1
|
Biswas S, Khaing EP, Zhong V, Eaton-Rye JJ. Arg24 and 26 of the D2 protein are important for photosystem II assembly and plastoquinol exchange in Synechocystis sp. PCC 6803. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1865:149150. [PMID: 38906313 DOI: 10.1016/j.bbabio.2024.149150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/26/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024]
Abstract
Photosystem II (PS II) assembly is a stepwise process involving preassembly complexes or modules focused around four core PS II proteins. The current model of PS II assembly in cyanobacteria is derived from studies involving the deletion of one or more of these core subunits. Such deletions may destabilize other PS II assembly intermediates, making constructing a clear picture of the intermediate events difficult. Information on plastoquinone exchange pathways operating within PS II is also unclear and relies heavily on computer-aided simulations. Deletion of PsbX in [S. Biswas, J.J. Eaton-Rye, Biochim. Biophys. Acta - Bioenerg. 1863 (2022) 148519] suggested modified QB binding in PS II lacking this subunit. This study has indicated the phenotype of the ∆PsbX mutant arose by disrupting a conserved hydrogen bond between PsbX and the D2 (PsbD) protein. We mutated two conserved arginine residues (D2:Arg24 and D2:Arg26) to further understand the observations made with the ∆PsbX mutant. Mutating Arg24 disrupted the interaction between PsbX and D2, replicating the high-light sensitivity and altered fluorescence decay kinetics observed in the ∆PsbX strain. The Arg26 residue, on the other hand, was more important for either PS II assembly or for stabilizing the fully assembled complex. The effects of mutating both arginine residues to alanine or aspartate were severe enough to render the corresponding double mutants non-photoautotrophic. Our study furthers our knowledge of the amino-acid interactions stabilizing plastoquinone-exchange pathways while providing a platform to study PS II assembly and repair without the actual deletion of any proteins.
Collapse
Affiliation(s)
- Sandeep Biswas
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Ei Phyo Khaing
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Victor Zhong
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
2
|
Song Q, Wang X, Liu Y, Brestic M, Yang X. StLTO1, a lumen thiol oxidoreductase in Solanum tuberosum L., enhances the cold resistance of potato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111481. [PMID: 36181944 DOI: 10.1016/j.plantsci.2022.111481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Cold stress reduces plant photosynthesis and increases the accumulation of reactive oxygen species (ROS) in plants, thereby dramatically affecting plant growth, crop productivity and quality. Here, we report that lumen thiol oxidoreductase 1 (StLTO1), a vitamin K epoxide reductase (VKOR)-like protein in the thylakoid membrane of Solanum tuberosum L., enhances the cold tolerance of potato plants. Under normal conditions, overexpression of StLTO1 in plants promoted plant growth. In addition, potato plants overexpressing StLTO1 displayed enhanced photosynthetic capacity and increased capacity for scavenging ROS compared to StLTO1 knockdown and wild-type potato plants under cold conditions. Overexpression of StLTO1 in potato plants also improved cold-regulated (COR) gene expression after cold stress. Our results suggest that StLTO1 acts as a positive regulator of cold resistance in potato plants.
Collapse
Affiliation(s)
- Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Xipan Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
3
|
Sunoj V, Wen Y, Jajoo A, Short A, Zeng W, Elsheery N, Cao K. Moderate photoinhibition of PSII and oxidation of P700 contribute to chilling tolerance of tropical tree species in subtropics of China. PHOTOSYNTHETICA 2022; 61:177-189. [PMID: 39650675 PMCID: PMC11515820 DOI: 10.32615/ps.2022.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/09/2022] [Indexed: 12/11/2024]
Abstract
In the subtropics, a few tropical tree species are distributed and planted for ornamental and horticultural purposes; however, the photosynthesis of these species can be impaired by chilling. This study aimed to understand how these species respond to chilling. Light-dependent and CO2 assimilation reactions of six tropical tree species from geographically diverse areas, but grown at a lower subtropical site in China, were monitored during a chilling (≤ 10°C). Chilling induced stomatal and nonstomatal effects and moderate photoinhibition of PSII, with severe effect in Ixora chinensis. Woodfordia fruticosa was little affected by chilling, with negligible reduction of photosynthesis and PSII activity, higher cyclic electron flow (CEF), and oxidation state of P700 (P700+). Photoinhibition of PSII thus reduced electron flow to P700, while active CEF reduced oxidative damage of PSI and maintained photosynthesis during chilling. Studied parameters revealed that coupling between light-dependent and CO2 assimilation reactions was enhanced under chilling.
Collapse
Affiliation(s)
- V.S.J. Sunoj
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - Y. Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - A. Jajoo
- School of Life Science, Devi Ahilya University, 452017 Indore, India
| | - A.W. Short
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403, USA
| | - W.H. Zeng
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| | - N.I. Elsheery
- Department of Agricultural Botany, Tanta University, 72513 Tanta, Egypt
| | - K.F. Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri-Bioresources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, 530004 Nanning, Guangxi, China
| |
Collapse
|
4
|
Rath JR, Pandey J, Yadav RM, Zamal MY, Ramachandran P, Mekala NR, Allakhverdiev SI, Subramanyam R. Temperature-induced reversible changes in photosynthesis efficiency and organization of thylakoid membranes from pea (Pisum sativum). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:144-154. [PMID: 35696889 DOI: 10.1016/j.plaphy.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
High temperature can induce a substantial adverse effect on plant photosynthesis. This study addressed the impact of moderately high temperature (35 °C) on photosynthetic efficiency and thylakoid membrane organization in Pisum sativum. The Chl a fluorescence curves showed a significant change, indicating a reduction in photosynthetic efficiency when pea plants were exposed to moderate high-temperature stress. The pulse-amplitude modulation measurements showed decreased non-photochemical quenching while the non-regulated energy dissipation increased in treated compared to control and recovery plants. Both parameters indicated that the photosystem (PS)II was prone to temperature stress. The PSI donor side limitation increased in treated and recovery plants compared to control, suggesting the donor side of PSI is hampered in moderate-high temperature. Further, the PSI acceptor side increased in recovery plants compared to control, suggesting that the cyclic electron transport is repressed after temperature treatment but revert back to normal in recovery conditions. Also, the content of photoprotective carotenoid pigments like lutein and xanthophylls increased in temperature-treated leaves. These results indicate the alteration of macro-organization of thylakoid membranes under moderately elevated temperature, whereas supercomplexes restored to the control levels under recovery conditions. Further, the light harvesting complex (LHC)II trimers, and monomers were significantly decreased in temperature-treated plants. Furthermore, the amount of PSII reaction center proteins D1, D2, PsbO, and Cyt b6 was reduced under moderate temperature, whereas the content of LHC proteins of PSI was stable. These observations suggest that moderately high temperature can alter supercomplexes, which leads to change in the pigment-protein organization.
Collapse
Affiliation(s)
- Jyoti Ranjan Rath
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Jayendra Pandey
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Mohammad Yusuf Zamal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Nageswara Rao Mekala
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Suleyman I Allakhverdiev
- К.А. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, 127276, Russia
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
5
|
Inagaki N. Processing of D1 Protein: A Mysterious Process Carried Out in Thylakoid Lumen. Int J Mol Sci 2022; 23:2520. [PMID: 35269663 PMCID: PMC8909930 DOI: 10.3390/ijms23052520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022] Open
Abstract
In oxygenic photosynthetic organisms, D1 protein, a core subunit of photosystem II (PSII), displays a rapid turnover in the light, in which D1 proteins are distinctively damaged and immediately removed from the PSII. In parallel, as a repair process, D1 proteins are synthesized and simultaneously assembled into the PSII. On this flow, the D1 protein is synthesized as a precursor with a carboxyl-terminal extension, and the D1 processing is defined as a step for proteolytic removal of the extension by a specific protease, CtpA. The D1 processing plays a crucial role in appearance of water-oxidizing capacity of PSII, because the main chain carboxyl group at carboxyl-terminus of the D1 protein, exposed by the D1 processing, ligates a manganese and a calcium atom in the Mn4CaO5-cluster, a special equipment for water-oxidizing chemistry of PSII. This review focuses on the D1 processing and discusses it from four angles: (i) Discovery of the D1 processing and recognition of its importance: (ii) Enzyme involved in the D1 processing: (iii) Efforts for understanding significance of the D1 processing: (iv) Remaining mysteries in the D1 processing. Through the review, I summarize the current status of our knowledge on and around the D1 processing.
Collapse
Affiliation(s)
- Noritoshi Inagaki
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), Tsukuba 305-8518, Japan
| |
Collapse
|
6
|
Khan N, Essemine J, Hamdani S, Qu M, Lyu MJA, Perveen S, Stirbet A, Govindjee G, Zhu XG. Natural variation in the fast phase of chlorophyll a fluorescence induction curve (OJIP) in a global rice minicore panel. PHOTOSYNTHESIS RESEARCH 2021; 150:137-158. [PMID: 33159615 DOI: 10.1007/s11120-020-00794-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Photosynthesis can be probed through Chlorophyll a fluorescence induction (FI), which provides detailed insight into the electron transfer process in Photosystem II, and beyond. Here, we have systematically studied the natural variation of the fast phase of the FI, i.e. the OJIP phase, in rice. The OJIP phase of the Chl a fluorescence induction curve is referred to as "fast transient" lasting for less than a second; it is obtained after a dark-adapted sample is exposed to saturating light. In the OJIP curve, "O" stands for "origin" (minimal fluorescence), "P" for "peak" (maximum fluorescence), and J and I for inflection points between the O and P levels. Further, Fo is the fluorescence intensity at the "O" level, whereas Fm is the intensity at the P level, and Fv (= Fm - Fo) is the variable fluorescence. We surveyed a set of quantitative parameters derived from the FI curves of 199 rice accessions, grown under both field condition (FC) and growth room condition (GC). Our results show a significant variation between Japonica (JAP) and Indica (IND) subgroups, under both the growth conditions, in almost all the parameters derived from the OJIP curves. The ratio of the variable to the maximum (Fv/Fm) and of the variable to the minimum (Fv/Fo) fluorescence, the performance index (PIabs), as well as the amplitude of the I-P phase (AI-P) show higher values in JAP compared to that in the IND subpopulation. In contrast, the amplitude of the O-J phase (AO-J) and the normalized area above the OJIP curve (Sm) show an opposite trend. The performed genetic analysis shows that plants grown under GC appear much more affected by environmental factors than those grown in the field. We further conducted a genome-wide association study (GWAS) using 11 parameters derived from plants grown in the field. In total, 596 non-unique significant loci based on these parameters were identified by GWAS. Several photosynthesis-related proteins were identified to be associated with different OJIP parameters. We found that traits with high correlation are usually associated with similar genomic regions. Specifically, the thermal phase of FI, which includes the amplitudes of the J-I and I-P subphases (AJ-I and AI-P) of the OJIP curve, is, in turn, associated with certain common genomic regions. Our study is the first one dealing with the natural variations in rice, with the aim to characterize potential candidate genes controlling the magnitude and half-time of each of the phases in the OJIP FI curve.
Collapse
Affiliation(s)
- Naveed Khan
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Institute of Nutrition and Health, University of Chinese Academy of Science, Chinese Academy of Sciences, Shanghai, 200031, China
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jemaa Essemine
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Saber Hamdani
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming-Ju Amy Lyu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Govindjee Govindjee
- Department of Plant Biology, Department of Biochemistry, and Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin-Guang Zhu
- State Key Laboratory for Plant Molecular Genetics and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
7
|
Jangir MM, Chowdhury S, Bhagavatula V. Differential response of photosynthetic apparatus towards alkaline pH treatment in NIES-39 and PCC 7345 strains of Arthrospira platensis. Int Microbiol 2021; 24:219-231. [PMID: 33438119 DOI: 10.1007/s10123-021-00160-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Alkaline stress is one of the severe abiotic stresses, which is not well studied so far, especially among cyanobacteria. To affirm the characteristics of alkaline stress and the subsequent adaptive responses in Arthrospira platensis NIES-39 and Arthrospira platensis PCC 7345, photosynthetic pigments, spectral properties of thylakoids, PSII and PSI activities, and pigment-protein profiles of thylakoids under different pH regimes were examined. The accessory pigments showed a pH-mediated sensitivity. The pigment-protein complexes of thylakoids are also affected, resulting in the altered fluorescence emission profile. At pH 11, a possible shift of the PBsome antenna complex from PSII to PSI is observed. PSII reaction center is found to be more susceptible to alkaline stress in comparison to the PSI. In Arthrospira platensis NIES-39 at pH 11, a drop of 68% in the oxygen evolution with a significant increase of PSI activity by 114% is recorded within 24 h of pH treatment. Alterations in the cellular ultrastructure of Arthrospira platensis NIES-39 at pH 11 were observed, along with the increased number of plastoglobules attached with the thylakoid membranes. Arthrospira platensis NIES-39 is more adaptable to pH variation than Arthrospira platensis PCC 7345.
Collapse
Affiliation(s)
- Monika Mahesh Jangir
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| | - Vani Bhagavatula
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, 333031, India.
| |
Collapse
|
8
|
Elsheery NI, Sunoj VSJ, Wen Y, Zhu JJ, Muralidharan G, Cao KF. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:50-60. [PMID: 32035252 DOI: 10.1016/j.plaphy.2020.01.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Chilling is one of the main abiotic stresses that adversely affect the productivity of sugarcane, in marginal tropical regions where chilling incidence occurs with seasonal changes. However, nanoparticles (NPs) have been tested as a mitigation strategy against diverse abiotic stresses. In this study, NPs such as silicon dioxide (nSiO2; 5-15 nm), zinc oxide (nZnO; <100 nm), selenium (nSe; 100 mesh), graphene (graphene nanoribbons [GNRs] alkyl functionalized; 2-15 μm × 40-250 nm) were applied as foliar sprays on sugarcane leaves to understand the amelioration effect of NPs against negative impact of chilling stress on photosynthesis and photoprotection. To this end, seedlings of moderately chilling tolerant sugarcane variety Guitang 49 was used for current study and spilt plot was used as statistical design. The changes in the level chilling tolerance after the application of NPs on Guitang 49 were compared with tolerance level of chilling tolerant variety Guitang 28. NPs treatments reduced the adverse effects of chilling by maintaining the maximum photochemical efficiency of PSII (Fv/Fm), maximum photo-oxidizable PSI (Pm), and photosynthetic gas exchange. Furthermore, application of NPs increased the content of light harvesting pigments (chlorophylls and cartinoids) in NPs treated seedlings. Higher carotenoid accumulation in leaves of NPs treated seedlings enhanced the nonphotochemical quenching (NPQ) of PSII. Among the NPs, nSiO2 showed higher amelioration effects and it can be used alone or in combination with other NPs to mitigate chilling stress in sugarcane.
Collapse
Affiliation(s)
- Nabil I Elsheery
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China; Department of Agricultural Botany, Tanta University, Tanta, 72513, Egypt
| | - V S J Sunoj
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - Y Wen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - J J Zhu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - G Muralidharan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China
| | - K F Cao
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bio-resources and Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, PR China.
| |
Collapse
|
9
|
Prelle LR, Graiff A, Gründling-Pfaff S, Sommer V, Kuriyama K, Karsten U. Photosynthesis and Respiration of Baltic Sea Benthic Diatoms to Changing Environmental Conditions and Growth Responses of Selected Species as Affected by an Adjacent Peatland (Hütelmoor). Front Microbiol 2019; 10:1500. [PMID: 31333612 PMCID: PMC6620715 DOI: 10.3389/fmicb.2019.01500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/14/2019] [Indexed: 12/30/2022] Open
Abstract
Eight benthic diatom taxa (Actinocyclus octonarius, Melosira moniliformis, Halamphora sp. 1, Halamphora sp. 2, Navicula perminuta, Navicula phyllepta, Nitzschia dubiiformis, Nitzschia pusilla) were isolated from sediments sampled in the southern coastal brackish Baltic Sea and established as unialgal cultures. The coastal shallow water sampling area lies close to a fen peat site (Hütelmoor) and both are connected through an underground peat layer, which might facilitate organic matter and nutrient fluxes along the terrestrial-marine gradient. The photosynthetic performance of these diatoms was measured at different photon fluence rates (0-1200 μmol photons m-2 s-1, always recorded at 20°C) and different temperatures (5-40°C, always measured at saturating ∼270 μmol photons m-2 s-1), resulting in light saturation points between 32 and 151 μmol photons m-2 s-1 and maximum net primary production rates of 23-144 μmol O2 mg-1 Chl a h-1. None of the species showed severe photoinhibition, and hence all displayed a high photo-physiological plasticity. Photosynthetic oxygen evolution and respirational oxygen consumption between 5 and 40°C revealed eurythermal traits for half of the studied taxa as photosynthetic efficiency was at least 20% of the maximum values at the extreme temperatures. The remaining taxa also indicated eurythermal characteristics, however, photosynthetic efficiency of at least 20% was at a narrower temperature range [5 (10) °C to 30 (35) °C]. Species-specific optimum temperatures for photosynthesis (15-30°C) were always lower compared to respiration (25-40°C). Actinocyclus octonarius and Nitzschia dubiiformis were grown in different defined media, some enriched with Hütelmoor water to test for possible effects of organic components. Hütelmoor water media stimulated growth of both diatom species when kept in a light dark cycle. Actinocyclus octonarius particularly grew in darkness in Hütelmoor water media, pointing to heterotrophic capabilities. The benthic diatoms studied are characterized by high photo-physiological plasticity and a broad temperature tolerance to maintain high primary production rates under wide environmental fluctuations. Organic carbon fluxes from the Hütelmoor into the Baltic Sea may support mixo- and/or heterotrophic growth of microphytobenthic communities. These are essential traits for living in a highly dynamic and variable shallow water environment at the coastal zone of the Baltic Sea.
Collapse
Affiliation(s)
| | | | | | | | | | - Ulf Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Rostock, Germany
| |
Collapse
|
10
|
Kumar J, Choudhary AK, Gupta DS, Kumar S. Towards Exploitation of Adaptive Traits for Climate-Resilient Smart Pulses. Int J Mol Sci 2019; 20:E2971. [PMID: 31216660 PMCID: PMC6627977 DOI: 10.3390/ijms20122971] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Pulses are the main source of protein and minerals in the vegetarian diet. These are primarily cultivated on marginal lands with few inputs in several resource-poor countries of the world, including several in South Asia. Their cultivation in resource-scarce conditions exposes them to various abiotic and biotic stresses, leading to significant yield losses. Furthermore, climate change due to global warming has increased their vulnerability to emerging new insect pests and abiotic stresses that can become even more serious in the coming years. The changing climate scenario has made it more challenging to breed and develop climate-resilient smart pulses. Although pulses are climate smart, as they simultaneously adapt to and mitigate the effects of climate change, their narrow genetic diversity has always been a major constraint to their improvement for adaptability. However, existing genetic diversity still provides opportunities to exploit novel attributes for developing climate-resilient cultivars. The mining and exploitation of adaptive traits imparting tolerance/resistance to climate-smart pulses can be accelerated further by using cutting-edge approaches of biotechnology such as transgenics, genome editing, and epigenetics. This review discusses various classical and molecular approaches and strategies to exploit adaptive traits for breeding climate-smart pulses.
Collapse
Affiliation(s)
- Jitendra Kumar
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | | | - Debjyoti Sen Gupta
- Indian Institute of Pulses Research, Kalyanpur, Kanpur 208 024, Uttar Pradesh, India.
| | - Shiv Kumar
- Biodiversity and Integrated Gene Management Program, International Centre for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299, Rabat-Institute, Rabat, Morocco.
| |
Collapse
|
11
|
Tiwari A, Singh P, Riyazat Khadim S, Singh AK, Singh U, Singh P, Asthana RK. Role of Ca 2+ as protectant under heat stress by regulation of photosynthesis and membrane saturation in Anabaena PCC 7120. PROTOPLASMA 2019; 256:681-691. [PMID: 30456698 DOI: 10.1007/s00709-018-1328-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/12/2018] [Indexed: 05/08/2023]
Abstract
The present study was aimed at understanding the effects of heat stress on selected physiological and biochemical parameters of a model cyanobacterium, Anabaena PCC 7120 in addition to amelioration strategy using exogenous Ca2+. A comparison of the cells exposed to heat stress (0-24 h) in the presence or absence of Ca2+ clearly showed reduction in colony-forming ability and increase in reactive oxygen species (ROS) leading to loss in the viability of cells of Ca2+-deficient cultures. There was higher level of saturation in membrane lipids of the cells supplemented with Ca2+ along with higher accumulation of proline. Similarly, higher quantum yield (7.8-fold) in Ca2+-supplemented cultures indicated role of Ca2+ in regulation of photosynthesis. Relative electron transport rate (rETR) decreased in both the sets with the difference in the rate of decrease (slow) in Ca2+-supplemented cultures. The Ca2+-supplemented sets also maintained high levels of open reaction centers of PS II in comparison to Ca2+-deprived cells. Increase in transcripts of both subunits ((rbcL and rbcS) of RubisCO from Ca2+-supplemented Anabaena cultures pointed out the role of Ca2+ in sustenance of photosynthesis of cells via CO2 fixation, thus, playing an important role in maintaining metabolic status of the heat-stressed cyanobacterium.
Collapse
Affiliation(s)
- Anupam Tiwari
- Lovely Professional University, Phagwara, Jalandhar, India
| | - Prabhakar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Sk Riyazat Khadim
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ankit Kumar Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Urmilesh Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Priyanka Singh
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Ravi Kumar Asthana
- R.N. Singh Memorial Lab, Centre of Advanced study in Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
12
|
Sreeharsha RV, Mudalkar S, Sengupta D, Unnikrishnan DK, Reddy AR. Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO 2 environment in pigeonpea (Cajanus cajan L.). PHOTOSYNTHESIS RESEARCH 2019; 139:425-439. [PMID: 30244353 DOI: 10.1007/s11120-018-0586-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
In the current study, pigeonpea (Cajanus cajan L.), a promising legume food crop was assessed for its photosynthetic physiology, antioxidative system as well as C and N metabolism under elevated CO2 and combined drought stress (DS). Pigeonpea was grown in open top chambers under elevated CO2 (600 µmol mol-1) and ambient CO2 (390 ± 20 µmol mol-1) concentrations, later subjected to DS by complete water withholding. The DS plants were re-watered and recovered (R) to gain normal physiological growth and assessed the recoverable capacity in both elevated and ambient CO2 concentrations. The elevated CO2 grown pigeonpea showed greater gas exchange physiology, nodule mass and total dry biomass over ambient CO2 grown plants under well-watered (WW) and DS conditions albeit a decrease in leaf relative water content (LRWC). Glucose, fructose and sucrose levels were measured to understand the role of hexose to sucrose ratios (H:S) in mediating the drought responses. Free amino acid levels as indicative of N assimilation provided insights into C and N balance under DS and CO2 interactions. The enzymatic and non-enzymatic antioxidants showed significant upregulation in elevated CO2 grown plants under DS thereby protecting the plant from oxidative damage caused by the reactive oxygen species. Our results clearly demonstrated the protective role of elevated CO2 under DS at lower LRWC and gained comparative advantage of mitigating the DS-induced damage over ambient CO2 grown pigeonpea.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shalini Mudalkar
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Debashree Sengupta
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Divya K Unnikrishnan
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Attipalli Ramachandra Reddy
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India.
| |
Collapse
|
13
|
Mishra KB, Mishra A, Kubásek J, Urban O, Heyer AG. Low temperature induced modulation of photosynthetic induction in non-acclimated and cold-acclimated Arabidopsis thaliana: chlorophyll a fluorescence and gas-exchange measurements. PHOTOSYNTHESIS RESEARCH 2019; 139:123-143. [PMID: 30306531 DOI: 10.1007/s11120-018-0588-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/24/2018] [Indexed: 05/23/2023]
Abstract
Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold acclimation, and of low temperatures, on a cold-sensitive Arabidopsis thaliana accession C24. Upon excitation with low intensity (40 µmol photons m- 2 s- 1) ~ 620 nm light, slow (minute range) ChlF transients, at ~ 22 °C, showed two waves in the SMT phase (S, semi steady-state; M, maximum; T, terminal steady-state), whereas CO2 assimilation showed a linear increase with time. Low-temperature treatment (down to - 1.5 °C) strongly modulated the SMT phase and stimulated a peak in the CO2 assimilation induction curve. We show that the SMT phase, at ~ 22 °C, was abolished when measured under high actinic irradiance, or when 3-(3, 4-dichlorophenyl)-1, 1- dimethylurea (DCMU, an inhibitor of electron flow) or methyl viologen (MV, a Photosystem I (PSI) electron acceptor) was added to the system. Our data suggest that stimulation of the SMT wave, at low temperatures, has multiple reasons, which may include changes in both photochemical and biochemical reactions leading to modulations in non-photochemical quenching (NPQ) of the excited state of Chl, "state transitions," as well as changes in the rate of cyclic electron flow through PSI. Further, we suggest that cold acclimation, in accession C24, promotes "state transition" and protects photosystems by preventing high excitation pressure during low-temperature exposure.
Collapse
Affiliation(s)
- Kumud B Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
- Department of Experimental Biology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| | - Anamika Mishra
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Jiří Kubásek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic
| | - Arnd G Heyer
- Department of Plant Biotechnology, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70567, Stuttgart, Germany
| |
Collapse
|
14
|
Ptushenko VV, Zhigalova TV, Avercheva OV, Tikhonov AN. Three phases of energy-dependent induction of [Formula: see text] and Chl a fluorescence in Tradescantia fluminensis leaves. PHOTOSYNTHESIS RESEARCH 2019. [PMID: 29516232 DOI: 10.1007/s11120-018-0494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In plants, the short-term regulation (STR, seconds to minute time scale) of photosynthetic apparatus is associated with the energy-dependent control in the chloroplast electron transport, the distribution of light energy between photosystems (PS) II and I, activation/deactivation of the Calvin-Benson cycle (CBC) enzymes, and relocation of chloroplasts within the plant cell. In this work, using a dual-PAM technique for measuring the time-courses of P700 photooxidation and Chl a fluorescence, we have investigated the STR events in Tradescantia fluminensis leaves. The comparison of Chl a fluorescence and [Formula: see text] induction allowed us to investigate the contribution of the trans-thylakoid pH difference (ΔpH) to the STR events. Two parameters were used as the indicators of ΔpH generation: pH-dependent component of non-photochemical quenching of Chl a fluorescence, and pHin-dependent rate of electron transfer from plastoquinol (PQH2) to [Formula: see text] (via the Cyt b6f complex and plastocyanin). In dark-adapted leaves, kinetics of [Formula: see text] induction revealed three phases. Initial phase is characterized by rapid electron flow to [Formula: see text] (τ1/2 ~ 5-10 ms), which is likely related to cyclic electron flow around PSI, while the outflow of electrons from PSI is restricted by slow consumption of NADPH in the CBC. The light-induced generation of ΔpH and activation of the CBC promote photooxidation of P700 and concomitant retardation of [Formula: see text] reduction (τ1/2 ~ 20 ms). Prolonged illumination induces additional slowing down of electron transfer to [Formula: see text] (τ1/2 ≥ 30-35 ms). The latter effect is not accompanied by changes in the Chl a fluorescence parameters which are sensitive to ΔpH generation. We suggest the tentative explanation of the latter results by the reversal of Q-cycle, which causes the deceleration of PQH2 oxidation due to the back pressure of stromal reductants.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N.Belozersky Institute of Physical-Chemical Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia
| | | | - Olga V Avercheva
- Faculty of Biology, M.V.Lomonosov Moscow State University, Moscow, Russia
| | - Alexander N Tikhonov
- N.M.Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow, Russia.
- Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia.
| |
Collapse
|
15
|
Madireddi SK, Nama S, Devadasu E, Subramanyam R. Thylakoid membrane dynamics and state transitions in Chlamydomonas reinhardtii under elevated temperature. PHOTOSYNTHESIS RESEARCH 2019; 139:215-226. [PMID: 30030686 DOI: 10.1007/s11120-018-0562-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Moderately elevated temperatures can induce state transitions in higher plants by phosphorylation of light-harvesting complex II (LHCII). In this study, we exposed unicellular algae Chlamydomonas reinhardtii to moderately elevated temperatures (38 °C) for short period of time in the dark to understand the thylakoid membrane dynamics and state transition mechanism. Here we report that under elevated temperatures (1) LHCII gets phosphorylated similar to higher plants and (2) there is decreased absorption cross section of photosystem II (PSII), whereas (3) there is no change in absorption cross section of photosystem I (PSI) indicating that LHCII trimers are largely disconnected with both photosystems under moderately elevated temperatures and (4) on return to room temperature after elevated temperature treatment there is a formation of state transition complex comprising of PSII-LHCII-PSI. The temperature-induced state transition mechanism also depends on stt7 kinase-like in light-induced state transition. The protein content was stable at the moderately elevated temperature treatment of 40 °C; however, at 45 °C severe downregulation in photosynthetic performance and protein content was observed. In addition to the known changes to photosynthetic apparatus, elevated temperatures can destabilize the PSII-LHCII complex that can result in decreased photosynthetic efficiency in C. reinhardtii. We concluded that the membrane dynamics of light-induced state transitions differs considerably from temperature-induced state transition mechanisms in C. reinhardtii.
Collapse
Affiliation(s)
- Sai Kiran Madireddi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Srilatha Nama
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Elsinraju Devadasu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|
16
|
Huang W, Suorsa M, Zhang SB. In vivo regulation of thylakoid proton motive force in immature leaves. PHOTOSYNTHESIS RESEARCH 2018; 138:207-218. [PMID: 30056561 DOI: 10.1007/s11120-018-0565-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
In chloroplast, proton motive force (pmf) is critical for ATP synthesis and photoprotection. To prevent photoinhibition of photosynthetic apparatus, proton gradient (ΔpH) across the thylakoid membranes needs to be built up to minimize the production of reactive oxygen species (ROS) in thylakoid membranes. However, the regulation of thylakoid pmf in immature leaves is little known. In this study, we compared photosynthetic electron sinks, P700 redox state, non-photochemical quenching (NPQ), and electrochromic shift (ECS) signal in immature and mature leaves of a cultivar of Camellia. The immature leaves displayed lower linear electron flow and cyclic electron flow, but higher levels of NPQ and P700 oxidation ratio under high light. Meanwhile, we found that pmf and ΔpH were higher in the immature leaves. Furthermore, the immature leaves showed significantly lower thylakoid proton conductivity than mature leaves. These results strongly indicated that immature leaves can build up enough ΔpH by modulating proton efflux from the lumenal side to the stromal side of thylakoid membranes, which is essential to prevent photoinhibition via thermal energy dissipation and photosynthetic control of electron transfer. This study highlights that the activity of chloroplast ATP synthase is a key safety valve for photoprotection in immature leaves.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | | | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
17
|
Huang W, Tikkanen M, Cai YF, Wang JH, Zhang SB. Chloroplastic ATP synthase optimizes the trade-off between photosynthetic CO2 assimilation and photoprotection during leaf maturation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1067-1074. [DOI: 10.1016/j.bbabio.2018.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/03/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022]
|
18
|
Zhang Y, Wu H, Sun M, Peng Q, Li A. Photosynthetic physiological performance and proteomic profiling of the oleaginous algae Scenedesmus acuminatus reveal the mechanism of lipid accumulation under low and high nitrogen supplies. PHOTOSYNTHESIS RESEARCH 2018; 138:73-102. [PMID: 30039359 DOI: 10.1007/s11120-018-0549-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
In this study, we presented cellular morphological changes, time-resolved biochemical composition, photosynthetic performance and proteomic profiling to capture the photosynthetic physiological response of Scenedesmus acuminatus under low nitrogen (3.6 mM NaNO3, N-) and high nitrogen supplies (18.0 mM NaNO3, N+). S. acuminatus cells showed extensive lipid accumulation (53.7% of dry weight) and were enriched in long-chain fatty acids (C16 & C18) under low nitrogen supply. The activity of PSII and photosynthetic rate decreases, whereas non-photochemical quenching and dark respiration rates were increased in the N- group. In addition, the results indicated a redistribution of light excitation energy between PSII and PSI in S. acuminatus exists before lipid accumulation. The iTRAQ results showed that, under high nitrogen supply, protein abundance of the chlorophyll biosynthesis, the Calvin cycle and ribosomal proteins decreased in S. acuminatus. In contrast, proteins associated with the photosynthetic machinery, except for F-type ATPase, were increased in the N+ group (N+, 3 vs. 9 days and 3 days, N+ vs. N-). Under low nitrogen supply, proteins involved in central carbon metabolism, fatty acid synthesis and branched-chain amino acid metabolism were increased, whereas the abundance of proteins of the photosynthetic machinery had decreased, with exception of PSI (N-, 3 vs. 9 days and 9 days, N+ vs. N-). Collectively, the current study has provided a basis for the metabolic engineering of S. acuminatus for biofuel production.
Collapse
Affiliation(s)
- Ying Zhang
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Huijuan Wu
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Mingzhe Sun
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Qianqian Peng
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Aifen Li
- Institute of Hydrobiology, Jinan University, Guangzhou, 510632, People's Republic of China.
| |
Collapse
|
19
|
Huang W, Tikkanen M, Zhang SB. Photoinhibition of photosystem I in Nephrolepis falciformis depends on reactive oxygen species generated in the chloroplast stroma. PHOTOSYNTHESIS RESEARCH 2018; 137:129-140. [PMID: 29357086 DOI: 10.1007/s11120-018-0484-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/17/2018] [Indexed: 05/26/2023]
Abstract
We studied how high light causes photoinhibition of photosystem I (PSI) in the shade-demanding fern Nephrolepis falciformis, in an attempt to understand the mechanism of PSI photoinhibition under natural field conditions. Intact leaves were treated with constant high light and fluctuating light. Detached leaves were treated with constant high light in the presence and absence of methyl viologen (MV). Chlorophyll fluorescence and P700 signal were determined to estimate photoinhibition. PSI was highly oxidized under high light before treatments. N. falciformis showed significantly stronger photoinhibition of PSI and PSII under constant high light than fluctuating light. These results suggest that high levels of P700 oxidation ratio cannot prevent PSI photoinhibition under high light in N. falciformis. Furthermore, photoinhibition of PSI in N. falciformis was largely accelerated in the presence of MV that promotes the production of superoxide anion radicals in the chloroplast stroma by accepting electrons from PSI. From these results, we propose that photoinhibition of PSI in N. falciformis is mainly caused by superoxide radicals generated in the chloroplast stroma, which is different from the mechanism of PSI photoinhibition in Arabidopsis thaliana and spinach. Here, we provide some new insights into the PSI photoinhibition under natural field conditions.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Mikko Tikkanen
- Department of Biochemistry, Molecular Plant Biology, University of Turku, 20014, Turku, Finland
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
20
|
Melo NMJ, Rosa RSEG, Pereira EG, Souza JP. Rising [CO 2] changes competition relationships between native woody and alien herbaceous Cerrado species. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:854-864. [PMID: 32291067 DOI: 10.1071/fp17333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/09/2018] [Indexed: 06/11/2023]
Abstract
The structure of the Cerrado may be explained by the competition between woody and herbaceous species. However, the rising CO2 concentration ([CO2]) predicted under current climatic change may modify the ecophysiological responses of woody and herbaceous species owing to functional traits of each group, which may in turn modify vegetation structure as competitive relationships change among species. In this study we examined ecophysiological responses and competition between two cerrado species under elevated [CO2]. We selected an herbaceous alien grass (Melinis minutiflora P. Beauv.) and an endemic woody cerrado species (Hymenaea stigonocarpa Mart. ex Hayne). Hymenaea stigonocarpa individuals were maintained in three plots with different M. minutiflora densities: 0, 50 and 100% in two different [CO2] (380ppm and 700ppm) in open-top chambers. Leaf gas exchange, effective quantum efficiency of PSII, chlorophyll content, and growth increased in H. stigonocarpa plants under high [CO2]. The competition with M. minutiflora under elevated [CO2] led to an increase in specific leaf area, leaf area ratio and biomass allocation to shoots in H. stigonocarpa. In contrast, M. minutiflora had a delayed leaf development and high stem dry mass under elevated [CO2]. These changes in growth patterns under elevated [CO2] will modify allocation of resources, improving the competition potential of the woody species over the alien grass species in the Cerrado.
Collapse
Affiliation(s)
- Nayara M J Melo
- Federal University of São Carlos, Campus São Carlos, Department of Botany, Washington Luís Highway, Km 235, CEP 13565-905 São Carlos, São Paulo, Brazil
| | - Rayete S-E G Rosa
- Federal University of Viçosa, Campus Florestal, Institute of Biology, LMG 818, Km 06, CEP 35690-000, Florestal, Minas Gerais, Brazil
| | - Eduardo G Pereira
- Federal University of Viçosa, Campus Florestal, Institute of Biology, LMG 818, Km 06, CEP 35690-000, Florestal, Minas Gerais, Brazil
| | - João Paulo Souza
- Federal University of Viçosa, Campus Florestal, Institute of Biology, LMG 818, Km 06, CEP 35690-000, Florestal, Minas Gerais, Brazil
| |
Collapse
|
21
|
Mirzaei S, Mansouri M, Mohammadi-Nejad G, Sablok G. Comparative assessment of chloroplast transcriptional responses highlights conserved and unique patterns across Triticeae members under salt stress. PHOTOSYNTHESIS RESEARCH 2018; 136:357-369. [PMID: 29230609 DOI: 10.1007/s11120-017-0469-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Chloroplast functional genomics, in particular understanding the chloroplast transcriptional response is of immense importance mainly due to its role in oxygenic photosynthesis. As a photosynthetic unit, its efficiency and transcriptional activity is directly regulated by reactive oxygen species during abiotic and biotic stress and subsequently affects carbon assimilation, and plant biomass. In crops, understanding photosynthesis is crucial for crop domestication by identifying the traits that could be exploited for crop improvement. Transcriptionally and translationally active chloroplast plays a key role by regulating the PSI and PSII photo-reaction centres, which ubiquitously affects the light harvesting. Using a comparative transcriptomics mapping approach, we identified differential regulation of key chloroplast genes during salt stress across Triticeae members with potential genes involved in photosynthesis and electron transport system such as CytB6f. Apart from differentially regulated genes involved in PSI and PSII, we found widespread evidence of intron splicing events, specifically uniquely spliced petB and petD in Triticum aestivum and high proportion of RNA editing in ndh genes across the Triticeae members during salt stress. We also highlight the role and differential regulation of ATP synthase as member of CF0CF1 and also revealed the effect of salt stress on the water-splitting complex under salt stress. It is worthwhile to mention that the observed conserved down-regulation of psbJ across the Triticeae is limiting the assembly of water-splitting complexes and thus making the BEP clade Triticeae members more vulnerable to high light during the salt stress. Comparative understanding of the chloroplast transcriptional dynamics and photosynthetic regulation will improve the approaches for improved crop domestication.
Collapse
Affiliation(s)
- Saeid Mirzaei
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, 7631818356, Iran.
| | - Mehdi Mansouri
- Department of Agricultural Biotechnology, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ghasem Mohammadi-Nejad
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Gaurav Sablok
- Finnish Museum of Natural History (Botany), PO Box 7, 00014, Helsinki, Finland
- Department of Bioscience, Viikki Plant Science Center, PO Box 7, 00014, Helsinki, Finland
| |
Collapse
|
22
|
Brestic M, Zivcak M, Hauptvogel P, Misheva S, Kocheva K, Yang X, Li X, Allakhverdiev SI. Wheat plant selection for high yields entailed improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions. PHOTOSYNTHESIS RESEARCH 2018; 136:245-255. [PMID: 29383631 DOI: 10.1007/s11120-018-0486-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/23/2018] [Indexed: 05/11/2023]
Abstract
Assessment of photosynthetic traits and temperature tolerance was performed on field-grown modern genotype (MG), and the local landrace (LR) of wheat (Triticum aestivum L.) as well as the wild relative species (Aegilops cylindrica Host.). The comparison was based on measurements of the gas exchange (A/ci, light and temperature response curves), slow and fast chlorophyll fluorescence kinetics, and some growth and leaf parameters. In MG, we observed the highest CO2 assimilation rate [Formula: see text] electron transport rate (Jmax) and maximum carboxylation rate [Formula: see text]. The Aegilops leaves had substantially lower values of all photosynthetic parameters; this fact correlated with its lower biomass production. The mesophyll conductance was almost the same in Aegilops and MG, despite the significant differences in leaf phenotype. In contrary, in LR with a higher dry mass per leaf area, the half mesophyll conductance (gm) values indicated more limited CO2 diffusion. In Aegilops, we found much lower carboxylation capacity; this can be attributed mainly to thin leaves and lower Rubisco activity. The difference in CO2 assimilation rate between MG and others was diminished because of its higher mitochondrial respiration activity indicating more intense metabolism. Assessment of temperature response showed lower temperature optimum and a narrow ecological valence (i.e., the range determining the tolerance limits of a species to an environmental factor) in Aegilops. In addition, analysis of photosynthetic thermostability identified the LR as the most sensitive. Our results support the idea that the selection for high yields was accompanied by the increase of photosynthetic productivity through unintentional improvement of leaf anatomical and biochemical traits including tolerance to non-optimal temperature conditions.
Collapse
Affiliation(s)
- Marian Brestic
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia.
| | - Marek Zivcak
- Department of Plant Physiology, Slovak Agricultural University, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Pavol Hauptvogel
- National Agricultural and Food Centre, Research Institute of Plant Production, Piešťany, Slovakia
| | - Svetlana Misheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113, Sofia, Bulgaria
| | - Konstantina Kocheva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bldg. 21, 1113, Sofia, Bulgaria
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, China
| | - Xiangnan Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Suleyman I Allakhverdiev
- Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow, Russia, 127276.
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia, 142290.
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow, Russia, 119991.
- Moscow Institute of Physics and Technology, Institutsky lane 9, Dolgoprudny, Moscow Region, Russia, 141700.
- Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, Matbuat Avenue 2a, 1073, Baku, Azerbaijan.
| |
Collapse
|
23
|
Sukhova E, Mudrilov M, Vodeneev V, Sukhov V. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea. PHOTOSYNTHESIS RESEARCH 2018; 136:215-228. [PMID: 29086893 DOI: 10.1007/s11120-017-0460-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 10/23/2017] [Indexed: 05/17/2023]
Abstract
Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.
Collapse
Affiliation(s)
- Ekaterina Sukhova
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Maxim Mudrilov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Vodeneev
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950
| | - Vladimir Sukhov
- Department of Biophysics, N.I. Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue, 23, Nizhny Novgorod, Russia, 603950.
| |
Collapse
|
24
|
Pashkovskiy PP, Soshinkova TN, Korolkova DV, Kartashov AV, Zlobin IE, Lyubimov VY, Kreslavski VD, Kuznetsov VV. The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells. PHOTOSYNTHESIS RESEARCH 2018; 136:199-214. [PMID: 29071562 DOI: 10.1007/s11120-017-0459-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The antioxidant balance, photochemical activity of photosystem II (PSII), and photosynthetic pigment content, as well as the expression of genes involved in the light signalling of callus lines of Eutrema salsugineum plants (earlier Thellungiella salsuginea) under different spectral light compositions were studied. Growth of callus in red light (RL, maximum 660 nm), in contrast to blue light (BL, maximum 450 nm), resulted in a lower H2O2 content and thiobarbituric acid reactive substances (TBARS). The BL increased the activities of key antioxidant enzymes in comparison with the white light (WL) and RL and demonstrated the minimum level of PSII photochemical activity. The activities of catalase (CAT) and peroxidase (POD) had the highest values in BL, which, along with the increased H2O2 and TBARS content, indicate a higher level of oxidative stress in the cells. The expression levels of the main chloroplast protein genes of PSII (PSBA and PSBD), the NADPH-dependent oxidase gene of the plasma membrane (RbohD), the protochlorophyllide oxidoreductase genes (POR B, C) involved in the biosynthesis of chlorophyll, and the key photoreceptor signalling genes (CIB1, CRY2, PhyB, PhyA, and PIF3) were determined. Possible mechanisms of light quality effects on the physiological parameters of callus cells are discussed.
Collapse
Affiliation(s)
- P P Pashkovskiy
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia.
| | - T N Soshinkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - D V Korolkova
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - A V Kartashov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - I E Zlobin
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| | - V Yu Lyubimov
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - V D Kreslavski
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
- Institute of Basic Biological Problems Russian Academy of Sciences, Pushchino, Russia
| | - Vl V Kuznetsov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
25
|
Kumar J, Basu PS, Gupta S, Dubey S, Sen Gupta D, Singh NP. Physiological and molecular characterisation for high temperature stress in Lens culinaris. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:474-487. [PMID: 32290986 DOI: 10.1071/fp17211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/16/2017] [Indexed: 05/10/2023]
Abstract
In the present study, 11 lentil (Lens culinaris Medik) genotypes including heat tolerant and heat sensitive genotypes identified after a screening of 334 accessions of lentil for traits imparting heat tolerance, were characterised based on physiological traits and molecular markers. Results showed a higher reduction in pollen viability among sensitive genotypes (up to 52.3%) compared with tolerant genotypes (up to 32.4%) at 43°C. Higher photosynthetic electron transport rate was observed among heat tolerant genotypes and two heat tolerant lentil genotypes, IG 4258 (0.43) and IG 3330 (0.38) were having highest Fv/Fm values. However, membrane stability was significantly higher in only one heat tolerant genotype, ILL 10712, indicating that different mechanisms are involved to control heat tolerance in lentil. The molecular characterisation of lentil genotypes with 70 polymorphic SSR and genic markers resulted into distinct clusters in accordance with their heat stress tolerance. A functional marker ISM11257 (intron spanning marker) amplifying an allele of 205bp in size was present only among heat tolerant genotypes, and could be further used in a breeding program to identify heat tolerant lentil genotypes. The findings of this study will contribute to the development of heat tolerant lentil cultivars.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur - 208024, India
| | - Partha Sarathi Basu
- Division of Basic Sciences, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur - 208024, India
| | - Sunanda Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur - 208024, India
| | - Sonali Dubey
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur - 208024, India
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur - 208024, India
| | - Narendra Pratap Singh
- Division of Biotechnology, ICAR-Indian Institute of Pulses Research, Kalyanpur, Kanpur - 208024, India
| |
Collapse
|
26
|
Wang G, Bi A, Amombo E, Li H, Zhang L, Cheng C, Hu T, Fu J. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue. FRONTIERS IN PLANT SCIENCE 2017; 8:2032. [PMID: 29250091 PMCID: PMC5715236 DOI: 10.3389/fpls.2017.02032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/14/2017] [Indexed: 05/29/2023]
Abstract
Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until Fm is reached), ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall fescue under salt stress.
Collapse
Affiliation(s)
- Guangyang Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aoyue Bi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Erick Amombo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huiying Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Liang Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cheng Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Hu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Jinmin Fu
- School of Resources and Environmental Engineering, Ludong University, Yantai, China
| |
Collapse
|
27
|
Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KHM, Varshney RK, Nayyar H. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017; 8:1658. [PMID: 29123532 PMCID: PMC5662899 DOI: 10.3389/fpls.2017.01658] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/08/2017] [Indexed: 05/20/2023]
Abstract
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | - P. V. Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Pooran M. Gaur
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | | | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
28
|
Rozentsvet O, Kosobryukhov A, Zakhozhiy I, Tabalenkova G, Nesterov V, Bogdanova E. Photosynthetic parameters and redox homeostasis of Artemisia santonica L. under conditions of Elton region. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 118:385-393. [PMID: 28710946 DOI: 10.1016/j.plaphy.2017.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Structural and functional parameters and redox homeostasis in leaves of Artemisia santonica L. under environment conditions of Elton lake (the southeast region of the European part of Russia) were measured. The highest photosynthetic apparatus (PA) activity in A. santonica leaves on CO2 gas exchange as well as the highest content of green pigments was observed in the morning. Maximum share of violaxanthin cycle key pigments - zeaxanthin (Zx) and antheraxanthin (Ax) was observed in the afternoon and decreased in the evening. Lipids/chlorophyll (Chl) ratio increased in the evening due to the decrease in Chl concentration, and content of linolenic acid (С18:3n3) was decreased in the middle of the day. The content of TBA-reacting products increased 1.4-fold in the middle of the day, and decreased approximately 2-fold in the evening. The decrease of the activity was observed in diurnal dynamics of superoxide dismutase (SOD) and polyphenol oxidase (PPO). Increased accumulation of phenols and flavonoids, as well as free amino acids (FAA) in A. santonica leaves was observed in the middle of the day. Thus, the ability of A. santonica plants to resist the soil salinization, high levels of solar illumination and temperature consists of a number of protectively-adaptive reactions of metabolic and photosynthetic control.
Collapse
Affiliation(s)
- Olga Rozentsvet
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia.
| | - Anatoly Kosobryukhov
- Institute of Basic Biological Problems, Russian Academy of Sciences, 2 Institutskaya St., 142290 Pushchino, Moscow region, Russia
| | - Ilya Zakhozhiy
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Galina Tabalenkova
- Institute of Biology of the Komi Science Centre of the Ural Division, Russian Academy of Sciences, 8 Kommunisticheskaya St., 167982 Syktyvkar, Komi Republic, Russia
| | - Viktor Nesterov
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| | - Elena Bogdanova
- Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, 10 Komzina St., 445003 Togliatti, Russia
| |
Collapse
|
29
|
Sita K, Sehgal A, HanumanthaRao B, Nair RM, Vara Prasad PV, Kumar S, Gaur PM, Farooq M, Siddique KHM, Varshney RK, Nayyar H. Food Legumes and Rising Temperatures: Effects, Adaptive Functional Mechanisms Specific to Reproductive Growth Stage and Strategies to Improve Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 29123532 DOI: 10.3389/flps.2017.01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.
Collapse
Affiliation(s)
- Kumari Sita
- Department of Botany, Panjab University, Chandigarh, India
| | | | | | | | - P V Vara Prasad
- Sustainable Intensification Innovation Lab, Kansas State University, Manhattan, KS, United States
| | - Shiv Kumar
- International Center for Agricultural Research in the Dry Areas, Rabat, Morocco
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Muhammad Farooq
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| |
Collapse
|
30
|
Morales M, Pintó-Marijuan M, Munné-Bosch S. Seasonal, Sex- and Plant Size-Related Effects on Photoinhibition and Photoprotection in the Dioecious Mediterranean Dwarf Palm, Chamaerops humilis. FRONTIERS IN PLANT SCIENCE 2016; 7:1116. [PMID: 27516764 PMCID: PMC4963400 DOI: 10.3389/fpls.2016.01116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 07/13/2016] [Indexed: 05/14/2023]
Abstract
In Mediterranean-type ecosystems plants are exposed to several adverse environmental conditions throughout the year, ranging from drought stress during the warm and dry summers to chilling stress due to the typical drop in temperatures during winters. Here we evaluated the ecophysiological response, in terms of photoinhibition and photoprotection, of the dioecious Mediterranean palm, Chamaerops humilis to seasonal variations in environmental conditions. Furthermore, we considered as well the influence of plant size, maturity, and sexual dimorphism. Results showed evidence of winter photoinhibition, with a marked decrease of the F v /F m ratio below 0.7 between January and March, which was coincident with the lowest temperatures. During this period, the de-epoxidation state of the xanthophyll cycle and zeaxanthin levels increased, which might serve as a photoprotection mechanism, owing the full recovery from winter photoinhibition during spring. Furthermore, mature plants showed lower chlorophyll levels and higher β-carotene levels per unit of chlorophyll than juvenile plants, and females displayed lower leaf water contents and higher photoinhibition than males during summer, probably due to increased reproductive effort of females. However, neither low temperatures during winter nor reproductive events in females during the summer led to irreversible damage to the photosynthetic apparatus. We conclude that (i) the Mediterranean dwarf palm, C. humilis, suffers from photoinhibition during winter, but this is transient and does not lead to irreversible damage, and (ii) females from this plant species are more sensitive than males to photoinhibition during reproductive events.
Collapse
Affiliation(s)
| | | | - Sergi Munné-Bosch
- Departament de Biologia Vegetal, Facultat de Biologia, Universitat de BarcelonaBarcelona, Spain
| |
Collapse
|
31
|
Shaheen MR, Ayyub CM, Amjad M, Waraich EA. Morpho-physiological evaluation of tomato genotypes under high temperature stress conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2698-704. [PMID: 26304011 DOI: 10.1002/jsfa.7388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum L.) is an important but heat-sensitive vegetable crop. The losses in tomato production associated with heat stress are aggravating further under a global warming scenario. The present study was designed to investigate the comparative performance of tomato genotypes under high temperature stress. Tomato genotypes (191) were exposed to the controlled conditions of high temperature (40/32 °C day/night temperature). Different morphological (shoot length, root length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight and number of leaves), physiological (photosynthetic rate, transpiration rate, water use efficiency, stomatal conductance to water, sub-stomatal CO2 and leaf temperature) and SPAD value (chlorophyll content) were recorded to check the diversity among genotypes against heat stress. RESULTS All the genotypes showed a significantly variable response in almost all the attributes under high-temperature conditions. Correlation among the variables provided a clear understanding of the phenomena involved. Based on all the attributes studied, genotypes L00090 and L00091 were found to be the most heat tolerant compared to other genotypes, whereas CLN1462A and CLN 1466E were found to be comparatively sensitive. CONCLUSION It was concluded that the studied attributes were genotype dependent, and significant diverse performance was noted. The findings of this study pave the way towards the selection of tolerant genotypes, not only for use under high-temperature conditions but also to employ them in breeding programs to produce heat-tolerant hybrids. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Muhammad R Shaheen
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Choudhary M Ayyub
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Muhammad Amjad
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| | - Ejaz A Waraich
- Department of Agronomy, University of Agriculture, Faisalabad, 38040, Punjab, Pakistan
| |
Collapse
|
32
|
Bi A, Fan J, Hu Z, Wang G, Amombo E, Fu J, Hu T. Differential Acclimation of Enzymatic Antioxidant Metabolism and Photosystem II Photochemistry in Tall Fescue under Drought and Heat and the Combined Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:453. [PMID: 27148288 PMCID: PMC4830848 DOI: 10.3389/fpls.2016.00453] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/22/2016] [Indexed: 05/19/2023]
Abstract
Quality inferiority in cool-season turfgrass due to drought, heat, and a combination of both stresses is predicted to be more prevalent in the future. Understanding the various response to heat and drought stress will assist in the selection and breeding of tolerant grass varieties. The objective of this study was to investigate the behavior of antioxidant metabolism and photosystem II (PSII) photochemistry in two tall fescue genotypes (PI 234881 and PI 578718) with various thermotolerance capacities. Wide variations were found between heat-tolerant PI 578718 and heat-sensitive PI 234881 for leaf relative water content, malondialdehyde and electrolyte leakage under drought, high-temperature or a combination of both stresses. The sensitivity of PI 234881 exposed to combined stresses was associated with lower superoxide dismutase activity and higher H2O2 accumulation than that in PI 578718. Various antioxidant enzymes displayed positive correlation with chlorophyll content, but negative with membrane injury index at most of the stages in both tall fescue genotypes. The JIP-test analysis in PI 578718 indicated a significant improvement in ABS/RC, TR0/RC, RE0/RC, RE0/ABS values as compared to the control regime, which indicated that PI 578718 had a high potential to protect the PSII system under drought and high temperature stress. And the PS II photochemistry in PI 234881 was damaged significantly compared with PI578718. Moreover, quantitative RT-PCR revealed that heat and drought stresses deduced the gene expression of psbB and psbC, but induced the expression of psbA. These findings to some extent confirmed that the various adaptations of physiological traits may contribute to breeding in cold-season turfgrass in response to drought, high-temperature, and a combination of both stresses.
Collapse
Affiliation(s)
- Aoyue Bi
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jibiao Fan
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Zhengrong Hu
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Guangyang Wang
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Erick Amombo
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jinmin Fu
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- China-Africa Center, Chinese Academy of SciencesBeijing, China
| | - Tao Hu
- Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, China
- China-Africa Center, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
33
|
Gururani MA, Venkatesh J, Tran LSP. Regulation of Photosynthesis during Abiotic Stress-Induced Photoinhibition. MOLECULAR PLANT 2015; 8:1304-20. [PMID: 25997389 DOI: 10.1016/j.molp.2015.05.005] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 05/18/2023]
Abstract
Plants as sessile organisms are continuously exposed to abiotic stress conditions that impose numerous detrimental effects and cause tremendous loss of yield. Abiotic stresses, including high sunlight, confer serious damage on the photosynthetic machinery of plants. Photosystem II (PSII) is one of the most susceptible components of the photosynthetic machinery that bears the brunt of abiotic stress. In addition to the generation of reactive oxygen species (ROS) by abiotic stress, ROS can also result from the absorption of excessive sunlight by the light-harvesting complex. ROS can damage the photosynthetic apparatus, particularly PSII, resulting in photoinhibition due to an imbalance in the photosynthetic redox signaling pathways and the inhibition of PSII repair. Designing plants with improved abiotic stress tolerance will require a comprehensive understanding of ROS signaling and the regulatory functions of various components, including protein kinases, transcription factors, and phytohormones, in the responses of photosynthetic machinery to abiotic stress. Bioenergetics approaches, such as chlorophyll a transient kinetics analysis, have facilitated our understanding of plant vitality and the assessment of PSII efficiency under adverse environmental conditions. This review discusses the current understanding and indicates potential areas of further studies on the regulation of the photosynthetic machinery under abiotic stress.
Collapse
Affiliation(s)
| | - Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, Seoul 143-701, Korea
| | - Lam Son Phan Tran
- Signaling Pathway Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.
| |
Collapse
|
34
|
Wang G, Kong F, Zhang S, Meng X, Wang Y, Meng Q. A tomato chloroplast-targeted DnaJ protein protects Rubisco activity under heat stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3027-40. [PMID: 25801077 DOI: 10.1093/jxb/erv102] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Photosynthesis is one of the biological processes most sensitive to heat stress in plants. Carbon assimilation, which depends on ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), is one of the major sites sensitive to heat stress in photosynthesis. In this study, the roles of a tomato (Solanum lycopersicum) chloroplast-targeted DnaJ protein (SlCDJ2) in resisting heat using sense and antisense transgenic tomatoes were examined. SlCDJ2 was found to be uniformly distributed in the thylakoids and stroma of the chloroplasts. Under heat stress, sense plants exhibited higher chlorophyll contents and fresh weights, and lower accumulation of reactive oxygen species (ROS) and membrane damage. Moreover, Rubisco activity, Rubisco large subunit (RbcL) content, and CO2 assimilation capacity were all higher in sense plants and lower in antisense plants compared with wild-type plants. Thus, SlCDJ2 contributes to maintenance of CO2 assimilation capacity mainly by protecting Rubisco activity under heat stress. SlCDJ2 probably achieves this by keeping the levels of proteolytic enzymes low, which prevents accelerated degradation of Rubisco under heat stress. Furthermore, a chloroplast heat-shock protein 70 was identified as a binding partner of SlCDJ2 in yeast two-hybrid assays. Taken together, these findings establish a role for SlCDJ2 in maintaining Rubisco activity in plants under heat stress.
Collapse
Affiliation(s)
- Guodong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Song Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xia Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yong Wang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Qingwei Meng
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| |
Collapse
|
35
|
Tiwari S, Tripathy BC, Jajoo A, Das AB, Murata N, Sane PV. Prasanna K. Mohanty (1934-2013): a great photosynthetiker and a wonderful human being who touched the hearts of many. PHOTOSYNTHESIS RESEARCH 2014; 122:235-260. [PMID: 25193504 DOI: 10.1007/s11120-014-0033-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Prasanna K. Mohanty, a great scientist, a great teacher and above all a great human being, left us more than a year ago (on March 9, 2013). He was a pioneer in the field of photosynthesis research; his contributions are many and wide-ranging. In the words of Jack Myers, he would be a "photosynthetiker" par excellence. He remained deeply engaged with research almost to the end of his life; we believe that generations of researchers still to come will benefit from his thorough and enormous work. We present here his life and some of his contributions to the field of Photosynthesis Research. The response to this tribute was overwhelming and we have included most of the tributes, which we received from all over the world. Prasanna Mohanty was a pioneer in the field of "Light Regulation of Photosynthesis", a loving and dedicated teacher-unpretentious, idealistic, and an honest human being.
Collapse
Affiliation(s)
- Swati Tiwari
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India,
| | | | | | | | | | | |
Collapse
|
36
|
Revised scheme for the mechanism of photoinhibition and its application to enhance the abiotic stress tolerance of the photosynthetic machinery. Appl Microbiol Biotechnol 2014; 98:8777-96. [PMID: 25139449 DOI: 10.1007/s00253-014-6020-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 12/23/2022]
Abstract
When photosynthetic organisms are exposed to abiotic stress, their photosynthetic activity is significantly depressed. In particular, photosystem II (PSII) in the photosynthetic machinery is readily inactivated under strong light and this phenomenon is referred to as photoinhibition of PSII. Other types of abiotic stress act synergistically with light stress to accelerate photoinhibition. Recent studies of photoinhibition have revealed that light stress damages PSII directly, whereas other abiotic stresses act exclusively to inhibit the repair of PSII after light-induced damage (photodamage). Such inhibition of repair is associated with suppression, by reactive oxygen species (ROS), of the synthesis of proteins de novo and, in particular, of the D1 protein, and also with the reduced efficiency of repair under stress conditions. Gene-technological improvements in the tolerance of photosynthetic organisms to various abiotic stresses have been achieved via protection of the repair system from ROS and, also, by enhancing the efficiency of repair via facilitation of the turnover of the D1 protein in PSII. In this review, we summarize the current status of research on photoinhibition as it relates to the effects of abiotic stress and we discuss successful strategies that enhance the activity of the repair machinery. In addition, we propose several potential methods for activating the repair system by gene-technological methods.
Collapse
|
37
|
Cortleven A, Nitschke S, Klaumünzer M, AbdElgawad H, Asard H, Grimm B, Riefler M, Schmülling T. A novel protective function for cytokinin in the light stress response is mediated by the Arabidopsis histidine kinase2 and Arabidopsis histidine kinase3 receptors. PLANT PHYSIOLOGY 2014; 164:1470-83. [PMID: 24424319 PMCID: PMC3938634 DOI: 10.1104/pp.113.224667] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 01/10/2014] [Indexed: 05/17/2023]
Abstract
Cytokinins are plant hormones that regulate diverse processes in plant development and responses to biotic and abiotic stresses. In this study, we show that Arabidopsis (Arabidopsis thaliana) plants with a reduced cytokinin status (i.e. cytokinin receptor mutants and transgenic cytokinin-deficient plants) are more susceptible to light stress compared with wild-type plants. This was reflected by a stronger photoinhibition after 24 h of high light (approximately 1,000 µmol m(-2) s(-1)), as shown by the decline in maximum quantum efficiency of photosystem II photochemistry. Photosystem II, especially the D1 protein, is highly sensitive to the detrimental impact of light. Therefore, photoinhibition is always observed when the rate of photodamage exceeds the rate of D1 repair. We demonstrate that in plants with a reduced cytokinin status, the D1 protein level was strongly decreased upon light stress. Inhibition of the D1 repair cycle by lincomycin treatment indicated that these plants experience stronger photodamage. The efficiency of photoprotective mechanisms, such as nonenzymatic and enzymatic scavenging systems, was decreased in plants with a reduced cytokinin status, which could be a cause for the increased photodamage and subsequent D1 degradation. Additionally, slow and incomplete recovery in these plants after light stress indicated insufficient D1 repair. Mutant analysis revealed that the protective function of cytokinin during light stress depends on the Arabidopsis histidine KINASE2 (AHK2) and AHK3 receptors and the type B Arabidopsis response regulator1 (ARR1) and ARR12. We conclude that proper cytokinin signaling and regulation of specific target genes are necessary to protect leaves efficiently from light stress.
Collapse
|
38
|
Kong F, Deng Y, Wang G, Wang J, Liang X, Meng Q. LeCDJ1, a chloroplast DnaJ protein, facilitates heat tolerance in transgenic tomatoes. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:63-74. [PMID: 24148796 DOI: 10.1111/jipb.12119] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/15/2013] [Indexed: 05/22/2023]
Abstract
The roles of a tomato (Lycopersicon esculentum) chloroplast-targeted DnaJ protein (LeCDJ1) were investigated using wild-type (WT) and sense transgenic tomatoes. The LeCDJ1 expression was upregulated by 38 °C, 42 °C, 45 °C, NaCl, PEG, methyl viologen (MV) and hydrogen peroxide (H2O2), but not by 30 °C and 35 °C. Meanwhile, LeCDJ1 was involved in the response of plants to abscisic acid (ABA). Under heat stress, the sense plants showed better growth, higher chlorophyll content, lower malondialdehyde (MDA) accumulation and relative electrical conductivity (REC), and also less PSII photoinhibition than WT. Interestingly, the sense plants treated with streptomycin (SM), an inhibitor of organellar translation, still showed higher maximum photochemistry efficiency of PSII (Fv/Fm) and D1 protein levels than the SM-untreated WT, suggesting that the protective effect of LeCDJ1 on PSII was, at least partially, independent of D1 protein synthesis. Furthermore, the relatively lower superoxide radical (O2(•-)) and H2O2 levels in the sense plants were considered to be due to the higher ascorbate peroxidase (APX) and superoxide dismutase (SOD) activity, which seemed unlikely dependent on their transcription level. These results indicated that LeCDJ1 overexpression facilitated heat tolerance in transgenic tomatoes.
Collapse
Affiliation(s)
- Fanying Kong
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | | | | | | | | | | |
Collapse
|
39
|
Brassinosteroids regulate the thylakoid membrane architecture and the photosystem II function. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:97-104. [DOI: 10.1016/j.jphotobiol.2013.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/07/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022]
|
40
|
Didur O, Dewez D, Popovic R. Alteration of chromium effect on photosystem II activity in Chlamydomonas reinhardtii cultures under different synchronized state of the cell cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:1870-1875. [PMID: 23238598 DOI: 10.1007/s11356-012-1389-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
The inhibitory effect of chromium (Cr) on photosystem II (PSII) activity was investigated in the green alga Chlamydomonas reinhardtii during different phases of the cell cycle. Algae were cultivated in continuous light or a light/dark cycle (16:8 h) to obtain a synchronously dividing cell culture. The cell division phases were determined with the DNA-specific fluorescent probe SYBR green using flow cytometry. The effect of Cr on PSII activity was investigated after a 24-h treatment with algal cultures having different proportions of newly divided cells (G(0)/G(1)), dividing cells at the DNA replication phase (S), and dividing cells at the mitosis phase (G(2)/M). Using chlorophyll a fluorescence parameters based on PSII electron transport capacity in dark- (Φ(M)II) and light-adapted (Φ'(M)II) equilibrium state, we found that the effect of Cr differs depending on the stage of the cell cycle. When algal cultures had a high proportion of cells actively dividing (M phase), the toxic effect of Cr on PSII activity appeared to be much higher and PSII quantum yield was decreased by 80 % compared to algal cultures mainly in the G(0)/G(1) phase. Therefore, the inhibitory effect of Cr on photosynthesis appears to be different according to the cell cycle state of the algal population.
Collapse
Affiliation(s)
- Olivier Didur
- Department of Chemistry, University of Quebec in Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, Quebec, H3C 3P8, Canada
| | | | | |
Collapse
|
41
|
Ogami S, Boussac A, Sugiura M. Deactivation processes in PsbA1-Photosystem II and PsbA3-Photosystem II under photoinhibitory conditions in the cyanobacterium Thermosynechococcus elongatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1322-30. [PMID: 22326861 DOI: 10.1016/j.bbabio.2012.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/06/2012] [Accepted: 01/27/2012] [Indexed: 11/15/2022]
Abstract
The sensitivity to high light conditions of Photosystem II with either PsbA1 (WT*1) or PsbA3 (WT*3) as the D1 protein was studied in whole cells of the thermophilic cyanobacterium Thermosynechococcus elongatus. When the cells are cultivated under high light conditions the following results were found: (i) The O(2) evolution activity decreases faster in WT*1 cells than in WT*3 cells both in the absence and in the presence of lincomycin, a protein synthesis inhibitor; (ii) In WT*1 cells, the rate constant for the decrease of the O(2) evolution activity is comparable in the presence and in the absence of lincomycin; (iii) The D1 content revealed by western blot analysis decays similarly in both WT*1 and WT*3 cells and much slowly than O(2) evolution; (iv) The faster decrease in O(2) evolution in WT*1 than in WT*3 cells correlates with a much faster inhibition of the S(2)-state formation; (v) The shape of the WT*1 cells is altered. All these results are in agreement with a photo-inhibition process resulting in the loss of the O(2) activity much faster than the D1 turnover in PsbA1-PSII and likely to a greater production of reactive oxygen species under high light conditions in WT*1 than in WT*3. This latter result is discussed in view of the known effects of the PsbA1 to PsbA3 substitution on the redox properties of the Photosystem II cofactors. The observation that under low light conditions WT*3 cells are able to express the psbA(3) gene, whereas under similar conditions wild type cells are expressing mainly the psbA(1) gene is also discussed. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Shogo Ogami
- Department of Chemistry, Ehime University, Ehime, Japan
| | | | | |
Collapse
|
42
|
|
43
|
Effects of salicylic acid on protein kinase activity and chloroplast D1 protein degradation in wheat leaves subjected to heat and high light stress. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.chnaes.2011.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R. Functional aspects of the photosynthetic light reactions in heat stressed Arabidopsis deficient in digalactosyl-diacylglycerol. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1526-1533. [PMID: 21458884 DOI: 10.1016/j.jplph.2011.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/28/2011] [Accepted: 01/31/2011] [Indexed: 05/30/2023]
Abstract
Plants are often submitted, in their natural environment, to various abiotic stresses such as heat stress. However, elevated temperature has a detrimental impact on overall plant growth and development. We have examined the physiological response of the dgd1-2 and dgd1-3 Arabidopsis mutants lacking 30-40% of digalactosyl-diacylglycerol (DGDG) exposed to heat constraint. These mutants, which grow similarly to wild type under normal conditions, were previously reported to be defective in basal thermotolerance as measured by cotyledon development. However their functional properties were not described. Chlorophyll fluorescence measurements and absorbance changes at 820nm were used to monitor photosystem II (PSII) and PSI activity, respectively. It was observed that both mutants have similar photosystem activities with some differences. The mutants were less able to use near saturation light energy and elicited higher rates of cyclic PSI electron flow compare to wild type. Arabidopsis leaves exposed to short-term (5min) mild (40°C) or strong (44°C) heat treatment have shown a decline in the operating effective quantum yield of PSII and in the proportion of active PSI reaction centers. However, cyclic PSI electron flow was enhanced. The establishment of the energy-dependent non-photochemical quenching of chlorophyll fluorescence was accelerated but its decline under illumination was inhibited. Furthermore, heat stress affected the process implicated in the redistribution of light excitation energy between the photosystems known as the light state transitions. All the effects of heat stress mentioned above were more intense in the mutant leaves with dgd1-3 being even more susceptible. The decreased DGDG content of the thylakoid membranes together with other lipid changes are proposed to influence the thermo-sensitivity of the light reactions of photosynthesis towards heat stress.
Collapse
Affiliation(s)
- Jemâa Essemine
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, Trois-Rivières, Québec G9A 5H7, Canada
| | | | | | | | | |
Collapse
|
45
|
Najafpour MM. Calcium-manganese oxides as structural and functional models for active site in oxygen evolving complex in photosystem II: Lessons from simple models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:111-7. [DOI: 10.1016/j.jphotobiol.2010.12.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 12/10/2010] [Accepted: 12/13/2010] [Indexed: 01/12/2023]
|
46
|
Dankov KG, Dobrikova AG, Ughy B, Bogos B, Gombos Z, Apostolova EL. LHCII organization and thylakoid lipids affect the sensitivity of the photosynthetic apparatus to high-light treatment. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:629-35. [PMID: 21414793 DOI: 10.1016/j.plaphy.2011.02.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 02/18/2011] [Indexed: 05/30/2023]
Abstract
Pulse-amplitude-modulated (PAM) chlorophyll fluorescence and photosynthetic oxygen evolution were used to investigate the role of the different amount and organization of light-harvesting complexes of photosystem II (LHCII) in four pea species on the susceptibility of the photosynthetic apparatus to high-light treatment. In this work we analyzed the thylakoid membrane lipid composition of the studied pea plants. A relationship between the structural organization of LHCII proteins, the amount of the main lipid classes and the sensitivity of the photosynthetic apparatus to high-light treatment was found. The results reveal that the photosynthetic apparatus, enriched in oligomeric forms of LHCII concomitant with decreased amount of anionic lipids and increased content of the monogalactosyldiacylglycerol (MGDG), is less sensitive to high light. Our data also suggest that the degree of LHCII oligomerization, as well as the lipid composition do not influence the degree of recovery of the PSII photochemistry after excess light exposure.
Collapse
Affiliation(s)
- Kolyo G Dankov
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | | | | | | | | | | |
Collapse
|
47
|
Essemine J, Govindachary S, Ammar S, Bouzid S, Carpentier R. Abolition of photosystem I cyclic electron flow in Arabidopsis thaliana following thermal-stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:235-43. [PMID: 21256041 DOI: 10.1016/j.plaphy.2010.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/29/2010] [Accepted: 11/02/2010] [Indexed: 05/09/2023]
Abstract
Heat tolerance of Arabidopsis thaliana (WT) and its mutants, crr2-2, lacking NADPH-dehydrogenase (Ndh-pathway), and pgr5, deficient in proton gradient regulation and/or ferredoxin-quinone-reductase (FQR-pathway), was studied from 30 to 46°C. Chlorophyll fluorescence revealed that thermal damage to photosystem II (PSII) was maximal in WT plants following short-term exposure of leaves to moderate or high temperature stress. Thermal stress impaired the photosynthetic electron flow at oxidizing and reducing sides of PSII. This was deduced from the transformation of temperature dependent OJIP to OKP patterns, changes in the relative amplitudes of K-step fluorescence rise and F(v)/F(o) ratio. The amplitude of the K-peak that corresponds to the magnitude of damage to the oxygen evolving complex (OEC) in crr2-2 mutants was about 50% of that observed in WT plants exposed to 46°C. The damage to OEC in pgr5 mutants was relatively smaller and thus their PSII complexes were more heat tolerant. P700 oxidation-reduction kinetics following heat-stress revealed that photosystem I (PSI) complexes remained oxidizable either with 10-ms multiple turn-over flashes or far-red illumination but the complementary cyclic electron flow around PSI (CEF) was abolished in both mutants. With further increase in incubation temperature, CEF was fully suppressed even in WT. Thus, P700 turn-over was not enhanced following thermal stress. Furthermore, the experimental data predicts the onset of pseudocyclic electron transport with molecular oxygen as terminal acceptor in crr2-2 and pgr5 mutants but not in wild type Arabidopsis subjected to severe thermal-stress.
Collapse
Affiliation(s)
- Jemâa Essemine
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | | | |
Collapse
|
48
|
Allakhverdiev SI, Thavasi V, Kreslavski VD, Zharmukhamedov SK, Klimov VV, Ramakrishna S, Los DA, Mimuro M, Nishihara H, Carpentier R. Photosynthetic hydrogen production. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2010. [DOI: 10.1016/j.jphotochemrev.2010.07.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Sugiura M, Iwai E, Hayashi H, Boussac A. Differences in the interactions between the subunits of photosystem II dependent on D1 protein variants in the thermophilic cyanobacterium Thermosynechococcus elongatus. J Biol Chem 2010; 285:30008-18. [PMID: 20630865 DOI: 10.1074/jbc.m110.136945] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The main cofactors involved in the oxygen evolution activity of Photosystem II (PSII) are located in two proteins, D1 (PsbA) and D2 (PsbD). In Thermosynechococcus elongatus, a thermophilic cyanobacterium, the D1 protein is encoded by either the psbA(1) or the psbA(3) gene, the expression of which is dependent on environmental conditions. It has been shown that the energetic properties of the PsbA1-PSII and those of the PsbA3-PSII differ significantly (Sugiura, M., Kato, Y., Takahashi, R., Suzuki, H., Watanabe, T., Noguchi, T., Rappaport, F., and Boussac, A. (2010) Biochim. Biophys. Acta 1797, 1491-1499). In this work the structural stability of PSII upon a PsbA1/PsbA3 exchange was investigated. Two deletion mutants lacking another PSII subunit, PsbJ, were constructed in strains expressing either PsbA1 or PsbA3. The PsbJ subunit is a 4-kDa transmembrane polypeptide that is surrounded by D1 (i.e. PsbA1), PsbK, and cytochrome b(559) (Cyt b(559)) in existing three-dimensional models. It is shown that the structural properties of the PsbA3/ΔPsbJ-PSII are not significantly affected. The polypeptide contents, the Cyt b(559) properties, and the proportion of PSII dimer were similar to those found for PsbA3-PSII. In contrast, in PsbA1/ΔPsbJ-PSII the stability of the dimer is greatly diminished, the EPR properties of the Cyt b(559) likely indicates a decrease in its redox potential, and many other PSII subunits are lacking. These results shows that the 21-amino acid substitutions between PsbA1 and PsbA3, which appear to be mainly conservative, must include side chains that are involved in a network of interactions between PsbA and the other PSII subunits.
Collapse
Affiliation(s)
- Miwa Sugiura
- Department of Chemistry, Venture Business Laboratory, Cell-Free Science and Technology Research Center, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| | | | | | | |
Collapse
|
50
|
Sarvikas P, Tyystjärvi T, Tyystjärvi E. Kinetics of prolonged photoinhibition revisited: photoinhibited Photosystem II centres do not protect the active ones against loss of oxygen evolution. PHOTOSYNTHESIS RESEARCH 2010; 103:7-17. [PMID: 19760110 DOI: 10.1007/s11120-009-9496-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 09/07/2009] [Indexed: 05/28/2023]
Abstract
Photoinhibition of Photosystem II (PSII) in lincomycin-treated leaves begins as a first-order reaction, but fluorescence measurements have suggested that after prolonged illumination, the number of active PSII centres stabilizes to 15-20% of control. The stabilization has been interpreted to indicate that photoinhibited PSII centres protect the remaining active centres against photoinhibition (Lee, Hong and Chow, Planta 212:332-342, 2001). In an attempt to study the mechanism of this protection, we measured the reaction kinetics of photoinhibition in lincomycin-treated pumpkin (Cucurbita pepo L.) and pepper (Capsicum annuum L.) leaves in vivo. The light-saturated rate of PSII oxygen evolution, assayed from thylakoids and isolated from the treated leaves, was used as a direct measure of the number of remaining active PSII centres, and the fluorescence parameters F (V)/F (M) and (F (V)/F (M))/F (0) (=1/F (0) - 1/F (M)) were measured for comparison. To our surprise, no stabilization of PSII activity was observed and photoinhibition followed first-order kinetics until PSII activity had virtually declined to zero. A series of in vitro experiments was carried out to see whether stabilization of PSII activity occurs if a particular combination of light intensity and wavelength range is applied, or if a specific PSII preparation is used as experimental material. The results of the in vitro experiments confirmed the in vivo result about persistent first-order kinetics. We conclude that photoinhibited PSII centres offer no measurable protection against photoinhibition.
Collapse
Affiliation(s)
- Päivi Sarvikas
- Plant Physiology and Molecular Biology, Department of Biology, University of Turku, 20014 Turku, Finland
| | | | | |
Collapse
|