1
|
Liu ZH, Xia Y, Ai S, Wang HL. Health risks of Bisphenol-A exposure: From Wnt signaling perspective. ENVIRONMENTAL RESEARCH 2024; 251:118752. [PMID: 38513750 DOI: 10.1016/j.envres.2024.118752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Human beings are routinely exposed to chronic and low dose of Bisphenols (BPs) due to their widely pervasiveness in the environment. BPs hold similar chemical structures to 17β-estradiol (E2) and thyroid hormone, thus posing threats to human health by rendering the endocrine system dysfunctional. Among BPs, Bisphenol-A (BPA) is the best-known and extensively studied endocrine disrupting compound (EDC). BPA possesses multisystem toxicity, including reproductive toxicity, neurotoxicity, hepatoxicity and nephrotoxicity. Particularly, the central nervous system (CNS), especially the developing one, is vulnerable to BPA exposure. This review describes our current knowledge of BPA toxicity and the related molecular mechanisms, with an emphasis on the role of Wnt signaling in the related processes. We also discuss the role of oxidative stress, endocrine signaling and epigenetics in the regulation of Wnt signaling by BPA exposure. In summary, dysfunction of Wnt signaling plays a key role in BPA toxicity and thus can be a potential target to alleviate EDCs induced damage to organisms.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Yanzhou Xia
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Shu Ai
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|
2
|
Xue J, Zhang L, Tao J, Xie X, Wang X, Wu L, Du S, Tan N, Jin Y, Ju J, Fan J, Wang J, Huan F, Gao R. A novel bellidifolin intervention mitigates nonalcoholic fatty liver disease-like changes induced by bisphenol F. J Biomed Res 2024; 38:1-14. [PMID: 38808572 PMCID: PMC11461535 DOI: 10.7555/jbr.37.20230169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/07/2024] [Accepted: 02/13/2024] [Indexed: 05/30/2024] Open
Abstract
As a potential endocrine-disrupting chemical, bisphenol F (BPF) may cause nonalcoholic fatty liver disease (NAFLD)-like changes, but the mechanisms underpinning its pathogenesis as well as the intervention strategies remain poorly understood. Using the electron microscopy technology, along with LipidTOX Deep Red neutral and Bodipy 493/503 staining assays, we observed that BPF treatment elicited a striking accumulation of lipid droplets in HepG2 cells, accompanied by an increased total level of triglycerides. At the molecular level, the lipogenesis-associated mRNAs and proteins, including acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase-1, peroxisome proliferator-activated receptor gamma, and CCAAT-enhancer-binding proteins, increased significantly via the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling regulation in both in vitro and in vivo studies. Furthermore, the immunofluorescence results also showed the robust lipogenesis induced by BPF, evident in its ability to promote the translocation of sterol regulatory element-binding protein-1c from the cytoplasm to the nuclei. To investigate the intervention strategies for BPF-induced NAFLD-like changes, we demonstrated that bellidifolin, isolated and purified from Swertia chirayita, significantly attenuated BPF-induced lipid droplet deposition in HepG2 cell and NAFLD-like changes in mice by blocking the expression of lipogenesis-associated proteins. Therefore, the present study elucidates the mechanisms underlying BPF-induced lipid accumulation in HepG2 cells, while also highlighting the potential of bellidifolin to mitigate BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Taizhou Center for Disease Control and Prevention, Taizhou, Jiangsu 225300, China
| | - Linwei Zhang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jingxian Tao
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuexue Xie
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xi Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Linlin Wu
- Wuxi Center for Disease Control and Prevention, Wuxi, Jiangsu 214023, China
| | - Shuhu Du
- School of Pharmacy, Jiangsu Province Engineering Research Center of Antibody Drug, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ninghua Tan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Yang Jin
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianming Ju
- Laboratory of Quality and Metabolomics of Traditional Chinese Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Junting Fan
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
- Department of Pharmaceutical Analysis, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jun Wang
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Huan
- Key Laboratory of Modern Toxicology, Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
3
|
Patel RH, Truong VB, Sabry R, Acosta JE, McCahill K, Favetta LA. SMAD signaling pathway is disrupted by BPA via the AMH receptor in bovine granulosa cells†. Biol Reprod 2023; 109:994-1008. [PMID: 37724935 DOI: 10.1093/biolre/ioad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023] Open
Abstract
Significant events that determine oocyte competence occur during follicular growth and oocyte maturation. The anti-Mullerian hormone, a positive predictor of fertility, has been shown to be affected by exposure to endocrine disrupting compounds, such as bisphenol A and S. However, the interaction between bisphenols and SMAD proteins, mediators of the anti-Mullerian hormone pathway, has not yet been elucidated. AMH receptor (AMHRII) and downstream SMAD expression was investigated in bovine granulosa cells treated with bisphenol A, bisphenol S, and then competitively with the anti-Mullerian hormone. Here, we show that 24-h bisphenol A exposure in granulosa cells significantly increased SMAD1, SMAD4, and SMAD5 mRNA expression. No significant changes were observed in AMHRII or SMADs protein expression after 24-h treatment. Following 12-h treatments with bisphenol A (alone or with the anti-Mullerian hormone), a significant increase in SMAD1 and SMAD4 mRNA expression was observed, while a significant decrease in SMAD1 and phosphorylated SMAD1 was detected at the protein level. To establish a functional link between bisphenols and the anti-Mullerian hormone signaling pathway, antisense oligonucleotides were utilized to suppress AMHRII expression with or without bisphenol exposure. Initially, transfection conditions were optimized and validated with a 70% knockdown achieved. Our findings show that bisphenol S exerts its effects independently of the anti-Mullerian hormone receptor, while bisphenol A may act directly through the anti-Mullerian hormone signaling pathway providing a potential mechanism by which bisphenols may exert their actions to disrupt follicular development and decrease oocyte competence.
Collapse
Affiliation(s)
- Rushi H Patel
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Vivien B Truong
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Reem Sabry
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Julianna E Acosta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kiera McCahill
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Laura A Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
4
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:ijms24097951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Zhang D, Liu X, Qi Y, Lin Y, Zhao K, Jin Y, Luo J, Xu L, Yu D, Li C. Binding, activity and risk assessment of bisphenols toward farnesoid X receptor pathway: In vitro and in silico study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161701. [PMID: 36709907 DOI: 10.1016/j.scitotenv.2023.161701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/27/2022] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Bisphenols have been identified as emerging environmental pollutants of high concern with potential adverse effects through interactions with receptor-mediated pathways. However, their potential mechanism of action and health risks through the farnesoid X receptor (FXR) pathway remain poorly understood. In the present study, we aimed to explore the potential disruption mechanism of bisphenols through the FXR signalling pathway. Receptor binding assays showed that bisphenols bound to FXR directly, with tetrabromobisphenol A (TBBPA; 34-fold), tetrachlorobisphenol A (TCBPA; 8.7-fold), bisphenol AF (BPAF; 2.0-fold), and bisphenol B (BPB; 1.9-fold) showing a significantly stronger binding potency than bisphenol A (BPA). In receptor transcriptional activity assays, bisphenols showed agonistic activity toward FXR, with BPAF, BPB, and bisphenol F (BPF) exhibiting higher activity than BPA, but TBBPA and TCBPA showing significantly weaker activity than BPA. Molecular docking results indicated that the number of hydrogen bonds dictated their binding strength. Intracellular concentrations of bisphenols were quantified using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in receptor activity assays, and it was found that the intracellular concentrations of TBBPA and TCBPA were 40-fold lower than those of BPA. Using the bioactivity concentrations in the FXR receptor activity assay, the liver concentrations of bisphenols were estimated using physiologically-based pharmacokinetic (PBPK) models through their serum concentrations, and the hazard quotient (HQ) values were calculated. The results suggest a potentially high concern for the risk of activating the FXR pathway for some populations with high exposure. Overall, these results indicate that bisphenols can bind to and activate FXR receptors, and that the activation mechanism is dependent on cellular uptake and binding strength. This study provides important information regarding the exposure risk of bisphenols, which can promote the development of environmentally friendly bisphenols.
Collapse
Affiliation(s)
- Donghui Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Xinya Liu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Qi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yongfeng Lin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuan Jin
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Jiao Luo
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lin Xu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Dianke Yu
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
6
|
Critical Overview on Endocrine Disruptors in Diabetes Mellitus. Int J Mol Sci 2023; 24:ijms24054537. [PMID: 36901966 PMCID: PMC10003192 DOI: 10.3390/ijms24054537] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Diabetes mellitus is a major public health problem in all countries due to its high human and economic burden. Major metabolic alterations are associated with the chronic hyperglycemia that characterizes diabetes and causes devastating complications, including retinopathy, kidney failure, coronary disease and increased cardiovascular mortality. The most common form is type 2 diabetes (T2D) accounting for 90 to 95% of the cases. These chronic metabolic disorders are heterogeneous to which genetic factors contribute, but so do prenatal and postnatal life environmental factors including a sedentary lifestyle, overweight, and obesity. However, these classical risk factors alone cannot explain the rapid evolution of the prevalence of T2D and the high prevalence of type 1 diabetes in particular areas. Among environmental factors, we are in fact exposed to a growing amount of chemical molecules produced by our industries or by our way of life. In this narrative review, we aim to give a critical overview of the role of these pollutants that can interfere with our endocrine system, the so-called endocrine-disrupting chemicals (EDCs), in the pathophysiology of diabetes and metabolic disorders.
Collapse
|
7
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
8
|
Stavridis K, Triantafyllidou O, Pisimisi M, Vlahos N. Bisphenol-A and Female Fertility: An Update of Existing Epidemiological Studies. J Clin Med 2022; 11:jcm11237227. [PMID: 36498800 PMCID: PMC9736436 DOI: 10.3390/jcm11237227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/06/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Humans interfere with a variety of endocrine disruptors on a daily basis, which may result in adverse health effects. Among them, Bisphenol-A (BPA) is the most debated endocrine disruptor, despite being widely studied, regarding its effects on fertility. The aim of this review was to investigate the interrelation of BPA and female fertility. PubMed (Medline) was searched from 2013 until 2022 to identify epidemiological studies that report the association of BPA with fertility parameters, in vitro fertilization (IVF) outcomes, polycystic ovarian syndrome (PCOS) and endometriosis. Regarding general fertility, most studies report an inverse association between BPA and ovarian reserve markers, namely antral follicle count (AFC) and anti-Müllerian hormone (AMH). The BPA and estradiol (E2) levels did not correlate significantly in the majority of studies. No definite conclusions can be reached regarding BPA and IVF endpoints or endometriosis. Lastly, most studies report higher prevalence of PCOS in women with higher BPA concentrations, although no casualty has been proven. Although most studies fail to reach definite conclusion regarding the impact of BPA on fertility, there is accumulating evidence suggesting a negative role of BPA in female reproductive health.
Collapse
Affiliation(s)
- Konstantinos Stavridis
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, 11527 Attica, Greece
- Correspondence: ; Tel.: +30-6981919457
| | - Olga Triantafyllidou
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, 11527 Attica, Greece
| | - Maria Pisimisi
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolaos Vlahos
- 2nd Department of Obstetrics and Gynaecology, Aretaieion Hospital, University of Athens, 11527 Attica, Greece
| |
Collapse
|
9
|
Positive effects of Epigallocatechin-3-gallate (EGCG) intervention on insulin resistance and gut microbial dysbiosis induced by bisphenol A. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Gauvrit T, Benderradji H, Buée L, Blum D, Vieau D. Early-Life Environment Influence on Late-Onset Alzheimer's Disease. Front Cell Dev Biol 2022; 10:834661. [PMID: 35252195 PMCID: PMC8891536 DOI: 10.3389/fcell.2022.834661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
With the expand of the population's average age, the incidence of neurodegenerative disorders has dramatically increased over the last decades. Alzheimer disease (AD) which is the most prevalent neurodegenerative disease is mostly sporadic and primarily characterized by cognitive deficits and neuropathological lesions such as amyloid -β (Aβ) plaques and neurofibrillary tangles composed of hyper- and/or abnormally phosphorylated Tau protein. AD is considered a complex disease that arises from the interaction between environmental and genetic factors, modulated by epigenetic mechanisms. Besides the well-described cognitive decline, AD patients also exhibit metabolic impairments. Metabolic and cognitive perturbations are indeed frequently observed in the Developmental Origin of Health and Diseases (DOHaD) field of research which proposes that environmental perturbations during the perinatal period determine the susceptibility to pathological conditions later in life. In this review, we explored the potential influence of early environmental exposure to risk factors (maternal stress, malnutrition, xenobiotics, chemical factors … ) and the involvement of epigenetic mechanisms on the programming of late-onset AD. Animal models indicate that offspring exposed to early-life stress during gestation and/or lactation increase both AD lesions, lead to defects in synaptic plasticity and finally to cognitive impairments. This long-lasting epigenetic programming could be modulated by factors such as nutriceuticals, epigenetic modifiers or psychosocial behaviour, offering thus future therapeutic opportunity to protect from AD development.
Collapse
Affiliation(s)
- Thibaut Gauvrit
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Hamza Benderradji
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Luc Buée
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Didier Vieau
- Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience and Cognition, Université de Lille, Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| |
Collapse
|
11
|
Wu B, Zhao Q, Li Z, Min Z, Shi M, Nie X, He Q, Gui R. Environmental level bisphenol A accelerates alterations of the reno-cardiac axis by the MAPK cascades in male diabetic rats: An analysis based on transcriptomic profiling and bioinformatics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117671. [PMID: 34435562 DOI: 10.1016/j.envpol.2021.117671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 06/13/2023]
Abstract
In humans and animal models, the kidneys and cardiovascular systems are negatively affected by BPA from the environment. It is considered that BPA have some potential estrogen-like and non-hormone-like properties. In this study, RNA-sequencing and its-related bioinformatics was used as the basic strategy to clarify the characteristic mechanisms of kidney-heart axis remodeling and dysfunction in diabetic male rats under BPA exposure. We found that continuous BPA exposure in diabetic rats aggravated renal impairment, and caused hemodynamic disorders and dysfunctions. There were 655 and 125 differentially expressed genes in the kidney and heart, respectively. For the kidneys, functional annotation and enrichment, and gene set enrichment analyses identified bile acid secretion related to lipid synthesis and transport, and MAPK cascade pathways. For the heart, these bioinformatics analyses clearly pointed to MAPKs pathways. A total of 12 genes and another total of 6 genes were identified from the kidney tissue and heart tissue, respectively. Western blotting showed that exposure to BPA activated MAPK cascades in both organs. In this study, the exacerbated remodeling of diabetic kidney-heart axis under BPA exposure and diabetes might occur through hemodynamics, metabolism disorders, and the immune-inflammatory response, as well as continuous estrogen-like stimulation, with focus on the MAPK cascades.
Collapse
Affiliation(s)
- Bin Wu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China; Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Physiology, Pathophysiology, Pharmacology and Toxicology (Laboratory of Physiological Science), Hubei University of Arts and Science, Xiangyang, China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zuoneng Li
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Zhiteng Min
- Department of Occupational Health, Wuhan Center for Diseases Control and Prevention, Wuhan, China; Key Laboratory of Occupational Hazard Identification and Control of Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Mengdie Shi
- Institute of Environment Health and Food Safety, Wuhan Center for Diseases Control and Prevention, Wuhan, China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
12
|
Multi-Systemic Alterations by Chronic Exposure to a Low Dose of Bisphenol A in Drinking Water: Effects on Inflammation and NAD +-Dependent Deacetylase Sirtuin1 in Lactating and Weaned Rats. Int J Mol Sci 2021; 22:ijms22189666. [PMID: 34575829 PMCID: PMC8467074 DOI: 10.3390/ijms22189666] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 12/28/2022] Open
Abstract
Bisphenol A (BPA) is largely used as a monomer in some types of plastics. It accumulates in tissues and fluids and is able to bypass the placental barrier, affecting various organs and systems. Due to huge developmental processes, children, foetuses, and neonates could be more sensitive to BPA-induced toxicity. To investigate the multi-systemic effects of chronic exposure to a low BPA dose (100 μg/L), pregnant Wistar rats were exposed to BPA in drinking water during gestation and lactation. At weaning, newborn rats received the same treatments as dams until sex maturation. Free and conjugated BPA levels were measured in plasma and adipose tissue; the size of cerebral ventricles was analysed in the brain; morpho-functional and molecular analyses were carried out in the liver with a focus on the expression of inflammatory cytokines and Sirtuin 1 (Sirt1). Higher BPA levels were found in plasma and adipose tissue from BPA treated pups (17 PND) but not in weaned animals. Lateral cerebral ventricles were significantly enlarged in lactating and weaned BPA-exposed animals. In addition, apart from microvesicular steatosis, liver morphology did not exhibit any statistically significant difference for morphological signs of inflammation, hypertrophy, or macrovesicular steatosis, but the expression of inflammatory cytokines, Sirt1, its natural antisense long non-coding RNA (Sirt1-AS LncRNA) and histone deacetylase 1 (Hdac1) were affected in exposed animals. In conclusion, chronic exposure to a low BPA dose could increase the risk for disease in adult life as a consequence of higher BPA circulating levels and accumulation in adipose tissue during the neonatal period.
Collapse
|
13
|
Fillol C, Oleko A, Saoudi A, Zeghnoun A, Balicco A, Gane J, Rambaud L, Leblanc A, Gaudreau É, Marchand P, Le Bizec B, Bouchart V, Le Gléau F, Durand G, Denys S. Exposure of the French population to bisphenols, phthalates, parabens, glycol ethers, brominated flame retardants, and perfluorinated compounds in 2014-2016: Results from the Esteban study. ENVIRONMENT INTERNATIONAL 2021; 147:106340. [PMID: 33422968 DOI: 10.1016/j.envint.2020.106340] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND As part of the French Human Biomonitoring (HBM) programme, the Esteban study described, among other things, biomarkers levels of various chemicals in adults (18-74 years old) and children (6-17 years old). This paper describes the design of the study and provides, for the first time, data on the biological exposure of the general French population to a wide range of contaminants posing a threat to human health which are currently found in domestic environments. METHODS Esteban is a cross-sectional study conducted on a nationwide sample of the French general population. Exposure biomarkers of six families of contaminants deemed detrimental to adults' and children's health were measured in biological samples collected either at participants' homes by a nurse, or brought to a National Health Insurance examination centre. All participants were randomly selected (2503 adults and 1104 children). The geometric mean and percentiles of the distribution of levels were estimated for each biomarker. Most of the descriptive statistical analyses were performed taking into account the sampling design. RESULTS Results provided a nationwide description of biomarker levels. Bisphenols (A, S and F), and some metabolites of phthalates and perfluorinated compounds (PFCs) (specifically, PFOS and PFOA) were quantified in almost all the biological samples analysed. Higher levels were observed in children (except for PFCs). Levels were coherent with international studies, except for bisphenols S and F, brominated flame retardants (BFRs) and parabens (with higher levels reported in the USA than in France). CONCLUSION AND PERSPECTIVES This study is the first to provide a representative assessment of biological exposure to domestic contaminants at the French population level. Our results show that the French general population was exposed to a wide variety of pollutants in 2014-2016, and identify the determinants of exposure. These findings will be useful to stakeholders who wish to advocate an overall reduction in the French population's exposure to harmful substances. Similar future studies in France will help to measure temporal trends, and enable public policies focused on the reduction of those chemicals in the environment to be evaluated.
Collapse
Affiliation(s)
- Clémence Fillol
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France.
| | - Amivi Oleko
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Abdesattar Saoudi
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Abdelkrim Zeghnoun
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Alexis Balicco
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Jessica Gane
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Loïc Rambaud
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| | - Alain Leblanc
- Centre de Toxicologie du Québec (CTQ), Institut National de Santé Publique du Québec (INSPQ), Canada
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut National de Santé Publique du Québec (INSPQ), Canada
| | - Philippe Marchand
- Oniris, INRAE, LABERCA Route de Gachet, Site de la Chantrerie, CS 50707, 44307 Nantes Cedex 3, France
| | - Bruno Le Bizec
- Oniris, INRAE, LABERCA Route de Gachet, Site de la Chantrerie, CS 50707, 44307 Nantes Cedex 3, France
| | - Valérie Bouchart
- LABEO, 1 Route de Rosel, Saint Contest, 14053 Caen Cedex 4, France
| | | | - Gaël Durand
- LABOCEA, 120 avenue de Rochon, CS10052, 29280 Plouzané, France
| | - Sébastien Denys
- Santé publique France, 12 rue du Val d'Osne, 94415 Saint Maurice Cedex, France
| |
Collapse
|
14
|
Usal M, Veyrenc S, Darracq-Ghitalla-Ciock M, Regnault C, Sroda S, Fini JB, Canlet C, Tremblay-Franco M, Raveton M, Reynaud S. Transgenerational metabolic disorders and reproduction defects induced by benzo[a]pyrene in Xenopus tropicalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116109. [PMID: 33234375 DOI: 10.1016/j.envpol.2020.116109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders induced by endocrine disruptors (ED) may contribute to amphibian population declines but no transgenerational studies have evaluated this hypothesis. Here we show that Xenopus tropicalis, exposed from the tadpole stage, to the ED benzo[a]pyrene (BaP, 50 ng.L-1) produced F2 progeny with delayed metamorphosis and sexual maturity. At the adult stage, F2-BaP females displayed fatty liver with inflammation, tissue disorganization and metabolomic and transcriptomic signatures typical of nonalcoholic steato-hepatitis (NASH). This phenotype, similar to that observed in F0 and F1 females, was accompanied by a pancreatic insulin secretory defect. Metabolic disrupted F2-BaP females laid eggs with metabolite contents significantly different from the control and these eggs did not produce viable progeny. This study demonstrated that an ED can induce transgenerational disruption of metabolism and population collapse in amphibians under laboratory conditions. These results show that ED benzo[a]pyrene can impact metabolism over multiple generations and support epidemiological studies implicating environmental EDs in metabolic diseases in humans.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | | | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Sophie Sroda
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Jean-Baptiste Fini
- Unité PhyMA Laboratory, Adaptation Du Vivant, Muséum National D'Histoire Naturelle, 7 Rue Cuvier, 75005, Paris, France.
| | - Cécile Canlet
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Marie Tremblay-Franco
- Toxalim-Research Centre in Food Toxicology, Toulouse University, INRAE UMR 1331, ENVT, INP-Purpan, Paul Sabatier University, F-31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics, MetaboHUB, Toxalim, INRAE UMR 1331, F-31027, Toulouse, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.
| |
Collapse
|
15
|
Engin AB, Engin A. The effect of environmental Bisphenol A exposure on breast cancer associated with obesity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 81:103544. [PMID: 33161112 DOI: 10.1016/j.etap.2020.103544] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 06/11/2023]
Abstract
Bisphenol A (BPA) is a widely used endocrine disrupter. Its environmental exposure is a causative factor of cell aging via decreasing telomerase activity, thus leading to shortening of telomere length. Epidemiological studies confirm positive associations between BPA exposure and the incidence of obesity and type 2 diabetes (T2DM). Increased urinary BPA levels in obese females are both significantly correlated with shorter relative telomere length and T2DM. BPA is a critically effective endocrine disrupter leading to poor prognosis via the obesity-inflammation-aromatase axis in breast cancer. Environmental BPA exposure contributes to the progression of both estrogen dependent and triple negative breast cancers. BPA is a positive regulator of human telomerase reverse transcriptase (hTERT) and it increases the expression of hTERT mRNA in breast cancer cells. BPA exposure can lead to tamoxifen resistance. Among patients treated with chemotherapy, those with persistent high telomerase activity due to BPA are at higher risk of death.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
16
|
Bahelka I, Stupka R, Čítek J, Šprysl M. The impact of bisphenols on reproductive system and on offspring in pigs - A review 2011-2020. CHEMOSPHERE 2021; 263:128203. [PMID: 33297166 DOI: 10.1016/j.chemosphere.2020.128203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
This study summarizes the knowledge about effects of bisphenol A (BPA) and its analogues on reproduction of pigs and some parameters of their offspring during period 2011-2020. Bisphenols are known as one of the most harmful environmental toxicants with endocrine-disrupting properties. One study in the reference period related to male reproductive system. Treatment with an antagonist of G-protein coupled estrogen receptor (GPER) - G15, and bisphenol A and its analogues, tetrabromobisphenol A (TBBPA) and tetrachromobisphenol A (TCBPA) diversely disrupted protein molecules controlling the biogenesis and function of microRNA in Leydig cells. Nine studies examined the effect of BPA, bisphenol S (BPS) or fluorene-9-bisphenol (BHPF) on female reproductive system. From the possible protective effect's point of view seems to be perspective the administration of melatonin in BPA-exposed oocytes. Finally, two studies were found to evaluate the maternal exposure to BPA on offspring's meat quality, muscle metabolism and oxidative stress. Administration of methyl donor improved antioxidant enzymes activity and reduced oxidative stress in piglets.
Collapse
Affiliation(s)
- Ivan Bahelka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic.
| | - Roman Stupka
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Jaroslav Čítek
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| | - Michal Šprysl
- Department of Animal Science, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Czech Republic
| |
Collapse
|
17
|
Mustieles V, D'Cruz SC, Couderq S, Rodríguez-Carrillo A, Fini JB, Hofer T, Steffensen IL, Dirven H, Barouki R, Olea N, Fernández MF, David A. Bisphenol A and its analogues: A comprehensive review to identify and prioritize effect biomarkers for human biomonitoring. ENVIRONMENT INTERNATIONAL 2020; 144:105811. [PMID: 32866736 DOI: 10.1016/j.envint.2020.105811] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 05/21/2023]
Abstract
Human biomonitoring (HBM) studies have demonstrated widespread and daily exposure to bisphenol A (BPA). Moreover, BPA structural analogues (e.g. BPS, BPF, BPAF), used as BPA replacements, are being increasingly detected in human biological matrices. BPA and some of its analogues are classified as endocrine disruptors suspected of contributing to adverse health outcomes such as altered reproduction and neurodevelopment, obesity, and metabolic disorders among other developmental and chronic impairments. One of the aims of the H2020 European Human Biomonitoring Initiative (HBM4EU) is the implementation of effect biomarkers at large scales in future HBM studies in a systematic and standardized way, in order to complement exposure data with mechanistically-based biomarkers of early adverse effects. This review aimed to identify and prioritize existing biomarkers of effect for BPA, as well as to provide relevant mechanistic and adverse outcome pathway (AOP) information in order to cover knowledge gaps and better interpret effect biomarker data. A comprehensive literature search was performed in PubMed to identify all the epidemiologic studies published in the last 10 years addressing the potential relationship between bisphenols exposure and alterations in biological parameters. A total of 5716 references were screened, out of which, 119 full-text articles were analyzed and tabulated in detail. This work provides first an overview of all epigenetics, gene transcription, oxidative stress, reproductive, glucocorticoid and thyroid hormones, metabolic and allergy/immune biomarkers previously studied. Then, promising effect biomarkers related to altered neurodevelopmental and reproductive outcomes including brain-derived neurotrophic factor (BDNF), kisspeptin (KiSS), and gene expression of nuclear receptors are prioritized, providing mechanistic insights based on in vitro, animal studies and AOP information. Finally, the potential of omics technologies for biomarker discovery and its implications for risk assessment are discussed. To the best of our knowledge, this is the first effort to comprehensively identify bisphenol-related biomarkers of effect for HBM purposes.
Collapse
Affiliation(s)
- Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephan Couderq
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | | | - Jean-Baptiste Fini
- Evolution des Régulations Endocriniennes, Département "Adaptation du Vivant", UMR 7221 MNHN/CNRS, Sorbonne Université, Paris 75006, France
| | - Tim Hofer
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Inger-Lise Steffensen
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Hubert Dirven
- Section of Toxicology and Risk Assessment, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, NO-0213 Oslo, Norway
| | - Robert Barouki
- University Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France. Institut national de la santé et de la recherche médicale (INSERM, National Institute of Health & Medical Research) UMR S-1124, Paris, France
| | - Nicolás Olea
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- University of Granada, Center for Biomedical Research (CIBM), Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain.
| | - Arthur David
- Univ Rennes, EHESP, Inserm, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
18
|
Yu J, Tuo F, Luo Y, Yang Y, Xu J. Toxic effects of perinatal maternal exposure to nonylphenol on lung inflammation in male offspring rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139238. [PMID: 32512292 DOI: 10.1016/j.scitotenv.2020.139238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
The incidence of asthma and its related allergic diseases has increased dramatically over the last decade. Asthma is a complex disease caused by genetic and environmental factors. Nonylphenol (NP), a typical endocrine disrupting chemical (EDC), is a major current focus in asthma research. Pregnant Sprague-Dawley rats (n = 8-10 per group) were given a consecutive daily dose of NP (25, 50, or 100 mg/kg/day) or an equivalent volume of vehicle by gavage from gestational day 7 until postnatal day (PND) 21. Exposure to 100 mg/kg NP increased the body mass of the offspring on PND 43. Perinatal exposure to NP in maternal rats led to a dose-dependent increase of NP level in the lung tissue of the offspring. The numbers of lymphocytes and neutrophils in bronchoalveolar lavage fluid were significantly higher in the 100 mg/kg NP group than those in the control. Histopathological examination of the lung showed that exposure to high dose NP resulted in a slightly thickened bronchiolar smooth muscles with inflammatory cell infiltration. In the cytoplasm of type II epithelial cells, osmiophilic lamellar bodies were observed, with emptied lamellar bodies. NP significantly increased the expressions of high mobility group box 1 protein (HMGB1) mRNA and nuclear factor κB (NF-κB) mRNA in the lung tissue of the offspring in a dose dependent manner. Similarly, the expressions of HMGB1, NF-κBp65 and estrogen receptor-β (ER-β) proteins increased with an increase of NP dose. NP content was positively correlated with the expressions of HMGB1 and NF-κB mRNA as well as HMGB1, NF-κBp65, and ER-β proteins in the lung tissue of offspring. Perinatal exposure to NP from the maternal rats might induce airway inflammation in the offspring, which may be due to NP-induced infiltration of inflammatory cells into the airway, and pathological alterations in airway structure as well as abnormal expression patterns of inflammation-related genes, proteins (including HMGB1 and NF-κB) and estrogen receptor β.
Collapse
Affiliation(s)
- Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - FangXu Tuo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Ya Luo
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yu Yang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
19
|
Martínez R, Tu W, Eng T, Allaire-Leung M, Piña B, Navarro-Martín L, Mennigen JA. Acute and long-term metabolic consequences of early developmental Bisphenol A exposure in zebrafish (Danio rerio). CHEMOSPHERE 2020; 256:127080. [PMID: 32450349 DOI: 10.1016/j.chemosphere.2020.127080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 05/22/2023]
Abstract
Bisphenol A (BPA) is an estrogenic contaminant linked to metabolic disruption. Developmental BPA exposure is of particular concern, as organizational effects may irreversibly disrupt metabolism at later life-stages. While BPA exposures in adult fish elicit metabolic perturbations similar to effects described in rodents, the metabolic effects of developmental BPA exposure in juvenile fish remain largely unknown. Following embryonic zebrafish exposure to BPA (0.1, 1 and 4 mg/L) and EE2 (10 ng/L) from 2 to 5 dpf, we assessed the metabolic phenotype in larvae (4-6 dpf) and juveniles (43-49 dpf) which had been divided into regular-fed and overfed groups at 29 dpf. Developmental BPA exposure in larvae dose-dependently reduced food-intake and locomotion and increased energy expenditure. Juveniles (29 dpf) exhibited a transient increase in body weight after developmental BPA exposure and persistent diet-dependent locomotion changes (43-49 dpf). At the molecular level, glucose and lipid metabolism-related transcript abundance clearly separated BPA exposed fish from controls and EE2 exposed fish at the larval stage, in juveniles on a regular diet and, to a lesser extent, in overfed juveniles. In general, the metabolic endpoints affected by BPA exposure were not mimicked by EE2 treatment. We conclude that developmental BPA exposure elicits acute metabolic effects in zebrafish larvae and fewer transient and persistent effects in juveniles and that these metabolic effects are largely independent of BPA's estrogenicity.
Collapse
Affiliation(s)
- Rubén Martínez
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain; Department of Cellular Biology, Physiology and Immunology, Universitat de Barcelona (UB), Barcelona, Spain
| | - Wenqing Tu
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang 330012, China
| | - Tyler Eng
- Department of Biology, University of Ottawa, 20 Marie-Curie K1N 6N5, Ottawa, Ontario, Canada
| | - Melissa Allaire-Leung
- Department of Biology, University of Ottawa, 20 Marie-Curie K1N 6N5, Ottawa, Ontario, Canada
| | - Benjamin Piña
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain
| | - Laia Navarro-Martín
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, Barcelona, Spain
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie K1N 6N5, Ottawa, Ontario, Canada.
| |
Collapse
|
20
|
Sharma G, Hu C, Staquicini DI, Brigman JL, Liu M, Mauvais-Jarvis F, Pasqualini R, Arap W, Arterburn JB, Hathaway HJ, Prossnitz ER. Preclinical efficacy of the GPER-selective agonist G-1 in mouse models of obesity and diabetes. Sci Transl Med 2020; 12:12/528/eaau5956. [PMID: 31996464 DOI: 10.1126/scitranslmed.aau5956] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 07/23/2019] [Accepted: 12/30/2019] [Indexed: 12/12/2022]
Abstract
Human obesity has become a global health epidemic, with few safe and effective pharmacological therapies currently available. The systemic loss of ovarian estradiol (E2) in women after menopause greatly increases the risk of obesity and metabolic dysfunction, revealing the critical role of E2 in this setting. The salutary effects of E2 are traditionally attributed to the classical estrogen receptors ERα and ERβ, with the contribution of the G protein-coupled estrogen receptor (GPER) still largely unknown. Here, we used ovariectomy- and diet-induced obesity (DIO) mouse models to evaluate the preclinical activity of GPER-selective small-molecule agonist G-1 (also called Tespria) against obesity and metabolic dysfunction. G-1 treatment of ovariectomized female mice (a model of postmenopausal obesity) reduced body weight and improved glucose homeostasis without changes in food intake, fuel source usage, or locomotor activity. G-1-treated female mice also exhibited increased energy expenditure, lower body fat content, and reduced fasting cholesterol, glucose, insulin, and inflammatory markers but did not display feminizing effects on the uterus (imbibition) or beneficial effects on bone health. G-1 treatment of DIO male mice did not elicit weight loss but prevented further weight gain and improved glucose tolerance, indicating that G-1 improved glucose homeostasis independently of its antiobesity effects. However, in ovariectomized DIO female mice, G-1 continued to elicit weight loss, reflecting possible sex differences in the mechanisms of G-1 action. In conclusion, this work demonstrates that GPER-selective agonism is a viable therapeutic approach against obesity, diabetes, and associated metabolic abnormalities in multiple preclinical male and female models.
Collapse
Affiliation(s)
- Geetanjali Sharma
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Chelin Hu
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Daniela I Staquicini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Meilian Liu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Franck Mauvais-Jarvis
- Diabetes Discovery and Sex-Based Medicine Laboratory, Section of Endocrinology and Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112, USA.,Section of Endocrinology, Southeast Louisiana Veterans Administration Health Care System, New Orleans, LA 70112, USA
| | - Renata Pasqualini
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA.,Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ 07103, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jeffrey B Arterburn
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Helen J Hathaway
- Department of Cell Biology and Physiology, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Eric R Prossnitz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA. .,Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| |
Collapse
|
21
|
Subuhi NEAM, Saad SM, Zain NNM, Lim V, Miskam M, Kamaruzaman S, Raoov M, Yahaya N. An efficient biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles for quantification of bisphenol A in water samples by gas chromatography‐mass spectrometry detection. J Sep Sci 2020; 43:3294-3303. [DOI: 10.1002/jssc.201901194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Nur Ezwan Anis Muhd Subuhi
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
- School of Chemical SciencesUniversiti Sains Malaysia Penang Malaysia
| | - Salwani Md Saad
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
| | - Nur Nadhirah Mohamad Zain
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
| | - Vuanghao Lim
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
| | | | - Sazlinda Kamaruzaman
- Department of Chemistry, Faculty of ScienceUniversiti Putra Malaysia Selangor Malaysia
| | - Muggundha Raoov
- Department of Chemistry, Faculty of ScienceUniversiti Malaya Kuala Lumpur Malaysia
| | - Noorfatimah Yahaya
- Integrative Medicine ClusterAdvanced Medical and Dental Institute, Universiti Sains Malaysia Penang Malaysia
- Department of ChemistryUniversity of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
22
|
Basak S, Das MK, Duttaroy AK. Plastics derived endocrine-disrupting compounds and their effects on early development. Birth Defects Res 2020; 112:1308-1325. [PMID: 32476245 DOI: 10.1002/bdr2.1741] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Despite the fact that the estrogenic effects of bisphenols were first described 80 years ago, recent data about its potential negative impact on birth outcome parameters raises a strong rationale to investigate further. The adverse health effects of plastics recommend to measure the impacts of endocrine-disrupting compounds (EDCs) such as bisphenols (BPA, BPS, BPF), bis(2-ethylhexyl) phthalate, and dibutyl phthalate (DBP) in human health. Exposure to these compounds in utero may program the diseases of the testis, prostate, kidney and abnormalities in the immune system, and cause tumors, uterine hemorrhage during pregnancy and polycystic ovary. These compounds also control the processes of epigenetic transgenerational inheritance of adult-onset diseases by modulating DNA methylation and epimutations in reproductive cells. The early developmental stage is the most susceptible window for developmental and genomic programming. The critical stages of the events for a normal human birth lie between the many transitions occurring between spermatogenesis, egg fertilization and the fully formed fetus. As the cells begin to grow and differentiate, there are critical balances of hormones, and protein synthesis. Data are emerging on how these plastic-derived compounds affect embryogenesis, placentation and feto-placental development since pregnant women and unborn fetuses are often exposed to these factors during preconception and throughout gestation. Impaired early development that ultimately influences fetal outcomes is at the center of many developmental disorders and contributes an independent risk factor for adult chronic diseases. This review will summarize the current status on the impact of exposure to plastic derived EDCs on the growth, gene expression, epigenetic and angiogenic activities of the early fetal development process and their possible effects on birth outcomes.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Mrinal K Das
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Xue J, Zhang L, Xie X, Gao Y, Jiang L, Wang J, Wang Y, Gao R, Yu J, Xiao H. Prenatal bisphenol A exposure contributes to Tau pathology: Potential roles of CDK5/GSK3β/PP2A axis in BPA-induced neurotoxicity. Toxicology 2020; 438:152442. [PMID: 32278051 DOI: 10.1016/j.tox.2020.152442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/08/2020] [Accepted: 03/22/2020] [Indexed: 01/20/2023]
Abstract
Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. BPA exposure especially occupational perinatal exposure to has been linked to numerous adverse effects for the offspring. Available data have shown that perinatal exposure to BPA contributes to neurodegenerative pathological changes; however, the potential mechanisms remain unclear. This study attempted to investigate the long-term consequences of perinatal exposure to BPA on the offspring mouse brain. The pregnant mice were given either a vehicle control or BPA (2, 10, 100 μg/kg/d) from day 6 of gestation until weaning (P6-PND21, foetal and neonatal exposure). At 3, 6 and 9 months of age, the neurotoxic effects in the offspring in each group were investigated. We found that the spine density but not the dendritic branches in the hippocampus were noticeably reduced at 6 and 9 months of age. Meanwhile, p-Tau, the characteristic protein for tauopathy, was dramatically increased in both the hippocampus and cortex at 3-9 months of age. Mechanically, the balance of kinase and protein phosphatase, which plays critical roles in p-Tau regulation, was disturbed. It indicated that GSK3β and CDK5, two critical kinases, were activated in most of the BPA perinatal exposure group, while protein phosphatase 2A (PP2A), one of the important phosphatases, regulated p-Tau expression through its demethylation, methylation and phosphorylation. Taken together, the present study may be translatable to the human occupational BPA exposure due to a similar exposure level. BPA perinatal exposure causes long-term adverse effects on the mouse brain and may be a risk factor for tauopathies, and the CDK5/GSK3β/PP2A axis might be a promising therapeutic target for BPA-induced neurodegenerative pathological changes.
Collapse
Affiliation(s)
- Jing Xue
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Li Zhang
- Department of Anesthesiology, Children's Hospital of Nanjing Medical University, China
| | - Xuexue Xie
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yue Gao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Lei Jiang
- Department of Emergency Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yu Wang
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Yu
- Department of Hygienic Analysis and Detection, Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hang Xiao
- Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
24
|
D'Angelo S, Scafuro M, Meccariello R. BPA and Nutraceuticals, Simultaneous Effects on Endocrine Functions. Endocr Metab Immune Disord Drug Targets 2020; 19:594-604. [PMID: 30621569 PMCID: PMC7360909 DOI: 10.2174/1871530319666190101120119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/02/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
Background Bisphenol A (BPA) is worldwide diffused as a monomer of epoxy resins and polycarbonate plastics and has recognized activity as Endocrine Disruptor (ED). It is capable to interfere or compete with endogenous hormones in many physiological activities thus having adverse outcomes on health. Diet highly affects health status and in addition to macronutrients, provides a large number of substances with recognized pro-heath activity, and thus called nutraceuticals. Objective This mini-review aims at summarizing the possible opposite and simultaneous effects of BPA and nutraceuticals on endocrine functions. The possibility that diet may represent the first instrument to preserve health status against BPA damages has been discussed. Methods The screening of recent literature in the field has been carried out. Results The therapeutic and anti-oxidant properties of many nutraceuticals may reverse the adverse health effects of BPA. Conclusion In vitro and in vivo studies provided evidence that nutraceuticals can preserve the health. Thus, the use of nutraceuticals can be considered a support for clinical treatment. In conclusion, dietary remediation may represent a successful therapeutic approach to maintain and preserve health against BPA damage.
Collapse
Affiliation(s)
- Stefania D'Angelo
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| | - Marika Scafuro
- Dipartimento di Medicina Sperimentale sez "F. Bottazzi", Universita degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosaria Meccariello
- Dipartimento di Scienze Motorie e del Benessere, Universita di Napoli Parthenope, Napoli, Italy
| |
Collapse
|
25
|
Endocrine Disruptors Induced Distinct Expression of Thyroid and Estrogen Receptors in Rat versus Mouse Primary Cerebellar Cell Cultures. Brain Sci 2019; 9:brainsci9120359. [PMID: 31817561 PMCID: PMC6955918 DOI: 10.3390/brainsci9120359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/31/2022] Open
Abstract
The endocrine system of animals consists of fine-tuned self-regulating mechanisms that maintain the hormonal and neuronal milieu during tissue development. This complex system can be influenced by endocrine disruptors (ED)—substances that can alter the hormonal regulation even in small concentrations. By now, thousands of substances—either synthesized by the plastic, cosmetic, agricultural, or medical industry or occurring naturally in plants or in polluted groundwater—can act as EDs. Their identification and testing has been a hard-to-solve problem; Recent indications that the ED effects may be species-specific just further complicated the determination of biological ED effects. Here we compare the effects of bisphenol-A, zearalenone, and arsenic (well-known EDs) exerted on mouse and rat neural cell cultures by measuring the differences of the ED-affected neural estrogen- and thyroid receptors. EDs alters the receptor expression in a species-like manner detectable in the magnitude as well as in the nature of biological responses. It is concluded that the interspecies differences (or species specificity) in ED effects should be considered in the future testing of ED effects.
Collapse
|
26
|
Usal M, Regnault C, Veyrenc S, Couturier K, Batandier C, Bulteau AL, Lejon D, Combourieu B, Lafond T, Raveton M, Reynaud S. Concomitant exposure to benzo[a]pyrene and triclosan at environmentally relevant concentrations induces metabolic syndrome with multigenerational consequences in Silurana (Xenopus) tropicalis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 689:149-159. [PMID: 31271984 DOI: 10.1016/j.scitotenv.2019.06.386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/18/2019] [Accepted: 06/23/2019] [Indexed: 06/09/2023]
Abstract
Numerous studies suggest that amphibians are highly sensitive to endocrine disruptors (ED) but their precise role in population decline remains unknown. This study shows that frogs exposed to a mixture of ED throughout their life cycle, at environmentally relevant concentrations, developed an unexpected metabolic syndrome. Female Silurana (Xenopus) tropicalis exposed to a mixture of benzo[a]pyrene and triclosan (50 ng·L-1 each) from the tadpole stage developed liver steatosis and transcriptomic signature associated with glucose intolerance syndrome, and pancreatic insulin hyper secretion typical of pre-diabetes. These metabolic disorders were associated with delayed metamorphosis and developmental mortality in their progeny, both of which have been linked to reduced adult recruitment and reproductive success. Indeed, F1 females were smaller and lighter and presented reduced reproductive capacities, demonstrating a reduced fitness of ED-exposed Xenopus. Our results confirm that amphibians are highly sensitive to ED even at concentrations considered to be safe for other animals. This study demonstrates that ED might be considered as direct contributing factors to amphibian population decline, due to their disruption of energetic metabolism.
Collapse
Affiliation(s)
- Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | | | | | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Univ. Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, 69000 Lyon, France.
| | - David Lejon
- Rovaltain Research Company, F26300 Alixan, France.
| | | | - Thomas Lafond
- Centre de Ressources Biologiques Xénopes, Univ. Rennes 1, CNRS, UMS 3387 Rennes, France.
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
27
|
Effects of bisphenol S, a major substitute of bisphenol A, on neurobehavioral responses and cerebral monocarboxylate transporters expression in mice. Food Chem Toxicol 2019; 132:110670. [DOI: 10.1016/j.fct.2019.110670] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 07/09/2019] [Indexed: 01/04/2023]
|
28
|
Dallio M, Diano N, Masarone M, Gravina AG, Patanè V, Romeo M, Di Sarno R, Errico S, Nicolucci C, Abenavoli L, Scarpellini E, Boccuto L, Persico M, Loguercio C, Federico A. Chemical Effect of Bisphenol A on Non-Alcoholic Fatty Liver Disease. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16173134. [PMID: 31466361 PMCID: PMC6747307 DOI: 10.3390/ijerph16173134] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/18/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a predominant chronic liver disease worldwide and a component of metabolic syndrome. Due to its relationship with multiple organs, it is extremely complex to precisely define its pathogenesis as well as to set appropriate therapeutic and preventive strategies. Endocrine disruptors (EDCs) in general, and bisphenol A (BPA) in particular, are a heterogeneous group of substances, largely distributed in daily use items, able to interfere with the normal signaling of several hormones that seem to be related to type 2 diabetes mellitus (T2DM), obesity, and other metabolic disorders. It is reasonable to hypothesize a BPA involvement in the pathogenesis and evolution of NAFLD. However, its mechanisms of action as well as its burden in the vicious circle that connects obesity, T2DM, metabolic syndrome, and NAFLD still remain to be completely defined. In this review we analyzed the scientific evidence on this promising research area, in order to provide an overview of the harmful effects linked to the exposure to EDCs as well as to frame the role that BPA would have in all phases of NAFLD evolution.
Collapse
Affiliation(s)
- Marcello Dallio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy.
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Masarone
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Vittorio Patanè
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Mario Romeo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Rosa Di Sarno
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Sonia Errico
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Carla Nicolucci
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, University "Magna Graecia", Viale Europa-Germaneto, 88110 Catanzaro, Italy
| | - Emidio Scarpellini
- Division of Gastroenterology, Department of Internal Medicine, TARGID, University Hospital Gasthuisberg, 3000 Leuven, Belgium
| | - Luigi Boccuto
- Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Marcello Persico
- Department of Medicine and Surgery, University of Salerno, via Salvador Allende, 84081 Salerno, Italy
| | - Carmelina Loguercio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
29
|
Yin N, Liang X, Liang S, Liang S, Yang R, Hu B, Cheng Z, Liu S, Dong H, Liu S, Faiola F. Embryonic stem cell- and transcriptomics-based in vitro analyses reveal that bisphenols A, F and S have similar and very complex potential developmental toxicities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 176:330-338. [PMID: 30951980 DOI: 10.1016/j.ecoenv.2019.03.115] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a very versatile industrial chemical. Many reports have associated BPA with several health effects. Some bisphenol alternatives have been introduced to replace BPA in its many applications. However, comprehensive toxicological evaluations for these replacements are still lacking. In this study, we examined the potential effects of BPA, bisphenol F (BPF) and bisphenol S (BPS), on embryonic development with an in vitro stem cell toxicology system and transcriptomics analyses. Mouse embryonic stem cells (mESCs) were differentiated via embryoid body formation, either globally towards the three primary germ layers and their lineages, or specifically into neuroectoderm/neural progenitor cells. During the differentiation, cells were treated with BPA, BPF, BPS, or DMSO control. Samples were collected at different time points, for qRT-PCR and RNA-seq analyses. BPA, BPF and BPS disrupted many processes, during mESC global and neural differentiations, in very similar manners. In fact, at each time point the three chemicals differentially regulated analogous gene categories, particularly the ones involved in cell-matrix and cell-cell adhesion, signal transduction pathways, and medical conditions such as cardiovascular diseases and cancer. Our findings demonstrate once more then BPA substitutes may not be very safe. They potentially have a very complex developmental toxicity, similarly to BPA, and seem more toxic than BPA itself. In addition, our results reveal that stem cell-based developmental toxicity assays can be very comprehensive.
Collapse
Affiliation(s)
- Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxing Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengxian Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shaojun Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bowen Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanwen Cheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, UK
| | - Hengzhi Dong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
30
|
Sayıcı IU, Simsek Orhon F, Topçu S, Ulukol B, Baskan S. Preliminary study on bisphenol A levels and possible exposure history of mother and exclusively breastfed infant pairs. Eur J Pediatr 2019; 178:541-550. [PMID: 30707364 DOI: 10.1007/s00431-019-03329-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
The aims of this study were to determine bisphenol A (BPA) levels in breast milk and urine specimens of healthy mother and exclusively breastfed infant pairs having no known BPA exposure, and also to examine the relationship between BPA levels and possible BPA exposure history. Forty mothers and their 1-2-month-old exclusively breastfeed infant were included in the study. The questionnaires about sociodemographic characteristics and possible BPA exposure history were filled out. Breast milk and urine samples were taken. BPA analyses of these samples were conducted using high-performance liquid chromatography coupled with mass spectrometry. All mother-infant pairs showed detectable BPA concentrations. The geometric means of BPA levels in breast milk, maternal urine, and infant urine were determined as 0.12 μg/L (0.03-0.59), 0.12 μg/L (0.03-0.73), and 0.13 μg/L (0.02-0.44), respectively. Infants whose mothers were consuming yoghurt in plastic containers had relatively higher urinary BPA levels (p = 0.00). Mothers consuming hot beverages in plastic glass showed higher breast milk BPA levels (p = 0.033). There were no statistical associations between BPA levels and the use of plastic materials and tools (p > 0.05).Conclusion: The measurable BPA concentrations in all breast milk specimens of healthy mothers may reflect possible exposure from dietary or non-dietary sources. Exclusively, breastfed healthy infants without any known BPA exposure may be exposed to BPA from their mothers through breastfeeding. What is Known: • Fetuses, neonates and infants are exposed to BPA from their mothers through placental transfer and breastfeeding. • Breast milk is considered a continuous low-level exposure to BPA. What is New: • BPA was detected in 100% of maternal urine, infant urine, and breast milk in healthy mother-infant pairs having no known BPA exposure. • The measurable amount of BPA in breast milk and infant urine may reflect possible BPA exposure of mother-infant pairs.
Collapse
Affiliation(s)
- Ilker Ufuk Sayıcı
- School of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara University, Dikimevi, 06100, Ankara, Turkey
| | - Filiz Simsek Orhon
- School of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara University, Dikimevi, 06100, Ankara, Turkey.
| | - Seda Topçu
- School of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara University, Dikimevi, 06100, Ankara, Turkey
| | - Betul Ulukol
- School of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara University, Dikimevi, 06100, Ankara, Turkey
| | - Sevgi Baskan
- School of Medicine, Department of Pediatrics, Division of Social Pediatrics, Ankara University, Dikimevi, 06100, Ankara, Turkey
| |
Collapse
|
31
|
Loganathan N, Salehi A, Chalmers JA, Belsham DD. Bisphenol A Alters Bmal1, Per2, and Rev-Erba mRNA and Requires Bmal1 to Increase Neuropeptide Y Expression in Hypothalamic Neurons. Endocrinology 2019; 160:181-192. [PMID: 30500912 PMCID: PMC6307099 DOI: 10.1210/en.2018-00881] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
Bisphenol A (BPA), a ubiquitous environmental endocrine disruptor, is considered an obesogen. However, its role in the hypothalamic control of energy balance remains largely unexplored. Because disruption of the circadian clock is tightly associated with metabolic consequences, we explored how BPA affects the components of the molecular circadian clock in the feeding-related neurons of the hypothalamus. In immortalized POMC and NPY/AgRP-expressing hypothalamic cell lines and primary culture, we describe how BPA significantly alters mRNA expression of circadian clock genes Bmal1,Per2, and Rev-Erbα. Furthermore, we use newly generated Bmal1-knockout (KO) hypothalamic cell lines to link the BPA-induced neuropeptide dysregulation to the molecular clock. Specifically, BPA increased Npy, Agrp, and Pomc mRNA expression in wild type hypothalamic cells, whereas the increase in Npy, but not Agrp or Pomc, was abolished in cell lines lacking BMAL1. In line with this increase, BPA led to increased BMAL1 binding to the Npy promotor, potentially increasing Npy transcription. In conclusion, we show that BPA-mediated dysregulation of the circadian molecular clock is linked to the deleterious effects of BPA on neuropeptide expression. Furthermore, we describe hypothalamic Bmal1-KO cell lines to study the role of BMAL1 in hypothalamic responses to metabolic, hormonal, and environmental factors.
Collapse
Affiliation(s)
- Neruja Loganathan
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Ashkan Salehi
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Denise D Belsham
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Berni M, Gigante P, Bussolati S, Grasselli F, Grolli S, Ramoni R, Basini G. Bisphenol S, a Bisphenol A alternative, impairs swine ovarian and adipose cell functions. Domest Anim Endocrinol 2019; 66:48-56. [PMID: 30439591 DOI: 10.1016/j.domaniend.2018.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/01/2018] [Accepted: 08/16/2018] [Indexed: 01/10/2023]
Abstract
The high-volume-produced plastic monomer Bisphenol A (BPA) has been in the spotlight in the last years because of its endocrine disruptor (ED) behavior, leading to disclosure of the association between the widespread human and wildlife exposure to BPA and reproductive, metabolic, and developmental disorders and hormone-dependent cancer onset. These evidences caused restrictions and prohibitions of BPA industrial uses and prompted investigation of harmless alternative compounds. Above all, several countries have substituted the parental analogue with Bisphenol S (BPS) in baby care product manufacturing, even if its structural homology to BPA suggests similar ED properties not yet completely ruled out. In light of this consideration, the aim of this in vitro study was to investigate the effect of BPS exposure (0.1, 1, and 10 μM for 48 h) on granulosa cells that are considered the prime ovarian targets of BPA as a "reproductive toxicant". Our data document that BPS inhibited E2 production, cell proliferation, and scavenging nonenzymatic activity (P < 0.05) while it significantly (P < 0.05) stimulated cell viability, superoxide (O2-) and nitric oxide (NO) production in cultured swine granulosa cells, a previously validated endocrine cell model for BPA. Evidence also exists that BPA and its analogues, as environmental lipophilic pollutants, are involved in the disruption of adipose tissue (AT) endocrine function, resulting in metabolic effects and thus in potential reproductive disorders. On this basis, our second purpose was the assessment of BPS effects on mesenchymal stromal cells (MSCs) isolated from porcine AT, taking into account MSCs viability and adipogenic differentiation, a process actually demonstrated to be largely affected by EDs. Our results show that BPS decreased (P < 0.001) cell viability of proliferating adipose stromal cells. Taken as a whole, our data demonstrate an effective BPS ED activity at μM concentrations, suggesting that further studies are needed before considering its use in industrial application as an alternative to BPA.
Collapse
Affiliation(s)
- M Berni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - P Gigante
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Bussolati
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - F Grasselli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - S Grolli
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - R Ramoni
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy
| | - G Basini
- Dipartimento di Scienze Medico-Veterinarie, Università di Parma, Via del Taglio 10, Parma 43126, Italy.
| |
Collapse
|
33
|
Beausoleil C, Emond C, Cravedi JP, Antignac JP, Applanat M, Appenzeller BR, Beaudouin R, Belzunces LP, Canivenc-Lavier MC, Chevalier N, Chevrier C, Elefant E, Eustache F, Habert R, Kolf-Clauw M, Le Magueresse-Battistoni B, Mhaouty-Kodja S, Minier C, Multigner L, Schroeder H, Thonneau P, Viguié C, Pouzaud F, Ormsby JN, Rousselle C, Verines-Jouin L, Pasquier E, Michel C. Regulatory identification of BPA as an endocrine disruptor: Context and methodology. Mol Cell Endocrinol 2018; 475:4-9. [PMID: 29426018 DOI: 10.1016/j.mce.2018.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/01/2018] [Indexed: 12/14/2022]
Abstract
BPA is one of the most investigated substances for its endocrine disruptor (ED) properties and it is at the same time in the center of many ED-related controversies. The analysis on how BPA fits to the regulatory identification as an ED is a challenge in terms of methodology. It is also a great opportunity to test the regulatory framework with a uniquely data-rich substance and learn valuable lessons for future cases. From this extensive database, it was considered important to engage in a detailed analysis so as to provide specific and strong evidences of ED while reflecting accurately the complexity of the response as well the multiplicity of adverse effects. An appropriate delineation of the scope of the analysis was therefore critical. Four effects namely, alterations of estrous cyclicity, mammary gland development, brain development and memory function, and metabolism, were considered to provide solid evidence of ED-mediated effects of BPA.
Collapse
Affiliation(s)
| | - Claude Emond
- DSEST, School of Public Health, University of Montreal, Quebec, Canada
| | | | | | | | - Brice R Appenzeller
- Human Biomonitoring Research Unit, Luxembourg Institute of Health, Luxembourg
| | - Remy Beaudouin
- INERIS, Unité Modèles pour l'Ecotoxicologie et la Toxicologie (METO), Parc ALATA BP2, 60550 Verneuil en Halatte, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - Marie-Chantal Canivenc-Lavier
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, agrosup, Université de Bourgogne - Franche-Comté, Dijon, 21000, France
| | - Nicolas Chevalier
- University Hospital of Nice, France & INSERM UMR U1065 - Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Elisabeth Elefant
- Centre de Référence sur les Agents Tératogènes (CRAT), AP-HP Armand Trousseau Hospital, Paris, France
| | - Florence Eustache
- CECOS, AP-HP, Paris Seine-Saint-Denis University Hospitals, Jean Verdier Hospital, Paris, France
| | - René Habert
- Genetic Stability, Stem Cells and Radiations, CEA, INSERM U 967, University Paris-Diderot, CEA Research Center, 92265 Fontenay aux Roses, France
| | - Martine Kolf-Clauw
- CREFRE, Toulouse University, INSERM, Toulouse Veterinary School, 23 chemin des Capelles, BP 87614, F310176 Toulouse Cedex 3, France
| | - Brigitte Le Magueresse-Battistoni
- Univ-Lyon, CarMeN Laboratory, INSERM U1060, INRA U1397, Université Claude Bernard Lyon1, INSA Lyon, Charles Mérieux Medical School, F-69600 Oullins, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine, 75005 Paris, France
| | - Christophe Minier
- Laboratory of Ecotoxicology, UMR INERIS SEBio, Normandie Université, BP 540, 76058 Le Havre, France
| | - Luc Multigner
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, F-35000 Rennes, France
| | - Henri Schroeder
- Calbinotox, Faculté des Sciences et Technologies, Université de Lorraine, 54500, Vandoeuvre les Nancy, France
| | | | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | | | | | | | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| |
Collapse
|
34
|
Affiliation(s)
| | | | | | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| |
Collapse
|
35
|
Basak S, Srinivas V, Duttaroy AK. Bisphenol-A impairs cellular function and alters DNA methylation of stress pathway genes in first trimester trophoblast cells. Reprod Toxicol 2018; 82:72-79. [PMID: 30352284 DOI: 10.1016/j.reprotox.2018.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 01/07/2023]
Abstract
Humans are exposed to Bisphenol A (BPA) from the consumer products and plastic substances. However, impacts of low levels of BPA exposure on placental developmental processes such as first trimester trophoblast cell growth, angiogenesis and epigenetic modifications are not well studied. Low concentration of BPA (1 nM) affected cell proliferation of human placental first trimester trophoblasts using a model cell, HTR8/SVneo. BPA abolished both basal- and vascular endothelial growth factor (VEGF)-stimulated tube formation in these cells. BPA significantly down regulated mRNA expression of VEGF, proliferating cell nuclear antigen, intercellular adhesion molecule 1 with concomitant upregulation of 11-β-hydroxysteroid dehydrogenase 2 mRNA and protein expression in HTR8/SVneo cells. BPA also lowered CpG methylation of gene promoter associated with metabolic and oxidative stress. This study demonstrated that BPA at 1 nM not only affected cellular growth, development and angiogenic activities but also affected DNA methylation of stress response and down-regulation of angiogenic growth factors in first trimester trophoblast cells.
Collapse
Affiliation(s)
- Sanjay Basak
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; National Institute of Nutrition, Hyderabad, India
| | | | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
36
|
Impact of low-dose chronic exposure to bisphenol A and its analogue bisphenol B, bisphenol F and bisphenol S on hypothalamo-pituitary-testicular activities in adult rats: A focus on the possible hormonal mode of action. Food Chem Toxicol 2018; 121:24-36. [PMID: 30120946 DOI: 10.1016/j.fct.2018.08.024] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/09/2018] [Accepted: 08/12/2018] [Indexed: 01/13/2023]
Abstract
Bisphenol A an estrogen-mimic endocrine disrupting chemical, used to manufacture polycarbonate plastics and epoxy resins with toxic effects for male reproduction. Due to its toxicity, industries have started to replace it with other bisphenols. In this study, the toxicity of BPA analogues (BPB, BPF and BPS) was evaluated in a chronic study. We investigated whether the chronic exposure to low bisphenols doses affects spermatogenesis with outcomes on oxidative stress and male reproductive system. Male rats (22 day old) were exposed to water containing 0.1% ethanol for control or different concentrations of BPA and its analogues BPB, BPF and BPS (5, 25 and 50 μg/L) in drinking water for 48 weeks. Results of the present study showed a significant alteration in the gonadosomatic index (GSI) and relative reproductive organs weights. Oxidative stress in the testis was significantly elevated while sperm motility, Daily sperm production (DSP) and number of sperm in epididymis were reduced. Plasma testosterone, LH and FSH concentrations were reduced and estradiol levels were high in 50 μg/L exposed group. These results suggest that exposure to BPA and its analogues for chronic duration can induce structural changes in testicular tissue and endocrine alterations in the male reproductive system.
Collapse
|
37
|
Moreman J, Takesono A, Trznadel M, Winter MJ, Perry A, Wood ME, Rogers NJ, Kudoh T, Tyler CR. Estrogenic Mechanisms and Cardiac Responses Following Early Life Exposure to Bisphenol A (BPA) and Its Metabolite 4-Methyl-2,4-bis( p-hydroxyphenyl)pent-1-ene (MBP) in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6656-6665. [PMID: 29738667 DOI: 10.1021/acs.est.8b01095] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Environmental exposure to Bisphenol A (BPA) has been associated with a range of adverse health effects, including on the cardiovascular system in humans. Lack of agreement on its mechanism(s) of action likely stem from comparisons between in vivo and in vitro test systems and potential multiple effects pathways. In rodents, in vivo, metabolic activation of BPA produces 4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), which is reported to be up to 1000 times more potent as an estrogen than BPA. We investigated the estrogenic effects and estrogen receptor signaling pathway(s) of BPA and MBP following early life exposure using a transgenic, estrogen responsive (ERE-TG) zebrafish and a targeted morpholino approach to knockdown the three fish estrogen receptor (ER) subtypes. The functional consequences of BPA exposure on the cardiovascular system of zebrafish larvae were also examined. The heart atrioventricular valves and the bulbus arteriosus were primary target tissues for both BPA and MBP in the ERE-TG zebrafish, and MBP was approximately 1000-fold more potent than BPA as an estrogen in these tissues. Estrogen receptor knockdown with morpholinos indicated that the estrogenic responses in the heart for both BPA and MBP were mediated via an estrogen receptor 1 (esr1) dependent pathway. At the highest BPA concentration tested (2500 μg/L), alterations in the atrial:ventricular beat ratio indicated a functional impact on the heart of 5 days post fertilization (dpf) larvae, and there was also a significantly reduced heart rate in these larvae at 14 dpf. Our findings indicate that some of the reported adverse effects on heart function associated with BPA exposure (in mammals) may act through an estrogenic mechanism, but that fish are unlikely to be susceptible to adverse effects on heart development for environmentally relevant exposures.
Collapse
Affiliation(s)
- John Moreman
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Aya Takesono
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Maciej Trznadel
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Matthew J Winter
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Alexis Perry
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Mark E Wood
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Nicola J Rogers
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Tetsuhiro Kudoh
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| | - Charles R Tyler
- Biosciences, College of Life and Environmental Sciences , University of Exeter , Stocker Road , Exeter EX4 4QD , United Kingdom
| |
Collapse
|
38
|
Hao M, Ding L, Xuan L, Wang T, Li M, Zhao Z, Lu J, Xu Y, Chen Y, Wang W, Bi Y, Xu M, Ning G. Urinary bisphenol A concentration and the risk of central obesity in Chinese adults: A prospective study. J Diabetes 2018; 10:442-448. [PMID: 28097815 DOI: 10.1111/1753-0407.12531] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/04/2017] [Accepted: 01/11/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been associated with diabetes and related metabolic disorders, such as obesity, but studies of the association of urinary BPA concentrations with central obesity risk are limited. The aim of this study was to prospectively investigate the association between urinary BPA and incident central obesity in a Chinese population aged ≥40 years. METHODS The study followed 888 participants from Shanghai, China, who did not have central obesity at baseline (in 2009) for 4 years. Concentrations of BPA were measured in baseline morning spot urine samples. Central obesity was defined as waist circumference ≥90 cm in men and ≥80 cm in women. RESULTS During a mean follow-up of 4 years, 124 (14.0%) participants developed central obesity. Each 1-unit increase in log [BPA] was positively associated with a 2.30-fold risk of incident central obesity (95% confidence interval [CI] 1.39-3.78; P < 0.001) after adjustment for confounders. Compared with the lowest tertile of urinary BPA concentration, Tertiles 2 and 3 were associated with a higher risk of incident central obesity (odds ratios 1.73 [95% CI 1.04-2.88] and 1.81 [95% CI 1.08-3.05], respectively). Stratified analysis showed significant associations of BPA with incident central obesity in women and individuals <60 years of age, with normal weight, non-smokers, non-drinkers, or non-hypertensives. CONCLUSIONS The results indicate that higher urinary BPA concentrations may be associated with a greater risk of incident central obesity in Chinese adults. The study emphasizes the effects of BPA exposure on metabolic risk from a public health perspective.
Collapse
Affiliation(s)
- Mingli Hao
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Ding
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liping Xuan
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Tiange Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mian Li
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhiyun Zhao
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jieli Lu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhong Chen
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yufang Bi
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Min Xu
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guang Ning
- State Key Laboratory of Medical Genomics, Key Laboratory for Endocrine and Metabolic Diseases of Ministry of Health, Chinese Clinical Research Center for Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Endocrine and Metabolic Diseases, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
Regnault C, Usal M, Veyrenc S, Couturier K, Batandier C, Bulteau AL, Lejon D, Sapin A, Combourieu B, Chetiveaux M, Le May C, Lafond T, Raveton M, Reynaud S. Unexpected metabolic disorders induced by endocrine disruptors in Xenopus tropicalis provide new lead for understanding amphibian decline. Proc Natl Acad Sci U S A 2018; 115:E4416-E4425. [PMID: 29686083 PMCID: PMC5948982 DOI: 10.1073/pnas.1721267115] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite numerous studies suggesting that amphibians are highly sensitive to endocrine disruptors (EDs), both their role in the decline of populations and the underlying mechanisms remain unclear. This study showed that frogs exposed throughout their life cycle to ED concentrations low enough to be considered safe for drinking water, developed a prediabetes phenotype and, more commonly, a metabolic syndrome. Female Xenopus tropicalis exposed from tadpole stage to benzo(a)pyrene or triclosan at concentrations of 50 ng⋅L-1 displayed glucose intolerance syndrome, liver steatosis, liver mitochondrial dysfunction, liver transcriptomic signature, and pancreatic insulin hypersecretion, all typical of a prediabetes state. This metabolic syndrome led to progeny whose metamorphosis was delayed and occurred while the individuals were both smaller and lighter, all factors that have been linked to reduced adult recruitment and likelihood of reproduction. We found that F1 animals did indeed have reduced reproductive success, demonstrating a lower fitness in ED-exposed Xenopus Moreover, after 1 year of depuration, Xenopus that had been exposed to benzo(a)pyrene still displayed hepatic disorders and a marked insulin secretory defect resulting in glucose intolerance. Our results demonstrate that amphibians are highly sensitive to EDs at concentrations well below the thresholds reported to induce stress in other vertebrates. This study introduces EDs as a possible key contributing factor to amphibian population decline through metabolism disruption. Overall, our results show that EDs cause metabolic disorders, which is in agreement with epidemiological studies suggesting that environmental EDs might be one of the principal causes of metabolic disease in humans.
Collapse
Affiliation(s)
- Christophe Regnault
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Marie Usal
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Sylvie Veyrenc
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | | | | | - Anne-Laure Bulteau
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, 69000 Lyon, France
| | - David Lejon
- Rovaltain Research Company, F-26300 Alixan, France
| | | | | | - Maud Chetiveaux
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Cédric Le May
- Plate-forme Therassay, l'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Thomas Lafond
- Centre de Ressources Biologiques Xénopes, Université Rennes 1, CNRS, Unité Mixte de Service 3387, 35042 Rennes, France
| | - Muriel Raveton
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France;
| |
Collapse
|
40
|
Pomatto V, Cottone E, Cocci P, Mozzicafreddo M, Mosconi G, Nelson ER, Palermo FA, Bovolin P. Plasticizers used in food-contact materials affect adipogenesis in 3T3-L1 cells. J Steroid Biochem Mol Biol 2018; 178:322-332. [PMID: 29410257 PMCID: PMC5993210 DOI: 10.1016/j.jsbmb.2018.01.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 12/20/2022]
Abstract
Recent studies suggest that exposure to some plasticizers, such as Bisphenol A (BPA), play a role in endocrine/metabolic dispruption and can affect lipid accumulation in adipocytes. Here, we investigated the adipogenic activity and nuclear receptor interactions of four plasticizers approved for the manufacturing of food-contact materials (FCMs) and currently considered safer alternatives. Differentiating 3T3-L1 mouse preadipocytes were exposed to scalar concentrations (0.01-25 μM) of DiNP (Di-iso-nonyl-phthalate), DiDP (Di-iso-decyl-phthalate), DEGDB (Diethylene glycol dibenzoate), or TMCP (Tri-m-cresyl phosphate). Rosiglitazone, a well-known pro-adipogenic peroxisome proliferator activated receptor gamma (PPARγ) agonist, and the plasticizer BPA were included as reference compounds. All concentrations of plasticizers were able to enhance lipid accumulation, with TMCP being the most effective one. Accordingly, when comparing in silico the ligand binding efficiencies to the nuclear receptors PPARγ and retinoid-X-receptor-alpha (RXRα), TMPC displayed the highest affinity to both receptors. Differently from BPA, the four plasticizers were most effective in enhancing lipid accumulation when added in the mid-late phase of differentiation, thus suggesting the involvement of different intracellular signalling pathways. In line with this, TMCP, DiDP, DiNP and DEGDB were able to activate PPARγ in transient transfection assays, while previous studies demonstrated that BPA acts mainly through other nuclear receptors. qRT-PCR studies showed that all plasticizers were able to increase the expression of CCAAT/enhancer binding protein β (Cebpβ) in the early steps of adipogenesis, and the adipogenesis master gene Pparγ2 in the middle phase, with very similar efficacy to that of Rosiglitazone. In addition, TMCP was able to modulate the expression of both Fatty Acid Binding Protein 4/Adipocyte Protein 2 (Fabp4/Ap2) and Lipoprotein Lipase (Lpl) transcripts in the late phase of adipogenesis. DEGDB increased the expression of Lpl only, while the phthalate DiDP did not change the expression of either late-phase marker genes Fabp4 and Lpl. Taken together, our results suggest that exposure to low, environmentally relevant doses of the plasticizers DiNP, DiDP, DEGDB and TMCP increase lipid accumulation in 3T3-L1 adipocytes, an effect likely mediated through activation of PPARγ and interference at different levels with the transcriptional cascade driving adipogenesis.
Collapse
Affiliation(s)
- Valentina Pomatto
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Erika Cottone
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy
| | - Paolo Cocci
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Matteo Mozzicafreddo
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicines, University of Camerino, 62032 Camerino, Italy
| | - Erik Russel Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Patrizia Bovolin
- Department of Life Sciences and Systems Biology, University of Turin, 10123 Turin, Italy.
| |
Collapse
|
41
|
Murata M, Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnol Adv 2018; 36:311-327. [DOI: 10.1016/j.biotechadv.2017.12.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/01/2017] [Accepted: 12/07/2017] [Indexed: 01/09/2023]
|
42
|
Avilés-Santa ML, Colón-Ramos U, Lindberg NM, Mattei J, Pasquel FJ, Pérez CM. From Sea to Shining Sea and the Great Plains to Patagonia: A Review on Current Knowledge of Diabetes Mellitus in Hispanics/Latinos in the US and Latin America. Front Endocrinol (Lausanne) 2017; 8:298. [PMID: 29176960 PMCID: PMC5687125 DOI: 10.3389/fendo.2017.00298] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/16/2017] [Indexed: 12/13/2022] Open
Abstract
The past two decades have witnessed many advances in the prevention, treatment, and control of diabetes mellitus (DM) and its complications. Increased screening has led to a greater recognition of type 2 diabetes mellitus (type 2 DM) and prediabetes; however, Hispanics/Latinos, the largest minority group in the US, have not fully benefited from these advances. The Hispanic/Latino population is highly diverse in ancestries, birth places, cultures, languages, and socioeconomic backgrounds, and it populates most of the Western Hemisphere. In the US, the prevalence of DM varies among Hispanic/Latino heritage groups, being higher among Mexicans, Puerto Ricans, and Dominicans, and lower among South Americans. The risk and prevalence of diabetes among Hispanics/Latinos are significantly higher than in non-Hispanic Whites, and nearly 40% of Hispanics/Latinos with diabetes have not been formally diagnosed. Despite these striking facts, the representation of Hispanics/Latinos in pharmacological and non-pharmacological clinical trials has been suboptimal, while the prevalence of diabetes in these populations continues to rise. This review will focus on the epidemiology, etiology and prevention of type 2 DM in populations of Latin American origin. We will set the stage by defining the terms Hispanic, Latino, and Latin American, explaining the challenges identifying Hispanics/Latinos in the scientific literature and databases, describing the epidemiology of diabetes-including type 2 DM and gestational diabetes mellitus (GDM)-and cardiovascular risk factors in Hispanics/Latinos in the US and Latin America, and discussing trends, and commonalities and differences across studies and populations, including methodology to ascertain diabetes. We will discuss studies on mechanisms of disease, and research on prevention of type 2 DM in Hispanics/Latinos, including women with GDM, youth and adults; and finalize with a discussion on lessons learned and opportunities to enhance research, and, consequently, clinical care oriented toward preventing type 2 DM in Hispanics/Latinos in the US and Latin America.
Collapse
Affiliation(s)
- M. Larissa Avilés-Santa
- National Heart, Lung, and Blood Institute at the National Institutes of Health, Bethesda, MD, United States
| | - Uriyoán Colón-Ramos
- Department of Global Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States
| | - Nangel M. Lindberg
- Kaiser Permanente Center for Health Research, Portland, OR, United States
| | - Josiemer Mattei
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, United States
| | - Francisco J. Pasquel
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Cynthia M. Pérez
- University of Puerto Rico Graduate School of Public Health, San Juan, Puerto Rico
| |
Collapse
|
43
|
Cao LY, Ren XM, Li CH, Zhang J, Qin WP, Yang Y, Wan B, Guo LH. Bisphenol AF and Bisphenol B Exert Higher Estrogenic Effects than Bisphenol A via G Protein-Coupled Estrogen Receptor Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11423-11430. [PMID: 28858478 DOI: 10.1021/acs.est.7b03336] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Numerous studies have indicated estrogenic disruption effects of bisphenol A (BPA) analogues. Previous mechanistic studies were mainly focused on their genomic activities on nuclear estrogen receptor pathway. However, their nongenomic effects through G protein-coupled estrogen receptor (GPER) pathway remain poorly understood. Here, using a SKBR3 cell-based fluorescence competitive binding assay, we found six BPA analogues bound to GPER directly, with bisphenol AF (BPAF) and bisphenol B (BPB) displaying much higher (∼9-fold) binding affinity than BPA. Molecular docking also demonstrated the binding of these BPA analogues to GPER. By measuring calcium mobilization and cAMP production in SKBR3 cells, we found the binding of these BPA analogues to GPER lead to the activation of subsequent signaling pathways. Consistent with the binding results, BPAF and BPB presented higher agonistic activity than BPA with the lowest effective concentration (LOEC) of 10 nM. Moreover, based on the results of Boyden chamber and wound-healing assays, BPAF and BPB displayed higher activity in promoting GPER mediated SKBR3 cell migration than BPA with the LOEC of 100 nM. Overall, we found two BPA analogues BPAF and BPB could exert higher estrogenic effects than BPA via GPER pathway at nanomolar concentrations.
Collapse
Affiliation(s)
- Lin-Ying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Chuan-Hai Li
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Jing Zhang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Wei-Ping Qin
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
| | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , 18 Shuangqing Road, Beijing 100085, P. R. China
- University of Chinese Academy of Sciences , Beijing 100039, P. R. China
| |
Collapse
|
44
|
Bisphenol A and Metabolic Diseases: Challenges for Occupational Medicine. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14090959. [PMID: 28841159 PMCID: PMC5615496 DOI: 10.3390/ijerph14090959] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 02/08/2023]
Abstract
The prevalence of metabolic diseases has markedly increased worldwide during the last few decades. Lifestyle factors (physical activity, energy-dense diets), together with a genetic predisposition, are well known factors in the pathophysiology of health problems. Bisphenol A (BPA) is a chemical compound used for polycarbonate plastics, food containers, epoxy resins coating metallic cans for food and beverage conservation. The ability of BPA to act as an endocrine disruptor-xenoestrogen in particular-is largely documented in literature, with numerous publications of in vivo and in vitro studies as well as epidemiological data on humans. Recently, different researchers studied the involvement of BPA in the development of insulin resistance; evidences in this way showed a potential role in etiology of metabolic disease, both for children and for adults. We review the epidemiological literature in the relation between BPA exposure and the risk of metabolic diseases in adults, with a focus on occupational exposure. Considering published data and the role of occupational physicians in promoting Workers' Health, specific situations of exposure to BPA in workplace are described, and proposals for action to be taken are suggested. The comparison of the studies showed that exposure levels were higher in workers than in the general population, even if, sometimes, the measurement units used did not permit rapid comprehension. Nevertheless, occupational medicine focus on reproductive effects and not metabolic ones.
Collapse
|
45
|
Rozaini MNH, Yahaya N, Saad B, Kamaruzaman S, Hanapi NSM. Rapid ultrasound assisted emulsification micro-solid phase extraction based on molecularly imprinted polymer for HPLC-DAD determination of bisphenol A in aqueous matrices. Talanta 2017; 171:242-249. [DOI: 10.1016/j.talanta.2017.05.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/02/2017] [Accepted: 05/03/2017] [Indexed: 01/12/2023]
|
46
|
Abstract
Bisphenol A (BPA) is an endocrine disruptor with an oestrogenic activity that is widely produced for the manufacture of polycarbonate plastic, epoxy resin, and thermal paper. Its ubiquitous presence in the environment contributes to broad and continuous human exposure, which has been associated with deleterious health effects. Despite numerous controversial discussions and a lack of consensus about BPA's safety, growing evidence indicates that BPA exposure positively correlates with an increased risk of developing obesity. An updated analysis of the epidemiological, in vivo, and in vitro studies indicates that BPA should be considered an obesogenic environmental compound. Precisely, BPA exposure during all life stages correlates with increased body weight and/or body mass index. Developmental periods that include prenatal, infancy, and childhood appear to be critical windows with increased sensitivity to BPA effects. Finally, blood analysis and in vitro data clearly demonstrate that BPA promotes adipogenesis, lipid and glucose dysregulation, and adipose tissue inflammation, thus contributing to the pathophysiology of obesity. Future prevention efforts should now be employed to avoid BPA exposure, and more research to determine in depth the critical time windows, doses, and impact of long-term exposure of BPA is warranted in order to clarify its risk assessment.
Collapse
Affiliation(s)
- Samuel Legeay
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| | - Sébastien Faure
- MINT, UNIV Angers, INSERM 1066, CNRS 6021, Université Bretagne Loire, IRIS-IBS-CHU, 4 rue Larrey, 49100, Angers, France
| |
Collapse
|
47
|
Verbanck M, Canouil M, Leloire A, Dhennin V, Coumoul X, Yengo L, Froguel P, Poulain-Godefroy O. Low-dose exposure to bisphenols A, F and S of human primary adipocyte impacts coding and non-coding RNA profiles. PLoS One 2017. [PMID: 28628672 PMCID: PMC5476258 DOI: 10.1371/journal.pone.0179583] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bisphenol A (BPA) exposure has been suspected to be associated with deleterious effects on health including obesity and metabolically-linked diseases. Although bisphenols F (BPF) and S (BPS) are BPA structural analogs commonly used in many marketed products as a replacement for BPA, only sparse toxicological data are available yet. Our objective was to comprehensively characterize bisphenols gene targets in a human primary adipocyte model, in order to determine whether they may induce cellular dysfunction, using chronic exposure at two concentrations: a “low-dose” similar to the dose usually encountered in human biological fluids and a higher dose. Therefore, BPA, BPF and BPS have been added at 10 nM or 10 μM during the differentiation of human primary adipocytes from subcutaneous fat of three non-diabetic Caucasian female patients. Gene expression (mRNA/lncRNA) arrays and microRNA arrays, have been used to assess coding and non-coding RNA changes. We detected significantly deregulated mRNA/lncRNA and miRNA at low and high doses. Enrichment in “cancer” and “organismal injury and abnormalities” related pathways was found in response to the three products. Some long intergenic non-coding RNAs and small nucleolar RNAs were differentially expressed suggesting that bisphenols may also activate multiple cellular processes and epigenetic modifications. The analysis of upstream regulators of deregulated genes highlighted hormones or hormone-like chemicals suggesting that BPS and BPF can be suspected to interfere, just like BPA, with hormonal regulation and have to be considered as endocrine disruptors. All these results suggest that as BPA, its substitutes BPS and BPF should be used with the same restrictions.
Collapse
Affiliation(s)
- Marie Verbanck
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
| | - Mickaël Canouil
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
| | - Audrey Leloire
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
| | - Véronique Dhennin
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
| | - Xavier Coumoul
- INSERM UMR-S 1124, Toxicologie Pharmacologie et Signalisation cellulaire, Paris, France; Université Paris Descartes, ComUE Sorbonne Paris Cité, Paris, France
| | - Loïc Yengo
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
| | - Philippe Froguel
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, United Kingdom
- * E-mail: (PF); (OP)
| | - Odile Poulain-Godefroy
- University Lille, CNRS, CHU Lille, Institut Pasteur de Lille, UMR 8199—EGID, Lille, France
- * E-mail: (PF); (OP)
| |
Collapse
|
48
|
Fenichel P, Rougier C, Hieronimus S, Chevalier N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? ANNALES D'ENDOCRINOLOGIE 2017; 78:176-185. [PMID: 28606381 DOI: 10.1016/j.ando.2017.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/20/2017] [Accepted: 04/26/2017] [Indexed: 12/11/2022]
Abstract
Polycystic ovaries syndrome (PCOS), the most common female endocrine disorder, affects 7-10% of women of childbearing age. It includes ovarian hyperandrogenism, impaired follicular maturation, anovulation and subfertility. Insulin resistance, although present in most cases, is not necessary for diagnosis. It increases hyperandrogenism and long-term metabolic, cardiovascular and oncological risks. The origin of hyperandrogenism and hyperinsulinemia has a genetic component, as demonstrated by familial aggregation studies and recent identification of associated genomic variants, conferring a particular susceptibility to the syndrome. However, experimental and epidemiological evidences also support a developmental origin via a deleterious foetal environment, concerning the endocrine status (foetal hyperandrogenism), the nutritional level (intrauterine growth retardation), or the toxicological exposure (endocrine disruptors). Epigenetic changes recently reported in the literature as associated with PCOS, enhance this hypothesis of foetal reprogramming of the future adult ovarian function by environmental factors. Better characterisation of these genetic, epigenetic, or environmental factors, could lead to earlier prevention and more efficient treatments.
Collapse
Affiliation(s)
- Patrick Fenichel
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France; Inserm U1065/C3M, hôpital de l'Archet, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France.
| | - Charlotte Rougier
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France
| | - Sylvie Hieronimus
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France
| | - Nicolas Chevalier
- Department of Endocrinology, Diabetology and Reproduction, groupe hospitalier l'Archet, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France; Inserm U1065/C3M, hôpital de l'Archet, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France
| |
Collapse
|
49
|
Le Magueresse-Battistoni B, Labaronne E, Vidal H, Naville D. Endocrine disrupting chemicals in mixture and obesity, diabetes and related metabolic disorders. World J Biol Chem 2017; 8:108-119. [PMID: 28588754 PMCID: PMC5439162 DOI: 10.4331/wjbc.v8.i2.108] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/25/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
Obesity and associated metabolic disorders represent a major societal challenge in health and quality of life with large psychological consequences in addition to physical disabilities. They are also one of the leading causes of morbidity and mortality. Although, different etiologic factors including excessive food intake and reduced physical activity have been well identified, they cannot explain the kinetics of epidemic evolution of obesity and diabetes with prevalence rates reaching pandemic proportions. Interestingly, convincing data have shown that environmental pollutants, specifically those endowed with endocrine disrupting activities, could contribute to the etiology of these multifactorial metabolic disorders. Within this review, we will recapitulate characteristics of endocrine disruption. We will demonstrate that metabolic disorders could originate from endocrine disruption with a particular focus on convincing data from the literature. Eventually, we will present how handling an original mouse model of chronic exposition to a mixture of pollutants allowed demonstrating that a mixture of pollutants each at doses beyond their active dose could induce substantial deleterious effects on several metabolic end-points. This proof-of-concept study, as well as other studies on mixtures of pollutants, stresses the needs for revisiting the current threshold model used in risk assessment which does not take into account potential effects of mixtures containing pollutants at environmental doses, e.g., the real life exposure. Certainly, more studies are necessary to better determine the nature of the chemicals to which humans are exposed and at which level, and their health impact. As well, research studies on substitute products are essential to identify harmless molecules.
Collapse
|
50
|
Chailurkit LO, Tengpraettanakorn P, Chanprasertyotin S, Ongphiphadhanakul B. Is bisphenol A exposure associated with the development of glucose intolerance and increased insulin resistance in Thais? Nutr Health 2017; 23:185-191. [PMID: 28516806 DOI: 10.1177/0260106017708730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bisphenol A (BPA), the monomeric component of polycarbonate plastics, reportedly possesses endocrine-disrupting effects. Exposure to low levels of BPA during more vulnerable periods leads to abnormalities related to sexual development in experimental animals. Moreover, recently a few epidemiological studies in Caucasians have demonstrated the association of BPA exposure with type 2 diabetes. Therefore, in the present study we examined the association of BPA exposure and abnormal glucose tolerance in Thais. This is a cross-sectional study of 240 participants aged at least 50 years, randomly selected by computer-generated random numbers within each glucose tolerance status from an oral glucose tolerance study of 661 participants. There were 80 participants in each group of type 2 diabetes, impaired glucose tolerance (IGT) and normal glucose tolerance (NGT). Serum BPA was measured by competitive ELISA. The detection rate of BPA was significantly higher in participants with IGT compared to those with NGT ( p < 0.05), while no difference was found between participants with type 2 diabetes and NGT. When participants with type 2 diabetes were stratified into those with fasting plasma glucose (FPG) under the diabetic threshold (<126 mg/dL) and those over (≥126 mg/dL), it was found that those with FPG under the diabetic threshold had measurable rates of BPA comparable to those with IGT, and rates significantly higher than the NGT group ( p < 0.05), while those with FPG over the diabetic threshold did not have higher rates of measurable BPA compared with the NGT group. In conclusion, BPA exposure is not uncommon in Thais. There is an association between BPA exposure and IGT, but not type 2 diabetes.
Collapse
Affiliation(s)
- La-Or Chailurkit
- 1 Department of Medicine, Ramathibodi Hospital, Mahidol University, Thailand
| | | | | | | |
Collapse
|