1
|
Chen Z, Qian F, Liu B, Zong G, Li Y, Hu FB, Sun Q. Monounsaturated fatty acids from plant or animal sources and risk of type 2 diabetes in three large prospective cohorts of men and women. Diabetologia 2025:10.1007/s00125-024-06353-8. [PMID: 39808307 DOI: 10.1007/s00125-024-06353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
AIMS/HYPOTHESIS Existing evidence on the relationship between intake of monounsaturated fatty acids (MUFAs) and type 2 diabetes is conflicting. Few studies have examined whether MUFAs from plant or animal sources (MUFA-Ps and MUFA-As, respectively) exhibit differential associations with type 2 diabetes. We examined associations of intakes of total MUFAs, MUFA-Ps and MUFA-As with type 2 diabetes risk. METHODS We used data from 51,290 women in the Nurses' Health Study (1990-2016), 61,703 women in the Nurses' Health Study II (1991-2017) and 29,497 men in the Health Professionals Follow-up Study (1990-2016). Using food frequency questionnaires and food composition tables, we calculated MUFA-P and MUFA-A intakes every 4 years and modelled their associations with type 2 diabetes using Cox regression models. RESULTS During 3,268,512 person-years of follow-up, we documented 13,211 incident type 2 diabetes cases. After multivariate adjustment, total MUFA intake was associated with higher type 2 diabetes risk, with HR for Q5 vs Q1 of 1.10 (95% CI 1.01, 1.22). MUFA-Ps and MUFA-As demonstrated divergent associations, with HRs of 0.87 (95% CI 0.81, 0.94) and 1.34 (1.23, 1.45), respectively. In substitution analyses, HRs were 0.92 (95% CI 0.86, 0.99) for replacing 2% of energy from trans fatty acids or 0.72 (0.66, 0.78) and 0.82 (0.77, 0.88) for replacing 5% from MUFA-As and 5% from the sum of saturated fatty acids and MUFA-As with MUFA-Ps, respectively. Substituting MUFA-As for saturated fatty acids and refined carbohydrates was associated with a 43% and 33% higher risk, respectively. CONCLUSIONS/INTERPRETATION Higher intake of MUFA-Ps was associated with lower type 2 diabetes risk, whereas increased intake of MUFA-As was associated with higher risk. Replacing saturated fatty acids, trans fatty acids and MUFA-As with MUFA-Ps may be beneficial for type 2 diabetes prevention.
Collapse
Affiliation(s)
- Zhangling Chen
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Section of Cardiovascular Medicine, Boston Medical Center and Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Binkai Liu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Geng Zong
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai, China
| | - Yanping Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Sun
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Joslin Diabetes Center, Boston, MA, USA.
| |
Collapse
|
2
|
Chen X, Yao H, Lai J, Chen Y, Li X, Li S, Li L, He F. Endothelial versus Metabolic Insulin Resistance, A Descriptive Review. Curr Diabetes Rev 2025; 21:94-105. [PMID: 39676508 DOI: 10.2174/0115733998288601240327065724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 12/17/2024]
Abstract
Cardiovascular complications are a primary focus in the clinical management of type 2 diabetes, as they are the leading causes of disability and mortality in individuals with diabetes. Insulin resistance and endothelial dysfunction commonly coexist in diabetic patients. An increasing body of research indicates a reciprocal and interconnected association between endothelial function and insulin resistance. Insulin resistance can manifest in two distinct forms: endothelial and metabolic, with the former predominantly affecting vascular endothelial cells and the latter primarily impacting peripheral cells. The understanding of endothelial insulin resistance is crucial in comprehending the pathophysiology of cardiovascular complications in type 2 diabetes. Hence, the objective of this study is to examine the correlations, interplays, and molecular pathways linking endothelial insulin resistance and metabolic insulin resistance, with the aim of offering novel insights and scholarly resources for the prevention and management of diabetic vascular complications.
Collapse
Affiliation(s)
- Xiaohui Chen
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Huajie Yao
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- Department of Pharmacy, Wuhan Polytechnic University, College of Life Science and Technology, Wuhan, China
| | - Jiaqi Lai
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanmei Chen
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Xiaodong Li
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shanshan Li
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Ling Li
- Department of Pharmacy, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Fazhong He
- Department of Quality Control, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| |
Collapse
|
3
|
Islam MS, Wei P, Suzauddula M, Nime I, Feroz F, Acharjee M, Pan F. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Mol Med 2024; 30:279. [PMID: 39731011 DOI: 10.1186/s10020-024-01019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Metabolic syndrome (MetS) is an indicator and diverse endocrine syndrome that combines different metabolic defects with clinical, physiological, biochemical, and metabolic factors. Obesity, visceral adiposity and abdominal obesity, dyslipidemia, insulin resistance (IR), elevated blood pressure, endothelial dysfunction, and acute or chronic inflammation are the risk factors associated with MetS. Abdominal obesity, a hallmark of MetS, highlights dysfunctional fat tissue and increased risk for cardiovascular disease and diabetes. Insulin, a vital peptide hormone, regulates glucose metabolism throughout the body. When cells become resistant to insulin's effects, it disrupts various molecular pathways, leading to IR. This condition is linked to a range of disorders, including obesity, diabetes, fatty liver disease, cardiovascular disease, and polycystic ovary syndrome. Atherogenic dyslipidemia is characterized by three key factors: high levels of small, low-dense lipoprotein (LDL) particles and triglycerides, alongside low levels of high-density lipoprotein (HDL), the "good" cholesterol. Such a combination is a major player in MetS, where IR is a driving force. Atherogenic dyslipidemia contributes significantly to the development of atherosclerosis, which can lead to cardiovascular disease. On top of that, genetic alteration and lifestyle factors such as diet and exercise influence the complexity and progression of MetS. To enhance our understanding and consciousness, it is essential to understand the fundamental pathogenesis of MetS. This review highlights current advancements in MetS research including the involvement of gut microbiome, epigenetic regulation, and metabolomic profiling for early detection of Mets. In addition, this review emphasized the epidemiology and fundamental pathogenesis of MetS, various risk factors, and their preventive measures. The goal of this effort is to deepen understanding of MetS and encourage further research to develop effective strategies for preventing and managing complex metabolic diseases.
Collapse
Affiliation(s)
- Md Sharifull Islam
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Microbiology, Stamford University Bangladesh, 51, Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Ping Wei
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Md Suzauddula
- Department of Food Nutrition Dietetics and Health, Kansas State University, Manhattan, KS, 66506, USA
| | - Ishatur Nime
- Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Farahnaaz Feroz
- Department of Microbiology, Stamford University Bangladesh, 51, Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Mrityunjoy Acharjee
- Department of Microbiology, Stamford University Bangladesh, 51, Siddeswari Road, Dhaka, 1217, Bangladesh
| | - Fan Pan
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
4
|
Vázquez-Meza MO, González-Ríos H, González-Aguilar GA, Viuda-Martos M, Dávila-Ramírez JL, Valenzuela-Melendres M. Effect of Fat Type and Mango Peel Powder on the Physicochemical Properties of Beef Patties During Cold Storage and In Vitro Digestion. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:2981134. [PMID: 39479468 PMCID: PMC11524697 DOI: 10.1155/2024/2981134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 08/23/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024]
Abstract
The aim of this research was to evaluate the effects of fat type and mango peel powder (MP) on the physicochemical properties of cooked beef patties during cold storage and after in vitro digestion. Beef patties were prepared with saturated beef fat (BF) and pre-emulsified avocado oil (AO) or pre-emulsified safflower oil (SO). MP was added at 0% or 1%. The treatments were as follows: T1 (BF, no added MP), T2 (AO, no added MP), T3 (SO, no added MP), T4 (BF + 1%MP), T5 (AO + 1%MP), and T6 (SO + 1%MP). Substituting saturated fat with AO and SO improved the fatty acid profile of beef patties. The addition of pre-emulsified oils increased (p < 0.05) the L ∗, a ∗, and b ∗ values. Moreover, the incorporation of MP in the meat formulation decreased (p < 0.05) lipid oxidation during cold storage. Adding MP to the meat formulation decreased (p < 0.05) lipid oxidation before and after in vitro digestion. Replacement of saturated fat with vegetable oils and incorporation of MP may be an alternative strategy to improve the quality of beef patties during cold storage and decrease lipid oxidation after in vitro digestion.
Collapse
Affiliation(s)
- Martha Olivia Vázquez-Meza
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Humberto González-Ríos
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Gustavo Adolfo González-Aguilar
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Manuel Viuda-Martos
- IPOA Research Group, Agro-Food and Agro-Environmental Research and Innovation Center, Miguel Hernández University (CIAGRO-UMH), Ctra. Beniel km 3.2, 03312 Orihuela, Alicante, Spain
| | - José Luis Dávila-Ramírez
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| | - Martín Valenzuela-Melendres
- Research Center for Food and Development, CIAD Carretera Gustavo Enrique Astiazarán Rosas, No. 46, Hermosillo, Sonora 83304, Mexico
| |
Collapse
|
5
|
Macášek J, Staňková B, Žák A, Růžičková M, Brůha R, Kutová S, Vecka M, Zeman M. Associations of plasma phospholipid cis-vaccenic acid with insulin resistance markers in non-diabetic men with hyperlipidemia. Nutr Diabetes 2024; 14:73. [PMID: 39261487 PMCID: PMC11390737 DOI: 10.1038/s41387-024-00332-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/22/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND The role of fatty acids (FA) in the pathogenesis of insulin resistance and hyperlipidemia is a subject of intensive research. Several recent works have suggested cis-vaccenic acid (cVA) in plasma lipid compartments, especially in plasma phospholipids (PL) or erythrocyte membranes, could be associated with markers of insulin sensitivity and cardiovascular health. Nevertheless, not all the results of research work testify to these beneficial effects of cVA. Therefore, we decided to investigate the relations of proportion of cVA in plasma PL to markers of insulin resistance in hyperlipidemic men. SUBJECTS In 231 men (median age 50) with newly diagnosed hyperlipidemia, we analyzed basic clinical parameters together with FA composition of plasma PL and stratified them according to the content of cVA into upper quartile (Q4) and lower quartile (Q1) groups. We examined also small control group of 50 healthy men. RESULTS The individuals in Q4 differed from Q1 by lower plasma insulin (p < 0.05), HOMA-IR values (p < 0.01), and apolipoprotein B concentrations (p < 0.001), but by the higher total level of nonesterified FA (p < 0.01). Both groups had similar age, anthropometrical, and other lipid parameters. In plasma PL, the Q4 group had lower content of the sum of n-6 polyunsaturated FA, due to decrease of γ-linolenic and dihomo-γ-linolenic acids, whereas the content of monounsaturated FA (mainly oleic and palmitoleic) was in Q4 higher. CONCLUSIONS Our results support hypothesis that plasma PL cVA could be associated with insulin sensitivity in men with hyperlipidemia.
Collapse
Grants
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- Charles University Research Program, Cooperatio-Gastroenterology Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- NU23-01-00288 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
- MH CZ DRO-VFN64165 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
Collapse
Affiliation(s)
- Jaroslav Macášek
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Barbora Staňková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic
| | - Aleš Žák
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Markéta Růžičková
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Radan Brůha
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Simona Kutová
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| | - Marek Vecka
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic.
- Institute of Clinical Chemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Na Bojišti 3, 121 08, Prague, Czech Republic.
| | - Miroslav Zeman
- Fourth Department of Internal Medicine, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 128 08, Prague, Czech Republic
| |
Collapse
|
6
|
Pizzone DM, Angellotti G, Carabetta S, Di Sanzo R, Russo M, Mauriello F, Ciriminna R, Pagliaro M. The LimoFish Circular Economy Process for the Marine Bioeconomy. CHEMSUSCHEM 2024; 17:e202301826. [PMID: 38804683 DOI: 10.1002/cssc.202301826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
The outcomes of applying the zero-waste extraction "LimoFish" process based on defatting fish processing waste with limonene to leftovers of European sardine (Sardina pilchardus) and European anchovy (Engraulis encrasicolus), compared to conventional extraction with oil-derived solvents such as n-hexane and with petroleum ether, show that the process has general applicability. Meeting the principles of green extraction and those of the marine biorefinery requiring high process efficiency, the process establishes an "innovation through integration" circular economy production route enabling the marine bioeconomy.
Collapse
Affiliation(s)
- Daniela Maria Pizzone
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Giuseppe Angellotti
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Sonia Carabetta
- Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Rosa Di Sanzo
- Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Mariateresa Russo
- Dipartimento di Agraria, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Francesco Mauriello
- Dipartimento di Ingegneria Civile, dell'Energia, dell'Ambiente e dei Materiali, Università degli Studi Mediterranea di Reggio Calabria, 89122, Reggio Calabria, Italy
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR, via U. La Malfa 153, 90146, Palermo, Italy
| |
Collapse
|
7
|
Adedokun MA, Enye LA, Akinluyi ET, Ajibola TA, Edem EE. Black seed oil reverses chronic antibiotic-mediated depression and social behaviour deficits via modulation of hypothalamic mitochondrial-dependent markers and insulin expression. IBRO Neurosci Rep 2024; 16:267-279. [PMID: 38379607 PMCID: PMC10876594 DOI: 10.1016/j.ibneur.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.
Collapse
Affiliation(s)
- Mujeeb Adekunle Adedokun
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Toheeb Adesumbo Ajibola
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
8
|
Ali M, Joseph M, Alfaro-Wisaquillo MC, Quintana-Ospina GA, Patiño D, Vu T, Dean LL, Fallen B, Mian R, Taliercio E, Toomer O, Oviedo-Rondón EO. Effects of high oleic full-fat soybean meal on broiler live performance, carcass and parts yield, and fatty acid composition of breast fillets. Poult Sci 2024; 103:103399. [PMID: 38281331 PMCID: PMC10840106 DOI: 10.1016/j.psj.2023.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 01/30/2024] Open
Abstract
The effects of high oleic oil full-fat (HO-FF) soybean meal (SBM) on broiler meat quality could lead to value-added food products. This experiment evaluated the effects of dietary normal oleic extruded expelled (NO-EE), normal oleic full-fat (NO-FF), or HO-FF SBM on live performance, carcass and parts yield, and breast fatty acid composition. Diets were formulated to be isoenergetic and isonitrogenous. A total of 540 Ross-708 male broilers were raised on floor pens with 18 broilers/pen and 10 replicates/treatment. Data were analyzed in a completely randomized design. Chickens were fed with a starter (0-14 d), grower (15-35 d), or a finisher diet (36-47 d) up to 47 d. Chickens were weighed at 7, 14, 35, and 47 d. At 48 d, 4 broilers per pen were processed. Breast samples were collected and evaluated for quality and fatty acid content. Broilers fed diets with NO-EE were heavier (P < 0.05) than chickens fed diets with full-fat SBM (NO-FF and HO-FF) at d 7, 14, 35 while feed conversion ratio (FCR) of NO-EE was best (P < 0.05) at 7 and 47 d. Carcass yield was also higher for broilers fed NO-EE than the other treatments. Diet did not affect parts yield, breast meat color, cooking, drip loss, white stripping, or SM quality parameters. More breast fillets without wooden breast (score 1) were observed (P < 0.05) for NO-FF than the other 2 treatments. The breast meat fatty acid profile (g fatty acid/100 g of all fatty acids) was significantly affected (P < 0.001) by diet. Broilers fed the HO-FF SBM diet had 54 to 86% more oleic acid, 72.5% to 2.2 times less linoleic acid, and reduced stearic and palmitic acid levels in the breast meat than NO-FF and NO-EE. In conclusion, feeding HO-FF to broilers enriched the oleic acid content of their breast meat while reducing the saturated fatty acid content relative to the NO-FF and NO-EE treatment groups.
Collapse
Affiliation(s)
- Muhammad Ali
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Michael Joseph
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Danny Patiño
- Trouw Nutrition-Latin America, Ciudad de Guatemala, Guatemala
| | - Thien Vu
- Food Science & Market Quality and Handling Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Lisa L Dean
- Food Science & Market Quality and Handling Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Ben Fallen
- Soybean and Nitrogen Fixation Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Rouf Mian
- Soybean and Nitrogen Fixation Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Earl Taliercio
- Soybean and Nitrogen Fixation Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | - Ondulla Toomer
- Food Science & Market Quality and Handling Research Unit, Agricultural Research Service, United States Department of Agriculture, Raleigh, NC 27695, USA
| | | |
Collapse
|
9
|
Xu D, Tong Y, Chen B, Li B, Wang S, Zhang D. The influence of first desaturase subfamily genes on fatty acid synthesis, desiccation tolerance and inter-caste nutrient transfer in the termite Coptotermes formosanus. INSECT MOLECULAR BIOLOGY 2024; 33:55-68. [PMID: 37750189 DOI: 10.1111/imb.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven "first desaturase" subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.
Collapse
Affiliation(s)
- Danni Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuxin Tong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Baoling Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shengyin Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Dayu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
10
|
Martins N, Moutinho S, Magalhães R, Pousão-Ferreira P, Oliva-Teles A, Peres H, Castro C. Oleic acid as modulator of oxidative stress in European sea bass (Dicentrarchus labrax) juveniles fed high dietary lipid levels. Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110929. [PMID: 38061580 DOI: 10.1016/j.cbpb.2023.110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Although the benefits of oleic acid (OA) have been established in mammals, its effects on fish remain understudied. The aim of this study was to evaluate the antioxidant potential of OA in the liver, intestine, and muscle of European sea bass juveniles fed diets containing different lipid levels. For that purpose, six diets with 16 or 22% lipids and 0, 1, and 2% OA were formulated and triplicate groups of European sea bass juveniles (21.4 g) were fed with these experimental diets for 9 weeks. Increasing dietary lipid levels or OA supplementation did not affect antioxidant enzyme activity in the liver and muscle. Superoxide dismutase (SOD) activity in the intestine increased with both the dietary lipid and OA levels, while glucose 6 phosphate dehydrogenase (G6PDH) activity increased only with dietary OA supplementation. Reduced glutathione (GSH) and total glutathione (tGSH) content were higher in the liver and intestine of fish fed the low-lipid diets, while in the high-lipid diets it was lower in the muscle than in the liver and intestine. Present findings suggest that OA plays a role in the antioxidant defense mechanisms of European sea bass, particularly at the intestine level, but additional research is required to further assess the potential benefits of incorporating OA into the diets.
Collapse
Affiliation(s)
- Nicole Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 289; 4450-208 Matosinhos, Portugal.
| | - Sara Moutinho
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 289; 4450-208 Matosinhos, Portugal
| | - Rui Magalhães
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 289; 4450-208 Matosinhos, Portugal
| | | | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 289; 4450-208 Matosinhos, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal; CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 289; 4450-208 Matosinhos, Portugal
| | - Carolina Castro
- FLATLANTIC - Atividades Piscícolas, S.A. - Rua dos Aceiros s/n, 3070-732 Praia de Mira, Portugal
| |
Collapse
|
11
|
Huang Y, Zhang J, You D, Chen S, Lin Z, Li B, Ling M, Tong H, Li F. Mechanisms underlying palmitic acid-induced disruption of locomotor activity and sleep behavior in Drosophila. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109813. [PMID: 38070757 DOI: 10.1016/j.cbpc.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
The globally prevalent of sleep disorders is partly attributed to unhealthy dietary habits. This study investigated the underlying mechanisms of elevated palmitic acid (PA) intake on locomotor activity and sleep behavior in Drosophila. Our results indicate that exposure to PA significantly elevated Drosophila's daytime and nighttime locomotor activity while concurrently reducing overall sleep duration. Utilizing 16S rRNA sequencing, we observed substantial alterations in the composition of the gut microbiota induced by PA, notably, characterized by a significant reduction in Lactobacillus plantarum. Furthermore, PA significantly increased the levels of inflammatory factors Upd3 and Eiger in Drosophila intestines, and downregulated the expression of Gad and Tph, as well as 5-HT1A. Conversely, Gdh and Hdc were significantly upregulated in the PA group. Supplementation with L. plantarum or lactic acid significantly ameliorated PA-induced disruptions in both locomotor activity and sleep behavior. This supplementation also suppressed the expression of intestinal inflammatory factors, thus restoring impaired neurotransmitter-mediated sleep-wake regulation. Moreover, specific knockdown of intestinal epithelial Upd3 or Eiger similarly restored disrupted neurotransmitter expression, ultimately improving PA-induced disturbances in Drosophila locomotor activity and sleep behavior. These findings provide important insights into the intricate interplay between dietary components and essential behaviors, highlighting potential avenues for addressing health challenges associated with modern dietary habits.
Collapse
Affiliation(s)
- Yumei Huang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China
| | - Jiaqi Zhang
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Dongdong You
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Shangqin Chen
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Zhongdong Lin
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Menglai Ling
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, PR China.
| | - Feng Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, PR China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325000, PR China.
| |
Collapse
|
12
|
Cipryan L, Kosek V, García CJ, Dostal T, Bechynska K, Hajslova J, Hofmann P. A lipidomic and metabolomic signature of a very low-carbohydrate high-fat diet and high-intensity interval training: an additional analysis of a randomized controlled clinical trial. Metabolomics 2023; 20:10. [PMID: 38141101 DOI: 10.1007/s11306-023-02071-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Regular physical activity and dietary variety are modifiable and influential factors of health outcomes. However, the cumulative effects of these behaviors are not well understood. Metabolomics may have a promising research potential to extend our knowledge and use it in the attempts to find a long-term and sustainable personalized approach in exercise and diet recommendations. OBJECTIVE The main aim was to investigate the effect of the 12 week very low carbohydrate high fat (VLCHF) diet and high-intensity interval training (HIIT) on lipidomic and metabolomic profiles in individuals with overweight and obesity. METHODS The participants (N = 91) were randomly allocated to HIIT (N = 22), VLCHF (N = 25), VLCHF + HIIT (N = 25) or control (N = 19) groups for 12 weeks. Fasting plasma samples were collected before the intervention and after 4, 8 and 12 weeks. The samples were then subjected to untargeted lipidomic and metabolomic analyses using reversed phase ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry. RESULTS The VLCHF diet affected plasma lipids considerably while the effect of HIIT was unremarkable. Already after 4 weeks of intervention substantial changes of plasma lipids were found in both VLCHF diet groups. The changes persisted throughout the entire 12 weeks of the VLCHF diet. Specifically, acyl carnitines, plasmalogens, fatty acyl esters of hydroxy fatty acid, sphingomyelin, ceramides, cholesterol esters, fatty acids and 4-hydroxybutyric were identified as lipid families that increased in the VLCHF diet groups whereas lipid families of triglycerides and glycerophospholipids decreased. Additionally, metabolomic analysis showed a decrease of theobromine. CONCLUSIONS This study deciphers the specific responses to a VLCHF diet, HIIT and their combination by analysing untargeted lipidomic and metabolomic profile. VLCHF diet caused divergent changes of plasma lipids and other metabolites when compared to the exercise and control group which may contribute to a better understanding of metabolic changes and the appraisal of VLCHF diet benefits and harms. CLINICAL TRIAL REGISTRY NUMBER NCT03934476, registered 1st May 2019 https://clinicaltrials.gov/ct2/show/NCT03934476?term=NCT03934476&draw=2&rank=1 .
Collapse
Affiliation(s)
- Lukas Cipryan
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Vit Kosek
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic.
| | - Carlos J García
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Tomas Dostal
- Department of Human Movement Studies and Human Motion Diagnostic Centre, The University of Ostrava, Ostrava, Czech Republic
| | - Kamila Bechynska
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 16628, Prague, Czech Republic
| | - Peter Hofmann
- Institute of Human Movement Science, Sport and Health, Exercise Physiology, Training and Training Therapy Research Group, University of Graz, Graz, Austria
| |
Collapse
|
13
|
Gan J, Chen J, Ma RL, Deng Y, Ding XS, Zhu SY, Sun AJ. Action Mechanisms of Metformin Combined with Exenatide and Metformin Only in the Treatment of PCOS in Obese Patients. Int J Endocrinol 2023; 2023:4288004. [PMID: 38131036 PMCID: PMC10735721 DOI: 10.1155/2023/4288004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/14/2023] [Accepted: 10/28/2023] [Indexed: 12/23/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is the most common endocrine disease in women of reproductive age, whose clinical characteristics are hyperandrogenism (HA), ovulatory dysfunction, and polycystic ovary, often accompanied by insulin resistance (IR) and metabolic abnormalities. Glucagon-like peptide (GLP)-1 receptor agonists (GLP-1Ra), such as exenatide, can bind to specific receptors on tissues such as the ovaries to improve the clinical phenotype of PCOS, while insulin-sensitizing agents, such as metformin, can also benefit to metabolic abnormalities in PCOS. Liquid chromatography-mass spectrometry (LC/MS) metabolomics revealed differences between the mechanisms of exenatide and metformin treatment of PCOS to some extent. Methods In this study, 50 obese subjects with PCOS were randomly divided into the exenatide combined with metformin group (COM group, n = 28) and the metformin group (MF group, n = 22) for 12-week treatment. Before and after, serum samples were subjected to LC/MS analysis. Results After treatment, there were 153 named differential metabolites in the COM group and 99 in the MF group. Most phosphatidylcholines (PC) and deoxycholic acid 3-glucuronide (DA3G) were significantly upregulated, while most glycerophosphoethanolamine (PE-NMe2), glycerophosphocholine (GPC), and threonine were downregulated in both groups. Only the decrease of neuromedin B, glutamate, and glutamyl groups and the increase of chenodeoxycholic acid sulfate docosadienoate (22: 2n6), and prostaglandin E2 have been observed in the COM group. In addition, salicylic acid and spisulosine increased and decanoylcarnitine decreased in the MF group. Both groups were enriched in glycerophospholipid, choline, and sphingolipid metabolism, while the COM group was especially superior in the glutamine and glutamate, bile secretion, and amino acid metabolism. Conclusion Compared with metformin alone in the treatment of PCOS, the differential metabolites of the exenatide combined with metformin group are more extensive. The COM group may act on the hypothalamic-pituitary-gonadal axis (HPO) and its bypass, regulate multiple metabolism pathways such as phospholipids, amino acids, fatty acids, carnitine, bile acids, and glucose directly or indirectly in obese PCOS patients.
Collapse
Affiliation(s)
- Jingwen Gan
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Jie Chen
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Rui-lin Ma
- Department of Ultrasound, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Yan Deng
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Xue-song Ding
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Shi-yang Zhu
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| | - Ai-jun Sun
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 1 Shuaifuyuan, Dongcheng District, Beijing 100730, China
| |
Collapse
|
14
|
Yang X, Zhu A, Li X, He S, Zhu Y, Anyan W, Qin L, Zeng H. Effects of extracted oil of fermented Tartary buckwheat on lipid-lowering, inflammation modulation, and gut microbial regulation in mice. Food Funct 2023; 14:10814-10828. [PMID: 37982812 DOI: 10.1039/d3fo04117d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
This study investigated the composition of Tartary buckwheat oil fermented by Monascus purpureus and extracted under supercritical CO2 conditions (FTBO) and evaluated its effects on lipid-lowering, inflammation modulation, and gut microbial regulation in mice that were fed a high-fat diet (MOD). Compared with the raw oil (TBO), the γ-oryzanol content reached 27.09 mg g-1; the monounsaturated fatty acid (MUFA) content (such as oleic acid and palmitic acid) was elevated; and the antioxidant capacities of DPPH, ABTS, and hydroxyl were improved in FTBO (p < 0.0001). Then, supplementation with FTBO had a remarkable effect on reducing the body weight and visceral obesity as well as alleviating hyperglycemia, dyslipidemia, inflammatory reactions, and liver damage. The TC, TG, and LDL-C levels in the liver and plasma were reduced, and the HDL-C levels in the liver were increased (p < 0.05). In particular, the high-dose group (FTBOH) exhibited the most significant effect on reducing the pro-inflammatory cytokines ET, TNF-α, IL-1β, and IL-6 in the liver, which were 18.85, 570.12, 50.47, and 26.22 pg mL-1, respectively (p < 0.05). Moreover, FTBO reversed intestinal disorders and increased the intestinal microbial diversity and richness. The relative abundance of beneficial bacteria, such as Bifidobacterium, Lactobacillus, Limosilactobacillus, and Lachnospiraceae_UCG-006, were increased, and the relative abundance of the harmful bacteria Staphylococcus and Lachnoclostridium were reduced. In summary, FTBO has potential applications as a dietary supplement or dietary modifier in lowering blood lipids, modulating immune activity, and reversing intestinal disorders. This study provides reference guidance for the subsequent industrialization and development of Tartary buckwheat, the extension of the industrial chain, the development of new products, and the extraction of functional components.
Collapse
Affiliation(s)
- Xin Yang
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Anran Zhu
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
- Guizhou Xi Jiu Co., Ltd, Zunyi, 564622, China
| | - Xuanchen Li
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Shengling He
- Guizhou Province Academy of Agricultural Sciences, Guiyang, 550025, China
| | - Yi Zhu
- Plant Protection and Plant Quarantine Station of Guizhou Province, Guiyang, 550025, China
| | - Wen Anyan
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Likang Qin
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| | - Haiying Zeng
- School of Liquor and Food Engineering Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
15
|
Aytar EC, Harzli I, Özdener Kömpe Y. Phytochemical Analysis of Anacamptis coriophora Plant Cultivated Using Ex Vitro Symbiotic Propagation. Chem Biodivers 2023; 20:e202301218. [PMID: 37870554 DOI: 10.1002/cbdv.202301218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/18/2023] [Accepted: 10/22/2023] [Indexed: 10/24/2023]
Abstract
This study aims to investigate the functional groups and phytochemical profile of Anacamptis coriophora seeds, tubers, and flowers. Symbiotic seedlings produced using the ex vitro method were transferred to their natural habitat and grown to analyze the functional groups and phytochemical profiles of tubers and flowers. The life cycles of the transferred seedlings were monitored, and tubers and flowers were harvested for analysis. ATR-FTIR spectroscopy revealed the presence of functional groups such as polysaccharides, lignin, and proteins in both tubers and flowers. Differences in spectral frequencies between first-year and second-year tubers were observed. Fatty acid analysis identified 30 different compounds in seeds, flowers, and tubers, with linoleic acid being the most abundant (27 % in seeds, 33 % in tubers), and palmitic acid present in flowers (24 %). GC-MS analysis of ethanol extracts from these components highlighted the presence of 32 compounds, including hydroxyacetic acid, hydrazide, cytidine (Z)-7-hexadecenal, 2,2-dimethoxyethane, 2,5,6-trimethyldecane, and butanamide, 4-amino-N-hydroxy. A. coriophora's tubers, flowers, and seeds may contain active metabolites with therapeutic potential. These results are valuable for the commercial cultivation of the plant.
Collapse
Affiliation(s)
- Erdi Can Aytar
- Ondokuz Mayıs University, Faculty of Science, Department of Biology, Samsun, 55139, Türkiye
- University of Usak, Faculty of Agriculture, Departman of Horticulture, Uşak, 64200, Türkiye
| | - Ines Harzli
- Ondokuz Mayıs University, Faculty of Science, Department of Biology, Samsun, 55139, Türkiye
| | - Yasemin Özdener Kömpe
- Ondokuz Mayıs University, Faculty of Science, Department of Biology, Samsun, 55139, Türkiye
| |
Collapse
|
16
|
Urrutia RI, Jesser EN, Gutierrez VS, Rodriguez S, Gumilar F, Murray AP, Volpe MA, Werdin-González JO. From waste to food and bioinsecticides: An innovative system integrating Tenebrio molitor bioconversion and pyrolysis bio-oil production. CHEMOSPHERE 2023; 340:139847. [PMID: 37595689 DOI: 10.1016/j.chemosphere.2023.139847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
To achieve a waste-free clean production, the present study aimed to valorize an underused agroindustrial byproduct (rice bran) by mealworms bioconversion and produce bio-oil from pyrolysis of insect excreta (frass) as bioinsecticide. To reach the first goal, the suitability of rice bran (RB) versus standard diet, wheat bran (WB), was examined by determining feed conversion, growth performance, and nutritional profile of T. molitor larvae. RB diet was an appropriate feed substrate for breeding mealworms, as evidenced by their high survival rates, optimal feed conversion parameters, and its capability to support the growth and life cycle of this insect. Besides, RB did not affect soluble larval protein content but modified crude fat content and fatty acid profile. In order to address the second aim, egested frass from RB and WB were subjected to pyrolysis to obtain bio-oils. The main compound was acetic acid (≈37%) followed by 1,6-anhydro-β-d-glucopyranose (from 16 to 25%), as measured by GC-MS analysis. Nitrogen-containing chemicals accounted for ≈10%. Frass bio-oils could represent a novel source of bioinsecticides due to their bioeffectiveness in insect pests of economic importance (Plodia interpunctella and Tribolium castaneum) and medical interest (Culex pipiens pipiens). For P. interpunctella adults, frass bio-oils produced insecticidal activity by fumigant and contact exposure whereas for T. castaneum adults, just fumigant. By a miniaturized model that simulates semireal storage conditions, it was seen that, on T. castaneum, frass RB bio-oil generated higher repellent effect than frass WB. Finally, bio-oils proved to have larvicidal activity against Cx. p. pipiens.
Collapse
Affiliation(s)
- Rodrigo Iñaki Urrutia
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000, Bahía Blanca, Argentina
| | - Emiliano Nicolas Jesser
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000, Bahía Blanca, Argentina
| | - Victoria Soledad Gutierrez
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Silvana Rodriguez
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Fernanda Gumilar
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000, Bahía Blanca, Argentina
| | - Ana Paula Murray
- Instituto de Química del Sur, INQUISUR (CONICET-UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina; Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Maria Alicia Volpe
- Departamento de Química, Universidad Nacional del Sur (UNS), Av. Alem 1253, 8000, Bahía Blanca, Argentina
| | - Jorge Omar Werdin-González
- Instituto de Ciencias Biológicas y Biomédicas del Sur, INBIOSUR (CONICET-UNS), San Juan 671, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, 8000, Bahía Blanca, Argentina.
| |
Collapse
|
17
|
Wang Y, Shi J, Liu K, Wang Y, Xu Y, Liu Y. Metabolomics and gene expression levels reveal the positive effects of teaseed oil on lifespan and aging process in Caenorhabditis elegans. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Ali HS, Kamel MM, Agwa SHA, Hakeem MSA, Meteini MSE, Matboli M. Analysis of mRNA-miRNA-lncRNA differential expression in prediabetes/type 2 diabetes mellitus patients as potential players in insulin resistance. Front Endocrinol (Lausanne) 2023; 14:1131171. [PMID: 37223012 PMCID: PMC10200895 DOI: 10.3389/fendo.2023.1131171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/10/2023] [Indexed: 05/25/2023] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a major global health concern. It usually develops gradually and is frequently preceded by undetectable pre-diabetes mellitus (pre-DM) stage. The purpose of this study was to identify a novel set of seven candidate genes associated with the pathogenesis of insulin resistance (IR) and pre-DM, followed by their experimental validation in patients' serum samples. Methods We used the bioinformatics tools and through a two-step process, we first identified and verified two mRNA candidate genes linked to insulin resistance molecular pathogenesis. Second, we identified a non-coding RNAs related to the selected mRNAs and implicated in the insulin resistance molecular pathways followed by pilot study for the RNA panel differential expression in 66 patients with T2DM, 49 individuals with prediabetes and 45 matched controls using real time PCR. Results The levels of expression of TMEM173 and CHUK mRNAs, hsa-miR (-611, -5192, and -1976) miRNAs gradually increased from the healthy control group to the prediabetic group, reaching their maximum levels in the T2DM group (p <10-3), whereas the levels of expression of RP4-605O3.4 and AC074117.2 lncRNAs declined gradually from the healthy control group to the prediabetic group, reaching their lowest levels in the T2DM group (p <10-3). TMEM173, CHUK mRNAs, hsa_miR (-611 & -1976) and RP4-605O3.4 lncRNA were useful in distinguishing insulin resistant from insulin sensitive groups. miR_611 together with RP4-605O3.4 exhibited significant difference in good versus poor glycemic control groups. Discussion The presented study provides an insight about this RNA based STING/NOD/IR associated panel that could be used for PreDM-T2DM diagnosis and also as a therapeutic target based on the differences of its expression level in the pre-DM and T2DM stages.
Collapse
Affiliation(s)
- Hebatalla Said Ali
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Marwa Mostafa Kamel
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| | - Sara H. A. Agwa
- Clinical Pathology, Medical Ain Shams Research Institute, Ain Shams University, Cairo, Egypt
| | | | | | - Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
19
|
Nguyen CQ, Pham TTP, Fukunaga A, Hoang DV, Phan TV, Phan DC, Huynh DV, Hachiya M, Le HX, Do HT, Mizoue T, Inoue Y. Red meat consumption is associated with prediabetes and diabetes in rural Vietnam: a cross-sectional study. Public Health Nutr 2023; 26:1006-1013. [PMID: 35722988 PMCID: PMC10346020 DOI: 10.1017/s1368980022001422] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/02/2022] [Accepted: 05/27/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To examine the association between red/processed meat consumption and glycaemic conditions (i.e. prediabetes (preDM) and diabetes mellitus (DM)) among middle-aged residents in rural Khánh Hòa, Vietnam. DESIGN In this cross-sectional study, a multinomial logistic regression model was used to examine the association between daily consumption of red/processed meat (0-99 g, 100-199 g or ≥ 200 g) and preDM/DM with adjustments for socio-demographic, lifestyle-related and health-related variables. SETTING Khánh Hòa Province, Vietnam. PARTICIPANTS The study used data collected through a baseline survey conducted during a prospective cohort study on CVD among 3000 residents, aged 40-60 years, living in rural communes in Khánh Hòa Province. RESULTS The multinomial regression model revealed that the relative-risk ratios for DM were 1·00 (reference), 1·11 (95 % CI = 0·75, 1·62) and 1·80 (95 % CI = 1·40, 2·32) from the lowest to the highest red/processed meat consumption categories (Ptrend = 0·006). The corresponding values for preDM were 1·00 (reference), 1·25 (95 % CI = 1·01, 1·54) and 1·67 (95 % CI = 1·20, 2·33) (Ptrend = 0·004). We did not find any evidence of statistical significance in relation to poultry consumption. CONCLUSION Increased red/processed meat consumption, but not poultry consumption, was positively associated with the prevalence of preDM/DM in rural communes in Khánh Hòa Province, Vietnam. Dietary recommendations involving a reduction in red/processed meat consumption should be considered in low- and middle-income countries.
Collapse
Affiliation(s)
- Chau Que Nguyen
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Thuy Thi Phuong Pham
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Ami Fukunaga
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Dong Van Hoang
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Tien Vu Phan
- Medical Service Center, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Danh Cong Phan
- Department of Non-communicable Disease Control and Nutrition, Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Dong Van Huynh
- Khánh Hòa Center for Disease Control, Khánh Hòa, Vietnam
| | - Masahiko Hachiya
- Bureau of International Health Cooperation, National Center for Global Health and Medicine, Tokyo, Japan
| | - Huy Xuan Le
- Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Hung Thai Do
- Pasteur Institute in Nha Trang, Nha Trang, Khánh Hòa, Vietnam
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| | - Yosuke Inoue
- Department of Epidemiology and Prevention, National Center for Global Health and Medicine, Tokyo162-8655, Japan
| |
Collapse
|
20
|
Abou-Rjeileh U, Dos Santos Neto JM, Chirivi M, O'Boyle N, Salcedo D, Prom C, Laguna J, Parales-Giron J, Lock AL, Contreras GA. Oleic acid abomasal infusion limits lipolysis and improves insulin sensitivity in adipose tissue from periparturient dairy cows. J Dairy Sci 2023; 106:4306-4323. [PMID: 37105874 DOI: 10.3168/jds.2022-22402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 01/03/2023] [Indexed: 04/29/2023]
Abstract
Excessive adipose tissue (AT) lipolysis around parturition in dairy cows is associated with impaired AT insulin sensitivity and increased incidence of metabolic diseases. Supplementing cows with oleic acid (OA) reduces circulating biomarkers of lipolysis and improves energy balance. Nevertheless, it is unclear if OA alters lipid trafficking in AT. In the liver and skeletal muscle, OA improves mitochondrial function and promotes lipid droplet formation by activating perilipin 5 (PLIN5) and peroxisome proliferator-activated receptor α (PPARα). However, it is unknown if this mechanism occurs in AT. The objective of this study was to determine the effect of OA on AT lipolysis, systemic and AT insulin sensitivity, and AT mitochondrial function in periparturient dairy cows. Twelve rumen-cannulated Holstein cows were infused abomasally following parturition with ethanol (CON) or OA (60 g/d) for 14 d. Subcutaneous AT samples were collected at 11 ± 3.6 d before calving (-12 d), and 6 ± 1.0 d (7 d) and 13 ± 1.4 d (14 d) after parturition. An intravenous glucose tolerance test was performed on d 14. Adipocyte morphometry was performed on hematoxylin and eosin-stained AT sections. The antilipolytic effect of insulin (1 μg/L) was evaluated using an ex vivo explant culture following lipolysis stimulation. PLIN5 and PPARα transcription and translation were determined by real-time quantitative PCR and capillary electrophoresis, respectively. RNA sequencing was used to evaluate the transcriptomic profile of mitochondrial gene networks. In CON cows, postpartum lipolysis increased the percentage of smaller (<3,000 µm2) adipocytes at 14 d compared with -12 d. However, OA limited adipocyte size reduction at 14 d. Likewise, OA decreased lipolysis plasma markers nonesterified free fatty acids and β-hydroxybutyrate at 5 and 7 d. Over the 14-d period, compared with CON, OA increased the concentration of plasma insulin and decreased plasma glucose. During the glucose tolerance test, OA decreased circulating glucose concentration (at 10, 20, 30, 40 min) and the glucose clearance rate. Moreover, OA increased insulin at 10 and 20 min and tended to increase it at 30 min. Following lipolysis stimulation, OA improved the antilipolytic effect of insulin in the AT at 14 d. PLIN5 and PPARA gene expression decreased postpartum regardless of treatment. However, OA increased PLIN5 protein expression at 14 d and increased PPARA at 7 and 14 d. Immunohistochemical analysis of AT and RNA sequencing data showed that OA increased the number of mitochondria and improved mitochondrial function. However, OA had no effect on production and digestibility. Our results demonstrate that OA limits AT lipolysis, improves systemic and AT insulin sensitivity, and is associated with markers of mitochondrial function supporting a shift to lipogenesis in AT of periparturient dairy cows.
Collapse
Affiliation(s)
- Ursula Abou-Rjeileh
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - José M Dos Santos Neto
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Miguel Chirivi
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Nial O'Boyle
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, United Kingdom
| | - David Salcedo
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Crystal Prom
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Juliana Laguna
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824
| | - Jair Parales-Giron
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824
| | - Adam L Lock
- Department of Animal Science, College of Agriculture and Natural Resources, Michigan State University, East Lansing 48824.
| | - G Andres Contreras
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing 48824.
| |
Collapse
|
21
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Rathore HA. Assessment of the antidiabetic potential of extract and novel phytoniosomes formulation of Tradescantia pallida leaves in the alloxan-induced diabetic mouse model. FASEB J 2023; 37:e22818. [PMID: 36856606 DOI: 10.1096/fj.202201395rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/30/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023]
Abstract
Diabetes inflicts health and economic burdens on communities and the present antidiabetic therapies have several drawbacks. Tradescantia pallida leaves have been used as a food colorant and food preservative; however, to our knowledge antidiabetic potential of the leaves of T. pallida has not been explored yet. The current study aimed to investigate the antidiabetic potential of T. pallida leaves extract and its comparison with the novel nisosome formulation of the extract. The leaves extract and phytoniosomes of T. pallida in doses of 15, 25 and 50 mg/kg were used to assess the oral glucose loaded, and alloxan-induced diabetic mice models. The biological parameters evaluated were; change in body weight, blood biochemistry, relative organ to body weight ratio and histopathology of the liver, pancreas and kidney. Results revealed that the extract 50 mg/kg and phytoniosomes 25 and 50 mg/kg remarkably reduced the blood glucose level in all hyperglycemic mice by possibly inhibiting α-amylase and α-glucosidase production. Body weight and blood biochemical parameters were considerably improved in phytoniosomes 50 mg/kg treated group. The relative body weight was similar to those of healthy mice in extract 50 mg/kg, phytoniosomes 25 mg/kg, and phytoniosomes 50 mg/kg treated groups. Histopathology showed the regeneration of cells in the CHN50 treated group. Hyphenated chromatographic analysis revealed potent metabolites, which confirmed the antidiabetic potential of the extract by inhibiting α-amylase and α-glucosidase using in silico analysis. The present data suggested that phytoniosomes have shown better antidiabetic potential than crude extract of these leaves.
Collapse
Affiliation(s)
- Fariha Imtiaz
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Muhammad Islam
- Section of Pharmaceutical Chemistry, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Hamid Saeed
- Section of Pharmaceutics, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Abrar Ahmed
- Section of Pharmacognosy, Punjab University College of Pharmacy, Allama Iqbal Campus, University of the Punjab, Lahore, Pakistan
| | - Hassaan Anwer Rathore
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
22
|
Zhou R, He D, Zhang H, Xie J, Zhang S, Tian X, Zeng H, Qin Y, Huang L. Ginsenoside Rb1 protects against diabetes-associated metabolic disorders in Kkay mice by reshaping gut microbiota and fecal metabolic profiles. JOURNAL OF ETHNOPHARMACOLOGY 2023; 303:115997. [PMID: 36509256 DOI: 10.1016/j.jep.2022.115997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax quinquefolius Linn. is one of the most valuable herbal medicine in the world for its broad health benefits, including anti-diabetes. Ginsenoside Rb1, the principal active constituent of Panax quinquefolius Linn., could attenuate insulin resistance and metabolic disorders. The dysfunction of gut microbiota and fecal metabolites plays an important role in the pathogenesis of Type 2 Diabetes mellitus (T2DM). However, whether ginsenoside Rb1's hypoglycemic effect is related to gut microbiota remains elusive. AIM OF THE STUDY Our study aimed to explore the insulin-sensitizing and anti-diabetic effects of ginsenoside Rb1 as well as the underlying mechanisms. MATERIALS AND METHODS The T2DM model were established by high fat diet (HFD)-induced Kkay mice. The anti-diabetic effect of ginsenoside Rb1 (200 mg/kg/day) was evaluated by random blood glucose (RBG), fasting blood glucose (FBG), glucose tolerance test (OGTT), serum insulin level, insulin resistance index (HOMA-IR), pancreatic histology analysis, liver indexes, total triglyceride (TG) and total cholesterol (TC). Subsequently, 16S rRNA sequencing and LC-MS-based untargeted metabolomics were applied to characterize the microbiome and metabolites profile in HFD-induced Kkay mice, respectively. Finally, antibiotic treatment was used to validate the potential mechanism of ginsenoside Rb1 by modulating gut microbiota. RESULTS Our results showed that ginsenoside Rb1 reduced blood glucose, OGTT, serum insulin level, HOMA-IR, liver indexes as well as pancreatic injury. In addition, the ginsenoside Rb1 reversed the gut microbiota dysbiosis in diabetic Kkay mice, as indicated by the elevated abundance of Parasutterella, decreased population of Alistipes, f_Prevotellaceae_unclassified, Odoribacter, Anaeroplasma. Moreover, ginsenoside Rb1 altered free fatty acid (FFA) levels in fecal metabolites, such as decreased the level of α-linolenic acid, 13-OxoODE, oleic acid, 13-HODE, arachidonic acid, palmitic acid, stearic acid, while increased the level of PC (14:0/22:1(13Z)) and PC (16:0/16:0). Notably, ginsenoside Rb1 failed to improve HFD-induced diabetes in Kkay mice with antibiotics intervention. CONCLUSION These findings suggested that ginsenoside Rb1 may serve as a potential prebiotic agent to modulate specific gut microbes and related metabolites, which play essential roles in diabetes-associated metabolic disorders and insulin resistance.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Dan He
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Haichao Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Jing Xie
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China
| | - Shuihan Zhang
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- Hunan University of Chinese Medicine, Changsha, PR China
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China.
| | - Yuhui Qin
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha, China; Hunan University of Chinese Medicine, Changsha, PR China.
| | - Luqi Huang
- China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
23
|
Linsaenkart P, Ruksiriwanich W, Jantrawut P, Chittasupho C, Rachtanapun P, Jantanasakulwong K, Sommano SR, Prom-u-thai C, Jamjod S, Arjin C, Sringarm K, Barba FJ. Natural Melanogenesis Inhibitor, Antioxidant, and Collagen Biosynthesis Stimulator of Phytochemicals in Rice Bran and Husk Extracts from Purple Glutinous Rice ( Oryza sativa L. cv. Pieisu 1 CMU) for Cosmetic Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:970. [PMID: 36840317 PMCID: PMC9962111 DOI: 10.3390/plants12040970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Oryza sativa L. cv. Pieisu 1 CMU (PES1CMU) has a high anthocyanin content in the colored bran and high phenolic content in the husk. Biologically active compounds in plants are available as dietary supplements and cosmetics. To expand the utilization of natural resources, PES1CMU will be a natural remedy for skin hyperpigmentation and aging. Cell-free tyrosinase inhibition and scavenging assays were used to screen all extracts, including PES1CMU-rice bran oil (RBO), PES1CMU-defatted rice bran (DFRB), and PES1CMU-husk (H). PES1CMU extracts were first examined in IBMX-stimulated B16 cells and H2O2-induced fibroblasts. The results exhibited that PES1CMU-DFRB was the most effective inhibitor of mushroom tyrosinase, intracellular melanin production (fold change of 1.11 ± 0.01), and tyrosinase activity (fold change of 1.22 ± 0.10) in IBMX-stimulated B16 cells. Particularly, PES1CMU-DFRB showed a comparable whitening effect to the standard arbutin with no significant difference (p > 0.05). Moreover, PES1CMU-DFRB and PES1CMU-H demonstrated strong scavenging activities. After accelerated cell aging caused by H2O2 exposure in fibroblasts, the levels of malondialdehyde production in all PES1CMU-treated fibroblasts were comparable with those of standard l-ascorbic acid (p > 0.05). Besides, PES1CMU-DFRB and PES1CMU-H treatment significantly inhibited collagen degradation against MMP-2 compared to l-ascorbic acid-treated cells (p > 0.05). PES1CMU rice-processing wastes (DFRB and H) could become potential natural sources for dermatocosmetic constituents in skin anti-aging and whitening products.
Collapse
Affiliation(s)
- Pichchapa Linsaenkart
- Doctor of Philosophy Program in Pharmacy, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Warintorn Ruksiriwanich
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- School of Agro-Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sarana Rose Sommano
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Sansanee Jamjod
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chaiwat Arjin
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Korawan Sringarm
- Cluster of Research and Development of Pharmaceutical and Natural Products Innovation for Human or Animal, Chiang Mai University, Chiang Mai 50200, Thailand
- Cluster of Agro Bio-Circular-Green Industry, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Francisco J. Barba
- Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, 46100 València, Spain
| |
Collapse
|
24
|
Roy AC, Prasad A, Ghosh I. Phytochemical Profiling of Tupistra nutans Wall. ex Lindl. Inflorescence Extract and Evaluation of Its Antioxidant Activity and Toxicity in Hepatocarcinoma (HepG2) and Fibroblast (F111) Cells. Appl Biochem Biotechnol 2023; 195:172-195. [PMID: 36070165 DOI: 10.1007/s12010-022-04145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
Tupistra nutans Wall. ex Lindl. is a medicinal plant found in the Eastern Himalayan region. Besides being used as a folk medicine for pain and high blood sugar, its inflorescence is consumed as a vegetable. However, its medicinal properties have not been proven in vitro and in vivo till now. Therefore, in this study, we reported the phytochemicals present in the methanolic extract of Tupistra nutans Wall. ex Lindl. inflorescence (METNI) and its comparative effect in liver carcinoma HepG2 cells against non-cancerous murine fibroblast F111 cells. Phytochemical profiling by gas chromatography-mass spectrometry (GC-MS) analysis showed that METNI was rich in unsaturated fatty acids, vitamin E, and anticancer compounds like diosgenin, linoleic acid, and palmitoleic acid. METNI was found to have in vitro antioxidant property as determined by DPPH and pyrogallol methods, and UV protection property as investigated by fluorescence-based and spectrophotometric methods. MTT assay revealed METNI caused significantly more cell proliferation inhibition in HepG2 (IC50 = 138 µg/ml) compared to F111 (IC50 = 347 µg/ml) cells. Although in both HepG2 and F111 cells METNI showed significant antioxidant activity, it led to intracellular ROS generation and cell cycle alteration at higher exposure. The obtained results suggest that Tupistra nutans can be a promising application for anticancer drug and skin care product development, but can be harmful if overconsumed.
Collapse
Affiliation(s)
- Ashim Chandra Roy
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Abhinav Prasad
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilora Ghosh
- Biochemistry and Environmental Toxicology Laboratory, Lab. # 103, School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
25
|
Niu Z, Ren G, Huang L, Mu L. Circ_0008529 Contributes to Renal Tubular Cell Dysfunction in High Glucose Stress via miR-185-5p/SMAD2 Pathway in Diabetic Nephropathy. Biochem Genet 2022; 61:963-978. [DOI: 10.1007/s10528-022-10296-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 10/18/2022] [Indexed: 11/02/2022]
|
26
|
DAYI TAYGUN, OZGOREN MURAT. Effects of the Mediterranean diet on the components of metabolic syndrome. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E56-E64. [PMID: 36479500 PMCID: PMC9710414 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Metabolic syndrome, also as known as Syndrome X or Insulin Resistance Syndrome, is a complex health problem featuring visceral obesity (the main diagnostic criterion), insulin resistance, dyslipidemia and high blood pressure. Currently, this health condition has gained a momentum globally while raising concerns among health-related communities. The World Health Organization, American Heart Association and International Diabetes Federation have formulated diagnostic criteria for metabolic syndrome. Diet and nutrition can influence this syndrome: for example, the Western diet is associated with increased risk of metabolic syndrome, whereas the Nordic and Mediterranean diets and the Dietary Approach to Stop Hypertension are potentially beneficial. The Mediterranean diet can affect the components of metabolic syndrome due to its high dietary fiber, omega 3 and 9 fatty acids, complex carbohydrates, antioxidants, minerals, vitamins and bioactive substances, such as polyphenols. These nutrients and bioactive substances can combat obesity, dyslipidemia, hypertension and diabetes mellitus. The mechanisms by which they do so are generally related to oxidative stress, inflammation (the most common risk factors for metabolic syndrome) and gastrointestinal function. The literature also shows examples of positive effects of the Mediterranean diet on the metabolic syndrome. In this review of the literature, we shed light on the effects, mechanisms and dynamic relationship between the Mediterranean diet and metabolic syndrome.
Collapse
Affiliation(s)
- TAYGUN DAYI
- Near East University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Cyprus
- Correspondence: Taygun Dayi, Near East University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Cyprus 99138. E-mail: ; Murat Ozgoren, Near East University, Faculty of Medicine, Department of Biophysics, Cyprus 99138. E-mail:
| | - MURAT OZGOREN
- Near East University, Faculty of Medicine, Department of Biophysics, Cyprus
- Correspondence: Taygun Dayi, Near East University, Faculty of Health Sciences, Department of Nutrition and Dietetics, Cyprus 99138. E-mail: ; Murat Ozgoren, Near East University, Faculty of Medicine, Department of Biophysics, Cyprus 99138. E-mail:
| |
Collapse
|
27
|
Arjmand B, Ebrahimi Fana S, Ghasemi E, Kazemi A, Ghodssi-Ghassemabadi R, Dehghanbanadaki H, Najjar N, Kakaii A, Forouzanfar K, Nasli-Esfahani E, Farzadfar F, Larijani B, Razi F. Metabolic signatures of insulin resistance in non-diabetic individuals. BMC Endocr Disord 2022; 22:212. [PMID: 36002887 PMCID: PMC9404631 DOI: 10.1186/s12902-022-01130-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/18/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) evolved from excessive energy intake and poor energy expenditure, affecting the patient's quality of life. Amino acid and acylcarnitine metabolomic profiles have identified consistent patterns associated with metabolic disease and insulin sensitivity. Here, we have measured a wide array of metabolites (30 acylcarnitines and 20 amino acids) with the MS/MS and investigated the association of metabolic profile with insulin resistance. METHODS The study population (n = 403) was randomly chosen from non-diabetic participants of the Surveillance of Risk Factors of NCDs in Iran Study (STEPS 2016). STEPS 2016 is a population-based cross-sectional study conducted periodically on adults aged 18-75 years in 30 provinces of Iran. Participants were divided into two groups according to the optimal cut-off point determined by the Youden index of HOMA-IR for the diagnosis of metabolic syndrome. Associations were investigated using regression models adjusted for age, sex, and body mass index (BMI). RESULTS People with high IR were significantly younger, and had higher education level, BMI, waist circumference, FPG, HbA1c, ALT, triglyceride, cholesterol, non-HDL cholesterol, uric acid, and a lower HDL-C level. We observed a strong positive association of serum BCAA (valine and leucine), AAA (tyrosine, tryptophan, and phenylalanine), alanine, and C0 (free carnitine) with IR (HOMA-IR); while C18:1 (oleoyl L-carnitine) was inversely correlated with IR. CONCLUSIONS In the present study, we identified specific metabolites linked to HOMA-IR that improved IR prediction. In summary, our study adds more evidence that a particular metabolomic profile perturbation is associated with metabolic disease and reemphasizes the significance of understanding the biochemistry and physiology which lead to these associations.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran, Iran
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Ebrahimi Fana
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ameneh Kazemi
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hojat Dehghanbanadaki
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloufar Najjar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ardeshir Kakaii
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Katayoon Forouzanfar
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshad Farzadfar
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Roystonn K, AshaRani PV, Siva Kumar FD, Wang P, Abdin E, Sum CF, Lee ES, Chong SA, Subramaniam M. Factor structure of the diabetes knowledge questionnaire and the assessment of the knowledge of risk factors, causes, complications, and management of diabetes mellitus: A national population-based study in Singapore. PLoS One 2022; 17:e0272745. [PMID: 35947580 PMCID: PMC9365176 DOI: 10.1371/journal.pone.0272745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/26/2022] [Indexed: 01/12/2023] Open
Abstract
This study evaluated the knowledge of diabetes mellitus and predictors of the level of diabetes knowledge among the general public of Singapore. Confirmatory factor analysis and exploratory factor analysis were used to evaluate the fit of different factor models for the diabetes knowledge questionnaire. Multiple linear regressions were performed to determine the sociodemographic characteristics associated with diabetes knowledge. The final factor model identified three domains for diabetes knowledge: general knowledge, diabetes specific knowledge and causes of diabetes, and complications of untreated diabetes. Overall knowledge scores were 23.8 ± 2.4 for general diabetes knowledge, 2.3 ± 0.8 for diabetes specific knowledge, 2.3 ± 1.2 for causes, and 5.2 ± 1.2 for complications of untreated diabetes. Patients with diabetes were more knowledgeable than adults without diabetes in the population. While the general public in Singapore has adequate knowledge of diabetes, misconceptions were identified in both groups which underscores the need to tailor specific educational initiatives to reduce these diabetes knowledge gaps.
Collapse
Affiliation(s)
- Kumarasan Roystonn
- Research Division, Institute of Mental Health, Singapore, Singapore
- * E-mail:
| | - P. V. AshaRani
- Research Division, Institute of Mental Health, Singapore, Singapore
| | | | - Peizhi Wang
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Edimansyah Abdin
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Chee Fang Sum
- Clinical Research Unit, Diabetes Centre, Admiralty Medical Centre, Singapore, Singapore
| | - Eng Sing Lee
- Clinical Research Unit, National Healthcare Group Polyclinics, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Siow Ann Chong
- Research Division, Institute of Mental Health, Singapore, Singapore
| | - Mythily Subramaniam
- Research Division, Institute of Mental Health, Singapore, Singapore
- Saw Swee Hock School of Public Health and Department of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
29
|
Expression of TNF-α and IL-1β in Peripheral Blood of Patients with T2DM Retinopathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:9073372. [PMID: 35979044 PMCID: PMC9377956 DOI: 10.1155/2022/9073372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/13/2022] [Indexed: 12/06/2022]
Abstract
Aims The expression and clinical significance of tumor necrosis factor-α (INF-α) and interleukin 1-β (IL-1β) in retinal cells of patients with type 2 diabetes (T2DM) retinopathy were detected by flow cytometry. Materials and Methods Fifty patients with T2DM who attended our ophthalmology clinic between May 2021 and May 2022 were selected as the observation group. Another 50 healthy individuals who were examined at our hospital during the same period were selected as the comparison group. Tear film rupture time (BUT), fluorescein staining (FL), basal tear secretion (Schirmer I) test, and conjunctival impression cytology (CIC) were detected in both groups, and the expression of TNF-α and IL-1β in retinal cells was observed by immunohistochemical staining. Results The levels of IL13 and TNF-α in the two groups were not exactly the same. The serum levels of IL13 and TNF-α in the observation group were significantly higher than those in the control group, and there was a statistically significant difference (P < 0.05). TNF-α and IL-1B expressions in the observation group were positively correlated with the fluorescence staining, and the expression of TNF-α and IL-1β in the observation group was significantly negatively correlated with the BUT test and Schirmer I test. Conclusion Serums TNF-α and IL-1β are significantly elevated in patients with T2DM retinopathy and gradually increase with disease progression. Combined detection of serums TNF-α and IL-1β can help determine the severity of the disease and assess the prognosis.
Collapse
|
30
|
Rokhman MR, Arifin B, Zulkarnain Z, Satibi S, Perwitasari DA, Boersma C, Postma MJ, van der Schans J. Translation and performance of the Finnish Diabetes Risk Score for detecting undiagnosed diabetes and dysglycaemia in the Indonesian population. PLoS One 2022; 17:e0269853. [PMID: 35862370 PMCID: PMC9302803 DOI: 10.1371/journal.pone.0269853] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/29/2022] [Indexed: 12/15/2022] Open
Abstract
A diabetes risk score cannot directly be translated and applied in different populations, and its performance should be evaluated in the target population. This study aimed to translate the Finnish Diabetes Risk Score (FINDRISC) instrument and compare its performance with the modified version for detecting undiagnosed type 2 diabetes mellitus (T2DM) and dysglycaemia among the Indonesian adult population. Forward and backward translations were performed and followed by cultural adaptation. In total, 1,403 participants were recruited. The FINDRISC-Bahasa Indonesia (FINDRISC-BI) was scored according to the original FINDRISC instrument, while a Modified FINDRISC-BI was analyzed using a specific body mass index and waist circumference classification for Indonesians. The area under the receiver operating characteristic curve, sensitivity, specificity, and the optimal cut-offs of both instruments were estimated. The area under the receiver operating characteristic curve for detecting undiagnosed T2DM was 0.73 (0.67-0.78) for the FINDRISC-BI with an optimal cut-off score of ≥9 (sensitivity = 63.0%; specificity = 67.3%) and 0.72 (0.67-0.78) for the Modified FINDRISC-BI with an optimal cut-off score of ≥11 (sensitivity = 59.8%; specificity = 74.9%). The area under the receiver operating characteristic curve for detecting dysglycaemia was 0.72 (0.69-0.75) for the FINDRISC-BI instrument with an optimal cut-off score of ≥8 (sensitivity = 66.4%; specificity = 67.0%), and 0.72 (0.69-0.75) for the Modified FINDRISC-BI instrument with an optimal cut-off score ≥9 (sensitivity = 63.8%; specificity = 67.6%). The Indonesian version of the FINDRISC instrument has acceptable diagnostic accuracy for screening people with undiagnosed T2DM or dysglycaemia in Indonesia. Modifying the body mass index and waist circumference classifications in the Modified FINDRISC-BI results in a similar diagnostic accuracy; however, the Modified FINDRISC-BI has a higher optimal cut-off point than the FINDRISC-BI. People with an above optimal cut-off score are suggested to take a further blood glucose test.
Collapse
Affiliation(s)
- M. Rifqi Rokhman
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute of Science in Healthy Ageing & healthcaRE (SHARE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Bustanul Arifin
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Unit of PharmacoTherapy, Epidemiology and Economics (PTE2), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Zulkarnain Zulkarnain
- Faculty of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Thyroid Center, Zainoel Abidin Hospital, Banda Aceh, Indonesia
| | - Satibi Satibi
- Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Cornelis Boersma
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute of Science in Healthy Ageing & healthcaRE (SHARE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Faculty of Management Sciences, Open University, Heerlen, The Netherlands
| | - Maarten J. Postma
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute of Science in Healthy Ageing & healthcaRE (SHARE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Unit of PharmacoTherapy, Epidemiology and Economics (PTE2), Department of Pharmacy, University of Groningen, Groningen, The Netherlands
- Department of Pharmacology and Therapy, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
- Department of Economics, Econometrics and Finance, Faculty of Economics & Business, University of Groningen, Groningen, The Netherlands
| | - Jurjen van der Schans
- Department of Health Sciences, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Institute of Science in Healthy Ageing & healthcaRE (SHARE), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Economics, Econometrics and Finance, Faculty of Economics & Business, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
31
|
Liu D, He XQ, Wu DT, Li HB, Feng YB, Zou L, Gan RY. Elderberry ( Sambucus nigra L.): Bioactive Compounds, Health Functions, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4202-4220. [PMID: 35348337 DOI: 10.1021/acs.jafc.2c00010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Elderberry (Sambucus nigra L.) is rich in many bioactive compounds and exhibits diverse health functions, of which an understanding can be helpful for its better utilization in the food industry. This review mainly summarizes recent studies about the bioactive compounds and health functions of elderberry, highlighting the potential mechanism of action. In addition, the applications of elderberry in foods are also discussed. Elderberry contains diversely bioactive ingredients, such as (poly)phenolic compounds and terpenoid compounds. Recent studies report that some food processing methods can affect the content of bioactive compounds in elderberry. Additionally, elderberry exhibits various health functions in vitro and in vivo, including antioxidant, anti-inflammatory, anticancer, anti-influenza, antimicrobial, antidiabetic, cardiovascular protective, and neuroprotective activities, and their potential molecular mechanisms are associated with regulating some key signaling pathways and molecular targets. Up to now, there have been limited clinical trials supporting the health benefits of elderberry. Overall, elderberry is a promising dietary source of bioactive ingredients and has the potential to be developed into functional foods or nutraceuticals for preventing and treating certain chronic diseases.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Xiao-Qin He
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| | - Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong Special Administrative Region of the People's Republic of China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
| | - Ren-You Gan
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, People's Republic of China
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu National Agricultural Science and Technology Center, Chengdu, Sichuan 610213, People's Republic of China
| |
Collapse
|
32
|
Fan Y, Gao Y, Ma Q, Yang Z, Zhao B, He X, Yang J, Yan B, Gao F, Qian L, Wang W, Zhu F, Ma X. Multi-Omics Analysis Reveals Aberrant Gut-Metabolome-Immune Network in Schizophrenia. Front Immunol 2022; 13:812293. [PMID: 35309369 PMCID: PMC8927969 DOI: 10.3389/fimmu.2022.812293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is associated with several immune dysfunctions, including elevated levels of pro-inflammatory cytokines. Microorganisms and their metabolites have been found to regulate the immune system, and that intestinal microbiota is significantly disturbed in schizophrenic patients. To systematically investigate aberrant gut-metabolome-immune network in schizophrenia, we performed an integrative analysis of intestinal microbiota, serum metabolome, and serum inflammatory cytokines in 63 SCZ patients and 57 healthy controls using a multi-omics strategy. Eighteen differentially abundant metabolite clusters were altered in patients displayed higher cytokine levels, with a significant increase in pro-inflammatory metabolites and a significant decrease in anti-inflammatory metabolites (such as oleic acid and linolenic acid). The bacterial co-abundance groups in the gut displayed more numerous and stronger correlations with circulating metabolites than with cytokines. By integrating these data, we identified that certain bacteria might affect inflammatory cytokines by modulating host metabolites, such as amino acids and fatty acids. A random forest model was constructed based on omics data, and seven serum metabolites significantly associated with cytokines and α-diversity of intestinal microbiota were able to accurately distinguish the cases from the controls with an area under the receiver operating characteristic curve of 0.99. Our results indicated aberrant gut-metabolome-immune network in SCZ and gut microbiota may influence immune responses by regulating host metabolic processes. These findings suggest a mechanism by which microbial-derived metabolites regulated inflammatory cytokines and insights into the diagnosis and treatment of mental disorders from the microbial-immune system in the future.
Collapse
Affiliation(s)
- Yajuan Fan
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yuan Gao
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qingyan Ma
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zai Yang
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Binbin Zhao
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan He
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jian Yang
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Yan
- Clinical Research Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Fengjie Gao
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Qian
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhu
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiancang Ma
- Department of Psychiatry, The First Afffliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
33
|
Miklankova D, Markova I, Hüttl M, Stankova B, Malinska H. The Different Insulin-Sensitising and Anti-Inflammatory Effects of Palmitoleic Acid and Oleic Acid in a Prediabetes Model. J Diabetes Res 2022; 2022:4587907. [PMID: 36147256 PMCID: PMC9489414 DOI: 10.1155/2022/4587907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Monounsaturated fatty acids (MUFA) are understood to have therapeutic and preventive effects on chronic complications associated with type 2 diabetes mellitus (T2DM); however, there are differences between individual MUFAs. Although the effects of palmitoleic acid (POA) are still debated, POA can regulate glucose homeostasis, lipid metabolism, and cytokine production, thus improving metabolic disorders. In this study, we investigated and compared the metabolic effects of POA and oleic acid (OA) supplementation on glucose and lipid metabolism, insulin sensitivity, and inflammation in a prediabetic model, the hereditary hypertriglyceridemic rat (HHTg). HHTg rats exhibiting genetically determined hypertriglyceridemia, insulin resistance, and impaired glucose tolerance were fed a standard diet. POA and OA were each administered intragastrically at a dose of 100 mg/kg b.wt. for four weeks. RESULTS Supplementation with both MUFAs significantly elevated insulin and glucagon levels, but only POA decreased nonfasting glucose. POA-treated rats showed elevated circulating NEFA associated with increased lipolysis, lipoprotein lipase gene expression, and fatty acid reesterification in visceral adipose tissue (VAT). The mechanism of improved insulin sensitivity of peripheral tissues (measured as insulin-stimulated lipogenesis and glycogenesis) in POA-treated HHTg rats could contribute increased circulating adiponectin and omentin levels together with elevated FADS1 gene expression in VAT. POA-supplemented rats exhibited markedly decreased proinflammatory cytokine production by VAT, which can alleviate chronic inflammation. OA-supplemented rats exhibited decreased arachidonic acid (AA) profiles and decreased proinflammatory AA-derived metabolites (20-HETE) in membrane phospholipids of peripheral tissues. Slightly increased FADS1 gene expression after OA along with increased adiponectin production by VAT was reflected in slightly ameliorated adipose tissue insulin sensitivity (increased insulin-stimulated lipogenesis). CONCLUSIONS Our results show that POA served as a lipokine, ameliorating insulin sensitivity in peripheral tissue and markedly modulating the metabolic activity of VAT including cytokine secretion. OA had a beneficial effect on lipid metabolism and improved inflammation by modulating AA metabolism.
Collapse
Affiliation(s)
- Denisa Miklankova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Irena Markova
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Martina Hüttl
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Barbora Stankova
- First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Hana Malinska
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
34
|
Lattibeaudiere KG, Alexander-Lindo RL. Oleic Acid and Succinic Acid Synergistically Mitigate Symptoms of Type 2 Diabetes in Streptozotocin-Induced Diabetic Rats. Int J Endocrinol 2022; 2022:8744964. [PMID: 35265127 PMCID: PMC8898872 DOI: 10.1155/2022/8744964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/21/2021] [Accepted: 01/20/2022] [Indexed: 11/27/2022] Open
Abstract
Succinic acid (SA) and oleic acid (OA) are the primary hypoglycaemic agents in Desmodium canum, a plant traditionally employed for its potential health benefits. The synergy of the two organic acids exhibits potency in retarding blood glucose levels (BGL) in euglycaemic Sprague Dawley (S-D) rats following a single-dose administration. A cocktail of the two compounds is being investigated for its antidiabetic properties in fructose-fed streptozotocin (STZ)-induced diabetic rats. Eighteen type 2 diabetic S-D rats were divided into 3 groups and treated for 28 d with either the cocktail (OA + SA, 800 mg/kg body weight [BW]), glibenclamide (10 mg/kg BW), or vehicle (10% polysorbate 20). Another 12 S-D rats served as euglycaemic animals and were divided into two groups, fed either the cocktail (OA + SA, 800 mg/kg BW) or vehicle. Changes in BW, blood pressure (BP), BGL, water and food consumption, serum insulin, serum glucagon and insulin resistance (IR) were monitored. Treatment with the cocktail showed no change in euglycaemic animals; however, there was a significant reduction in the BGL of diabetic treated animals when compared with diabetic control (14.48 ± 1.92 vs. 25.56 ± 1.38 mM; p=0.012). Quantitative insulin sensitivity check index (QUICKI) and glucose/insulin (G/I) scores for IR indicated an improvement in insulin response in the diabetic treated animals. Additionally, there was a noticeable reduction in food and water consumption when compared with diabetic control animals, which was accompanied by a reduction in weight. Overall, the cocktail elicited antidiabetic properties and may serve an important therapeutic role as a nutritional supplement in type 2 diabetics.
Collapse
Affiliation(s)
- K. G. Lattibeaudiere
- Department of Basic Medical Sciences, Biochemistry Section, The University of the West Indies, Mona, Kingston, Jamaica
| | - R. L. Alexander-Lindo
- Department of Basic Medical Sciences, Biochemistry Section, The University of the West Indies, Mona, Kingston, Jamaica
| |
Collapse
|
35
|
Cheng YC, Duarte ME, Kim SW. Effects of Yarrowia lipolytica supplementation on growth performance, intestinal health and apparent ileal digestibility of diets fed to nursery pigs. Anim Biosci 2021; 35:605-613. [PMID: 34727641 PMCID: PMC8902212 DOI: 10.5713/ab.21.0369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 11/27/2022] Open
Abstract
Objective The objective was to evaluate the efficacy of increasing supplementation of Yarrowia lipolytica (YL) up to 3.0% replacing 1.6% poultry fat and 0.9% blood plasma for growth performance, intestinal health and nutrient digestibility of diets fed to nursery pigs. Methods Twenty-four pigs weaned at 24 d of age (initial body weight at 7.2±0.6 kg) were allotted to three dietary treatments (n = 8) based on the randomized complete block. The diets with supplementation of YL (0.0%, 1.5%, and 3.0%, replacing poultry fat and blood plasma up to 1.6% and 0.9%, respectively) were fed for 21 d. Feed intake and body weight were recorded at d 0, 10, and 21. Fecal score was recorded at every odd day from d 3 to 19. Pigs were euthanized on d 21 to collect proximal and distal jejunal mucosa to measure intestinal health markers including tumor necrosis factor-alpha, interleukin-8, immunoglobulin A and immunoglobulin G. Ileal digesta was collected for apparent ileal digestibility (AID) of nutrients in diets. Data were analyzed using Proc Mixed of SAS. Results Supplementation of YL (1.5% and 3.0%) replacing poultry fat and blood plasma did not affect growth performance, fecal score and intestinal health. Supplementation of YL at 1.5% did not affect nutrient digestibility, whereas supplementation of YL at 3.0% reduced AID of dry matter (40.2% to 55.0%), gross energy (44.0% to 57.5%), crude protein (52.1% to 66.1%), and ether extract (50.8% to 66.9%) compared to diets without supplementation. Conclusion Yarrowia lipolytica can be supplemented at 1.5% in nursery diets, replacing 0.8% poultry fat and 0.45% blood plasma without affecting growth performance, intestinal health and nutrient digestibility. Supplementation of YL at 3.0% replacing 1.6% poultry fat and 0.9% blood plasma did not affect growth performance and intestinal health, whereas nutrient digestibility was reduced.
Collapse
Affiliation(s)
- Yi-Chi Cheng
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Marcos Elias Duarte
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
36
|
Lv X, Zhao Y, Yang X, Han H, Ge Y, Zhang M, Zhang H, Zhang M, Chen L. Berberine Potentiates Insulin Secretion and Prevents β-cell Dysfunction Through the miR-204/SIRT1 Signaling Pathway. Front Pharmacol 2021; 12:720866. [PMID: 34630099 PMCID: PMC8493072 DOI: 10.3389/fphar.2021.720866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/06/2021] [Indexed: 01/16/2023] Open
Abstract
Pancreatic β-cell dysfunction is a key link during the progression of type 2 diabetes (T2DM), and SIRT1 participates in the regulation of various physiological activities of islet β-cells. However, as a key link in signal transduction, it is not clear how SIRT1 is regulated. By TargetScan prediction, we found that miR-204, which is enriched in islets, has highly complementary binding sites with SIRT1. Therefore, we speculate that miR-204 may be the upstream regulatory target of SIRT1 in islets and thus participate in the occurrence of β-cell dysfunction. In this study, we explored the association between miR-204 and β-cell dysfunction, the therapeutic effects of berberine (BBR) on β-cell function and the possible mechanisms. We found that miR-204 increased and SIRT1 mRNA and protein levels decreased significantly in islets both in vivo and in vitro. MIN6 cells induced by palmitic acid exhibited increased apoptosis, and the accumulation of insulin and ATP in the supernatant decreased. Importantly, palmitic acid treatment combined with miR-204 silencing showed opposite changes. MiR-204 overexpression in MIN6 cells increased apoptosis and decreased insulin and ATP production and SIRT1 expression. SIRT1 overexpression reversed the damage to β-cells caused by miR-204. The BBR treatment effectively improved insulin synthesis, reduced miR-204 levels, and increased SIRT1 expression in islet tissue in diabetic mice. Overexpression of miR-204 reversed the protective effect of BBR on apoptosis and insulin secretion in MIN6 cells. Our study identifies a novel correlation between miR-204 and β-cell dysfunction in T2DM and shows that administration of BBR leads to remission of β-cell dysfunction by regulating the miR-204/SIRT1 pathway.
Collapse
Affiliation(s)
- Xiaoyan Lv
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, China
| | - Yali Zhao
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xuehan Yang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Hao Han
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yue Ge
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Meishuang Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Pharmacology, School of Nursing, Jilin University, Changchun, China
| | - Hansi Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ming Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Li Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, China.,Department of Pharmacology, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
37
|
Zhang Y, Zhang T, Liang Y, Jiang L, Sui X. Dietary Bioactive Lipids: A Review on Absorption, Metabolism, and Health Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8929-8943. [PMID: 34161727 DOI: 10.1021/acs.jafc.1c01369] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dietary lipids are an indispensable source of energy and nutrition in human life. Numerous studies have shown that dietary bioactive lipids have many health benefits, including prevention or treatment of chronic diseases. The different chemical compositions and structural characteristics of bioactive lipids not only affect their digestion, absorption, and metabolism but also affect their health properties. In this review, the major dietary bioactive lipids (fatty acids, carotenoids, phytosterols, phenolic lipids, fat-soluble vitamins, and sphingomyelins) in foods are systematically summarized, from the aspects of composition, digestion, absorption, metabolism, source, structural characteristics, and their health properties. In particular, the relationship between the compositional and structural changes of bioactive lipids and their absorption and metabolism is discussed as well as their effect on health properties. This review provides a comprehensive summary toward health properties of dietary bioactive lipids.
Collapse
Affiliation(s)
- Yan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
- National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Tianyi Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Yan Liang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, People's Republic of China
| |
Collapse
|
38
|
Choi Y, Park JY, Chang PS. Direct and simultaneous analysis of lipase-catalyzed hydrolysis of high-oleic oil model by chiral stationary phase HPLC-ELSD. Food Chem 2021; 367:130750. [PMID: 34390909 DOI: 10.1016/j.foodchem.2021.130750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 12/12/2022]
Abstract
A novel HPLC-based method for direct separation of trioleoylglycerol (TOG), a major component in high-oleic oils, and its seven hydrolysis products (i.e., oleic acid, monooleoylglycerol (MOG) and dioleoylglycerol (DOG) isomers) was established using a chiral stationary phase column, Chiralpak IA. Within 20 min, all species including enantiomeric MOG (1-sn-MOG and 3-sn-MOG) and DOG (1,2-sn-DOG and 2,3-sn-DOG) were baseline-resolved with resolution factors over 1.5 between adjacent peaks. The established method was used for investigating the integral stereoselectivity, which is the selectivity concerning all hydrolysis steps, of lipase from Pseudomonas fluorescens (PFL) with TOG as substrate. The time-course of DOGs and MOGs indicated that PFL had selectivity for TOG hydrolysis in the order of sn-1, sn-2, and sn-3 position, while it preferred to hydrolyze 2,3-sn-DOG over 1,2-sn-DOG. Being rapid and accurate to evaluate integral stereoselectivity, this method could promote the development and application of lipases with target stereochemistry in the food industry.
Collapse
Affiliation(s)
- Yoonseok Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun-Young Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
39
|
Renganathan S, Manokaran S, Vasanthakumar P, Singaravelu U, Kim PS, Kutzner A, Heese K. Phytochemical Profiling in Conjunction with In Vitro and In Silico Studies to Identify Human α-Amylase Inhibitors in Leucaena leucocephala (Lam.) De Wit for the Treatment of Diabetes Mellitus. ACS OMEGA 2021; 6:19045-19057. [PMID: 34337243 PMCID: PMC8320072 DOI: 10.1021/acsomega.1c02350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/05/2021] [Indexed: 05/12/2023]
Abstract
Bioactive constituents from natural sources are of great interest as alternatives to synthetic compounds for the treatment of various diseases, including diabetes mellitus. In the present study, phytochemicals present in Leucaena leucocephala (Lam.) De Wit leaves were identified by gas chromatography-mass spectrometry and further examined by qualitative and quantitative methods. α-Amylase enzyme activity assays were performed and revealed that L. leucocephala (Lam.) De Wit leaf extract inhibited enzyme activity in a dose-dependent manner, with efficacy similar to that of the standard α-amylase inhibitor acarbose. To determine which phytochemicals were involved in α-amylase enzyme inhibition, in silico virtual screening of the absorption, distribution, metabolism, excretion, and toxicity properties was performed and pharmacophore dynamics were assessed. We identified hexadecenoic acid and oleic acid ((Z)-octadec-9-enoic acid) as α-amylase inhibitors. The binding stability of α-amylase to those two fatty acids was confirmed in silico by molecular docking and a molecular dynamics simulation performed for 100 ns. Together, our findings indicate that L. leucocephala (Lam.) De Wit-derived hexadecanoic acid and oleic acid are natural product-based antidiabetic compounds that can potentially be used to manage diabetes mellitus.
Collapse
Affiliation(s)
- Senthil Renganathan
- Department
of Bioinformatics, Marudupandiyar College, Thanjavur 613403, Tamil Nadu, India
| | - Sakthivel Manokaran
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Preethi Vasanthakumar
- Department
of Biotechnology, Bharath College of Science
and Management, Thanjavur 613005, Tamil Nadu, India
| | - Usha Singaravelu
- Department
of Bioinformatics, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Pok-Son Kim
- Department
of Mathematics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702, Republic of Korea
| | - Arne Kutzner
- Department
of Information Systems, College of Computer Science, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| | - Klaus Heese
- Graduate
School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Republic of Korea
| |
Collapse
|
40
|
Li G, Tan X, Zhang B, Guan L, Zhang Y, Yin L, Gao M, Zhu S, Xu L. Hengshun Aromatic Vinegar Improves Glycolipid Metabolism in Type 2 Diabetes Mellitus via Regulating PGC-1α/PGC-1β Pathway. Front Pharmacol 2021; 12:641829. [PMID: 33981226 PMCID: PMC8109051 DOI: 10.3389/fphar.2021.641829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/12/2021] [Indexed: 12/31/2022] Open
Abstract
Hengshun aromatic vinegar (HSAV), produced by typical solid-state or liquid-state fermentation techniques, is consumed worldwide as a food condiment. HSAV shows multiple bioactivities, but its activity in type 2 diabetes mellitus (T2DM) and possible mechanisms have not been reported. In this study, the effects of HSAV against T2DM were evaluated in insulin-induced HepG2 cells and high-fat diet (HFD) and streptozotocin (STZ) induced T2DM rats. Then, the mechanisms of HSAV against T2DM were explored by Real-time PCR, Western blot, immunofluorescence assays, siRNA transfection and gene overexpression experiments. Results indicated that HSAV significantly improved glucose consumption and reduced triglycerides (TG) contents in metabolic disordered HepG2 cells. Meanwhile, HSAV obviously alleviated general status, liver and kidney functions of T2DM rats, and decreased hyperglycemia and hyperlipidemia, improved insulin resistance, and reduced lipid accumulation in liver. Mechanism studies indicated that HSAV markedly down-regulated the expression of proliferator-activated receptor γ coactivator-1α (PGC-1α), then regulated peroxisome proliferators-activated receptor α (PPAR-α)/protein kinase B (AKT) signal pathway mediated gluconeogenesis and glycogen synthesis. Meanwhile, HSAV significantly up-regulated proliferator-activated receptor γ coactivator-1β (PGC-1β), and subsequently decreased sterol regulatory element binding protein-1c (SREBP-1c) pathway mediated lipogenesis. In conclusion, HSAV showed potent anti-T2DM activity in ameliorating dysfunction of glycolipid metabolism through regulating PGC-1α/PGC-1β pathway, which has a certain application prospect as an effective diet supplement for T2DM therapy in the future.
Collapse
Affiliation(s)
- Guoquan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.,Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Xuemei Tan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Bao Zhang
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Linshu Guan
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Yidan Zhang
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Meng Gao
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shenghu Zhu
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
41
|
Russo GL, Siani A, Fogliano V, Geleijnse JM, Giacco R, Giampaoli S, Iacoviello L, Kromhout D, Lionetti L, Naska A, Pellegrini N, Riccardi G, Sofi F, Vitale M, Strazzullo P. The Mediterranean diet from past to future: Key concepts from the second "Ancel Keys" International Seminar. Nutr Metab Cardiovasc Dis 2021; 31:717-732. [PMID: 33558092 DOI: 10.1016/j.numecd.2020.12.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
The year 2020 celebrated the tenth anniversary of the recognition of the Mediterranean Diet as Intangible Cultural Heritage of Humanity by the UNESCO Intergovernmental Committee. This event represented a milestone in the history of nutrition, as the Mediterranean diet was the first traditional food practice to receive such award. Since then, a lot has been discussed not only on the beneficial aspects of the Mediterranean diet, but also on its complex role as a lifestyle model that includes a set of skills, knowledge and intercultural dialogue. This process ended up with the recognition in 2019 of Mediterranean diet as a possibly universal model of healthy diet from the EAT-Lancet Commission. These concepts were widely debated at the 2019 "Ancel Keys" International Seminar, held in Ascea (Italy) (for more information see: www.mediterraneandietseminar.org) with the aim to stimulate interest and awareness of a young group of participants on the current problems inherent to the effective implementation of the Mediterranean diet. The present article collects the contributions of several lecturers at the Seminar on key issues such as methodological and experimental approach, sustainability, molecular aspects in disease prevention, future exploitation, without neglecting a historical view of the Seven Countries Study. From the Seminar conclusions emerged a still vibrant and modern role of Mediterranean diet. The years to come will see national and international efforts to reduce the barriers that limit adherence to Mediterranean diet in order to plan for multi-factorial and targeted interventions that would guide our populations to a sustainable healthy living.
Collapse
Affiliation(s)
- Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy.
| | - Alfonso Siani
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Vincenzo Fogliano
- Food Quality Design Group, Wageningen University, Wageningen, the Netherlands
| | - Johanna M Geleijnse
- Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Rosalba Giacco
- Institute of Food Sciences, National Research Council, Avellino, Italy; Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Simona Giampaoli
- Former director of the Department of Cardiovascular, Endocrine-metabolic Diseases and Aging, Istituto Superiore di Sanità, Rome, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Daan Kromhout
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Lillà Lionetti
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Fisciano (Salerno), Italy
| | - Androniki Naska
- Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Nicoletta Pellegrini
- Food Quality Design Group, Wageningen University, Wageningen, the Netherlands; Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Gabriele Riccardi
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Francesco Sofi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marilena Vitale
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| | - Pasquale Strazzullo
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy
| |
Collapse
|
42
|
Wang Y, Zhang T, Liu R, Chang M, Wei W, Jin Q, Wang X. New perspective toward nutritional support for malnourished cancer patients: Role of lipids. Compr Rev Food Sci Food Saf 2021; 20:1381-1421. [PMID: 33533186 DOI: 10.1111/1541-4337.12706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 12/01/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022]
Abstract
To improve the difficulties related to malnutrition, nutritional support has become an essential part of multidisciplinary comprehensive treatment for cancer. Lipids are essential nutrient source for the human body, and nowadays in clinical practices, it has a positive interventional effect on patients suffering from cancer. However, contribution of lipids in nutritional support of cancer patients is still poorly understood. Moreover, the sensory and physicochemical properties of lipids can severely restrict their applications in lipid-rich formula foods. In this review article, for the first time, we have presented a summary of the existing studies which were related to the associations between different lipids and improved malnutrition in cancer patients and discussed possible mechanisms. Subsequently, we discussed the challenges and effective solutions during processing of lipids into formula foods. Further, by considering existing problems in current lipid nutritional support, we proposed a novel method for the treatment of malnutrition, including developing individualized lipid nutrition for different patients depending on the individual's genotype and enterotype. Nonetheless, this review study provides a new direction for future research on nutritional support and the development of lipid-rich formula foods for cancer patients, and probably will help to improve the efficacy of lipids in the treatment of cancer malnutrition.
Collapse
Affiliation(s)
- Yandan Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Tao Zhang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ruijie Liu
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ming Chang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Wei
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qingzhe Jin
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xingguo Wang
- National Engineering Research Center for Functional Food, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. Int J Mol Sci 2021; 22:ijms22020646. [PMID: 33440733 PMCID: PMC7827006 DOI: 10.3390/ijms22020646] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are common plant natural products able to suppress ROS-related damage and alleviate oxidative stress. One of key mechanisms, involved in this phenomenon is chelation of transition metal ions. From a physiological perspective, iron is the most significant transition metal, because of its abundance in living organisms and ubiquitous involvement in redox processes. The chemical, pharmaceutical, and biological properties of flavonoids can be significantly affected by their interaction with transition metal ions, mainly iron. In this review, we explain the interaction of various flavonoid structures with Fe(II) and Fe(III) ions and critically discuss the influence of chelated ions on the flavonoid biochemical properties. In addition, specific biological effects of their iron metallocomplexes, such as the inhibition of iron-containing enzymes, have been included in this review.
Collapse
|
44
|
Faheem A, Rehman K, Jabeen K, Akash MSH. Nicotine-mediated upregulation of microRNA-141 expression determines adipokine-intervened insulin resistance. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103506. [PMID: 33002592 DOI: 10.1016/j.etap.2020.103506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs that are associated with adipokine homeostasis and insulin resistance. Whereas, smoking can disturb metabolic homeostasis. Present study was aimed to investigate the level of miRNA-141 in experimental animal model that were exposed with graded doses of nicotine. We further aimed to investigate the possible interplay of miRNA-141 expression change with adipokine homeostasis and occurrence of insulin resistance in nicotine-exposed experimental animals. Nicotine (0.5, 1.0, 3.0 and 6.0 mg/Kg) was administered to early adolescent; postnatal days ranging from 25 to 30 Wistar rats for one month. Serum was analyzed for leptin, adipokines, IL-6, MDA, HbA1c, insulin, G6PDH, hexokinase, and lipid profile. While miRNA-141 expression level was determined in plasma. Higher doses of nicotine were associated with higher glucose, HbA1c, leptin, IL-6, MDA and lipids levels, while, insulin, adiponectin, G6PDH, hexokinase and HDL levels were lower. Higher doses of nicotine also impaired glucose tolerance and exhibited significant increase in miR-141 expression signifying that nicotine exposure may influence adipokines regulation altering glycemic profile. This is accompanied with aggravated inflammatory responses where genetic expression of miRNA-141 can be an accessible biomarker for metabolic disturbances with insulin resistance and glucose intolerance.
Collapse
Affiliation(s)
- Amna Faheem
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Rehman
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan; Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
| | - Komal Jabeen
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan; Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | | |
Collapse
|
45
|
Gui W, Zhu WF, Zhu Y, Tang S, Zheng F, Yin X, Lin X, Li H. LncRNAH19 improves insulin resistance in skeletal muscle by regulating heterogeneous nuclear ribonucleoprotein A1. Cell Commun Signal 2020; 18:173. [PMID: 33115498 PMCID: PMC7592379 DOI: 10.1186/s12964-020-00654-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Skeletal muscle is essential for glucose and lipid metabolism. Growing evidence reveals the importance of long non-coding RNAs (LncRNAs) in metabolism. This study aimed to investigate the function of LncRNA H19 (H19) in lipid metabolism of skeletal muscle and its potential mechanisms. Methods Glucose tolerance, serum insulin and lipid content in serum and skeletal muscle were determined in control and H19-overexpressed db/db mice. Lipid metabolism was evaluated in H19-overexpressed or H19-silencing muscle cells by detecting lipid contents and mitochondria related functions. The underlying mechanisms were explored by RNA pull-down, mass spectrometry and RNA immunoprecipitation (RIP). Results H19 was downregulated in skeletal muscle of db/db mice. H19 overexpression in db/db mice inhibited lipid ectopic deposition in skeletal muscle, meanwhile improved glucose intolerance and insulin resistance as compared with control db/db mice treated with ad-GFP. Furthermore, overexpression of H19 reversed FFA-induced lipid accumulation and increased cellular respiration in muscle cells, while H19 knockdown exhibited opposite effects in muscle cells. Mechanistically, H19 interacted with heterogeneous nuclear ribonucleoprotein (hnRNPA1) which was validated by RNA pulldown and RIP analysis, which increased translation of fatty acid oxidation closely related genes PGC1a and CPT1b. Conclusion Our data suggest that overexpression of H19 ameliorates insulin resistance by reducing ectopic lipid accumulation in skeletal muscle. The possible underlying mechanisms are that overexpression of lncRNAH19 promotes fatty acids oxidation via targeting of hnRNPA1. Video abstract
Supplementary Information Supplementary information accompanies this paper at 10.1186/s12964-020-00654-2.
Collapse
Affiliation(s)
- Weiwei Gui
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Wei Fen Zhu
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Yiyi Zhu
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Shengjie Tang
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Fenping Zheng
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Xueyao Yin
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China
| | - Xihua Lin
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| | - Hong Li
- Department of Endocrinology, the Affiliated Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 East Qingchun Road, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
46
|
Sharif H, Akash MSH, Rehman K, Irshad K, Imran I. Pathophysiology of atherosclerosis: Association of risk factors and treatment strategies using plant-based bioactive compounds. J Food Biochem 2020; 44:e13449. [PMID: 32851658 DOI: 10.1111/jfbc.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Under physiological conditions, endothelial cells act as protective barrier which prevents direct contact of blood with circulating factors via production of tissue plasminogen activator. Risk factors of metabolic disorders are responsible to induce endothelial dysfunction and may consequently lead to prognosis of atherosclerosis. This article summarizes the process of atherosclerosis which involves number of sequences including formation and interaction of AGE-RAGE, activation of polyol pathway, protein kinase C, and hexosamine-mediated pathway. All these mechanisms can lead to the development of oxidative stress which may further aggravate condition. Different pharmacological interventions are being used to treat atherosclerosis, however, these might be associated with mild to severe side effects. Therefore, plant-based bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are attaining recent focus. By understanding process of development and mechanisms involved in atherosclerotic plaque formation, these bioactive compounds can be better option for future therapeutic interventions for atherosclerosis treatment. PRACTICAL APPLICATIONS: Atherosclerosis is one of major underlying disorders of cardiovascular diseases which occur through multiple mechanisms and is associated with metabolic disorders. Conventional therapeutic interventions are not only used to treat atherosclerosis, but are also commonly associated with mild to severe side effects. Therefore, nowadays, bioactive compounds having potential to combat and prevent atherosclerosis in diabetic patients are preferred. By understanding mechanisms involved in atherosclerotic plaque formation, bioactive compounds can be better understood for treatment of atherosclerosis. In this manuscript, we have focused on treatment strategies of atherosclerosis using bioactive compounds notably alkaloids and flavonoids having diverse pharmacological and therapeutic potentials with special focus on the mechanism of action of these bioactive compounds suitable for treatment of atherosclerosis. This manuscript will provide the scientific insights of bioactive compounds to researchers who are working in the area of drug discovery and development to control pathogenesis and development of atherosclerosis and its associated cardiometabolic disorders.
Collapse
Affiliation(s)
- Hina Sharif
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Kanwal Irshad
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Imran Imran
- Department of Pharmacology, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
47
|
Oleic Acid Protects Against Insulin Resistance by Regulating the Genes Related to the PI3K Signaling Pathway. J Clin Med 2020; 9:jcm9082615. [PMID: 32806641 PMCID: PMC7463472 DOI: 10.3390/jcm9082615] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The effects of different types of fatty acids on the gene expression of key players in the IRS1/PI3K signaling pathway have been poorly studied. MATERIAL AND METHODS We analyzed IRS1, p85α, and p110β mRNA expression and the fatty acid composition of phospholipids in visceral adipose tissue from patients with morbid obesity and from non-obese patients. Moreover, we analyzed the expression of those genes in visceral adipocytes incubated with oleic, linoleic, palmitic and dosahexaenoic acids. RESULTS We found a reduced IRS1 expression in patients with morbid obesity, independent of insulin resistance, and a reduced p110β expression in those with lower insulin resistance. A positive correlation was found between p85α and stearic acid, and between IRS1 and p110β with palmitic and dosahexaenoic acid. In contrast, a negative correlation was found between p85α and oleic acid, and between IRS1 and p110β with linoleic, arachidonic and adrenic acid. Incubation with palmitic acid decreased IRS1 expression. p85α was down-regulated after incubation with oleic and dosahexaenoic acid and up-regulated with palmitic acid. p110β expression was increased and decreased after incubation with oleic and palmitic acid, respectively. The ratio p85α/p110β was decreased by oleic and dosahexaenoic acid and increased by palmitic acid. CONCLUSIONS Our in vitro results suggest a detrimental role of palmitic acid on the expression of gene related to insulin signaling pathway, with oleic acid being the one with the higher and more beneficial effects. DHA had a slight beneficial effect. Fatty acid-induced regulation of genes related to the IRS1/PI3K pathway may be a novel mechanism by which fatty acids regulate insulin sensitivity in visceral adipocytes.
Collapse
|