1
|
Priya M, Farooq M, Siddique KHM. Enhancing Tolerance to Combined Heat and Drought Stress in Cool-Season Grain Legumes: Mechanisms, Genetic Insights, and Future Directions. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39829217 DOI: 10.1111/pce.15382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/22/2025]
Abstract
The increasing frequency of concurrent heat and drought stress poses a significant challenge to agricultural productivity, particularly for cool-season grain legumes, including broad bean (Vicia Faba L.), lupin (Lupinus spp.), lentil (Lens culinaris Medik), chickpea (Cicer arietinum L.), grasspea (Lathyrus sativus L.), pea (Pisum sativum L.), and common vetch (Vicia sativa L.). These legumes play a vital role in sustainable agricultural systems due to their nitrogen-fixing ability and high nutritional value. This review synthesizes current knowledge of the impacts and tolerance mechanisms associated with combined heat and drought stresses in these crops. We evaluate physiological and biochemical responses to combined heat and drought stress, focusing on their detrimental effects on growth, development, and yield. Key genetic and molecular mechanisms, such as the roles of osmolytes, antioxidants, and stress-responsive genes, are explored. We also discuss the intricate interplay between heat and drought stress signaling pathways, including the involvement of Ca2+ ions, reactive oxygen species, transcription factor DREB2A, and the endoplasmic reticulum in mediating stress responses. This comprehensive analysis offers new insights into developing resilient legume varieties to enhance agricultural sustainability under climate change. Future research should prioritize integrating omics technologies to unravel plant responses to combined abiotic stresses.
Collapse
Affiliation(s)
- Manu Priya
- Cranberry Research Station, University of Massachusetts, East Wareham, Massachusetts, USA
| | - Muhammad Farooq
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| | - Kadambot H M Siddique
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud, Oman
| |
Collapse
|
2
|
Ngwenya SP, Moloi SJ, Shargie NG, Brown AP, Chivasa S, Ngara R. Regulation of Proline Accumulation and Protein Secretion in Sorghum under Combined Osmotic and Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1874. [PMID: 38999714 PMCID: PMC11244414 DOI: 10.3390/plants13131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Plants reprogramme their proteome to alter cellular metabolism for effective stress adaptation. Intracellular proteomic responses have been extensively studied, and the extracellular matrix stands as a key hub where peptide signals are generated/processed to trigger critical adaptive signal transduction cascades inaugurated at the cell surface. Therefore, it is important to study the plant extracellular proteome to understand its role in plant development and stress response. This study examined changes in the soluble extracellular sub-proteome of sorghum cell cultures exposed to a combination of sorbitol-induced osmotic stress and heat at 40 °C. The combined stress significantly reduced metabolic activity and altered protein secretion. While cells treated with osmotic stress alone had elevated proline content, the osmoprotectant in the combined treatment remained unchanged, confirming that sorghum cells exposed to combined stress utilise adaptive processes distinct from those invoked by the single stresses applied separately. Reactive oxygen species (ROS)-metabolising proteins and proteases dominated differentially expressed proteins identified in cells subjected to combined stress. ROS-generating peroxidases were suppressed, while ROS-degrading proteins were upregulated for protection from oxidative damage. Overall, our study provides protein candidates that could be used to develop crops better suited for an increasingly hot and dry climate.
Collapse
Affiliation(s)
- Samkelisiwe P Ngwenya
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| | - Sellwane J Moloi
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| | - Nemera G Shargie
- Agricultural Research Council-Grain Crops Institute, P. Bag X1251, Potchefstroom 2520, South Africa
| | - Adrian P Brown
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Stephen Chivasa
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Qwaqwa Campus, P. Bag X13, Phuthaditjhaba 9866, South Africa
| |
Collapse
|
3
|
Zhuang H, Qin M, Liu B, Li R, Li Z. Combination of transcriptomics, metabolomics and physiological traits reveals the effects of polystyrene microplastics on photosynthesis, carbon and nitrogen metabolism in cucumber (Cucumis sativus L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108201. [PMID: 37995577 DOI: 10.1016/j.plaphy.2023.108201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023]
Abstract
Although microplastic pollution has been widely studied, the mechanism by which they influence plant photosynthesis and carbon and nitrogen metabolism remains unclear. We aimed to explore the effects of polystyrene microplastics (PS) on photosynthesis and carbon and nitrogen metabolism in cucumber using 5 μm and 0.1 μm PS particles. The PS treatments significantly reduced the stability of cucumber mesophyll cells and photosynthetic parameters and increased the soluble sugar content in cucumber leaves. The 5 μm PS affected the photosynthetic pathway by changing the expression of enzyme genes required for the synthesis of NADPH and ATP, which decreased the photosynthetic capacity in cucumber leaves. However, 0.1 μm PS altered the genes expression of phosphoenolpyruvate carboxykinase (PEPCK) and phosphoenolpyruvate carboxylase (PEPC), which affected the intercellular CO2 concentration and attenuated the negative effects on photosynthetic efficiency. Additionally, PS reduced the expression levels of nitrate/nitrite transporter (NRT) and nitrate reductase (NR), reducing the nitrogen use efficiency in cucumber leaves and mesophyll cells damage through increased accumulation of reduced glutathione (GSH), γ-glutamylcysteine (γ-GC), and citrulline. This study provides a new scientific basis for exploring the effects of microplastics on plant photosynthesis and carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Haoran Zhuang
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Mengru Qin
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Bo Liu
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Ruijing Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Zhenxia Li
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, Henan, 453003, China.
| |
Collapse
|
4
|
Charfeddine M, Chiab N, Charfeddine S, Ferjani A, Gargouri-Bouzid R. Heat, drought, and combined stress effect on transgenic potato plants overexpressing the StERF94 transcription factor. JOURNAL OF PLANT RESEARCH 2023; 136:549-562. [PMID: 36988761 DOI: 10.1007/s10265-023-01454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Despite their economic importance worldwide, potato plants are sensitive to various abiotic constraints, such as drought and high temperatures, which cause significant losses in yields and tuber quality. Moreover, because of the climate change phenomenon, plants are frequently subjected to combined stresses, mainly high temperatures and drought. In this context, breeding for tolerant varieties should consider not only plant response to drought or high temperature but also to combined stresses. In the current study, we studied transgenic potato plants overexpressing an ethylene response transcription factor (TF; StERF94) involved in abiotic stress response signaling pathways. Our previous results showed that these transgenic plants display tolerance to salt stress more than wildtype (WT). In this work, we aimed to investigate the effects of drought, heat, and combined stresses on transgenic potato plants overexpressing StERF94 TF under in vitro culture conditions. The obtained results revealed that StERF94 overexpression improved the tolerance of the transgenic plants to drought, heat, and combined stresses through better control of the leaf water and chlorophyll contents, activation of antioxidant enzymes, and an accumulation of proline, especially in the leaves. Indeed, the expression level of antioxidant enzyme-encoding genes (CuZnSOD, FeSOD, CAT1, and CAT2) was significantly induced by the different stress conditions in the transgenic potato plants compared with the WT plants. This study further confirms that StERF94 TF may be implicated in regulating the expression of target genes encoding antioxidant enzymes.
Collapse
Affiliation(s)
- Mariam Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Nour Chiab
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia.
| | - Safa Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Aziza Ferjani
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| |
Collapse
|
5
|
Gul F, Khan IU, Rutherford S, Dai ZC, Li G, Du DL. Plant growth promoting rhizobacteria and biochar production from Parthenium hysterophorus enhance seed germination and productivity in barley under drought stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1175097. [PMID: 37360736 PMCID: PMC10285313 DOI: 10.3389/fpls.2023.1175097] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023]
Abstract
Drought stress can significantly affect plant growth and development. Biochar (BC) and plant growth-promoting rhizobacteria (PGPR) have been found to increase plant fertility and development under drought conditions. The single effects of BC and PGPR in different plant species have been widely reported under abiotic stress. However, there have been relatively few studies on the positive role of PGPR, BC, and their combination in barley (Hordeum vulgare L.). Therefore, the current study investigated the effects of BC from Parthenium hysterophorus, drought tolerant PGPR (Serratia odorifera), and the combination of BC + PGPR on the growth, physiology, and biochemical traits of barley plants under drought stress for two weeks. A total of 15 pots were used under five treatments. Each pot of 4 kg soil comprised the control (T0, 90% water), drought stress alone (T1, 30% water), 35 mL PGPR/kg soil (T2, 30% water), 2.5%/kg soil BC (T3, 30% water), and a combination of BC and PGPR (T4, 30% water). Combined PGPR and BC strongly mitigated the negative effects of drought by improving the shoot length (37.03%), fresh biomass (52%), dry biomass (62.5%), and seed germination (40%) compared to the control. The PGPR + BC amendment treatment enhanced physiological traits, such as chlorophyll a (27.9%), chlorophyll b (35.3%), and total chlorophyll (31.1%), compared to the control. Similarly, the synergistic role of PGPR and BC significantly (p< 0.05) enhanced the antioxidant enzyme activity including peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) to alleviate the toxicity of ROS. The physicochemical properties (N, K, P, and EL) of the soils were also enhanced by (85%, 33%, 52%, and 58%) respectively, under the BC + PGPR treatment compared to the control and drought stress alone. The findings of this study have suggested that the addition of BC, PGPR, and a combination of both will improve the soil fertility, productivity, and antioxidant defense systems of barley under drought stress. Therefore, BC from the invasive plant P. hysterophorus and PGPR can be applied to water-deficient areas to improve barley crop production.
Collapse
Affiliation(s)
- Farrukh Gul
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Department of Botany, Pir Mehr Ali Shah-Arid University (PMAS), Rawalpindi, Pakistan
| | - Irfan Ullah Khan
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Susan Rutherford
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Zhi-Cong Dai
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Guanlin Li
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Dao-Lin Du
- School of Emergency Management, Jiangsu University, Zhenjiang, China
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
6
|
De Palma N, Yendo ACA, Vilasboa J, Chacon DS, Fett-Neto AG. Biochemical responses in leaf tissues of alkaloid producing Psychotria brachyceras under multiple stresses. JOURNAL OF PLANT RESEARCH 2023; 136:397-412. [PMID: 36809401 DOI: 10.1007/s10265-023-01441-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Under natural conditions plants are generally subjected to complex scenarios of combined or sequential environmental stresses. Among the various components of plant biochemistry modulated by abiotic variables, a pivotal role is played by antioxidant systems, including specialized metabolites and their interaction with central pathways. To help address this knowledge gap, a comparative analysis of metabolic changes in leaf tissues of the alkaloid accumulating plant Psychotria brachyceras Müll Arg. under individual, sequential, and combined stress conditions was carried out. Osmotic and heat stresses were evaluated. Protective systems (accumulation of the major antioxidant alkaloid brachycerine, proline, carotenoids, total soluble protein, and activity of the enzymes ascorbate peroxidase and superoxide dismutase) were measured in conjunction with stress indicators (total chlorophyll, ChA/ChB ratio, lipid peroxidation, H2O2 content and electrolyte leakage). Metabolic responses had a complex profile in sequential and combined stresses compared to single ones, being also modified over time. Different stress application schemes affected alkaloid accumulation in distinct ways, exhibiting similar profile to proline and carotenoids, constituting a complementary triad of antioxidants. These complementary non-enzymatic antioxidant systems appeared to be essential for mitigating stress damage and re-establishing cellular homeostasis. The data herein provides clues that may aid the development of a key component framework of stress responses and their appropriate balance to modulate tolerance and yield of target specialized metabolites.
Collapse
Affiliation(s)
- Nicolás De Palma
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Anna Carolina Alves Yendo
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Johnatan Vilasboa
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Daisy Sotero Chacon
- Pharmacognosy Laboratory, Department of Pharmacy, Federal University of Rio Grande do Norte, CP 59000, Natal, RN, 59012-570, Brazil
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Department of Botany, Biosciences Institute, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
- Plant Physiology Laboratory, Center for Biotechnology, Federal University of Rio Grande do Sul, CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
7
|
Mahalingam R, Duhan N, Kaundal R, Smertenko A, Nazarov T, Bregitzer P. Heat and drought induced transcriptomic changes in barley varieties with contrasting stress response phenotypes. FRONTIERS IN PLANT SCIENCE 2022; 13:1066421. [PMID: 36570886 PMCID: PMC9772561 DOI: 10.3389/fpls.2022.1066421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/28/2022] [Indexed: 06/01/2023]
Abstract
Drought and heat stress substantially impact plant growth and productivity. When subjected to drought or heat stress, plants exhibit reduction in growth resulting in yield losses. The occurrence of these two stresses together intensifies their negative effects. Unraveling the molecular changes in response to combined abiotic stress is essential to breed climate-resilient crops. In this study, transcriptome profiles were compared between stress-tolerant (Otis), and stress-sensitive (Golden Promise) barley genotypes subjected to drought, heat, and combined heat and drought stress for five days during heading stage. The major differences that emerged from the transcriptome analysis were the overall number of differentially expressed genes was relatively higher in Golden Promise (GP) compared to Otis. The differential expression of more than 900 transcription factors in GP and Otis may aid this transcriptional reprogramming in response to abiotic stress. Secondly, combined heat and water deficit stress results in a unique and massive transcriptomic response that cannot be predicted from individual stress responses. Enrichment analyses of gene ontology terms revealed unique and stress type-specific adjustments of gene expression. Weighted Gene Co-expression Network Analysis identified genes associated with RNA metabolism and Hsp70 chaperone components as hub genes that can be useful for engineering tolerance to multiple abiotic stresses. Comparison of the transcriptomes of unstressed Otis and GP plants identified several genes associated with biosynthesis of antioxidants and osmolytes were higher in the former that maybe providing innate tolerance capabilities to effectively combat hostile conditions. Lines with different repertoire of innate tolerance mechanisms can be effectively leveraged in breeding programs for developing climate-resilient barley varieties with superior end-use traits.
Collapse
Affiliation(s)
| | - Naveen Duhan
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Rakesh Kaundal
- Department of Plant, Soils and Climate, Utah State University, Logan, UT, United States
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Taras Nazarov
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Phil Bregitzer
- National Small Grains Germplasm Research Facility, USDA-ARS, Aberdeen, ID, United States
| |
Collapse
|
8
|
Jianing G, Yuhong G, Yijun G, Rasheed A, Qian Z, Zhiming X, Mahmood A, Shuheng Z, Zhuo Z, Zhuo Z, Xiaoxue W, Jian W. Improvement of heat stress tolerance in soybean ( Glycine max L), by using conventional and molecular tools. FRONTIERS IN PLANT SCIENCE 2022; 13:993189. [PMID: 36226280 PMCID: PMC9549248 DOI: 10.3389/fpls.2022.993189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/23/2022] [Indexed: 06/12/2023]
Abstract
The soybean is a significant legume crop, providing several vital dietary components. Extreme heat stress negatively affects soybean yield and quality, especially at the germination stage. Continuous change in climatic conditions is threatening the global food supply and food security. Therefore, it is a critical need of time to develop heat-tolerant soybean genotypes. Different molecular techniques have been developed to improve heat stress tolerance in soybean, but until now complete genetic mechanism of soybean is not fully understood. Various molecular methods, like quantitative trait loci (QTL) mapping, genetic engineering, transcription factors (TFs), transcriptome, and clustered regularly interspaced short palindromic repeats (CRISPR), are employed to incorporate heat tolerance in soybean under the extreme conditions of heat stress. These molecular techniques have significantly improved heat stress tolerance in soybean. Besides this, we can also use specific classical breeding approaches and different hormones to reduce the harmful consequences of heat waves on soybean. In future, integrated use of these molecular tools would bring significant results in developing heat tolerance in soybean. In the current review, we have presented a detailed overview of the improvement of heat tolerance in soybean and highlighted future prospective. Further studies are required to investigate different genetic factors governing the heat stress response in soybean. This information would be helpful for future studies focusing on improving heat tolerance in soybean.
Collapse
Affiliation(s)
- Guan Jianing
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Gai Yuhong
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Guan Yijun
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Adnan Rasheed
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Zhao Qian
- College of Life Sciences, Changchun Normal University, Changchun, China
| | - Xie Zhiming
- College of Life Sciences, Baicheng Normal University, Baicheng, China
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Zhang Shuheng
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhang Zhuo
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhao Zhuo
- College of Life Sciences, Jilin Normal University, Changchun, China
| | - Wang Xiaoxue
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wei Jian
- College of Life Sciences, Changchun Normal University, Changchun, China
| |
Collapse
|
9
|
Chen YJ, Huang YL, Chen YH, Chang ST, Yeh TF. Biogenic Volatile Organic Compounds and Protein Expressions of Chamaecyparis formosensis and Chamaecyparis obtusa var. formosana Leaves under Different Light Intensities and Temperatures. PLANTS 2022; 11:plants11121535. [PMID: 35736687 PMCID: PMC9231097 DOI: 10.3390/plants11121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
Both Chamaecyparis formosensis and C. obtusa var. formosana are representative cypresses of high economic value in Taiwan, the southernmost subtropical region where cypresses are found. Both species show differences of their habitats. To find out the effects of environmental factors on the CO2 assimilation rate and the biogenic volatile organic compound (BVOC) emission of both species, saplings from both species were grown under different light intensity and temperature regimes. The results indicated that the net CO2 assimilation rates and total BVOC emission rates of both species increased with increasing light intensity. C. formosensis showed a higher magnitude of change, but C. obtusa var. formosana had considerably increased sesquiterpenoid and diterpenoid emission in BVOC under high light intensity. Both species grown under higher temperatures had significantly lower BVOC emission rates. Proteomic analyses revealed that compared to C. formosensis saplings, C. obtusa var. formosana saplings had less differentially expressed proteins in terms of protein species and fold changes in response to the growth conditions. These proteins participated mainly in photosynthesis, carbon metabolism, amino acid and protein processing, signal transduction, and stress mechanisms. These proteins might be the major regulatory factors affecting BVOC emission of these two species under different environments.
Collapse
Affiliation(s)
- Ying-Ju Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
- Division of Forest Chemistry, Taiwan Forestry Research Institute, Taipei 10070, Taiwan
| | - Ya-Lun Huang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
| | - Yu-Han Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
| | - Shang-Tzen Chang
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
- Correspondence: (S.-T.C.); (T.-F.Y.)
| | - Ting-Feng Yeh
- School of Forestry and Resource Conservation, National Taiwan University, Taipei 10617, Taiwan; (Y.-J.C.); (Y.-L.H.); (Y.-H.C.)
- Correspondence: (S.-T.C.); (T.-F.Y.)
| |
Collapse
|
10
|
Pradhan A, Aher L, Hegde V, Jangid KK, Rane J. Cooler canopy leverages sorghum adaptation to drought and heat stress. Sci Rep 2022; 12:4603. [PMID: 35301396 PMCID: PMC8931000 DOI: 10.1038/s41598-022-08590-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
In the present study, individual and combined effects of drought and heat stress were investigated on key physiological parameters (canopy temperature, membrane stability index, chlorophyll content, relative water content, and chlorophyll fluorescence) in two popular sorghum cultivars (Sorghum bicolor cvs. Phule Revati and Phule Vasudha) during the seedling stage. Estimating canopy temperature through pixel-wise analysis of thermal images of plants differentiated the stress responses of sorghum cultivars more effectively than the conventional way of recording canopy temperature. Cultivar difference in maintaining the canopy temperature was also responsible for much of the variation found in critical plant physiological parameters such as cell membrane stability, chlorophyll content, and chlorophyll fluorescence in plants exposed to stress. Hence, the combined stress of drought and heat was more adverse than their individual impacts. The continued loss of water coupled with high-temperature exposure exacerbated the adverse effect of stresses with a remarkable increase in canopy temperature. However, Phule Vasudha, being a drought-tolerant variety, was relatively less affected by the imposed stress conditions than Phule Revati. Besides, the methodology of measuring and reporting plant canopy temperature, which emerged from this study, can effectively differentiate the sorghum genotypes under the combined stress of drought and heat. It can help select promising genotypes among the breeding lines and integrating the concept in the protocol for precision water management in crops like sorghum.
Collapse
Affiliation(s)
- Aliza Pradhan
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Lalitkumar Aher
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Vinay Hegde
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MH, 444104, India
| | - Krishna Kumar Jangid
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India
| | - Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Malegaon, Baramati, Pune, MH, 413115, India.
| |
Collapse
|
11
|
Bhardwaj A, Devi P, Chaudhary S, Rani A, Jha UC, Kumar S, Bindumadhava H, Prasad PVV, Sharma KD, Siddique KHM, Nayyar H. 'Omics' approaches in developing combined drought and heat tolerance in food crops. PLANT CELL REPORTS 2022; 41:699-739. [PMID: 34223931 DOI: 10.1007/s00299-021-02742-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Global climate change will significantly increase the intensity and frequency of hot, dry days. The simultaneous occurrence of drought and heat stress is also likely to increase, influencing various agronomic characteristics, such as biomass and other growth traits, phenology, and yield-contributing traits, of various crops. At the same time, vital physiological traits will be seriously disrupted, including leaf water content, canopy temperature depression, membrane stability, photosynthesis, and related attributes such as chlorophyll content, stomatal conductance, and chlorophyll fluorescence. Several metabolic processes contributing to general growth and development will be restricted, along with the production of reactive oxygen species (ROS) that negatively affect cellular homeostasis. Plants have adaptive defense strategies, such as ROS-scavenging mechanisms, osmolyte production, secondary metabolite modulation, and different phytohormones, which can help distinguish tolerant crop genotypes. Understanding plant responses to combined drought/heat stress at various organizational levels is vital for developing stress-resilient crops. Elucidating the genomic, proteomic, and metabolic responses of various crops, particularly tolerant genotypes, to identify tolerance mechanisms will markedly enhance the continuing efforts to introduce combined drought/heat stress tolerance. Besides agronomic management, genetic engineering and molecular breeding approaches have great potential in this direction.
Collapse
Affiliation(s)
| | - Poonam Devi
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Anju Rani
- Department of Botany, Panjab University, Chandigarh, India
| | | | - Shiv Kumar
- International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - H Bindumadhava
- Dr. Marri Channa Reddy Foundation (MCRF), Hyderabad, India
| | | | | | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India.
| |
Collapse
|
12
|
Rolly NK, Yun BW. Regulation of Nitrate (NO 3) Transporters and Glutamate Synthase-Encoding Genes under Drought Stress in Arabidopsis: The Regulatory Role of AtbZIP62 Transcription Factor. PLANTS (BASEL, SWITZERLAND) 2021; 10:2149. [PMID: 34685959 PMCID: PMC8537067 DOI: 10.3390/plants10102149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 02/05/2023]
Abstract
Nitrogen (N) is an essential macronutrient, which contributes substantially to the growth and development of plants. In the soil, nitrate (NO3) is the predominant form of N available to the plant and its acquisition by the plant involves several NO3 transporters; however, the mechanism underlying their involvement in the adaptive response under abiotic stress is poorly understood. Initially, we performed an in silico analysis to identify potential binding sites for the basic leucine zipper 62 transcription factor (AtbZIP62 TF) in the promoter of the target genes, and constructed their protein-protein interaction networks. Rather than AtbZIP62, results revealed the presence of cis-regulatory elements specific to two other bZIP TFs, AtbZIP18 and 69. A recent report showed that AtbZIP62 TF negatively regulated AtbZIP18 and AtbZIP69. Therefore, we investigated the transcriptional regulation of AtNPF6.2/NRT1.4 (low-affinity NO3 transporter), AtNPF6.3/NRT1.1 (dual-affinity NO3 transporter), AtNRT2.1 and AtNRT2.2 (high-affinity NO3 transporters), and AtGLU1 and AtGLU2 (both encoding glutamate synthase) in response to drought stress in Col-0. From the perspective of exploring the transcriptional interplay of the target genes with AtbZIP62 TF, we measured their expression by qPCR in the atbzip62 (lacking the AtbZIP62 gene) under the same conditions. Our recent study revealed that AtbZIP62 TF positively regulates the expression of AtPYD1 (Pyrimidine 1, a key gene of the de novo pyrimidine biosynthesis pathway know to share a common substrate with the N metabolic pathway). For this reason, we included the atpyd1-2 mutant in the study. Our findings revealed that the expression of AtNPF6.2/NRT1.4, AtNPF6.3/NRT1.1 and AtNRT2.2 was similarly regulated in atzbip62 and atpyd1-2 but differentially regulated between the mutant lines and Col-0. Meanwhile, the expression pattern of AtNRT2.1 in atbzip62 was similar to that observed in Col-0 but was suppressed in atpyd1-2. The breakthrough is that AtNRT2.2 had the highest expression level in Col-0, while being suppressed in atbzip62 and atpyd1-2. Furthermore, the transcript accumulation of AtGLU1 and AtGLU2 showed differential regulation patterns between Col-0 and atbzip62, and atpyd1-2. Therefore, results suggest that of all tested NO3 transporters, AtNRT2.2 is thought to play a preponderant role in contributing to NO3 transport events under the regulatory influence of AtbZIP62 TF in response to drought stress.
Collapse
Affiliation(s)
- Nkulu Kabange Rolly
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea
- National Laboratory of Seed Testing, National Seed Service, SENASEM, Ministry of Agriculture, Kinshasa 904KIN1, Democratic Republic of the Congo
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics, School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| |
Collapse
|
13
|
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH. Omics for the Improvement of Abiotic, Biotic, and Agronomic Traits in Major Cereal Crops: Applications, Challenges, and Prospects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1989. [PMID: 34685799 PMCID: PMC8541486 DOI: 10.3390/plants10101989] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/22/2022]
Abstract
Omics technologies, namely genomics, transcriptomics, proteomics, metabolomics, and phenomics, are becoming an integral part of virtually every commercial cereal crop breeding program, as they provide substantial dividends per unit time in both pre-breeding and breeding phases. Continuous advances in omics assure time efficiency and cost benefits to improve cereal crops. This review provides a comprehensive overview of the established omics methods in five major cereals, namely rice, sorghum, maize, barley, and bread wheat. We cover the evolution of technologies in each omics section independently and concentrate on their use to improve economically important agronomic as well as biotic and abiotic stress-related traits. Advancements in the (1) identification, mapping, and sequencing of molecular/structural variants; (2) high-density transcriptomics data to study gene expression patterns; (3) global and targeted proteome profiling to study protein structure and interaction; (4) metabolomic profiling to quantify organ-level, small-density metabolites, and their composition; and (5) high-resolution, high-throughput, image-based phenomics approaches are surveyed in this review.
Collapse
Affiliation(s)
- Balwinder Kaur
- Everglades Research and Education Center, University of Florida, 3200 E. Palm Beach Rd., Belle Glade, FL 33430, USA;
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163, USA;
| | - Roop Kamal
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Kawalpreet Kaur
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Jagmohan Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| | - Quddoos H. Muqaddasi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Stadt Seeland, Germany; (R.K.); or (M.S.R.)
| |
Collapse
|
14
|
Kabange NR, Park SY, Lee JY, Shin D, Lee SM, Kwon Y, Cha JK, Cho JH, Duyen DV, Ko JM, Lee JH. New Insights into the Transcriptional Regulation of Genes Involved in the Nitrogen Use Efficiency under Potassium Chlorate in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:2192. [PMID: 33671842 PMCID: PMC7926690 DOI: 10.3390/ijms22042192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 01/24/2023] Open
Abstract
Potassium chlorate (KClO3) has been widely used to evaluate the divergence in nitrogen use efficiency (NUE) between indica and japonica rice subspecies. This study investigated the transcriptional regulation of major genes involved in the NUE in rice treated with KClO3, which acts as an inhibitor of the reducing activity of nitrate reductase (NR) in higher plants. A set of two KClO3 sensitive nitrate reductase (NR) and two nitrate transporter (NRT) introgression rice lines (BC2F7), carrying the indica alleles of NR or NRT, derived from a cross between Saeilmi (japonica, P1) and Milyang23 (indica, P2), were exposed to KClO3 at the seedling stage. The phenotypic responses were recorded 7 days after treatment, and samples for gene expression, physiological, and biochemical analyses were collected at 0 h (control) and 3 h after KClO3 application. The results revealed that Saeilmi (P1, japonica) and Milyang23 (P2, indica) showed distinctive phenotypic responses. In addition, the expression of OsNR2 was differentially regulated between the roots, stem, and leaf tissues, and between introgression lines. When expressed in the roots, OsNR2 was downregulated in all introgression lines. However, in the stem and leaves, OsNR2 was upregulated in the NR introgression lines, but downregulation in the NRT introgression lines. In the same way, the expression patterns of OsNIA1 and OsNIA2 in the roots, stem, and leaves indicated a differential transcriptional regulation by KClO3, with OsNIA2 prevailing over OsNIA1 in the roots. Under the same conditions, the activity of NR was inhibited in the roots and differentially regulated in the stem and leaf tissues. Furthermore, the transcriptional divergence of OsAMT1.3 and OsAMT2.3, OsGLU1 and OsGLU2, between NR and NRT, coupled with the NR activity pattern in the roots, would indicate the prevalence of nitrate (NO3¯) transport over ammonium (NH4+) transport. Moreover, the induction of catalase (CAT) and polyphenol oxidase (PPO) enzyme activities in Saeilmi (P1, KClO3 resistant), and the decrease in Milyang23 (P2, KClO3 sensitive), coupled with the malondialdehyde (MDA) content, indicated the extent of the oxidative stress, and the induction of the adaptive response mechanism, tending to maintain a balanced reduction-oxidation state in response to KClO3. The changes in the chloroplast pigments and proline content propose these compounds as emerging biomarkers for assessing the overall plant health status. These results suggest that the inhibitory potential of KClO3 on the reduction activity of the nitrate reductase (NR), as well as that of the genes encoding the nitrate and ammonium transporters, and glutamate synthase are tissue-specific, which may differentially affect the transport and assimilation of nitrate or ammonium in rice.
Collapse
Affiliation(s)
- Nkulu Rolly Kabange
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - So-Yeon Park
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Ji-Yun Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Dongjin Shin
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - So-Myeong Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Youngho Kwon
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Jin-Kyung Cha
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Jun-Hyeon Cho
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Dang Van Duyen
- Molecular Biology Department, Agricultural Genetic Institute, Hanoi 11917, Vietnam;
| | - Jong-Min Ko
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| | - Jong-Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, RDA, Miryang 50424, Korea; (N.R.K.); (S.-Y.P.); (J.-Y.L.); (D.S.); (S.-M.L.); (Y.K.); (J.-K.C.); (J.-H.C.); (J.-M.K.)
| |
Collapse
|
15
|
Hosseini SZ, Ismaili A, Nazarian-Firouzabadi F, Fallahi H, Rezaei Nejad A, Sohrabi SS. Dissecting the molecular responses of lentil to individual and combined drought and heat stresses by comparative transcriptomic analysis. Genomics 2021; 113:693-705. [PMID: 33485953 DOI: 10.1016/j.ygeno.2020.12.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 10/22/2022]
Abstract
Lentil cultivation could be challenged by combined heat and drought stress in semi-arid regions. We used RNA-seq approach to profile transcriptome changes of Lens culinaris exposed to individual and combined heat and drought stresses. It was determined that most of the differentially expressed genes observed in response to combined stress, could not be identified by analysis of transcriptome exposed to corresponding individual stresses. Interestingly, this study results revealed that the expression of ribosome generation and protein biosynthesis and starch degradation pathways related genes were uniquely up-regulated under the combined stress. Although multiple genes related to antioxidant activity were up-regulated in response to all stresses, variation in types and expression levels of these genes under the combined stress were higher than that of individual stresses. Using this comparative approach, for the first time, we reported up-regulation of several TF, CDPK, CYP, and antioxidant genes in response to combined stress in plants.
Collapse
Affiliation(s)
- Seyedeh Zahra Hosseini
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Ahmad Ismaili
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| | | | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran.
| | - Abdolhossein Rezaei Nejad
- Department of Horticultural Sciences, College of Agriculture, Lorestan University, Khorramabad, Iran.
| | - Seyed Sajad Sohrabi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
16
|
Liu H, Able AJ, Able JA. Integrated Analysis of Small RNA, Transcriptome, and Degradome Sequencing Reveals the Water-Deficit and Heat Stress Response Network in Durum Wheat. Int J Mol Sci 2020; 21:ijms21176017. [PMID: 32825615 PMCID: PMC7504575 DOI: 10.3390/ijms21176017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Water-deficit and heat stress negatively impact crop production. Mechanisms underlying the response of durum wheat to such stresses are not well understood. With the new durum wheat genome assembly, we conducted the first multi-omics analysis with next-generation sequencing, providing a comprehensive description of the durum wheat small RNAome (sRNAome), mRNA transcriptome, and degradome. Single and combined water-deficit and heat stress were applied to stress-tolerant and -sensitive Australian genotypes to study their response at multiple time-points during reproduction. Analysis of 120 sRNA libraries identified 523 microRNAs (miRNAs), of which 55 were novel. Differentially expressed miRNAs (DEMs) were identified that had significantly altered expression subject to stress type, genotype, and time-point. Transcriptome sequencing identified 49,436 genes, with differentially expressed genes (DEGs) linked to processes associated with hormone homeostasis, photosynthesis, and signaling. With the first durum wheat degradome report, over 100,000 transcript target sites were characterized, and new miRNA-mRNA regulatory pairs were discovered. Integrated omics analysis identified key miRNA-mRNA modules (particularly, novel pairs of miRNAs and transcription factors) with antagonistic regulatory patterns subject to different stresses. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis revealed significant roles in plant growth and stress adaptation. Our research provides novel and fundamental knowledge, at the whole-genome level, for transcriptional and post-transcriptional stress regulation in durum wheat.
Collapse
|
17
|
Katam R, Shokri S, Murthy N, Singh SK, Suravajhala P, Khan MN, Bahmani M, Sakata K, Reddy KR. Proteomics, physiological, and biochemical analysis of cross tolerance mechanisms in response to heat and water stresses in soybean. PLoS One 2020; 15:e0233905. [PMID: 32502194 PMCID: PMC7274410 DOI: 10.1371/journal.pone.0233905] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/14/2020] [Indexed: 01/11/2023] Open
Abstract
Water stress (WS) and heat stress (HS) have a negative effect on soybean plant growth and crop productivity. Changes in the physiological characteristics, proteome, and specific metabolites investigated on molecular and cellular functions were studied in two soybean cultivars exposed to different heat and water stress conditions independently and in combination. Leaf protein composition was studied using 2-DE and complemented with MALDI TOF mass spectrometry. While the two cultivars displayed genetic variation in response to water and heat stress, thirty-nine proteins were significantly altered in their relative abundance in response to WS, HS and combined WS+HS in both cultivars. A majority of these proteins were involved in metabolism, response to heat and photosynthesis showing significant cross-tolerance mechanisms. This study revealed that MED37C, a probable mediator of RNA polymerase transcription II protein, has potential interacting partners in Arabidopsis and signified the marked impact of this on the PI-471938 cultivar. Elevated activities in antioxidant enzymes indicate that the PI-471938 cultivar can restore the oxidation levels and sustain the plant during the stress. The discovery of this plant's development of cross-stress tolerance could be used as a guide to foster ongoing genetic modifications in stress tolerance.
Collapse
Affiliation(s)
- Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Sedigheh Shokri
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- Department of Horticulture Sciences, College of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Nitya Murthy
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- Kentucky College of Optometry, University of Pikeville, Pikeville, Kentucky, United States of America
| | - Shardendu K. Singh
- Mississippi State University, Mississippi, Mississippi, United States of America
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Mudassar Nawaz Khan
- Institute of Biotechnology & Genetic Engineering, University of Agriculture, Peshawar, Pakistan
| | - Mahya Bahmani
- Department of Agronomy and Plant Breeding, College of Agricultural Sciences & Engineering, University of Tehran, Tehran, Iran
| | - Katsumi Sakata
- Department of Life Science and Informatics, Maebashi Institute of Technology, Maebashi City, Gunma, Japan
| | - Kambham Raja Reddy
- Mississippi State University, Mississippi, Mississippi, United States of America
| |
Collapse
|
18
|
Raja V, Qadir SU, Alyemeni MN, Ahmad P. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech 2020; 10:208. [PMID: 32351866 PMCID: PMC7181466 DOI: 10.1007/s13205-020-02206-4] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022] Open
Abstract
The present study was carried out to investigate the effect of individual drought, heat, and combined drought and heat stress on tomato plants. Combined stress resulted in the higher accumulation of Proline (101.9%), MDA (38.55%), H2O2 (101.19%), and lower levels of RWC (53.84%). Individual drought and heat stress decreased photosynthetic pigments like total chlorophyll content by (45.45%) and (25.35%), respectively, higher rates of pigment reduction (79.42%) were observed under combined drought and heat stress. Combined stress decreased PSII efficiency (Fv/Fm), quantum yield (ΦPSII), and photochemical efficiency (qp) and increased non-photochemical quenching (NPQ) levels. Moreover, the gas exchange parameters E, A, and Pn decreased by 5.36%, 36.45%, and 51.00%, respectively, in comparison to control plants. Antioxidant enzymes, SOD, APX, CAT, and GR showed a two- to threefold increase under combined drought and heat stress; however, the non-enzymatic antioxidants AsA and GSH displayed one-twofold increase under combined stress. Moreover, 2- to 2.5-fold decrease was observed in MDHAR and DHAR enzyme transcripts under combined stress conditions. The transcripts corresponding to AsA-GSH pathway enzymes SOD, APX, GR, DHAR, and MDHAR were up-regulated by 8- to 12-fold under combined drought and heat. Furthermore, DREB and LEA transcripts were up-regulated under drought and combined stress and down-regulated under drought stress. In the same manner, HSP70 and HSP90 transcripts were up-regulated under heat and combined stress; however, the transcription levels got down-regulated under drought stress. Additionally, rbcL and RCA transcripts were down-regulated especially under combined stress in comparison to individual drought and heat conditions. PSIP680 relative expression levels were up-regulated under drought stress; however, the transcripts were down-regulated under heat and combined stress. Taken together, the results suggest that the combined stress has a predominant effect over individual stress.
Collapse
Affiliation(s)
- Vaseem Raja
- Department of Botany, Government Degree College for Womens, Baramulla, Jammu and Kashmir India
| | - Sami Ullah Qadir
- Department of Environment Sciences, Government Degree College, Shopian, Jammu and Kashmir India
| | - Mohammed Nasser Alyemeni
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S. P. College, 190001, Srinagar, Jammu and Kashmir India
| |
Collapse
|
19
|
Godwin J, Farrona S. Plant Epigenetic Stress Memory Induced by Drought: A Physiological and Molecular Perspective. Methods Mol Biol 2020; 2093:243-259. [PMID: 32088901 DOI: 10.1007/978-1-0716-0179-2_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Drought stress is one of the most common stresses encountered by crops and other plants and leads to significant productivity losses. It commonly happens that drought stress occurs more than once during the plant's life cycle. Plants suffering from drought stress can adapt their life strategies to acclimate and survive in many different ways. Interestingly, some plants have evolved a stress response strategy referred to as stress memory which leads to an enhanced response the next time the stress is encountered. The acquisition of stress memory leads to a reprogrammed transcriptional response during subsequent stress and subsequent changes both at the physiological and molecular level. Recent advances in understanding chromatin dynamics have demonstrated the involvement of chromatin modifications, especially histone marks, associated with drought stress-responsive memory genes and subsequent enhanced transcriptional responses to repeated drought stress. In this chapter, we describe recent progress in this area and summarize techniques for the study of plant epigenetic responses to stress, including the roles of ABA and transcription factors in superinduced transcriptional activation during recurrent drought stress. We also review the possible use of seed priming to induce stress memory later in the plant life cycle. Finally, we discuss the potential implications of understanding the epigenetic mechanisms involved in plant stress memory for future applications in crop improvement and drought resistance.
Collapse
Affiliation(s)
- James Godwin
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland
| | - Sara Farrona
- Plant and AgriBiosciences Research Centre, Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
20
|
Sharma JK, Sihmar M, Santal AR, Singh NP. Impact assessment of major abiotic stresses on the proteome profiling of some important crop plants: a current update. Biotechnol Genet Eng Rev 2019; 35:126-160. [PMID: 31478455 DOI: 10.1080/02648725.2019.1657682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abiotic stresses adversely affect the plant's growth and development leading to loss of crop plants and plant products in terms of both the quality and quantity. Two main strategies are adopted by plants to acclimatize to stresses; avoidance and tolerance. These adaptive strategies of plants at the cellular and metabolic level enable them to withstand such detrimental conditions. Acclimatization is associated with intensive changes in the proteome of plants and these changes are directly involved in plants response to stress. Proteome studies can be used to screen for these proteins and their involvement in plants response to various abiotic stresses evaluated. In this review, proteomic studies of different plants species under different abiotic stresses, particularly drought, salinity, heat, cold, and waterlogging, are discussed. From different proteomic studies, the stress response can be determined by an interaction between proteomic and physiological changes which occur in plants during such stress conditions. These identified proteins from different processes under different abiotic stress conditions definitely add to our understanding for exploiting them in various biotechnological applications in crop improvement.
Collapse
Affiliation(s)
| | - Monika Sihmar
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Anita Rani Santal
- Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - N P Singh
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
21
|
Cui G, Zhao Y, Zhang J, Chao M, Xie K, Zhang C, Sun F, Liu S, Xi Y. Proteomic analysis of the similarities and differences of soil drought and polyethylene glycol stress responses in wheat (Triticum aestivum L.). PLANT MOLECULAR BIOLOGY 2019; 100:391-410. [PMID: 30953278 DOI: 10.1007/s11103-019-00866-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/29/2019] [Indexed: 05/02/2023]
Abstract
Our results reveal both soil drought and PEG can enhance malate, glutathione and ascorbate metabolism, and proline biosynthesis, whereas soil drought induced these metabolic pathways to a greater degree than PEG. Polyethylene glycol (PEG) is widely used to simulate osmotic stress, but little is known about the different responses of wheat to PEG stress and soil drought. In this study, isobaric tags for relative quantification (iTRAQ)-based proteomic techniques were used to determine both the proteomic and physiological responses of wheat seedlings to soil drought and PEG. The results showed that photosynthetic rate, stomatal conductance, intercellular CO2 concentration, transpiration rate, maximum potential efficiency of PS II, leaf water content, relative electrolyte leakage, MDA content, and free proline content exhibited similar responses to soil drought and PEG. Approximately 15.8% of differential proteins were induced both by soil drought and PEG. Moreover, both soil drought and PEG inhibited carbon metabolism and the biosynthesis of some amino acids by altering the accumulation of glyceraldehyde-3-phosphate dehydrogenase, ribulose-bisphosphate carboxylase, and phosphoglycerate kinase, but they both enhanced the metabolism of malate, proline, glutathione, and ascorbate by increasing the accumulation of key enzymes including malate dehydrogenase, monodehydroascorbate reductase, pyrroline-5-carboxylate dehydrogenase, pyrroline-5-carboxylate synthetase, ascorbate peroxidase, glutathione peroxidase, and glutathione S-transferase. Notably, the latter five of these enzymes were found to be more sensitive to soil drought. In addition, polyamine biosynthesis was specifically induced by increased gene expression and protein accumulation of polyamine oxidase and spermidine synthase under PEG stress, whereas fructose-bisphosphate aldolase and arginase were induced by soil drought. Therefore, present results suggest that PEG is an effective method to simulate drought stress, but the key proteins related to the metabolism of malate, glutathione, ascorbate, proline, and polyamine need to be confirmed under soil drought.
Collapse
Affiliation(s)
- Guibin Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanfeng Zhao
- Seed Management Center of Shaanxi Province, Xian, 710021, China
| | - Jialing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Manning Chao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kunliang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fengli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shudong Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yajun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
22
|
Zhang X, Xu Y, Huang B. Lipidomic reprogramming associated with drought stress priming-enhanced heat tolerance in tall fescue (Festuca arundinacea). PLANT, CELL & ENVIRONMENT 2019; 42:947-958. [PMID: 29989186 DOI: 10.1111/pce.13405] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 05/21/2023]
Abstract
Stress priming by exposing plants to a mild or moderate drought could enhance plant tolerance to subsequent heat stress. Lipids play vital roles in stress adaptation, but how lipidomic profiles change, affecting the cross-stress tolerance, is largely unknown. The objectives of this study were to perform lipidomics, to analyse the content, composition, and saturation levels of lipids in leaves of tall fescue (Festuca arundinacea) following drought priming and subsequent heat stress, and to identify major lipids and molecular species associated with priming-enhanced heat tolerance. Plants were initially exposed to drought for 8 days by withholding irrigation and subsequently subjected to 25 days of heat stress (38/33°C day/night) in growth chambers. Drought-primed plants maintained significantly higher leaf relative water content, chlorophyll content, photochemical efficiency, and lower electrolyte leakage than nonprimed plants under heat stress. Drought priming enhanced the accumulation of phospholipids and glycolipids involved in membrane stabilization and stress signalling (phosphatidic acid, phosphatidylcholine, phosphatidylinositol, phosphatidylglycerol, and digalactosyl diacylglycerol) during subsequent exposure to heat stress. The reprogramming of lipid metabolism for membrane stabilization and signalling in response to drought priming and subsequent exposure to heat stress could contribute to drought priming-enhanced heat tolerance in cool-season grass species.
Collapse
Affiliation(s)
- Xiaxiang Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, USA
| | - Yi Xu
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, USA
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
23
|
Lawas LMF, Zuther E, Jagadish SK, Hincha DK. Molecular mechanisms of combined heat and drought stress resilience in cereals. CURRENT OPINION IN PLANT BIOLOGY 2018; 45:212-217. [PMID: 29673612 DOI: 10.1016/j.pbi.2018.04.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 05/22/2023]
Abstract
Global climate change leads to increased temperatures and decreased precipitation in many parts of the world. The simultaneous occurrence of high temperature and water deficit results in heat stress damage in plants. Cereals provide the majority of calories for human consumption, making this stress scenario particularly threatening for global food security. Several studies in both dicots and cereals indicate that the molecular reactions of plants to combined stresses cannot be predicted from reactions to single stresses. Recent results indicate that the regulation of heat shock proteins and of sugar transport and accumulation in flowers are crucial factors determining resilience of tolerant genotypes to combined heat and drought stress.
Collapse
Affiliation(s)
- Lovely Mae F Lawas
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany
| | | | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam, Germany.
| |
Collapse
|
24
|
Zhang N, Zhang L, Shi C, Zhao L, Cui D, Chen F. Identification of Proteins Using iTRAQ and Virus-Induced Gene Silencing Reveals Three Bread Wheat Proteins Involved in the Response to Combined Osmotic-Cold Stress. J Proteome Res 2018; 17:2256-2281. [DOI: 10.1021/acs.jproteome.7b00745] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ning Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingran Zhang
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaonan Shi
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lei Zhao
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Chen
- Agronomy College, National Key Laboratory of Wheat and Maize Crop, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
25
|
Ashoub A, Müller N, Jiménez-Gómez JM, Brüggemann W. Prominent alterations of wild barley leaf transcriptome in response to individual and combined drought acclimation and heat shock conditions. PHYSIOLOGIA PLANTARUM 2018; 163:18-29. [PMID: 29111595 DOI: 10.1111/ppl.12667] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 06/07/2023]
Abstract
Under field conditions, drought and heat stress typically happen simultaneously and their negative impact on the agricultural production is expected to increase worldwide under the climate change scenario. In this study, we performed RNA-sequencing analysis on leaves of wild barley (Hordeum spontaneum) originated from the northern coastal region of Egypt following individual drought acclimation (DA) and heat shock (HS) treatments and their combination (CS, combined stresses) to distinguish the unique and shared differentially expressed genes (DEG). Results indicated that the number of unique genes that were differentially expressed following HS treatment exceeded the number of those expressed following DA. In addition, the number of genes that were uniquely differentially expressed in response to CS treatment exceeded the number of those of shared responses to individual DA and HS treatments. These results indicate a better adaptation of the Mediterranean wild barley to drought conditions when compared with heat stress. It also manifests that the wild barley response to CS tends to be unique rather than common. Annotation of DEG showed that metabolic processes were the most influenced biological function in response to the applied stresses.
Collapse
Affiliation(s)
- Ahmed Ashoub
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
- Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza, Egypt
| | - Niels Müller
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - José M Jiménez-Gómez
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Wolfgang Brüggemann
- Institute of Ecology, Evolution, and Diversity, Johann Wolfgang Goethe-University Frankfurt, Frankfurt am Main, Germany
- Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| |
Collapse
|
26
|
Zhao Q, Chen W, Bian J, Xie H, Li Y, Xu C, Ma J, Guo S, Chen J, Cai X, Wang X, Wang Q, She Y, Chen S, Zhou Z, Dai S. Proteomics and Phosphoproteomics of Heat Stress-Responsive Mechanisms in Spinach. FRONTIERS IN PLANT SCIENCE 2018; 9:800. [PMID: 29997633 PMCID: PMC6029058 DOI: 10.3389/fpls.2018.00800] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/24/2018] [Indexed: 05/02/2023]
Abstract
Elevated temperatures limit plant growth and reproduction and pose a growing threat to agriculture. Plant heat stress response is highly conserved and fine-tuned in multiple pathways. Spinach (Spinacia oleracea L.) is a cold tolerant but heat sensitive green leafy vegetable. In this study, heat adaptation mechanisms in a spinach sibling inbred heat-tolerant line Sp75 were investigated using physiological, proteomic, and phosphoproteomic approaches. The abundance patterns of 911 heat stress-responsive proteins, and phosphorylation level changes of 45 phosphoproteins indicated heat-induced calcium-mediated signaling, ROS homeostasis, endomembrane trafficking, and cross-membrane transport pathways, as well as more than 15 transcription regulation factors. Although photosynthesis was inhibited, diverse primary and secondary metabolic pathways were employed for defense against heat stress, such as glycolysis, pentose phosphate pathway, amino acid metabolism, fatty acid metabolism, nucleotide metabolism, vitamin metabolism, and isoprenoid biosynthesis. These data constitute a heat stress-responsive metabolic atlas in spinach, which will springboard further investigations into the sophisticated molecular mechanisms of plant heat adaptation and inform spinach molecular breeding initiatives.
Collapse
Affiliation(s)
- Qi Zhao
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Wenxin Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jiayi Bian
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Hao Xie
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Ying Li
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
| | - Chenxi Xu
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Jun Ma
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Siyi Guo
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng, China
| | - Jiaying Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaofeng Cai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoli Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Quanhua Wang
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
| | - Yimin She
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, China
| | - Sixue Chen
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institute, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Zhiqiang Zhou
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| | - Shaojun Dai
- Development Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, China
- Key Laboratory of Forest Plant Ecology, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin, China
- *Correspondence: Shaojun Dai, Zhiqiang Zhou,
| |
Collapse
|
27
|
Wang X, Xu C, Cai X, Wang Q, Dai S. Heat-Responsive Photosynthetic and Signaling Pathways in Plants: Insight from Proteomics. Int J Mol Sci 2017; 18:E2191. [PMID: 29053587 PMCID: PMC5666872 DOI: 10.3390/ijms18102191] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/13/2017] [Accepted: 10/16/2017] [Indexed: 02/04/2023] Open
Abstract
Heat stress is a major abiotic stress posing a serious threat to plants. Heat-responsive mechanisms in plants are complicated and fine-tuned. Heat signaling transduction and photosynthesis are highly sensitive. Therefore, a thorough understanding of the molecular mechanism in heat stressed-signaling transduction and photosynthesis is necessary to protect crop yield. Current high-throughput proteomics investigations provide more useful information for underlying heat-responsive signaling pathways and photosynthesis modulation in plants. Several signaling components, such as guanosine triphosphate (GTP)-binding protein, nucleoside diphosphate kinase, annexin, and brassinosteroid-insensitive I-kinase domain interacting protein 114, were proposed to be important in heat signaling transduction. Moreover, diverse protein patterns of photosynthetic proteins imply that the modulations of stomatal CO₂ exchange, photosystem II, Calvin cycle, ATP synthesis, and chlorophyll biosynthesis are crucial for plant heat tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Shanghai Engineering Research Center of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
28
|
Tan BC, Lim YS, Lau SE. Proteomics in commercial crops: An overview. J Proteomics 2017; 169:176-188. [PMID: 28546092 DOI: 10.1016/j.jprot.2017.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023]
Abstract
Proteomics is a rapidly growing area of biological research that is positively affecting plant science. Recent advances in proteomic technology, such as mass spectrometry, can now identify a broad range of proteins and monitor their modulation during plant growth and development, as well as during responses to abiotic and biotic stresses. In this review, we highlight recent proteomic studies of commercial crops and discuss the advances in understanding of the proteomes of these crops. We anticipate that proteomic-based research will continue to expand and contribute to crop improvement. SIGNIFICANCE Plant proteomics study is a rapidly growing area of biological research that is positively impacting plant science. With the recent advances in new technologies, proteomics not only allows us to comprehensively analyses crop proteins, but also help us to understand the functions of the genes. In this review, we highlighted recent proteomic studies in commercial crops and updated the advances in our understanding of the proteomes of these crops. We believe that proteomic-based research will continue to grow and contribute to the improvement of crops.
Collapse
Affiliation(s)
- Boon Chin Tan
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Yin Sze Lim
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Su-Ee Lau
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
29
|
Ellouzi H, Sghayar S, Abdelly C. H 2O 2 seed priming improves tolerance to salinity; drought and their combined effect more than mannitol in Cakile maritima when compared to Eutrema salsugineum. JOURNAL OF PLANT PHYSIOLOGY 2017; 210:38-50. [PMID: 28056386 DOI: 10.1016/j.jplph.2016.11.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 05/22/2023]
Abstract
The effect of H2O2 and mannitol seed priming was investigated on plant growth, oxidative stress biomarkers and activities of antioxidant enzymes in leaves of Cakile maritima and Eutrema salsugineum, when exposed to drought and salt stress, either separately applied or combined. Under unprimed conditions, drought severely restricted growth (40% as compared to the control) and redox balance of C. maritima seedlings, whereas E. salsugineum showed these drastic effects under individual salinity (33% as compared to the control). Combined salinity and drought maintained and even stimulated the antioxidant defense of both plants from unprimed seeds. Both priming agents (mannitol and H2O2) significantly ameliorated growth and antioxidant defense of both species grown under salinity, drought and their combined effect. However, H2O2 priming appeared to be more beneficial in C. maritima seedlings. Indeed, oxidative injuries were significantly reduced, together with significantly higher concentrations of ascorbic acid (36%), glutathione (2-fold) and proline production (2-fold), leading to a greater redox balance that was closely associated with enhanced antioxidant enzyme activities, specifically under salt stress. Overall, our results indicate that it is very likely that H2O2 priming, due to its signal role, improves C. maritima tolerance to both osmotic stresses and enables the plant to memorize and to decode early signals that are rapidly activated when plants are later exposed to stress.
Collapse
Affiliation(s)
- Hasna Ellouzi
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunis, Tunisie.
| | - Souhir Sghayar
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunis, Tunisie
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria (CBBC), BP 901, Hammam Lif 2050, Tunis, Tunisie
| |
Collapse
|
30
|
Jiao L, Zhang Y, Lu J. Overexpression of a stress-responsive U-box protein gene VaPUB affects the accumulation of resistance related proteins in Vitis vinifera 'Thompson Seedless'. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 112:53-63. [PMID: 28039816 DOI: 10.1016/j.plaphy.2016.12.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 05/25/2023]
Abstract
Many U-box proteins have been identified and characterized as important factors against environmental stresses such as chilling, heat, salinity and pathogen attack in plant. Our previous research reported the cloning of a novel U-box protein gene VaPUB from Vitis amurensis 'Zuoshanyi' grape and suggested a function of it in related to cold stress in the model plant Arabidopsis system. In this study, the role of VaPUB in response to biotic and abiotic stress was further analyzed in the homologous grapevine system by studying the transcript regulation and the protein accumulation in VaPUB transgenic vines. The expression analysis assay shown that VaPUB was significantly up-regulated 6 h after cold treatment and as early as 2 h post inoculation with Plasmopara viticola, a pathogen causing downy mildew disease in grapevine. Over-expressing VaPUB in V. Vinifera 'Thompson Seedless' affected the microstructure of leaves. The proteome assay shown that the accumulation of pathogenesis-related protein PR10 and many proteins involved in carbon and energy metabolism, oxidation reaction and protein metabolism were significantly altered in transgenic vines. In comparison with wild type plants, the expression level of PR10 family genes was significantly decreased in VaPUB transgenic vines under P. viticola treatment or cold stress. Results from this study showed that the U-box protein gene PUB quickly responded to both biotic stress and abiotic stress and significantly influenced the accumulation of resistance related proteins in grapevine.
Collapse
Affiliation(s)
- Li Jiao
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China; Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, China.
| |
Collapse
|
31
|
Zhou R, Yu X, Ottosen CO, Rosenqvist E, Zhao L, Wang Y, Yu W, Zhao T, Wu Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC PLANT BIOLOGY 2017; 17:24. [PMID: 28122507 PMCID: PMC5264292 DOI: 10.1186/s12870-017-0974-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/11/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Abiotic stresses due to environmental factors could adversely affect the growth and development of crops. Among the abiotic stresses, drought and heat stress are two critical threats to crop growth and sustainable agriculture worldwide. Considering global climate change, incidence of combined drought and heat stress is likely to increase. The aim of this study was to shed light on plant growth performance and leaf physiology of three tomatoes cultivars ('Arvento', 'LA1994' and 'LA2093') under control, drought, heat and combined stress. RESULTS Shoot fresh and dry weight, leaf area and relative water content of all cultivars significantly decreased under drought and combined stress as compared to control. The net photosynthesis and starch content were significantly lower under drought and combined stress than control in the three cultivars. Stomata and pore length of the three cultivars significantly decreased under drought and combined stress as compared to control. The tomato 'Arvento' was more affected by heat stress than 'LA1994' and 'LA2093' due to significant decreases in shoot dry weight, chlorophyll a and carotenoid content, starch content and NPQ (non-photochemical quenching) only in 'Arvento' under heat treatment. By comparison, the two heat-tolerant tomatoes were more affected by drought stress compared to 'Arvento' as shown by small stomatal and pore area, decreased sucrose content, ΦPSII (quantum yield of photosystem II), ETR (electron transport rate) and qL (fraction of open PSII centers) in 'LA1994' and 'LA2093'. The three cultivars showed similar response when subjected to the combination of drought and heat stress as shown by most physiological parameters, even though only 'LA1994' and 'LA2093' showed decreased Fv/Fm (maximum potential quantum efficiency of photosystem II), ΦPSII, ETR and qL under combined stress. CONCLUSIONS The cultivars differing in heat sensitivity did not show difference in the combined stress sensitivity, indicating that selection for tomatoes with combined stress tolerance might not be correlated with the single stress tolerance. In this study, drought stress had a predominant effect on tomato over heat stress, which explained why simultaneous application of heat and drought revealed similar physiological responses to the drought stress. These results will uncover the difference and linkage between the physiological response of tomatoes to drought, heat and combined stress and be important for the selection and breeding of tolerant tomato cultivars under single and combine stress.
Collapse
Affiliation(s)
- Rong Zhou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu China
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | - Xiaqing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu China
| | | | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Liping Zhao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu China
| | - Yinlei Wang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu China
| | - Wengui Yu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu China
| | - Tongmin Zhao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu China
| | - Zhen Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu China
| |
Collapse
|
32
|
Cantalapiedra CP, García-Pereira MJ, Gracia MP, Igartua E, Casas AM, Contreras-Moreira B. Large Differences in Gene Expression Responses to Drought and Heat Stress between Elite Barley Cultivar Scarlett and a Spanish Landrace. FRONTIERS IN PLANT SCIENCE 2017; 8:647. [PMID: 28507554 PMCID: PMC5410667 DOI: 10.3389/fpls.2017.00647] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 04/10/2017] [Indexed: 05/05/2023]
Abstract
Drought causes important losses in crop production every season. Improvement for drought tolerance could take advantage of the diversity held in germplasm collections, much of which has not been incorporated yet into modern breeding. Spanish landraces constitute a promising resource for barley breeding, as they were widely grown until last century and still show good yielding ability under stress. Here, we study the transcriptome expression landscape in two genotypes, an outstanding Spanish landrace-derived inbred line (SBCC073) and a modern cultivar (Scarlett). Gene expression of adult plants after prolonged stresses, either drought or drought combined with heat, was monitored. Transcriptome of mature leaves presented little changes under severe drought, whereas abundant gene expression changes were observed under combined mild drought and heat. Developing inflorescences of SBCC073 exhibited mostly unaltered gene expression, whereas numerous changes were found in the same tissues for Scarlett. Genotypic differences in physiological traits and gene expression patterns confirmed the different behavior of landrace SBCC073 and cultivar Scarlett under abiotic stress, suggesting that they responded to stress following different strategies. A comparison with related studies in barley, addressing gene expression responses to drought, revealed common biological processes, but moderate agreement regarding individual differentially expressed transcripts. Special emphasis was put in the search of co-expressed genes and underlying common regulatory motifs. Overall, 11 transcription factors were identified, and one of them matched cis-regulatory motifs discovered upstream of co-expressed genes involved in those responses.
Collapse
Affiliation(s)
- Carlos P. Cantalapiedra
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María J. García-Pereira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - María P. Gracia
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ernesto Igartua
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Ana M. Casas
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
| | - Bruno Contreras-Moreira
- Department of Genetics and Plant Production, Estación Experimental de Aula Dei (CSIC)Zaragoza, Spain
- Fundación ARAIDZaragoza, Spain
- *Correspondence: Bruno Contreras-Moreira
| |
Collapse
|
33
|
Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X. The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1471. [PMID: 27833614 PMCID: PMC5080359 DOI: 10.3389/fpls.2016.01471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 05/18/2023]
Abstract
At the eight-leaf stage, maize is highly sensitive to stresses such as drought, heat, and their combination, which greatly affect its yield. At present, few studies have analyzed maize response to combined drought and heat stress at the eight-leaf stage. In this study, we measured certain physical parameters of maize at the eight-leaf stage when it was exposed to drought, heat, and their combination. The results showed an increase in the content of H2O2 and malondialdehyde (MDA), and in the enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but a decrease in the quantum efficiency of photosystem II (ΦPSII). The most obvious increase or decrease in physical parameters was found under the combined stress condition. Moreover, to identify proteins differentially regulated by the three stress conditions at the eight-leaf stage, total proteins from the maize leaves were identified and quantified using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. In summary, the expression levels of 135, 65, and 201 proteins were significantly changed under the heat, drought and combined stress conditions, respectively. Of the 135, 65, and 201 differentially expressed proteins, 61, 28, and 16 responded exclusively to drought stress, heat stress, and combined stress, respectively. Bioinformatics analysis implied that chaperone proteins and proteases play important roles in the adaptive response of maize to heat stress and combined stress, and that the leaf senescence promoted by ethylene-responsive protein and ripening-related protein may play active roles in maize tolerance to combined drought and heat stress. The signaling pathways related to differentially expressed proteins were obviously different under all three stress conditions. Thus, the functional characterization of these differentially expressed proteins will be helpful for discovering new targets to enhance maize tolerance to stress.
Collapse
Affiliation(s)
- Feiyun Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Dayong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yulong Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Fuju Tai
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Chaohai Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
34
|
Wang X, Cai X, Xu C, Wang Q, Dai S. Drought-Responsive Mechanisms in Plant Leaves Revealed by Proteomics. Int J Mol Sci 2016; 17:E1706. [PMID: 27763546 PMCID: PMC5085738 DOI: 10.3390/ijms17101706] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/06/2016] [Accepted: 09/22/2016] [Indexed: 02/04/2023] Open
Abstract
Plant drought tolerance is a complex trait that requires a global view to understand its underlying mechanism. The proteomic aspects of plant drought response have been extensively investigated in model plants, crops and wood plants. In this review, we summarize recent proteomic studies on drought response in leaves to reveal the common and specialized drought-responsive mechanisms in different plants. Although drought-responsive proteins exhibit various patterns depending on plant species, genotypes and stress intensity, proteomic analyses show that dominant changes occurred in sensing and signal transduction, reactive oxygen species scavenging, osmotic regulation, gene expression, protein synthesis/turnover, cell structure modulation, as well as carbohydrate and energy metabolism. In combination with physiological and molecular results, proteomic studies in leaves have helped to discover some potential proteins and/or metabolic pathways for drought tolerance. These findings provide new clues for understanding the molecular basis of plant drought tolerance.
Collapse
Affiliation(s)
- Xiaoli Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Xiaofeng Cai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Chenxi Xu
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Quanhua Wang
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| | - Shaojun Dai
- Development Centre of Plant Germplasm Resources, College of Life and Environmental Sciences, Shanghai Normal University, Shanghai 200234, China.
| |
Collapse
|
35
|
Zhang N, Huo W, Zhang L, Chen F, Cui D. Identification of Winter-Responsive Proteins in Bread Wheat Using Proteomics Analysis and Virus-Induced Gene Silencing (VIGS). Mol Cell Proteomics 2016; 15:2954-69. [PMID: 27402868 DOI: 10.1074/mcp.m115.057232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Proteomic approaches were applied to identify protein spots involved in cold responses in wheat. By comparing the differentially accumulated proteins from two cultivars (UC1110 and PI 610750) and their derivatives, as well as the F10 recombinant inbred line population differing in cold-tolerance, a total of 20 common protein spots representing 16 unique proteins were successfully identified using 2-DE method. Of these, 14 spots had significantly enhanced abundance in the cold-sensitive parental cultivar UC1110 and its 20 descendant lines when compared with the cold-tolerant parental cultivar PI 610750 and its 20 descendant lines. Six protein spots with reduced abundance were also detected. The identified protein spots are involved in stress/defense, carbohydrate metabolism, protein metabolism, nitrogen metabolism, energy metabolism, and photosynthesis. The 20 differentially expressed protein spots were chosen for quantitative real-time polymerase chain reaction (qRT-PCR) to investigate expression changes at the RNA level. The results indicated that the transcriptional expression patterns of 11 genes were consistent with their protein expression models. Among the three unknown proteins, Spot 20 (PAP6-like) showed high sequence similarities with PAP6. qRT-PCR results implied that cold and salt stresses increased the expression of PAP6-like in wheat leaves. Furthermore, VIGS (virus-induced gene silencing)-treated plants generated for PAP6-like were subjected to freezing stress, these plants had more serious droop and wilt, an increased rate of relative electrolyte leakage, reduced relative water content (RWC) and decreased tocopherol levels when compared with viral control plants. However, the plants that were silenced for the other two unknown proteins had no significant differences in comparison to the BSMV0-inoculated plants under freezing conditions. These results indicate that PAP6-like possibly plays an important role in conferring cold tolerance in wheat.
Collapse
Affiliation(s)
- Ning Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Wang Huo
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Lingran Zhang
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Feng Chen
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| | - Dangqun Cui
- From the ‡Agronomy College/National Key Laboratory of Wheat and Corn Crop/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
36
|
Impact of Drought, Heat, and Their Combination on Chlorophyll Fluorescence and Yield of Wild Barley (Hordeum spontaneum). ACTA ACUST UNITED AC 2015. [DOI: 10.1155/2015/120868] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The impact of (long-term) drought acclimation and (short-term) heat stress and their combination on fast chlorophyll fluorescence induction curves (OJIP) and grain yield was tested using pot-grown plants of wild barley (Hordeum spontaneum) originating from Northern Egypt. Concerning agronomic traits, the main effect of drought was decreased biomass accumulation and grain yield, while heat specifically affected floral development. The treatments caused specific inhibitions of photosystem II (PSII) functionality. While heat stressed plants showed a reduction of maximum quantum efficiency of PSII (φP0), an indication of effects on oxygen evolving complex (OEC) functionality, and the connectivity of PSII units, these features were entirely missing in drought acclimated plants. Drought caused a reduction of the Performance Index (PIabs) and of the relative amplitude of the IP-phase of the OJIP induction curve (ΔVIP). Individuals suffering from a combination of drought and heat showed a better ability to recover photosynthetic electron transport after the relief of stress in comparison to heat stressed plants. However, this improved capacity to recover was not accompanied by an increased grain yield. Thus, we conclude that chlorophyll fluorescence measurements provide valuable physiological data; however, their use in agronomic studies for the prediction of agronomic traits should be done with some precaution.
Collapse
|
37
|
Koh J, Chen G, Yoo MJ, Zhu N, Dufresne D, Erickson JE, Shao H, Chen S. Comparative Proteomic Analysis of Brassica napus in Response to Drought Stress. J Proteome Res 2015; 14:3068-81. [PMID: 26086353 DOI: 10.1021/pr501323d] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Drought is one of the most widespread stresses leading to retardation of plant growth and development. We examined proteome changes of an important oil seed crop, canola (Brassica napus L.), under drought stress over a 14-day period. Using iTRAQ LC-MS/MS, we identified 1976 proteins expressed during drought stress. Among them, 417 proteins showed significant changes in abundance, and 136, 244, 286, and 213 proteins were differentially expressed in the third, seventh, 10th, and 14th day of stress, respectively. Functional analysis indicated that the number of proteins associated with metabolism, protein folding and degradation, and signaling decreased, while those related to energy (photosynthesis), protein synthesis, and stress and defense increased in response to drought stress. The seventh and 10th-day profiles were similar to each other but with more post-translational modifications (PTMs) at day 10. Interestingly, 181 proteins underwent PTMs; 49 of them were differentially changed in drought-stressed plants, and 33 were observed at the 10th day. Comparison of protein expression changes with those of gene transcription showed a positive correlation in B. napus, although different patterns between transcripts and proteins were observed at each time point. Under drought stress, most protein abundance changes may be attributed to gene transcription, and PTMs clearly contribute to protein diversity and functions.
Collapse
Affiliation(s)
| | - Gang Chen
- §Yangzhou University, Yangzhou, 225009 Jiangsu, China
| | | | | | - Daniel Dufresne
- ⊥Palm Beach Central High School, Wellington, Florida 33411, United States
| | | | - Hongbo Shao
- #Yantai Institute of Costal Zone Research, Chinese Academy of Sciences, Yantai, 264003 Shandong, China
| | | |
Collapse
|
38
|
Obrępalska-Stęplowska A, Renaut J, Planchon S, Przybylska A, Wieczorek P, Barylski J, Palukaitis P. Effect of temperature on the pathogenesis, accumulation of viral and satellite RNAs and on plant proteome in peanut stunt virus and satellite RNA-infected plants. FRONTIERS IN PLANT SCIENCE 2015; 6:903. [PMID: 26579153 PMCID: PMC4625170 DOI: 10.3389/fpls.2015.00903] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/09/2015] [Indexed: 05/08/2023]
Abstract
Temperature is an important environmental factor influencing plant development in natural and diseased conditions. The growth rate of plants grown at C27°C is more rapid than for plants grown at 21°C. Thus, temperature affects the rate of pathogenesis progression in individual plants. We have analyzed the effect of temperature conditions (either 21°C or 27°C during the day) on the accumulation rate of the virus and satellite RNA (satRNA) in Nicotiana benthamiana plants infected by peanut stunt virus (PSV) with and without its satRNA, at four time points. In addition, we extracted proteins from PSV and PSV plus satRNA-infected plants harvested at 21 dpi, when disease symptoms began to appear on plants grown at 21°C and were well developed on those grown at 27°C, to assess the proteome profile in infected plants compared to mock-inoculated plants grown at these two temperatures, using 2D-gel electrophoresis and mass spectrometry approaches. The accumulation rate of the viral RNAs and satRNA was more rapid at 27°C at the beginning of the infection and then rapidly decreased in PSV-infected plants. At 21 dpi, PSV and satRNA accumulation was higher at 21°C and had a tendency to increase further. In all studied plants grown at 27°C, we observed a significant drop in the identified proteins participating in photosynthesis and carbohydrate metabolism at the proteome level, in comparison to plants maintained at 21°C. On the other hand, the proteins involved in protein metabolic processes were all more abundant in plants grown at 27°C. This was especially evident when PSV-infected plants were analyzed, where increase in abundance of proteins involved in protein synthesis, degradation, and folding was revealed. In mock-inoculated and PSV-infected plants we found an increase in abundance of the majority of stress-related differently-regulated proteins and those associated with protein metabolism. In contrast, in PSV plus satRNA-infected plants the shift in the temperature barely increased the level of stress-related proteins.
Collapse
Affiliation(s)
- Aleksandra Obrępalska-Stęplowska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
- *Correspondence: Aleksandra Obrępalska-Stęplowska
| | - Jenny Renaut
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Sebastien Planchon
- Department Environmental Research and Innovation, Integrative Biology Facility, Luxembourg Institute of Science and TechnologyBelvaux, Luxembourg
| | - Arnika Przybylska
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Przemysław Wieczorek
- Interdepartmental Laboratory of Molecular Biology, Institute of Plant Protection – National Research InstitutePoznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology, Adam Mickiewicz UniversityPoznań, Poland
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women UniversitySeoul, South Korea
| |
Collapse
|