- Cirad, UMR AGAP, Montpellier, France; Université de Montpellier, Cirad-Inra-Montpellier SupAgro, Montpellier, France
| | - Sami Aifa
- Laboratory of Molecular and Cellular Screening Processes, Center of Biotechnology of Sfax, University of Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant amelioration and Agri-resource valorization laboratory, National School of Engineers of Sfax (ENIS), Tunisia
| | - Mohsen Hanana
- Laboratory of Extremophile Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif, Tunisia.
| |
Collapse
|
16
|
Baoxiang W, Bo X, Yan L, Jingfang L, Zhiguang S, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A Novel mechanisms of the signaling cascade associated with the SAPK10-bZIP20-NHX1 synergistic interaction to enhance tolerance of plant to abiotic stress in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111393. [PMID: 35878697 DOI: 10.1016/j.plantsci.2022.111393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
The bzip transcription factors can modulate the transcriptional expressions of target genes by binding specifically to cis-regulatory elements in the promoter region of stress-related genes, hence regulating plant stress resistance. Here, we investigated a stress-responsive transcription factor Osbzip20 under abiotic stresses. The OsbZIP20-GFP fusion protein predominantly aggregated in the nucleus, in accordance with our subcellular localization. OsbZIP20 transcript was observed in all vegetative tissues with highest levels being detected in the seed. Transcription of Osbzip20 was induced by salinity, exsiccation, and abscisic acid. Overexpression of OsbZIP20 in transgenic rice considerably improved tolerance to salt and drought stresses, as well as increased sensitivity to ABA. Furthermore, abiotic stress responsive genes transcript were found to be remarkably elevated in transgenic rice overexpressing OsbZIP20 than in wild-type plants. SAPK10 was discovered to directly interact with and phosphorylate OsbZIP20. Yeast one-hybrid and luciferase assay revealed that OsbZIP20 acted as a transcriptional stimulator. Interestingly, gel shift assay showed that phosphorylated bZIP20 augmented its DNA-binding affinity to the ABRE element of the NHX1 promoter and induced its transcription. In sum, our findings establish a novel signaling pathway associated with the SAPK10-bZIP20-NHX1 synergistic interaction, as well as a new strategy for enhancing rice drought and salt tolerance.
Collapse
Affiliation(s)
- Wang Baoxiang
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Xu Bo
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Liu Yan
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Li Jingfang
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Sun Zhiguang
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Chi Ming
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Xing Yungao
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Yang Bo
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Li Jian
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Liu Jinbo
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Chen Tingmu
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Fang Zhaowei
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Lu Baiguan
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China
| | - Xu Dayong
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China.
| | - Babatunde Kazeem Bello
- Lianyungang Institute of Agricultural Sciences, Collaborative Innovation Center for Modern Crop Production, Lianyungang, Jiangsu province 222006, China.
| |
Collapse
|
17
|
Ma D, Ding Q, Guo Z, Xu C, Liang P, Zhao Z, Song S, Zheng HL. The genome of a mangrove plant, Avicennia marina, provides insights into adaptation to coastal intertidal habitats. PLANTA 2022; 256:6. [PMID: 35678934 DOI: 10.1007/s00425-022-03916-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/17/2022] [Indexed: 05/26/2023]
Abstract
Whole-genome duplication, gene family and lineage-specific genes analysis based on high-quality genome reveal the adaptation mechanisms of Avicennia marina to coastal intertidal habitats. Mangrove plants grow in a complex habitat of coastal intertidal zones with high salinity, hypoxia, etc. Therefore, it is an interesting question how mangroves adapt to the unique intertidal environment. Here, we present a chromosome-level genome of the Avicennia marina, a typical true mangrove with a size of 480.43 Mb, contig N50 of 11.33 Mb and 30,956 annotated protein-coding genes. We identified 621 Avicennia-specific genes that are mainly related to flavonoid and lignin biosynthesis, auxin homeostasis and response to abiotic stimulus. We found that A. marina underwent a novel specific whole-genome duplication, which is in line with a brief era of global warming that occurred during the paleocene-eocene maximum. Comparative genomic and transcriptomic analyses outline the distinct evolution and sophisticated regulations of A. marina adaptation to the intertidal environments, including expansion of photosynthesis and oxidative phosphorylation gene families, unique genes and pathways for antibacterial, detoxifying antioxidant and reactive oxygen species scavenging. In addition, we also analyzed salt gland secretion-related genes, and those involved in the red bark-related flavonoid biosynthesis, while significant expansions of key genes such as NHX, 4CL, CHS and CHI. High-quality genomes in future investigations will facilitate the understand of evolution of mangrove and improve breeding.
Collapse
Affiliation(s)
- Dongna Ma
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qiansu Ding
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zejun Guo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Chaoqun Xu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Pingping Liang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Zhizhu Zhao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Shiwei Song
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China
| | - Hai-Lei Zheng
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
18
|
Zhao PX, Zhang J, Chen SY, Wu J, Xia JQ, Sun LQ, Ma SS, Xiang CB. Arabidopsis MADS-box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt-responsive genes. THE NEW PHYTOLOGIST 2021; 232:2418-2439. [PMID: 34605021 DOI: 10.1111/nph.17760] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Sessile plants constantly experience environmental stresses in nature. They must have evolved effective mechanisms to balance growth with stress response. Here we report the MADS-box transcription factor AGL16 acting as a negative regulator in stress response in Arabidopsis. Loss-of-AGL16 confers resistance to salt stress in seed germination, root elongation and soil-grown plants, while elevated AGL16 expression confers the opposite phenotypes compared with wild-type. However, the sensitivity to abscisic acid (ABA) in seed germination is inversely correlated with AGL16 expression levels. Transcriptomic comparison revealed that the improved salt resistance of agl16 mutants was largely attributed to enhanced expression of stress-responsive transcriptional factors and the genes involved in ABA signalling and ion homeostasis. We further demonstrated that AGL16 directly binds to the CArG motifs in the promoter of HKT1;1, HsfA6a and MYB102 and represses their expression. Genetic analyses with double mutants also support that HsfA6a and MYB102 are target genes of AGL16. Taken together, our results show that AGL16 acts as a negative regulator transcriptionally suppressing key components in the stress response and may play a role in balancing stress response with growth.
Collapse
Affiliation(s)
- Ping-Xia Zhao
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Jing Zhang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Si-Yan Chen
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Jie Wu
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Jing-Qiu Xia
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Liang-Qi Sun
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Shi-Song Ma
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| | - Cheng-Bin Xiang
- School of Life Sciences, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province, 230027, China
| |
Collapse
|
19
|
Menadue DJ, Riboni M, Baumann U, Schilling RK, Plett DC, Roy SJ. Proton-pumping pyrophosphatase homeolog expression is a dynamic trait in bread wheat ( Triticum aestivum). PLANT DIRECT 2021; 5:e354. [PMID: 34646976 PMCID: PMC8496507 DOI: 10.1002/pld3.354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/20/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Proton-pumping pyrophosphatases (H+-PPases) have been shown to enhance biomass and yield. However, to date, there has been little work towards identify genes encoding H+-PPases in bread wheat (Triticum aestivum) (TaVPs) and limited knowledge on how the expression of these genes varies across different growth stages and tissue types. In this study, the IWGSC database was used to identify two novel TaVP genes, TaVP4 and TaVP5, and elucidate the complete homeolog sequences of the three known TaVP genes, bringing the total number of bread wheat TaVPs from 9 to 15. Gene expression levels of each TaVP homeolog were assessed using quantitative real-time PCR (qRT-PCR) in four diverse wheat varieties in terms of phenotypic traits related to high vacuolar pyrophosphatase expression. Homeolog expression was analyzed across multiple tissue types and developmental stages. Expression levels of the TaVP homeologs were found to vary significantly between varieties, tissues and plant developmental stages. During early development (Z10 and Z13), expressions of TaVP1 and TaVP2 homeologs were higher in shoot tissue than root tissue, with both shoot and root expression increasing in later developmental stages (Z22). TaVP2-D was expressed in all varieties and tissue types and was the most highly expressed homeolog at all developmental stages. Expression of the TaVP3 homeologs was restricted to developing grain (Z75), while TaVP4 homeolog expression was higher at Z22 than earlier developmental stages. Variation in TaVP4B was detected among varieties at Z22 and Z75, with Buck Atlantico (high biomass) and Scout (elite Australian cultivar) having the highest levels of expression. These findings offer a comprehensive overview of the bread wheat H+-PPase family and identify variation in TaVP homeolog expression that will be of use to improve the growth, yield, and abiotic stress tolerance of bread wheat.
Collapse
Affiliation(s)
- Daniel Jamie Menadue
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Centre for Plant Functional GenomicsThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Matteo Riboni
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Centre for Plant Functional GenomicsThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Ute Baumann
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Centre for Plant Functional GenomicsThe University of AdelaideUrrbraeSouth AustraliaAustralia
| | - Rhiannon Kate Schilling
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Centre for Plant Functional GenomicsThe University of AdelaideUrrbraeSouth AustraliaAustralia
- Department of Primary Industries and RegionsSouth Australian Research and Development InstituteUrrbraeSouth AustraliaAustralia
| | - Darren Craig Plett
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Plant Phenomics Facility, The Plant AcceleratorThe University of AdelaideAdelaideSouth AustraliaAustralia
| | - Stuart John Roy
- School of Agriculture, Food and WineUniversity of AdelaideAdelaideSouth AustraliaAustralia
- Australian Centre for Plant Functional GenomicsThe University of AdelaideUrrbraeSouth AustraliaAustralia
- ARC Industrial Transformation Research Hub for Wheat in a Hot and Dry ClimateUniversity of AdelaideAdelaideSouth AustraliaAustralia
| |
Collapse
|
20
|
Khoudi H. Significance of vacuolar proton pumps and metal/H + antiporters in plant heavy metal tolerance. PHYSIOLOGIA PLANTARUM 2021; 173:384-393. [PMID: 33937997 DOI: 10.1111/ppl.13447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/16/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Soil and water are among the most valuable resources on earth. Unfortunately, their contamination with heavy metals has become a global problem. Heavy metals are not biodegradable and cannot be chemically degraded; therefore, they tend to accumulate in soils or to be transported by streaming water and contaminate both surface and groundwater. Cadmium (Cd) has no known biological function but is one of the most toxic metals. It represents a serious environmental concern since its accumulation in soils is associated with health risks to plants, animals and humans. On the other hand, copper (Cu) and zinc (Zn) are heavy metals that are indispensable to plants but become toxic when their concentration in soils exceeds a certain optimal level. Plants have evolved many mechanisms to cope with heavy metal toxicity; vacuolar sequestration is one of them. Vacuolar sequestration can be achieved through either phytochelatin-dependent or phytochelatin-independent pathways. Most of the transgenic plants meant for phytoremediation described in the literature result from the manipulation of genes involved in the phytochelatin-dependent pathway. However, recent evidence has emerged to support the importance of the phytochelatin-independent pathway in heavy metal sequestration into the vacuole, with metal/H+ antiporters and proton pumps playing an important role. In this review, the importance of vacuolar proton pumps and metal/H+ antiporters transporting Cd, Cu, and Zn is discussed. In addition, the recent advances in the production of transgenic plants with potential application in phytoremediation and food safety through the manipulation of genes encoding V-PPase proton pumps is described.
Collapse
Affiliation(s)
- Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, Center of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
21
|
Djemal R, Khoudi H. The barley SHN1-type transcription factor HvSHN1 imparts heat, drought and salt tolerances in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 164:44-53. [PMID: 33962230 DOI: 10.1016/j.plaphy.2021.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The APETAL2/Ethylene Responsive Factor (AP2/ERF) family was the subject of intensive research which led to the identification of several members involved in different stress responses such as salinity, drought and high temperature. The SHN/WIN clade of AP2/ERF participates in many important processes such as cutin and wax biosynthesis, ethylene signaling and gene expression. Here, we report the functional analysis of SHN1-type transcription factor, HvSHN1, from barely. The overexpression of HvSHN1 under the control of the duplicated 35S promoter in transgenic tobacco plants improved tolerance to salt, water stress and heat stress. Transgenic lines exhibited altered permeability of the cuticle and decreased stomatal density. Under heat stress, HvSHN1 transgenic lines exhibited higher superoxide dismutase (SOD) and catalase (CAT) activity and lower MDA and H2O2 contents than did WT. The overexpression of HvSHN1 upregulated different genes involved in osmotic stress, oxidative stress, sugar metabolism, and wax biosynthesis. To understand the involvement of HvSHN1 in heat stress tolerance, promoter regions of two tobacco genes homologous to Arabidopsis genes HSP90.1 and RAP2.6 were analyzed and DRE cis-elements; binding sites of HvSHN1, were found. Interaction network of HvSHN1, predicted using STRING software, contained proteins with predicted functions related to lipids metabolism and a gene encoding Cyclin-Dependent Kinase. These results suggest that HvSHN1 is an interesting candidate for the improvement of abiotic stress tolerance especially in the context of climate change.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018 Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018 Sfax, Tunisia.
| |
Collapse
|
22
|
Engineering cereal crops for enhanced abiotic stress tolerance. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2021. [DOI: 10.1007/s43538-021-00006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
23
|
Wang Y, Guo Y, Li F, Liu Y, Jin S. Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana. JOURNAL OF PLANT RESEARCH 2021; 134:613-623. [PMID: 33723703 DOI: 10.1007/s10265-021-01280-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Abiotic stresses such as drought, salinity, and heat affect plant growth and development. Karelinia caspica is a unique perennial herb that grows in desert area for a long time and has strong tolerance to environmental stresses. In order to explore the functions of the Na+/H+ antiporter gene from eremophyte K. caspica (KcNHX1) in the abiotic stress response of K. caspica and the underlying regulatory mechanisms, we constructed a vector overexpressing KcNHX1 and transformed it into Arabidopsis thaliana. The physiological results showed that the overexpression of KcNHX1 in A. thaliana not only enhanced the plant's tolerance to salt stress, but also enhanced its tolerance to drought and heat stress at the seedling stage. In addition, KcNHX1-overexpressing plants exhibited enhanced reproductive growth under high temperature, which was mediated by increased auxin accumulation. Taken together, our results indicate that KcNHX1 from an eremophyte can be used as a candidate gene to improve multiple stress tolerance in other plants.
Collapse
Affiliation(s)
- Yanqin Wang
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, 843300, Xinjiang, China.
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China.
| | - Yuan Guo
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China
| | - Fen Li
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China
| | - Yanping Liu
- Xinjiang Production and Construction Crops Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Tarim University, Alaer, 843300, Xinjiang, China
- College of Life Sciences, Tarim University, Alaer, 843300, Xinjiang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| |
Collapse
|
24
|
GhNHX3D, a Vacuolar-Localized Na +/H + Antiporter, Positively Regulates Salt Response in Upland Cotton. Int J Mol Sci 2021; 22:ijms22084047. [PMID: 33919933 PMCID: PMC8070948 DOI: 10.3390/ijms22084047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
Vacuolar sodium/proton (Na+/H+) antiporters (NHXs) can stabilize ion contents to improve the salt tolerance of plants. Here, GhNHX3D was cloned and characterized from upland cotton (Gossypium hirsutum). Phylogenetic and sequence analyses showed that GhNHX3D belongs to the vacuolar-type NHXs. The GhNHX3D-enhanced green fluorescent protein (eGFP) fusion protein localized on the vacuolar membrane when transiently expressed in Arabidopsis protoplasts. The quantitative real-time PCR (qRT-PCR) analysis showed that GhNHX3D was induced rapidly in response to salt stress in cotton leaves, and its transcript levels increased with the aggravation of salt stress. The introduction of GhNHX3D into the salt-sensitive yeast mutant ATX3 improved its salt tolerance. Furthermore, silencing of GhNHX3D in cotton plants by virus-induced gene silencing (VIGS) increased the Na+ levels in the leaves, stems, and roots and decreased the K+ content in the roots, leading to greater salt sensitivity. Our results indicate that GhNHX3D is a member of the vacuolar NHX family and can confer salt tolerance by adjusting the steady-state balance of cellular Na+ and K+ ions.
Collapse
|
25
|
Maach M, Rodríguez-Rosales MP, Venema K, Akodad M, Moumen A, Skalli A, Baghour M. Improved yield, fruit quality, and salt resistance in tomato co-overexpressing LeNHX2 and SlSOS2 genes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:703-712. [PMID: 33967457 PMCID: PMC8055741 DOI: 10.1007/s12298-021-00974-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 05/14/2023]
Abstract
The K+, Na+/H+ antiporter LeNHX2 and the regulatory kinase SlSOS2 are important determinants of salt tolerance in tomato plants and their fruit production ability. In this work, we have analyzed the effects of LeNHX2 and SlSOS2 co-overexpression on fruit production, quality in tomato plants (Solanum lycopersicum L. cv. MicroTom), and analyzed physiological parameters related to salt tolerance. Plants overexpressing LeNHX2, SlSOS2 or both were grown in greenhouse. They were treated with 125 mM NaCl or left untreated and their salt tolerance was analyzed in terms of plant biomass and fruit yield. Under NaCl cultivation conditions, transgenic tomato plants overexpressing either SlSOS2 or LeNHX2 or both grew better and showed a higher biomass compared to their wild-type plants. Proline, glucose and protein content in leaves as well as pH and total soluble solid (TSS) in fruits were analyzed. Our results indicate that salinity tolerance of transgenic lines is associated with an increased proline, glucose and protein content in leaves of plants grown either with or without NaCl. Salt treatment significantly reduced yield, pH and TSS in fruits of WT plants but increased yield, pH and TSS in fruits of transgenic plants, especially those overexpressing both LeNHX2 and SlSOS2. All these results indicate that the co-overexpression of LeNHX2 and SlSOS2 improve yield and fruit quality of tomato grown under saline conditions.
Collapse
Affiliation(s)
- Mostapha Maach
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - María Pilar Rodríguez-Rosales
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda, 1, 18008 Granada, Spain
| | - Kees Venema
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Calle Profesor Albareda, 1, 18008 Granada, Spain
| | - Mustapha Akodad
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - Abdelmajid Moumen
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - Ali Skalli
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| | - Mourad Baghour
- Laboratoire OLMAN, Faculté Pluridisciplinaire de Nador, Université Mohammed Premier, Nador, Morocco
| |
Collapse
|
26
|
Ketehouli T, Zhou YG, Dai SY, Carther KFI, Sun DQ, Li Y, Nguyen QVH, Xu H, Wang FW, Liu WC, Li XW, Li HY. A soybean calcineurin B-like protein-interacting protein kinase, GmPKS4, regulates plant responses to salt and alkali stresses. JOURNAL OF PLANT PHYSIOLOGY 2021; 256:153331. [PMID: 33310529 DOI: 10.1016/j.jplph.2020.153331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Calcineurin B-like protein-interacting protein kinases (CIPKs) are key elements of plant abiotic stress signaling pathways. CIPKs are SOS2 (Salt Overly Sensitive 2)-like proteins (protein kinase S [PKS] proteins) which all contain a putative FISL motif. It seems that the FISL motif is found only in the SOS2 subfamily of protein kinases. In this study, the full-length cDNA of a soybean CIPK gene (GmPKS4) was isolated and was revealed to have an important role in abiotic stress responses. A qRT-PCR analysis indicated that GmPKS4 expression is upregulated under saline conditions or when exposed to alkali, salt-alkali, drought, or abscisic acid (ABA). A subcellular localization assay revealed the presence of GmPKS4 in the nucleus and cytoplasm. Further studies on the GmPKS4 promoter suggested it affects soybean resistance to various stresses. Transgenic Arabidopsis thaliana and soybean hairy roots overexpressing GmPKS4 had increased proline content as well as high antioxidant enzyme activities but decreased malondialdehyde levels following salt and salt-alkali stress treatments. Additionally, GmPKS4 overexpression activated reactive oxygen species scavenging systems, thereby minimizing damages due to oxidative and osmotic stresses. Moreover, upregulated stress-related gene expression levels were detected in lines overexpressing GmPKS4 under stress conditions. In conclusion, GmPKS4 improves soybean tolerance to salt and salt-alkali stresses. The overexpression of GmPKS4 enhances the scavenging of reactive oxygen species, osmolyte synthesis, and the transcriptional regulation of stress-related genes.
Collapse
Affiliation(s)
- Toi Ketehouli
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Yong-Gang Zhou
- College of Tropical Crops, Hainan University, Haikou, 570228, China(2); College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Si-Yu Dai
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Kue Foka Idrice Carther
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Da-Qian Sun
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Yang Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Quoc Viet Hoang Nguyen
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Hu Xu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Fa-Wei Wang
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Wei-Can Liu
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Xiao-Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| | - Hai-Yan Li
- College of Tropical Crops, Hainan University, Haikou, 570228, China(2); College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China(3).
| |
Collapse
|
27
|
Koubaa S, Brini F. Functional analysis of a wheat group 3 late embryogenesis abundant protein (TdLEA3) in Arabidopsis thaliana under abiotic and biotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:396-406. [PMID: 33032258 DOI: 10.1016/j.plaphy.2020.09.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 05/15/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are highly hydrophilic and thermostable proteins that could be induced by abiotic stresses in plants. Previously, we have isolated a group 3 LEA gene TdLEA3 in wheat. The data show that TdLEA3 was largely disordered under fully hydrated conditions and was able to prevent the inactivation of lactate dehydrogenase (LDH) under stress treatments. In the present work, we further investigate the role of TdLEA3 by analyzing its expression pattern under abiotic stress conditions in two contrasting wheat genotypes and by overexpressing it in Arabidopsis thaliana. Transgenic Arabidopsis plants showed higher tolerance levels to salt and oxidative stress compared to the wild type plants. Meanwhile, there was significant increase in antioxidants, catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) accumulation, increased root length and significant reduction in oxidants, hydrogen peroxide (H2O2) and malondialdehyde (MDA) content in the leaves of transgenic lines under stress conditions. Accordingly, Q-PCR results indicate that the higher levels of expression of different ROS scavenging genes (AtP5CS, AtCAT, AtPOD and AtSOD) and abiotic stress related genes (RAB18 and RD29B) were detected in transgenic lines. In addition, they showed increased resistance to fungal infections caused by Fusarium graminearum, Botrytis cinerea and Aspergillus niger. Finally, Q-PCR results for biotic stress related genes (PR1, PDF1.2, LOX3 and VSP2) showed differential expression in transgenic TdLEA3 lines. All these results strongly reinforce the interest of TdLEA3 in plant adaptation to various stresses.
Collapse
Affiliation(s)
- Sana Koubaa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177'', 3018, Sfax, Tunisia.
| |
Collapse
|
28
|
Regmi KC, Yogendra K, Farias JG, Li L, Kandel R, Yadav UP, Sha S, Trittermann C, Short L, George J, Evers J, Plett D, Ayre BG, Roy SJ, Gaxiola RA. Improved Yield and Photosynthate Partitioning in AVP1 Expressing Wheat ( Triticum aestivum) Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:273. [PMID: 32256508 PMCID: PMC7090233 DOI: 10.3389/fpls.2020.00273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/21/2020] [Indexed: 05/28/2023]
Abstract
A fundamental factor to improve crop productivity involves the optimization of reduced carbon translocation from source to sink tissues. Here, we present data consistent with the positive effect that the expression of the Arabidopsis thaliana H+-PPase (AVP1) has on reduced carbon partitioning and yield increases in wheat. Immunohistochemical localization of H+-PPases (TaVP) in spring wheat Bobwhite L. revealed the presence of this conserved enzyme in wheat vasculature and sink tissues. Of note, immunogold imaging showed a plasma membrane localization of TaVP in sieve element- companion cell complexes of Bobwhite source leaves. These data together with the distribution patterns of a fluorescent tracer and [U14C]-sucrose are consistent with an apoplasmic phloem-loading model in wheat. Interestingly, 14C-labeling experiments provided evidence for enhanced carbon partitioning between shoots and roots, and between flag leaves and milk stage kernels in AVP1 expressing Bobwhite lines. In keeping, there is a significant yield improvement triggered by the expression of AVP1 in these lines. Green house and field grown transgenic wheat expressing AVP1 also produced higher grain yield and number of seeds per plant, and exhibited an increase in root biomass when compared to null segregants. Another agriculturally desirable phenotype showed by AVP1 Bobwhite plants is a robust establishment of seedlings.
Collapse
Affiliation(s)
- Kamesh C. Regmi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Kalenahalli Yogendra
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Júlia Gomes Farias
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Lin Li
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Raju Kandel
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Umesh P. Yadav
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Shengbo Sha
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Christine Trittermann
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Laura Short
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Jessey George
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - John Evers
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Darren Plett
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | - Brian G. Ayre
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Stuart John Roy
- Australian Centre for Plant Functional Genomics, The University of Adelaide, Adelaide, SA, Australia
| | | |
Collapse
|
29
|
Sun H, Sun X, Wang H, Ma X. Advances in salt tolerance molecular mechanism in tobacco plants. Hereditas 2020; 157:5. [PMID: 32093781 PMCID: PMC7041081 DOI: 10.1186/s41065-020-00118-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/18/2020] [Indexed: 02/01/2023] Open
Abstract
Tobacco, an economic crop and important model plant, has received more progress in salt tolerance with the aid of transgenic technique. Salt stress has become a key research field in abiotic stress. The study of tobacco promotes the understanding about the important adjustment for survival in high salinity environments, including cellular ion transport, osmotic regulation, antioxidation, signal transduction and expression regulation, and protection of cells from stress damage. Genes, which response to salt, have been studied using targeted transgenic technologies in tobacco plants to investigate the molecular mechanisms. The transgenic tobacco plants exhibited higher seed germination and survival rates, better root and shoot growth under salt stress treatments. Transgenic approach could be the promising option for enhancing tobacco production under saline condition. This review highlighted the salt tolerance molecular mechanisms of tobacco.
Collapse
Affiliation(s)
- Haiji Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaowen Sun
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Hui Wang
- School of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Xiaoli Ma
- Central laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, 250013 China
| |
Collapse
|
30
|
Mwando E, Angessa TT, Han Y, Li C. Salinity tolerance in barley during germination- homologs and potential genes. J Zhejiang Univ Sci B 2020; 21:93-121. [PMID: 32115909 PMCID: PMC7076347 DOI: 10.1631/jzus.b1900400] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022]
Abstract
Salinity affects more than 6% of the world's total land area, causing massive losses in crop yield. Salinity inhibits plant growth and development through osmotic and ionic stresses; however, some plants exhibit adaptations through osmotic regulation, exclusion, and translocation of accumulated Na+ or Cl-. Currently, there are no practical, economically viable methods for managing salinity, so the best practice is to grow crops with improved tolerance. Germination is the stage in a plant's life cycle most adversely affected by salinity. Barley, the fourth most important cereal crop in the world, has outstanding salinity tolerance, relative to other cereal crops. Here, we review the genetics of salinity tolerance in barley during germination by summarizing reported quantitative trait loci (QTLs) and functional genes. The homologs of candidate genes for salinity tolerance in Arabidopsis, soybean, maize, wheat, and rice have been blasted and mapped on the barley reference genome. The genetic diversity of three reported functional gene families for salt tolerance during barley germination, namely dehydration-responsive element-binding (DREB) protein, somatic embryogenesis receptor-like kinase and aquaporin genes, is discussed. While all three gene families show great diversity in most plant species, the DREB gene family is more diverse in barley than in wheat and rice. Further to this review, a convenient method for screening for salinity tolerance at germination is needed, and the mechanisms of action of the genes involved in salt tolerance need to be identified, validated, and transferred to commercial cultivars for field production in saline soil.
Collapse
Affiliation(s)
- Edward Mwando
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Tefera Tolera Angessa
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| | - Yong Han
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Western Australian State Agricultural Biotechnology Centre, Murdoch University, Murdoch, WA 6150, Australia
- Department of Primary Industries and Regional Development, 3 Baron-Hay Court, South Perth, WA 6151, Australia
| |
Collapse
|
31
|
Zhang Y, Wang Y, Xing J, Wan J, Wang X, Zhang J, Wang X, Li Z, Zhang M. Copalyl Diphosphate Synthase Mutation Improved Salt Tolerance in Maize ( Zea mays. L) via Enhancing Vacuolar Na + Sequestration and Maintaining ROS Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:457. [PMID: 32477376 PMCID: PMC7237720 DOI: 10.3389/fpls.2020.00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/27/2020] [Indexed: 05/13/2023]
Abstract
Salinity stress impairs plant growth and causes crops to yield losses worldwide. Reduction of in vivo gibberellin acid (GA) level is known to repress plant size but is beneficial to plant salt tolerance. However, the mechanisms of in vivo GA deficiency-enhanced salt tolerance in maize are still ambiguous. In this study, we generated two independent maize knockout mutant lines of ent-copalyl diphosphate synthase (one of the key enzymes for early steps of GA biosynthesis), zmcps-1 and zmcps-7, to explore the role of GA in maize salt tolerance. The typical dwarf phenotype with lower GA content and delayed leaf senescence under salinity was observed in the mutant plants. The leaf water potential and cell turgor potential were significantly higher in zmcps-1 and zmcps-7 than in the wild type (WT) under salt stress. The mutant plants exhibited a lower superoxide anion production rate in leaves and also a downregulated relative expression level of NAPDH oxidase ZmRbohA-C than the WT maize under salt stress. Also, the mutant plants had higher enzymatic activities of superoxide dismutase (SOD) and catalase (CAT) and higher content of soluble sugars and proline under salt stress. The Na+/K+ ratio was not significantly different between the mutant maize plants and WT plants under salt stress conditions, but the Na+ and K+ content was increased in zmcps-1 and zmcps-7 leaves and shoots. Na+ fluorescent dye staining showed that the mutant leaves have significantly higher vacuolar Na+ intensity than the WT maize. The expression level of vacuolar Na+/H+ exchanger gene ZmNHX1 and vacuolar proton pump genes ZmVP1-1 and ZmVP2 were upregulated in the zmcps-1 and zmcps-7 plants under salinity, further proving that in vivo GA deficiency enhanced vacuolar Na+ sequestration in zmcps-1 and zmcps-7 leaves cells to avoid Na+ cytotoxicity. Together, our results suggested that maintaining ROS homeostasis and enhancing vacuolar Na+ sequestration could be involved in GA deficiency-improved maize salt tolerance.
Collapse
Affiliation(s)
- Yushi Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yubin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiapeng Xing
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiachi Wan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xilei Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Juan Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xiaodong Wang
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Zhaohu Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Mingcai Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
32
|
Gouiaa S, Khoudi H. Expression of V-PPase proton pump, singly or in combination with a NHX1 transporter, in transgenic tobacco improves copper tolerance and accumulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37037-37045. [PMID: 31745765 DOI: 10.1007/s11356-019-06852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/22/2019] [Indexed: 05/27/2023]
Abstract
One of the most important strategies evolved by plants to tolerate heavy metals (HMs) is their sequestration into the vacuole. Recent studies have demonstrated that Cu sequestration into vacuole is dependent on the electrochemical gradient generated by vacuolar proton pumps: the V-H+-PPase and the V-H+-ATPase. In a previous study, we demonstrated that co-expression of V-H+-PPase and a sodium/proton antiporter genes, isolated from wheat, in transgenic tobacco plants significantly increases both H+ pumping activity of the endogenous V-H+-ATPase and V-H+-PPase compared to wild-type (WT) plants, all grown in the absence of stress. In the present study, we evaluated the effect of expression, in tobacco, of vacuolar proton pump, TaVP1, singly or in combination with sodium/proton antiporter, TaNHXS1, on copper (Cu) tolerance and accumulation. Results showed that, when subjected to Cu stress, TaVP1 single transgenic tobacco lines exhibited a more robust root system, greater biomass production, less chlorophyll loss, lower MDA and H2O2 production, and higher catalase activity and accumulated more Cu than did WT. Interestingly, double transgenic tobacco lines exhibited the best Cu tolerance and accumulation than either of the single TaVP1 transgenic lines or WT plants, when subjected to excess Cu. In fact, double transgenic lines accumulated 2.5-fold and 1.9-fold more Cu than did WT and single TaVP1 lines, respectively. Thus, these results clearly demonstrate the usefulness of expression of vacuolar proton pump alone or in combination with sodium/proton antiporter as novel strategy for Cu phytoremediation.
Collapse
Affiliation(s)
- Sandra Gouiaa
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
33
|
Wu H, Shabala L, Zhou M, Su N, Wu Q, Ul-Haq T, Zhu J, Mancuso S, Azzarello E, Shabala S. Root vacuolar Na + sequestration but not exclusion from uptake correlates with barley salt tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:55-67. [PMID: 31148333 DOI: 10.1111/tpj.14424] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 05/24/2023]
Abstract
Soil salinity is a major constraint for the global agricultural production. For many decades, Na+ exclusion from uptake has been the key trait targeted in breeding programs; yet, no major breakthrough in creating salt-tolerant germplasm was achieved. In this work, we have combined the microelectrode ion flux estimation (MIFE) technique for non-invasive ion flux measurements with confocal fluorescence dye imaging technique to screen 45 accessions of barley to reveal the relative contribution of Na+ exclusion from the cytosol to the apoplast and its vacuolar sequestration in the root apex, for the overall salinity stress tolerance. We show that Na+ /H+ antiporter-mediated Na+ extrusion from the root plays a minor role in the overall salt tolerance in barley. At the same time, a strong and positive correlation was found between root vacuolar Na+ sequestration ability and the overall salt tolerance. The inability of salt-sensitive genotypes to sequester Na+ in root vacuoles was in contrast to significantly higher expression levels of both HvNHX1 tonoplast Na+ /H+ antiporters and HvVP1 H+ -pumps compared with tolerant genotypes. These data are interpreted as a failure of sensitive varieties to prevent Na+ back-leak into the cytosol and existence of a futile Na+ cycle at the tonoplast. Taken together, our results demonstrated that root vacuolar Na+ sequestration but not exclusion from uptake played the main role in barley salinity tolerance, and suggested that the focus of the breeding programs should be shifted from targeting genes mediating Na+ exclusion from uptake by roots to more efficient root vacuolar Na+ sequestration.
Collapse
Affiliation(s)
- Honghong Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Nana Su
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Qi Wu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Tanveer Ul-Haq
- Department of Soil and Environmental Sciences, MNS University of Agriculture, Multan, 60000, Pakistan
| | - Juan Zhu
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
| | - Stefano Mancuso
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Elisa Azzarello
- Department of Horticulture, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, Tasmania, 7001, Australia
- International Centre for Environmental Membrane Biology, Foshan University, Foshan, China
| |
Collapse
|
34
|
Dong H, Wang C, Xing C, Yang T, Yan J, Gao J, Li D, Wang R, Blumwald E, Zhang S, Huang X. Overexpression of PbrNHX2 gene, a Na +/H + antiporter gene isolated from Pyrus betulaefolia, confers enhanced tolerance to salt stress via modulating ROS levels. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:14-25. [PMID: 31203878 DOI: 10.1016/j.plantsci.2019.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Intracellular Na+/H+ antiporters (NHXs) play important roles in plant tolerance to salt stress. However, plant NHXs functioning in salt tolerance and the underlying physiological mechanisms remain poorly understood. In this report, we report the identification and functional characterization of PbrNHX2 isolated from Pyrus betulaefolia. PbrNHX2 expression levels were induced by salt, and dehydration, but was unaffected by cold. PbrNHX2 was localized in the tonoplast. Overexpression of PbrNHX2 in tobacco and Pyrus ussuriensis conferred enhanced tolerance to salt tolerance, whereas down-regulation of PbrNHX2 in Pyrus betulaefolia by virus-induced gene silencing (VIGS) resulted in elevated salt sensitivity. The transgenic lines contained lower levels of Na+, higher levels of K+, and higher K/Na ratio, whereas they were changed in an opposite way when PbrNHX2 was silenced. In addition, the transgenic plants accumulated lower levels of reactive oxygen species compared with wild type, accompanied by higher activities of three antioxidant enzymes. Taken together, the data demonstrate that PbrNHX2 plays a positive role in salt tolerance and that it holds a great potential for engineering salt tolerance in crops.
Collapse
Affiliation(s)
- Huizhen Dong
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chunmeng Wang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caihua Xing
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Tianyuan Yang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jinxuan Yan
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Junzhi Gao
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Dingli Li
- College of Horticulture, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University Qingdao, 266109, China.
| | - Ran Wang
- College of Horticulture, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural University Qingdao, 266109, China.
| | - Eduardo Blumwald
- Department of Plant Sciences, University of California, Davis, CA, USA.
| | - Shaoling Zhang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaosan Huang
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
35
|
Djemal R, Khoudi H. Combination of the endogenous promoter-intron significantly improves salt and drought tolerance conferred by TdSHN1 transcription factor in transgenic tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:435-445. [PMID: 30999131 DOI: 10.1016/j.plaphy.2019.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 05/08/2023]
Abstract
Recent years have witnessed a renewed interest in introns as a tool to increase gene expression. We previously isolated TdSHN1 gene encoding a transcription factor in durum wheat. Here we show that TdSHN1 intron contains many CT-stretches and the motif CGATT known to be important for IME. When subjected to bioinformatics analysis using IMEter software, TdSHN1 intron obtained a score of 17.04 which indicates that it can moderately enhance gene expression. TdSHN1 gene including its intron was placed under the control of TdSHN1 endogenous salt and drought-inducible promoter or the constitutive 35S promoter and transferred into tobacco. Transgenic lines were obtained and designated gD (with 35S promoter) and PI (with native promoter). A third construct was also used in which intron-less cDNA was driven by the 35S promoter (cD lines). Results showed that, gD lines exhibited lower stomatal density than cD lines. When subjected to drought and salt stresses, gD lines outperformed intron-less cD lines and WT. Indeed, gD lines exhibited longer roots, higher biomass production, retained more chlorophyll, produced less ROS and MDA and had higher antioxidant activity. qRT-PCR analysis revealed that gD lines had higher TdSHN1 expression levels than cD lines. In addition, expression of ROS-scavengering, stress-related and wax biosynthesis tobacco genes was higher in gD lines compared to cD lines and WT. Interestingly, under stress conditions, PI transgenic lines showed higher TdSHN1 expression levels and outperformed gD lines. These results suggest that TdSHN1 intron enhances gene expression when used alone or in combination with TdSHN1 endogenous promoter.
Collapse
Affiliation(s)
- Rania Djemal
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia
| | - Habib Khoudi
- Laboratory of Plant Biotechnology and Improvement, University of Sfax, Center of Biotechnology of Sfax, Route Sidi Mansour, Km 6 B.P' 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
36
|
Lü XP, Gao HJ, Zhang L, Wang YP, Shao KZ, Zhao Q, Zhang JL. Dynamic responses of Haloxylon ammodendron to various degrees of simulated drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:121-131. [PMID: 30889477 DOI: 10.1016/j.plaphy.2019.03.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/03/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Haloxylon ammodendron, a C4 perennial, succulent and xero-halophytic shrub, is highly resistant to harsh environments, therefore, exploring the stress resistance mechanism will be beneficial for the use of xerophytes to prevent desertification. To determine osmotic adjustment (OA) and antioxidase functions under simulated drought stress, 8-week-old seedlings were treated with sorbitol solutions to maintain osmotic potentials (Ψs) at a control and -0.5 and -1.0 MPa. Under -0.5 MPa osmotic stress, H. ammodendron stably maintained the water content of assimilating branches, a result that was not significantly different from the result of the control group. Moreover, the Ψs decreased significantly, which helped plants absorb water efficiently from the environment, as H. ammodendron accumulated massive osmotic regulators in its assimilating branches to adjust shoot Ψs. Specifically, the contribution of Na+ to shoot Ψs was up to 45%, and Na+ became the main osmotic regulator of OA. During the treatments, the content and contribution of K+ remained stable. However, the total contribution of three organic osmotic regulators (free proline, betaine and soluble sugar) was only 20%, and betaine was the main organic osmotic regulator, accounting for approximately 15% of the 20% contribution. Moreover, H. ammodendron seedlings presented strong antioxidases, especially when there was a high activity level of superoxide dismutase, and with an increase in treatment time and degree of osmotic stress, the activity of peroxidase and catalase increased significantly. Substantial accumulation of osmotic adjustment substances was an important strategy for H. ammodendron to cope with simulated drought stress, in particular, H. ammodendron absorbed much Na+ and transported Na+ into the assimilating branch for OA. The scavenging of reactive oxygen species by antioxidases was another adaptation strategy for H. ammodendron to adapt to simulated drought stress.
Collapse
Affiliation(s)
- Xin-Pei Lü
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Hui-Juan Gao
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Ling Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Yong-Ping Wang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Kun-Zhong Shao
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Qi Zhao
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China
| | - Jin-Lin Zhang
- State Key Laboratory of Grassland Agro-ecosystems; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs; Engineering Research Center of Grassland Industry, Ministry of Education; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
37
|
Fan Y, Yin X, Xie Q, Xia Y, Wang Z, Song J, Zhou Y, Jiang X. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance. BMC PLANT BIOLOGY 2019; 19:74. [PMID: 30764771 PMCID: PMC6376693 DOI: 10.1186/s12870-019-1680-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Na+ extrusion from cells is important for plant growth in high saline environments. SOS1 (salt overly sensitive 1), an Na+/H+ antiporter located in the plasma membrane (PM), functions in toxic Na+ extrusion from cells using energy from an electrochemical proton gradient produced by a PM-localized H+-ATPase (AHA). Therefore, SOS1 and AHA are involved in plant adaption to salt stress. RESULTS In this study, the genes encoding SOS1 and AHA from the halophyte Sesuvium portulacastrum (SpSOS1 and SpAHA1, respectively) were introduced together or singly into Arabidopsis plants. The results indicated that either SpSOS1 or SpAHA1 conferred salt tolerance to transgenic plants and, as expected, Arabidopsis plants expressing both SpSOS1 and SpAHA1 grew better under salt stress than plants expressing only SpSOS1 or SpAHA1. In response to NaCl treatment, Na+ and H+ in the roots of plants transformed with SpSOS1 or SpAHA1 effluxed faster than wild-type (WT) plant roots. Furthermore, roots co-expressing SpSOS1 and SpAHA1 had higher Na+ and H+ efflux rates than single SpSOS1/SpAHA1-expressing transgenic plants, resulting in the former amassing less Na+ than the latter. As seen from comparative analyses of plants exposed to salinity stress, the malondialdehyde (MDA) content was lowest in the co-transgenic SpSOS1 and SpAHA1 plants, but the K+ level was the highest. CONCLUSION These results suggest SpSOS1 and SpAHA1 coordinate to alleviate salt toxicity by increasing the efficiency of Na+ extrusion to maintain K+ homeostasis and protect the PM from oxidative damage induced by salt stress.
Collapse
Affiliation(s)
- Yafei Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xiaochang Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Qing Xie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Youquan Xia
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Zhenyu Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Jie Song
- Shandong Key Laboratory of Plant Stress/College of Life Science, Shandong Normal University, Jinan, 250014 China
| | - Yang Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| | - Xingyu Jiang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources /Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228 China
| |
Collapse
|
38
|
Baghour M, Gálvez FJ, Sánchez ME, Aranda MN, Venema K, Rodríguez-Rosales MP. Overexpression of LeNHX2 and SlSOS2 increases salt tolerance and fruit production in double transgenic tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:77-86. [PMID: 30513478 DOI: 10.1016/j.plaphy.2018.11.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 05/14/2023]
Abstract
Transgenic tomato plants (Solanum lycopersicum L. cv. MicroTom) overexpressing both the K+,Na+/H+ antiporter LeNHX2 and the regulatory kinase SlSOS2 were produced by crossing transgenic homozygous lines overexpressing LeNHX2 and SlSOS2. LeNHX2 expression was enhanced in plants overexpressing LeNHX2 but surprisingly even more in plants overexpressing SlSOS2 with and without LeNHX2. All transgenic plants showed better NaCl tolerance than wild type controls and plants overexpressing both LeNHX2 and SlSOS2 grew better under saline conditions than plants overexpressing only one of these genes. Yield related parameters indicated that single and above all double transgenic plants performed significantly better than wild type controls. All transgenic plants produced fruits with a higher K+ content than wild-type plants and plants overexpressing SlSOS2 accumulated more Na+ in fruits than the rest of the plants when grown with NaCl. Roots, stems and leaves of transgenic plants overexpressing LeNHX2 showed a higher K+ content than wild type and single transgenic plants overexpressing SlSOS2. Na+ content in stems and leaves of NaCl treated plants was higher in SlSOS2 overexpressing plants than in wild type and LeNHX2 single transgenic plants. All transgenic lines showed a higher leaf relative water content and a higher plant water content and water use efficiency than wild type controls when both were grown in the presence of NaCl. Results in this work indicate that the joint overexpression of LeNHX2 and SlSOS2 improves growth and water status under NaCl stress, affects K+ and Na+ homeostasis and enhances fruit yield of tomato plants.
Collapse
Affiliation(s)
- Mourad Baghour
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Francisco Javier Gálvez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - M Elena Sánchez
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - M Nieves Aranda
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - Kees Venema
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | - M Pilar Rodríguez-Rosales
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Granada, Spain.
| |
Collapse
|
39
|
Yarra R, Kirti PB. Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics 2019; 19:541-554. [PMID: 30673892 DOI: 10.1007/s10142-019-00656-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/03/2018] [Accepted: 01/09/2019] [Indexed: 10/27/2022]
Abstract
Brinjal or eggplant (Solanum melongena L.) is an important solanaceous edible crop, and salt stress adversely affects its growth, development, and overall productivity. To cope with excess salinity, vacuolar Na+/H+ antiporters provide the best mechanism for ionic homeostasis in plants under salt stress. We generated transgenic eggplants by introducing wheat TaNHX2 gene that encodes a vacuolar Na+/H+ antiporter in to the eggplant genome via Agrobacterium-mediated transformation using pBin438 vector that harbors double35S:TaNHX2 to confer salinity tolerance. Polymerase chain reaction and southern hybridization confirmed the presence and integration of TaNHX2 gene in T1 transgenic plants. Southern positive transgenic eggplants showed varied levels of TaNHX2 transcripts as evident by RT-PCR and qRT-PCR. Stress-inducible expression of TaNHX2 significantly improved growth performance and Na+ and K+ contents from leaf and roots tissues of T2 transgenic eggplants under salt stress, compared to non-transformed plants. Furthermore, T2 transgenic eggplants displayed the stable leaf relative water content and chlorophyll content, proline accumulation, improved photosynthetic efficiency, transpiration rate, and stomatal conductivity than the non-transformed plants under salinity stress (200 mM NaCl). Data showed that the T2 transgenic lines revealed that reduction in MDA content, hydrogen peroxide, and oxygen radical production associated with the significant increase of antioxidant enzyme activity in transgenic eggplants than non-transformed plants under salt stress (200 mM NaCl). This study suggested that the TaNHX2 gene plays an important regulatory role in conferring salinity tolerance of transgenic eggplant and thus may serve as a useful candidate gene for improving salinity tolerance in other vegetable crops.
Collapse
Affiliation(s)
- Rajesh Yarra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India.
| | - P B Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| |
Collapse
|
40
|
Wu H, Li Z. The Importance of Cl - Exclusion and Vacuolar Cl - Sequestration: Revisiting the Role of Cl - Transport in Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2019; 10:1418. [PMID: 31781141 PMCID: PMC6857526 DOI: 10.3389/fpls.2019.01418] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/11/2019] [Indexed: 05/20/2023]
Abstract
Salinity threatens agricultural production systems across the globe. While the major focus of plant researchers working in the field of salinity stress tolerance has always been on sodium and potassium, the transport patterns and physiological roles of Cl- in plant salt stress responses are studied much less. In recent years, the role of Cl- in plant salinity stress tolerance has been revisited and has received more attention. This review attempts to address the gap in knowledge of the role of Cl- transport in plant salinity stress tolerance. Cl- transport, Cl- exclusion, vacuolar Cl- sequestration, the specificity of mechanisms employed in different plant species to control shoot Cl- accumulation, and the identity of channels and transporters involved in Cl- transport in salt stressed plants are discussed. The importance of the electrochemical gradient across the tonoplast, for vacuolar Cl- sequestration, is highlighted. The toxicity of Cl- from CaCl2 is briefly reviewed separately to that of Cl- from NaCl.
Collapse
Affiliation(s)
- Honghong Wu
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA, United States
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| | - Zhaohu Li
- College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Honghong Wu, ; Zhaohu Li,
| |
Collapse
|
41
|
Genome-wide identification of the HKT genes in five Rosaceae species and expression analysis of HKT genes in response to salt-stress in Fragaria vesca. Genes Genomics 2018; 41:325-336. [DOI: 10.1007/s13258-018-0767-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/13/2018] [Indexed: 11/26/2022]
|
42
|
|
43
|
Li N, Wang X, Ma B, Du C, Zheng L, Wang Y. Expression of a Na +/H + antiporter RtNHX1 from a recretohalophyte Reaumuria trigyna improved salt tolerance of transgenic Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2017; 218:109-120. [PMID: 28818757 DOI: 10.1016/j.jplph.2017.07.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 05/19/2023]
Abstract
Reaumuria trigyna is an endangered recretohalophyte and a small xeric shrub that is endemic to the eastern Alxa and western Ordos areas of Inner Mongolia, China. Using transcriptome data, we identified a 1662-bp open reading frame encoding a 553-amino-acid protein corresponding to a Na+/H+ antiporter (RtNHX1) from R. trigyna. RtNHX1 was rapidly up-regulated by NaCl and exogenous abscisic acid treatment and had different tissue-specific expression patterns before and after salt-stress treatment. Overexpression of RtNHX1 enhanced seed germination, biomass accumulation, chlorophyll content, and root elongation in transgenic Arabidopsis plants under salt stress and rescued the salt-sensitive deficiencies of the nhx1 mutant. POD and CAT enzyme activities, proline content, and RWC all increased significantly in salt-stressed transgenic Arabidopsis plants, whereas MDA content did not. Additionally, there was a corresponding upregulation of some antioxidant-enzyme, proline biosynthesis and other stress responsive genes (AtPOD1, AtCAT1, AtP5CS1, AtP5CS2, AtRD29A, AtRD29B, AtKIN1, and AtABI2). The transgenic Arabidopsis plants accumulated more K+ and less Na+ in their leaves and had lower Na+/K+ ratios than WT plants. This was reflected in the upregulation of some ion transport-related genes (AtAVP1, AtSOS1, AtKUP6, and AtKUP8). When RtNHX1 was expressed in the AXT3 yeast strain, the accumulation of Na+ and K+ in the vacuole increased and the Na+/K+ ratio decreased. These results reveal that R. trigyna RtNHX1 is a functional antiporter that sequesters Na+ and K+ in the vacuole and could confer salt tolerance on transgenic Arabidopsis plants by maintaining Na+/K+ homeostasis and enhancing osmotic and antioxidant regulatory capacity. These results suggest that RtNHX1 may be a good target for improving salt tolerance in plants.
Collapse
Affiliation(s)
- Ningning Li
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Xue Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Chao Du
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biotechnology, and College of Life Sciences, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
44
|
Luo Q, Wei Q, Wang R, Zhang Y, Zhang F, He Y, Zhou S, Feng J, Yang G, He G. BdCIPK31, a Calcineurin B-Like Protein-Interacting Protein Kinase, Regulates Plant Response to Drought and Salt Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:1184. [PMID: 28736568 PMCID: PMC5500663 DOI: 10.3389/fpls.2017.01184] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 06/21/2017] [Indexed: 05/06/2023]
Abstract
Calcineurin B-like protein interacting protein kinases (CIPKs) are vital elements in plant abiotic stress signaling pathways. However, the functional mechanism of CIPKs has not been understood clearly, especially in Brachypodium distachyon, a new monocot model plant. In this study, BdCIPK31, a CIPK gene from B. distachyon was characterized. BdCIPK31 was downregulated by polyethylene glycol, NaCl, H2O2, and abscisic acid (ABA) treatments. Transgenic tobacco plants overexpressing BdCIPK31 presented improved drought and salt tolerance, and displayed hypersensitive response to exogenous ABA. Further investigations revealed that BdCIPK31 functioned positively in ABA-mediated stomatal closure, and transgenic tobacco exhibited reduced water loss under dehydration conditions compared with the controls. BdCIPK31 also affected Na+/K+ homeostasis and root K+ loss, which contributed to maintain intracellular ion homeostasis under salt conditions. Moreover, the reactive oxygen species scavenging system and osmolyte accumulation were enhanced by BdCIPK31 overexpression, which were conducive for alleviating oxidative and osmotic damages. Additionally, overexpression of BdCIPK31 could elevate several stress-associated gene expressions under stress conditions. In conclusion, BdCIPK31 functions positively to drought and salt stress through ABA signaling pathway. Overexpressing BdCIPK31 functions in stomatal closure, ion homeostasis, ROS scavenging, osmolyte biosynthesis, and transcriptional regulation of stress-related genes.
Collapse
Affiliation(s)
- Qingchen Luo
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Qiuhui Wei
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Ruibin Wang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yang Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Fan Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Yuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Shiyi Zhou
- Hubei University of EducationWuhan, China
| | - Jialu Feng
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
45
|
Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. RICE (NEW YORK, N.Y.) 2016; 35:2295-2308. [PMID: 27025598 DOI: 10.1007/s00299-016-2035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice is one of the most important crops for global food security but its productivity is adversely affected by salt stress prevalent in about 30 % of the cultivated land. For developing salt-tolerant rice varieties through conventional breeding or biotechnological interventions, there is an urgent need to identify natural allelic variants that may confer salt tolerance. Here, 299 wild rice accessions collected from different agro-climatic regions of India were evaluated during growth under salt stress. Of these 95 representative accessions were sequenced for members of HKT ion transporter family genes by employing Ion Torrent PGM sequencing platform. RESULTS Haplotype analysis revealed haplotypes H5 and H1 of HKT1;5 and HKT2;3, respectively associated with high salinity tolerance. This is the first study of allele mining of eight members of HKT gene family from Indian wild rice reporting a salt tolerant allele of HKT2;3. HKT1;5 also showed a salt tolerant allele from wild rice. Phylogenetic analysis based on the nucleotide sequences showed different grouping of the HKT family genes as compared to the prevailing protein sequence based classification. CONCLUSIONS The salt tolerant alleles of the HKT genes from wild rice may be introgressed into modern high yielding cultivars to widen the existing gene pool and enhance rice production in the salt affected areas.
Collapse
Affiliation(s)
- Shefali Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kabita Panda
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pragati Misra
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
46
|
Zhou Y, Lai Z, Yin X, Yu S, Xu Y, Wang X, Cong X, Luo Y, Xu H, Jiang X. Hyperactive mutant of a wheat plasma membrane Na +/H + antiporter improves the growth and salt tolerance of transgenic tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:176-186. [PMID: 27968986 DOI: 10.1016/j.plantsci.2016.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 05/04/2023]
Abstract
Wheat SOS1 (TaSOS1) activity could be relieved upon deletion of the C-terminal 168 residues (the auto-inhibitory domain). This truncated form of wheat SOS1 (TaSOS1-974) was shown to increase compensation (compared to wild-type TaSOS1) for the salt sensitivity of a yeast mutant strain, AXT3K, via increased Na+ transportation out of cells during salinity stress. Expression of the plasma membrane proteins TaSOS1-974 or TaSOS1 improved the growth of transgenic tobacco plants compared with wild-type plants under normal conditions. However, plants expressing TaSOS1-974 grew better than TaSOS1-transformed plants. Upon salinity stress, Na+ efflux and K+ influx rates in the roots of transgenic plants expressing TaSOS1-974 or TaSOS1 were greater than those of wild-type plants. Furthermore, compared to TaSOS1-transgenic plants, TaSOS1-974-expressing roots showed faster Na+ efflux and K+ influx, resulting in less Na+ and more K+ accumulation in TaSOS1-974-transgenic plants compared to TaSOS1-transgenic and wild-type plants. TaSOS1-974-expressing plants had the lowest MDA content and electrolyte leakage among all tested plants, indicating that TaSOS1-974 might protect the plasma membrane against oxidative damage generated by salt stress. Overall, TaSOS1-974 conferred higher salt tolerance in transgenic plants compared to TaSOS1. Consistent with this result, transgenic plants expressing TaSOS1-974 showed a better growth performance than TaSOS1-expressing and wild-type plants under saline conditions.
Collapse
Affiliation(s)
- Yang Zhou
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Zesen Lai
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiaochang Yin
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Shan Yu
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuanyuan Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoxiao Wang
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinli Cong
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Yuehua Luo
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China
| | - Haixia Xu
- National Key Laboratory of Wheat and Maize Crop Science/College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Xingyu Jiang
- National Key Laboratory for Sustainable Utilization of Tropical Bioresources/College of Agriculture, Hainan University, Haikou 570228, China.
| |
Collapse
|
47
|
Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1787. [PMID: 27965692 PMCID: PMC5126725 DOI: 10.3389/fpls.2016.01787] [Citation(s) in RCA: 299] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 11/14/2016] [Indexed: 05/18/2023]
Abstract
Soil salinization is a major threat to agriculture in arid and semi-arid regions, where water scarcity and inadequate drainage of irrigated lands severely reduce crop yield. Salt accumulation inhibits plant growth and reduces the ability to uptake water and nutrients, leading to osmotic or water-deficit stress. Salt is also causing injury of the young photosynthetic leaves and acceleration of their senescence, as the Na+ cation is toxic when accumulating in cell cytosol resulting in ionic imbalance and toxicity of transpiring leaves. To cope with salt stress, plants have evolved mainly two types of tolerance mechanisms based on either limiting the entry of salt by the roots, or controlling its concentration and distribution. Understanding the overall control of Na+ accumulation and functional studies of genes involved in transport processes, will provide a new opportunity to improve the salinity tolerance of plants relevant to food security in arid regions. A better understanding of these tolerance mechanisms can be used to breed crops with improved yield performance under salinity stress. Moreover, associations of cultures with nitrogen-fixing bacteria and arbuscular mycorrhizal fungi could serve as an alternative and sustainable strategy to increase crop yields in salt-affected fields.
Collapse
Affiliation(s)
- Moez Hanin
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Chantal Ebel
- Laboratoire de Biotechnologie et Amélioration des Plantes, Centre de Biotechnologie de SfaxSfax, Tunisia
- Institut Supérieur de Biotechnologie, Université de SfaxSfax, Tunisia
| | - Mariama Ngom
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
| | - Laurent Laplaze
- Laboratoire mixte international Adaptation des Plantes et microorganismes associés aux Stress EnvironnementauxDakar, Senegal
- Laboratoire Commun de Microbiologie, Institut de Recherche pour le Développement/Institut Sénégalais de Recherches Agricoles/Université Cheikh Anta DiopDakar, Senegal
- Institut de Recherche pour le Développement, Unités Mixtes de Recherche, Diversité, Adaptation, Développement des Plantes (DIADE), MontpellierFrance
| | - Khaled Masmoudi
- Department of Aridland, College of Food and Agriculture, United Arab Emirates UniversityAl Ain, UAE
| |
Collapse
|
48
|
Kang P, Bao AK, Kumar T, Pan YQ, Bao Z, Wang F, Wang SM. Assessment of Stress Tolerance, Productivity, and Forage Quality in T 1 Transgenic Alfalfa Co-overexpressing ZxNHX and ZxVP1-1 from Zygophyllum xanthoxylum. FRONTIERS IN PLANT SCIENCE 2016; 7:1598. [PMID: 27833624 PMCID: PMC5081344 DOI: 10.3389/fpls.2016.01598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 10/10/2016] [Indexed: 05/21/2023]
Abstract
Salinization, desertification, and soil nutrient deprivation are threatening the production of alfalfa (Medicago sativa L.) in northern China. We have previously generated T0 transgenic alfalfa co-overexpressing Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 genes with enhanced salt and drought tolerance. To further develop this excellent breeding material into the new forage cultivar, stress tolerance, productivity, and forage quality of T1 transgenic alfalfa (GM) were assessed in this study. The GM inherited the traits of salt and drought tolerance from T0 generation. Most importantly, co-overexpression of ZxNHX and ZxVP1-1 enhanced the tolerance to Pi deficiency in GM, which was associated with more Pi accumulation in plants. Meanwhile, T1 transgenic alfalfa developed a larger root system with increased root size, root dry weight and root/shoot ratio, which may be one important reason for the improvement of phosphorus nutrition and high biomass accumulation in GM under various conditions. GM also accumulated more crude protein, crude fiber, crude fat, and crude ash than wild-type (WT) plants, especially under stress conditions and in the field. More interestingly, the crude fat contents sharply dropped in WT (by 66-74%), whereas showed no change or decreased less in GM, when subjected to salinity, drought or low-Pi. Our results indicate that T1 transgenic alfalfa co-overexpressing ZxNHX and ZxVP1-1 shows stronger stress tolerance, higher productivity and better forage quality. This study provides a solid foundation for creating the alfalfa cultivars with high yield, good quality and wide adaptability on saline, dry, and nutrient-deprived marginal lands of northern China.
Collapse
Affiliation(s)
| | - Ai-Ke Bao
- *Correspondence: Ai-Ke Bao, Suo-Min Wang,
| | | | | | | | | | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou UniversityLanzhou, China
| |
Collapse
|
49
|
Pehlivan N, Sun L, Jarrett P, Yang X, Mishra N, Chen L, Kadioglu A, Shen G, Zhang H. Co-overexpressing a Plasma Membrane and a Vacuolar Membrane Sodium/Proton Antiporter Significantly Improves Salt Tolerance in Transgenic Arabidopsis Plants. PLANT & CELL PHYSIOLOGY 2016; 57:1069-84. [PMID: 26985021 PMCID: PMC4867051 DOI: 10.1093/pcp/pcw055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/11/2016] [Indexed: 05/03/2023]
Abstract
The Arabidopsis gene AtNHX1 encodes a vacuolar membrane-bound sodium/proton (Na(+)/H(+)) antiporter that transports Na(+) into the vacuole and exports H(+) into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane-bound Na(+)/H(+) antiporter that exports Na(+) to the extracellular space and imports H(+) into the plant cell. Plants rely on these enzymes either to keep Na(+) out of the cell or to sequester Na(+) into vacuoles to avoid the toxic level of Na(+) in the cytoplasm. Overexpression of AtNHX1 or SOS1 could improve salt tolerance in transgenic plants, but the improved salt tolerance is limited. NaCl at concentration >200 mM would kill AtNHX1-overexpressing or SOS1-overexpressing plants. Here it is shown that co-overexpressing AtNHX1 and SOS1 could further improve salt tolerance in transgenic Arabidopsis plants, making transgenic Arabidopsis able to tolerate up to 250 mM NaCl treatment. Furthermore, co-overexpression of AtNHX1 and SOS1 could significantly reduce yield loss caused by the combined stresses of heat and salt, confirming the hypothesis that stacked overexpression of two genes could substantially improve tolerance against multiple stresses. This research serves as a proof of concept for improving salt tolerance in other plants including crops.
Collapse
Affiliation(s)
- Necla Pehlivan
- Department of Biology, Recep Tayyip Erdogan University, Rize, Turkey These authors contributed equally to this work
| | - Li Sun
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA These authors contributed equally to this work
| | - Philip Jarrett
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Xiaojie Yang
- Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Neelam Mishra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Asim Kadioglu
- Department of Biology, Karadeniz Technical University, Trabzon, Turkey
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
50
|
Bao AK, Du BQ, Touil L, Kang P, Wang QL, Wang SM. Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:964-75. [PMID: 26268400 PMCID: PMC11389104 DOI: 10.1111/pbi.12451] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 07/10/2015] [Indexed: 05/20/2023]
Abstract
Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H(+)-PPase genes, ZxNHX and ZxVP1-1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens-mediated transformation. Compared with wild-type (WT) plants, transgenic alfalfa plants co-expressing ZxNHX and ZxVP1-1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water-deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na(+), K(+) and Ca(2+) accumulation in leaves and roots, as a result of co-expression of ZxNHX and ZxVP1-1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water-deficit stress. Furthermore, the transgenic alfalfa co-expressing ZxNHX and ZxVP1-1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water-use efficiency than WT plants. Our results indicate that co-expression of tonoplast NHX and H(+)-PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China.
Collapse
Affiliation(s)
- Ai-Ke Bao
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Bao-Qiang Du
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Lanzhou Animal Husbandry and Veterinary Institute, Lanzhou, China
| | - Leila Touil
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Laboratory of arid and oasis cropping, Institute of Arid Area (IRA), Medenine, Tunisia
| | - Peng Kang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Qiang-Long Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Suo-Min Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|